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Weighted Lp-boundedness of convolution type integral operators

associated with bilinear estimates in the Sobolev spaces
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Abstract. We study the boundedness of integral operators of convolu-
tion type in the Lebesgue spaces with weights. As a byproduct, we give a
simple proof of the fact that the standard Sobolev space Hs(Rn) forms an
algebra for s > n/2. Moreover, an optimality criterion is presented in the
framework of weighted Lp-boundedness.

1. Introduction.

We study the boundedness of integral operators of convolution type in the Lebesgue
space with weights. A special attention will be made on an optimality criterion with
respect to the growth rate of weights.

To illustrate the problem, we revisit the standard property that the Sobolev space
Hs(Rn) = (1−∆)−s/2L2(Rn) forms an algebra for s > n/2 from the point of view from
the weighted L2(Rn)-boundedness of convolution. The corresponding bilinear estimate
in the Sobolev space takes the form

‖uv‖Hs ≤ C‖u‖Hs‖v‖Hs (1.1)

with s > n/2, where

‖u‖Hs = ‖(1−∆)s/2u‖L2 = ‖(1 + |ξ|2)s/2û‖L2 ,

û(ξ) = Fu(ξ) = (2π)−n/2

∫

Rn

exp(−ix · ξ)u(x)dx,

and ∆ is the Laplacian in Rn. The bilinear estimate of this type was may be traced
back at least to the paper by Saut and Temam [15]. There are many papers on further
refinements and improvements on this subject as well as various applications to nonlinear
partial differential equations. (see for instance [2]–[18] and references therein.)

One of the purpose in this paper is to give a simple and elementary proof of (1.1),
which avoids paradifferential technique for instance.

In the Fourier representation, multiplication of functions is realized by convolution
of the corresponding Fourier transformed functions:
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F(uv)(ξ) = (2π)n/2(û ∗ v̂)(ξ) = (2π)n/2

∫

Rn

û(ξ − η)v̂(η)dη

and the estimate (1.1) is equivalent to the bilinear estimate of the form

‖ω(û ∗ v̂)‖L2 ≤ C‖ωû‖L2‖ωv̂‖L2

with ω(ξ) = (1 + |ξ|2)s/2, which is also rewritten as

∥∥∥∥ω

((
û

ω

)
∗

(
v̂

ω

))∥∥∥∥
L2

≤ C‖û‖L2‖v̂‖L2 . (1.2)

By a duality argument, (1.2) is equivalent to the trilinear estimate of the form

∣∣∣∣
∫

Rn

∫

Rn

ω(ξ)
1

ω(ξ − η)
1

ω(η)
û(ξ − η)v̂(η)ŵ(ξ) dη dξ

∣∣∣∣

≤ C‖û‖L2‖v̂‖L2‖ŵ‖L2 . (1.3)

By a simple change of variables, (1.3) is equivalent to

∣∣∣∣
∫

Rn

∫

Rn

ω(ξ + η)
1

ω(ξ)
1

ω(η)
û(ξ)v̂(η)ŵ(ξ + η) dη dξ

∣∣∣∣

≤ C‖û‖L2‖v̂‖L2‖ŵ‖L2 . (1.4)

This gives a motivation to study the boundedness of the integrals of the form

∫

Rn

∫

Rn

w0(x + y)w1(x)w2(y)f(x + y)g(x)h(y) dx dy (1.5)

with weight functions w0, w1, w2, where w1 and w2 are supposedly the inverse weight of
w0.

The following theorem is basic in this direction.

Theorem 1.1. Let 2 ≤ p ≤ ∞ and let w0, w1, w2 be nonnegative, continuous
functions on [0,∞) satisfying

M1 ≡ sup
r>0

w#
0 (2r)w2(r)‖w1(| · |)‖Lp(B(r)) < ∞, (1.6)

M2 ≡ sup
r>0

w#
0 (2r)w1(r)‖w2(| · |)‖Lp(B(r)) < ∞, (1.7)

where

w#
0 (r) = sup

0≤ρ≤r
w0(ρ),

B(r) = {x ∈ Rn; |x| ≤ r}.
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Then, the trilinear estimate

∫

Rn

∫

Rn

w0(|x + y|) w1(|x|) w2(|y|) |f(x + y)g(x)h(y)| dx dy

≤ (M1 + M2)‖f‖Lp‖g‖Lp′‖h‖Lp′ (1.8)

holds for all f ∈ Lp(Rn), g, h ∈ Lp′(Rn), where p′ is the dual exponent defined by
1/p + 1/p′ = 1.

Proof. For f ∈ Lp we define the translation by y ∈ Rn by (τyf)(x) = f(x + y).
For S ⊂ Rn we denote by χS its characteristic function. Then, by the Hölder and
Minkowski inequalities, we obtain

∫∫

|x|≤|y|
w0(|x + y|)w1(|x|)w2(|y|)|f(x + y)g(x)h(y)| dx dy

≤
∫∫

w#
0 (2|y|)χB(|y|)(x)w1(|x|)w2(|y|)|τyf(x)g(x)h(y)| dx dy

≤
∫

w#
0 (2|y|)‖χB(|y|)w1(| · |)‖Lp‖τyf · g‖Lp′w2(|y|)|h(y)| dy

≤ M1‖‖τyf · g‖Lp′‖Lp
y
‖h‖Lp′

= M1‖f‖Lp‖g‖Lp′‖h‖Lp′ ,

where Lp
y is the Lp norm for the variable y. Similarly,

∫∫

|x|≥|y|
w0(|x + y|)w1(|x|)w2(|y|)|f(x + y)g(x)h(y)| dx dy

≤
∫∫

w#
0 (2|x|)χB(|x|)(y)w1(|x|)w2(|y|)|τxf(y)g(x)h(y)| dx dy

≤
∫

w#
0 (2|x|)‖χB(|x|)w2(| · |)‖Lp‖τxf · h‖Lp′w1(|x|)|g(x)| dx

≤ M2‖‖τxf · h‖Lp′‖Lp‖g‖Lp′

= M2‖f‖Lp‖g‖Lp′‖h‖Lp′ .

Summing those inequalities, we have (1.8). ¤

Corollary 1.1. Let 2 ≤ p ≤ ∞ and let w0, w1, w2 be nonnegative, continuous
functions on [0,∞) satisfying

M ′
1 = sup

r>0
w0(2r)w2(r)‖w1(| · |)‖Lp(B(r)) < ∞, (1.9)

M ′
2 = sup

r>0
w0(2r)w1(r)‖w2(| · |)‖Lp(B(r)) < ∞, (1.10)
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and the estimate

w0(r) ≤ C ′w0(R) (1.11)

for any r and R with 0 ≤ r ≤ R with C ′ ≥ 1 independent of r and R. Then, the trilinear
estimate

∫

Rn

∫

Rn

w0(|x + y|) w1(|x|) w2(|y|) |f(y + x)g(x)h(y)| dx dy

≤ C ′(M ′
1 + M ′

2)‖f‖Lp‖g‖Lp′‖h‖Lp′

holds for all f ∈ Lp(Rn), g, h ∈ Lp′(Rn).

Proof. By (1.11), we have w#
0 (2r) ≤ C ′w0(2r) for any r ≥ 0. Then, the corollary

follows from Theorem 1.1 ¤

The bilinear estimate (1.1) follows by choosing p = 2, w0(r) = (1 + r2)s/2, w1(r) =
w2(r) = (1 + r2)−s/2 with s > n/2, which ensures the required square integrability. A
natural question then arises in connection with minimal growth rate at infinity in space
for w0, 1/w1, 1/w2. Weight functions of the form w(r) = (1+r2)n/2(1+log(1+r))s with
s > 1/2 may be the first candidate with w0 = w, w1 = w2 = 1/w. This is not optimal
since w(r) = (1 + r2)n/2(1 + log(1 + r))1/2

(
1 + log(1 + log(1 + r))

)s with s > 1/2 has a
slower growth with keeping the required square integrability.

To describe emerging extra logarithmic factors in such an iteration procedure, it is
convenient to introduce the following set F consisting of positive, continuous functions
w on [0,∞) satisfying 1/w ∈ L1

loc(0,∞) and the following assumptions (A1) and (A2):

(A1) For any a ∈ R, there exists Ca ≥ 1 such that for any r and R with 0 ≤ r ≤ R, w

satisfies the inequality

w(r)
( ∫ r

0

1
w(ρ)

dρ + 1
)a

≤ Caw(R)
( ∫ R

0

1
w(ρ)

dρ + 1
)a

.

(A2) There exists C > 0 such that the inequality

w(2r) ≤ Cw(r)

holds for all r > 0.

Example 1. The function w defined by w(r) = 1 + r belongs to F with Ca = 1
for a ≥ −1, Ca = ea+1(−a)−a for a < −1, and C = 2.

Example 2. The function w defined by w(r) = (1 + r)s with s > 1 belongs to F
with Ca = 1 for a ≥ −s,

Ca = (−a)−a(a + s− as)(as−a−s)/(s−1)s(2s+a−as)/(s−1)
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for a < −s, and C = 2s.

Example 3. The function w defined by w(r) = (1 + r2)s/2 for s ≥ 1 belong to F
with Ca = 1 for a ≥ 0,

Ca = sa(−a)−ara
s,a(1 + r2

s,a)−a+(a−1)s/2

for a < 0, where rs,a is defined uniquely by

rs,a(1 + r2
s,a)s/2−1

( ∫ rs,a

0

(1 + ρ2)−s/2dρ + 1
)

=
|a|
s

and C = 2s.

Example 4. Let w(r) = 1 + log(1 + r) and a = −2. Then,

w(r)
( ∫ r

0

1
w(ρ)

dρ + 1
)−2

≤ w(r)
( ∫ r

0

1
1 + ρ

dρ + 1
)−2

=
1

w(r)
→ 0

as r →∞. This means w 6∈ F .

Example 5. The function w defined by w(r) = (1 + r)(1 + log(1 + r)) belongs to
F with Ca = 1 for a ≥ 0,

Ca = (−a)−a(1 + r̃s,a)−1(1 + log(1 + r̃s,a))−1(2 + log(r̃s,a))a

for a < 0, where r̃s,a is uniquely defined by

(2 + log(1 + r̃s,a))(1 + log(1 + log(1 + r̃s,a))) = |a|,

and C = 2 + 2 log 2.

Remark 1.1. For w ∈ F , we apply (A1) with a = 0 to obtain

∫ r

0

1
w(ρ)

dρ

≤
∫ 2r

0

1
w(ρ)

dρ =
∫ r

0

1
w(ρ)

dρ +
∫ r

0

1
w(ρ + r)

dρ

≤ (1 + C0)
∫ r

0

1
w(ρ)

dρ. (1.12)

Theorem 1.2. Let 2 ≤ p < ∞ and let w ∈ F . Let w0, w1, w2 be defined by

w0(r) = (1 + r)(n−1)/pw(r)1/p

( ∫ r

0

1
w(ρ)

dρ + 1
)−a

,
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w1(r) = (1 + r)−(n−1)/pw(r)−1/p

( ∫ r

0

1
w(ρ)

dρ + 1
)−b

,

w2(r) = (1 + r)−(n−1)/pw(r)−1/p

( ∫ r

0

1
w(ρ)

dρ + 1
)−c

with a, b, c ∈ R satisfying either (i) or (ii):

( i ) a + b + c ≥ 1/p a + b > 0 a + c > 0.
( ii ) a + b + c > 1/p a + b ≥ 0 a + c ≥ 0.

Then, there exists C > 0 such that the trilinear estimate

∫∫
w0(|x + y|)w1(|x|)w2(|y|)|f(x + y)g(x)h(y)|dx dy

≤ C‖f‖Lp‖g‖Lp′‖h‖Lp′ (1.13)

holds for all f ∈ Lp(Rn), g, h ∈ Lp′(Rn).

Remark 1.2. In the case
∫∞
0

w−1(ρ)dρ < ∞, we can choose any a, b, c for (1.13).
In the case where p = 2 and b = c = 0, assumption (i) is equivalent to a ≥ 1/2. In
the case where p = 2 and b = c > 0, assumption (i) is equivalent to a ≥ 1/2 − 2b with
a > −b. In the case where p = 2 and −a = b = c, assumption (i) breaks down and (ii) is
equivalent to −a = b = c > 1/2.

Proof of Theorem 1.2. We prove that w0, w1, w2 defined in the theorem sat-
isfy the assumptions (1.9)–(1.11) in Corollary 1.1. Let r and R satisfy 0 ≤ r ≤ R. By
(A1),

w(r)
( ∫ r

0

1
w(ρ)

dρ + 1
)−ap

≤ C−apw(R)
( ∫ R

0

1
w(ρ)

dρ + 1
)−ap

,

which yields

w0(r) ≤ C
1/p
−apw0(R). (1.14)

By (A2) and (1.12),

w0(2r) = (1 + 2r)(n−1)/pw(2r)1/p

( ∫ 2r

0

1
w(r)

dρ + 1
)−a

≤ 2(n−1)/p(1 + r)(n−1)/pC1/pw(r)1/p(1 + C0)(−a)+

( ∫ r

0

1
w(ρ)

dρ + 1
)−a

= 2(n−1)/pC1/p(1 + C0)(−a)+w0(r), (1.15)
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which yields

w0(2r)w1(r) ≤ 2(n−1)/pC1/p(1 + C0)(−a)+

( ∫ r

0

1
w(r)

dρ + 1
)−a−b

. (1.16)

We estimate w2(| · |) in Lp(B(r)) as

‖w2(| · |)‖Lp(B(r)) ≤ ω
1/p
n−1

( ∫ r

0

1
w(ρ)

( ∫ ρ

0

1
w(σ)

dσ + 1
)−pc

dρ

)1/p

, (1.17)

where ωn−1 is the surface measure of the unit ball. To estimate the right hand side of
(1.17) and M ′

1 of Corollary 1.1, we distinguish four cases:

(i) c ≤ 0. (ii) 0 < c < 1/p. (iii) c = 1/p. (iv) c > 1/p.

(i) In the case where c ≤ 0, we estimate

∫ r

0

1
w(ρ)

( ∫ ρ

0

1
w(σ)

dσ + 1
)−pc

dρ ≤
∫ r

0

1
w(ρ)

( ∫ r

0

1
w(σ)

dσ + 1
)−pc

dρ

≤
( ∫ r

0

1
w(ρ)

dρ + 1
)1−pc

.

Then, M ′
1 is estimated as follows:

M ′
1 ≤ sup

r>0
2(n−1)/pC1/p(1 + C0)(−a)+

( ∫ r

0

1
w(r)

dρ + 1
)1/p−a−b−c

= 2(n−1)/pC1/p(1 + C0)(−a)+ .

(ii) In the case where 0 < c < 1/p, we estimate

∫ r

0

1
w(ρ)

( ∫ ρ

0

1
w(σ)

dσ + 1
)−pc

dρ =
1

1− pc

(( ∫ r

0

1
w(σ)

dσ + 1
)1−pc

− 1
)

≤ 1
1− pc

( ∫ r

0

1
w(σ)

dσ + 1
)1−pc

.

Then, M ′
1 is estimated as follows:

M ′
1 ≤

1
1− pc

2(n−1)/pC1/p(1 + C0)(−a)+ .

(iii) In the case where c = 1/p, we estimate

∫ r

0

1
w(ρ)

( ∫ ρ

0

1
w(σ)

dσ + 1
)−1

dρ = log
(

1 +
∫ r

0

1
w(ρ)

dρ

)
.
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Since a + b > 0, M ′
1 is estimated as follows:

M ′
1 ≤ C1/p(1 + C0)(−a)+ sup

r>0
2(n−1)/p

( ∫ r

0

1
w(r)

dρ + 1
)−a−b

log
(

1 +
∫ r

0

1
w(ρ)

dρ

)

= 2(n−1)/pC1/p(1 + C0)(−a)+ sup
r≥1

r−a−b log r

= 2(n−1)/pC1/p(1 + C0)(−a)+
1

e(a + b)
.

(iv) In the case where c > 1/p, we estimate

∫ r

0

1
w(ρ)

( ∫ ρ

0

1
w(σ)

dσ + 1
)−pc

dρ

=
1

1− pc

(( ∫ r

0

1
w(σ)

dσ + 1
)1−pc

dρ− 1
)

≤ 1
pc− 1

.

Since a + b ≥ 0, M ′
1 is estimated as follows:

M ′
1 ≤

1
pc− 1

2(n−1)/pC1/p(1 + C0)(−a)+ .

M ′
2 is estimated similarly. Then, the estimate (1.13) follows from Corollary 1.1. ¤

In a way similar to the proof of Theorem 1.2, we have the following theorem for
p = ∞.

Theorem 1.3. Let w ∈ F . Let w0, w1, w2 be defined by

w0(r) =
( ∫ r

0

1
w(ρ)

dρ + 1
)−a

,

w1(r) =
( ∫ r

0

1
w(ρ)

dρ + 1
)−b

,

w2(r) =
( ∫ r

0

1
w(ρ)

dρ + 1
)−c

with a, b, c ∈ R satisfying

a + b + c− ≥ 0 and a + b− + c ≥ 0,

where b− = −max(0,−b) = min(0, b), c− = −max(0,−c) = min(0, c).
Then, there exists C > 0 such that the trilinear estimate
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∫∫
w0(|x + y|)w1(|x|)w2(|y|)|f(x + y)g(x)h(y)| dx dy ≤ C‖f‖∞‖g‖1‖h‖1

holds for all f ∈ L∞(Rn), g, h ∈ L1(Rn).

Theorem 1.2 shows the importance of the class F to the trilinear estimate such as
(1.8). Accordingly, below we study the class F in details. In Section 2, we study a basic
property of F . In Section 3, we introduce arbitrarily and infinitely iterates of logarithm
in connection with F . A part of the arguments in Sections 2 and 3 are essentially given by
Ando, Horiuchi, and Nakai [1]. We revisit them in the present framework for definiteness.
In Section 4, we study optimality of Theorem 1.2.

2. A basic property of F .

In this section we prove:

Proposition 2.1. For w ∈ F and a ∈ R, we define Wa by

Wa(r) = w(r)
( ∫ r

0

1
w(ρ)

dρ + 1
)a

, r ≥ 0.

Then, Wa ∈ F .

Proof. By definition, we see that Wa is a positive, continuous function on [0,∞)
satisfying 1/Wa ∈ L1

loc(0,∞). By (A2) and Remark 1.1,

Wa(2r) ≤ Cw(r)
( ∫ 2r

0

1
w(ρ)

dρ + 1
)a

≤ C(C0 + 1)a+Wa(r),

where a+ = max(a, 0). It remains to prove that Wa satisfies (A1); For any a, b ∈ R, there
exists Ca,b such that for any r and R with 0 ≤ r ≤ R,

Wa(r)
( ∫ r

0

1
Wa(ρ)

dρ + 1
)b

≤ Ca,bWa(R)
( ∫ R

0

1
Wa(ρ)

dρ + 1
)b

holds. Let 0 ≤ r ≤ R. We note that (A1) property of w is equivalent to Wa(r) ≤
CaWa(R). We distinguish three cases:

(i) b ≥ 0. (ii) b < 0, a ≥ 0. (iii) b < 0, a < 0.

(i) In the case where b ≥ 0, we estimate

Wa(r)
( ∫ r

0

1
Wa(ρ)

dρ + 1
)b

≤ CaWa(R)
( ∫ r

0

1
Wa(ρ)

dρ + 1
)b

≤ CaWa(R)
( ∫ R

0

1
Wa(ρ)

dρ + 1
)b

,
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as required.

(ii) In the case where b < 0, a ≥ 0, we first notice that

1
Wa(R)

( ∫ R

0

1
Wa(ρ)

dρ + 1
)|b|

=
1

Wa(R)

( ∫ r

0

1
Wa(ρ)

dρ +
∫ R

r

1
Wa(ρ)

dρ + 1
)|b|

≤ 2(|b|−1)+

Wa(R)

(( ∫ r

0

1
Wa(ρ)

dρ + 1
)|b|

+
( ∫ R

r

1
Wa(ρ)

dρ

)|b|)

≤ Ca2(|b|−1)+

Wa(r)

( ∫ r

0

1
Wa(ρ)

dρ + 1
)|b|

+
2(|b|−1)+

Wa(R)

( ∫ R

r

1
Wa(ρ)

dρ

)|b|
. (2.1)

To estimate the second term on the right hand side of the last inequality of (2.1), we
remark that

∫ R

r

1
Wa(ρ)

dρ =
∫ R

r

1
w(ρ)

( ∫ ρ

0

1
w(σ)

dσ + 1
)−a

dρ

≤
∫ R

r

1
w(ρ)

( ∫ r

0

1
w(σ)

dσ + 1
)−a

dρ

≤
( ∫ r

0

1
w(σ)

dσ + 1
)−a ∫ R

0

1
w(ρ)

dρ

and

1
Wa(R)

=
1

w(R)

( ∫ R

0

1
w(ρ)

dρ + 1
)−a

≤ 1
w(R)

( ∫ r

0

1
w(ρ)

dρ + 1
)−a

.

Therefore,

1
Wa(R)

( ∫ R

r

1
Wa(ρ)

dρ

)|b|

≤ 1
w(R)

( ∫ r

0

1
w(ρ)

dρ + 1
)−a−a|b|( ∫ R

0

1
w(ρ)

dρ

)|b|

≤
( ∫ r

0

1
w(ρ)

dρ + 1
)−a−a|b| 1

w(R)

( ∫ R

0

1
w(ρ)

dρ + 1
)|b|

≤
( ∫ r

0

1
w(ρ)

dρ + 1
)−a−a|b|

· Cb
1

w(r)

( ∫ r

0

1
w(ρ)

dρ + 1
)|b|
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≤ Cb
1

w(r)
( ∫ r

0
1

w(ρ)dρ + 1
)a ·

( ∫ r

0

1
w(ρ)

( ∫ r

0
1

w(σ)dσ + 1
)a dρ + 1

)|b|

≤ Cb
1

Wa(r)

( ∫ r

0

1
Wa(ρ)

dρ + 1
)|b|

. (2.2)

Combining (2.1) and (2.2) and taking the inverse of the resulting inequality, we find that
Wa satisfies (A1).

(iii) In the case where b < 0, a < 0, we use the equality

∫ r

0

1
Wa(ρ)

dρ + 1 =
1

|a|+ 1

( ∫ r

0

1
w(ρ)

dρ + 1
)|a|+1

+
|a|

|a|+ 1

to estimate

Wa(r)
( ∫ r

0

1
Wa(ρ)

dρ + 1
)b

≤ 1
(|a|+ 1)b

w(r)
( ∫ r

0

1
w(ρ)

+ 1
)a+(|a|+1)b

≤ (|a|+ 1)|b|Ca+b−abw(R)
( ∫ R

0

1
w(ρ)

dρ + 1
)a+b−ab

= (|a|+ 1)|b|Ca+b−abWa(R)
( ∫ R

0

1
w(ρ)

dρ + 1
)(|a|+1)b

≤ (|a|+ 1)|b|Ca+b−abWa(R)
( ∫ R

0

1
Wa(ρ)

dρ + 1
)b

,

as required. ¤

3. Infinitely iterated logarithm.

In this section, we introduce arbitrarily and infinitely iterated logarithm functions
in connection with class F . The definition is different from that of [1] in the sense that
convergence factors are introduced in terms of the parameter θ ∈ (0, 1].

Definition 3.1. Let 0 < θ ≤ 1. For nonnegative integers n, the following functions
lθ,n : [0,∞) → R are defined successively by:

lθ,0(r) = 1 + r,

lθ,k(r) = 1 + θ log lθ,k−1(r), k ≥ 1.

Moreover, we define Lθ,k : [0,∞) → R by
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Lθ,k(r) =
k∏

j=0

lθ,j(r).

Remark 3.1. For any k ≥ 0, lθ,k(0) = Lθ,k(0) = 1. Moreover, lθ,k(r) ≥ 1 and
Lθ,k(r) ≥ 1 for all r ≥ 0 since lθ,k and Lθ,k are increasing functions. Explicitly, the
derivative l′θ,k is given by

l′θ,k(r) = θk · 1
Lθ,k−1(r)

, r ≥ 0.

By a successive use of the elementary inequality log(1 + r) ≤ r for r ≥ −1,

0 ≤ log lθ,k(r) ≤ θ log lθ,k−1(r) ≤ · · · ≤ θk log lθ,0(r), r ≥ 0.

This implies that for any θ with 0 < θ < 1, the series
∑∞

k=0 log lθ,k(r) converges with
estimates

0 ≤
∞∑

k=0

log lθ,k(r) ≤ 1
1− θ

log lθ,0(r), r ≥ 0.

Definition 3.2. For any θ with 0 < θ < 1, Lθ is defined by

Lθ(r) =
∞∏

k=0

lθ,k(r), r ≥ 0.

Remark 3.2. By Remark 3.1, if 0 < θ < 1, Lθ converges with estimates

1 ≤ Lθ(r) ≤ (1 + r)1/(1−θ), r ≥ 0.

If θ = 1 and r > 0, we prove that L1(r) = ∞ by contradiction. Assume that L1(r) < ∞.
Then, for any k we have

log L1(r) ≥ log L1,k(r) =
∫ r

0

d

dρ

( k∑

j=0

log l1,j(ρ)
)

dρ

=
∫ r

0

k∑

j=0

1
L1,j(ρ)

dρ

≥
∫ r

0

k∑

j=0

1
L1,k(r)

dρ = r
k∑

j=0

1
L1,k(r)

≥ (k + 1)r
L1(r)

,

which yields a contradiction for k sufficiently large.

The main theorem in this section now reads:
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Theorem 3.1. For any θ with 0 < θ < 1, Lθ ∈ F . Moreover,

∫ ∞

0

1
Lθ(r)

dr = ∞. (3.0)

To prove Theorem 3.1, we introduce some preliminary propositions. From now on,
θ denotes a real number with 0 < θ < 1 without particular comments.

Lemma 3.1. For any a ∈ R, there exists Cθ,a ≥ 1 such that for any r and R with
0 ≤ r ≤ R

(1 + r)
( ∫ r

0

1
Lθ(ρ)

dρ + 1
)a

≤ Cθ,a(1 + R)
( ∫ R

0

1
Lθ(ρ)

dρ + 1
)a

(3.1)

holds.

Proof. For a ≥ 0, (3.1) holds with Ca = 1 by monotonicity. Let a < 0 and let
mθ be defined by

mθ(r) =
∫ r

0

1
Lθ(ρ)

dρ + 1.

Then,

m′
θ(R) =

1
Lθ(R)

≤ mθ(r)
lθ,1(R)lθ,0(R)

≤ mθ(r)
θlθ,1(r)

l′θ,1(R). (3.2)

By (3.2), we have

mθ(R) = mθ(r) +
∫ R

r

m′
θ(ρ)dρ

≤ mθ(r) +
mθ(r)
θlθ,1(r)

∫ R

r

l′θ,1(ρ)dρ

= mθ(r) +
mθ(r)
θlθ,1(r)

(
lθ,1(R)− lθ,1(r)

)

≤ mθ(r)
θlθ,1(r)

lθ,1(R). (3.3)

By Remark 3.1 and (3.3), we obtain

(1 + r)mθ(r)a =
(

mθ(r)
lθ,1(r)

)a

(1 + r)
(
lθ,1(r)

)a

≤ C

(
mθ(r)
lθ,1(r)

)a

(1 + R)
(
lθ,1(R)

)a

≤ Cθa(1 + R)mθ(R)a
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with some constant C, as required. ¤

Lemma 3.2. For any r, s ≥ 0,

Lθ(lθ,0(s)r) ≤ Lθ(s)Lθ(r). (3.4)

Proof. It is sufficient to prove that

lθ,k(lθ,0(s)r) ≤ lθ,k(s)lθ,k(r) (3.5)k

by induction on k ≥ 0. For k = 0,

lθ,0(lθ,0(s)r) = 1 + lθ,0(s)r = 1 + (1 + s)r ≤ (1 + s)(1 + r) = lθ,0(s)lθ,0(r).

Let k ≥ 1 and assume (3.5)k−1. Then,

lθ,k(lθ,0(s)r) = 1 + θ log
(
lθ,k−1(lθ,0(s)r)

)

≤ 1 + θ log
(
lθ,k−1(s)lθ,k−1(r)

)

≤ (
1 + θ log lθ,k−1(s)

)(
1 + θ log lθ,k−1(r)

)

≤ lθ,k(s)lθ,k(r),

which completes the induction argument. ¤

Lemma 3.3. For any nonnegative integers k and j, lθ,k+j is represented by lθ,k

and lθ,j as

lθ,k+j(r) = lθ,j

(
lθ,k(r)− 1

)
(3.6)

for all r ≥ 0.

Proof. We prove (3.6) by induction on j. For j = 0, we have

lθ,k(r) = lθ,0

(
lθ,k(r)− 1

)

for all k ≥ 0 by definition. Let j ≥ 1 and assume that

lθ,k+j−1(r) = lθ,j−1

(
lθ,k(r)− 1

)

holds for all k ≥ 0 and r ≥ 0. Then,

lθ,k+j(r) = 1 + θ log
(
lθ,k+j−1(r)

)

= 1 + θ log
(
lθ,j−1(lθ,k(r)− 1)

)

= lθ,j

(
lθ,k(r)− 1

)



Weighted Lp-boundedness of convolution type integral operators 183

for all k ≥ 0 and r ≥ 0. This completes the induction argument. ¤

Proof of Theorem 3.1. Let r, R satisfy 0 ≤ r ≤ R. Then, by Lemma 3.1,

Lθ(r)
( ∫ r

0

1
Lθ(ρ)

dρ + 1
)a

≤ (1 + r)
( ∞∏

k=1

lθ,k(R)
)( ∫ r

0

1
Lθ(ρ)

dρ + 1
)a

≤ Cθ,aLθ(R)
( ∫ R

0

1
Lθ(ρ)

dρ + 1
)a

.

Moreover, since lθ,0(1) = 2, we apply (3.4) with s = 1 to obtain

Lθ(2r) ≤ Lθ(1)Lθ(r).

Therefore, Lθ ∈ F . We prove (3.0). It suffices to prove that there exists a sequence
{rk; k ≥ 0} of positive numbers such that

∫ rk

0

1
Lθ(ρ)

dρ →∞

as k → ∞. Let r0 = 1. Then, for any k ≥ 1 there exists a unique rk > 0 such
that lθ,k(rk) = lθ,0(r0) = 2 since lθ,k is an increasing function with lθ,k(0) = 1 and
limr→∞ lθ,k(r) = ∞. Let 0 ≤ ρ ≤ rk. By Lemma 3.3,

Lθ(ρ) = Lθ,k−1(ρ)
∞∏

j=0

lθ,k+j(ρ)

≤ Lθ,k−1(ρ)
∞∏

j=0

lθ,k+j(rk)

= Lθ,k−1(ρ)
∞∏

j=0

lθ,j

(
lθ,k(rk)− 1

)

= Lθ,k−1(ρ) Lθ

(
lθ,k(rk)− 1

)

= Lθ,k−1(ρ) Lθ

(
lθ,0(r0)− 1

)

= Lθ,k−1(ρ) Lθ(1). (3.7)

By (3.7),

∫ rk

0

1
Lθ(ρ)

dρ ≥ 1
Lθ(1)

∫ rk

0

1
Lθ,k−1(ρ)

dρ

=
1

Lθ(1)
1
θk

(
lθ,k(rk)− 1

)
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=
1

Lθ(1)
1
θk
→∞

as k →∞, as required. ¤

4. Optimality of Theorems 1.2 and 1.3.

In this section, we consider optimality of Theorems 1.2 and 1.3. To this end, we
divide weight functions w ∈ F into two cases:

I :
∫ ∞

0

1
w(r)

dr < ∞. II :
∫ ∞

0

1
w(r)

dr = ∞.

Theorem 4.1. Let 2 ≤ p < ∞ and let w ∈ F . Let w0, w1, w2 be as in Theorem
1.2 with a, b, c ∈ R.

(1) In the case I, the trilinear estimate in Theorem 1.2 holds for any a, b, c ∈ R.
(2) In the case II, let a, b, c satisfy one of the conditions (iii), (iv), (v), (vi):

(iii) a + b + c < 1/p. (iv) a + b < 0. (v) a + c < 0.
(vi) a + b + c = 1/p and “a + b = 0 or a + c = 0”.

Then, the trilinear estimate in Theorem 1.2 fails for some f ∈ Lp(Rn), g, h ∈ Lp′(Rn).

Remark 4.1. The conditions (iii), (iv), (v), and (vi) in Theorem 4.1 consist of the
negation of the condition “(i) or (ii)” in Theorem 1.2.

Proof. In the case I, we easily see the trilinear estimate holds with any a, b, and
c. To give a counter example for the trilinear estimate in the case II, we divide the proof
into three cases:

(i) a + b + c < 1/p. (ii) a + b < 0 or a + c < 0.
(iii) a + b + c = 1/p and “a + b = 0 or a + c = 0”.

(i) In the case where a + b + c < 1/p, let δ > 0 satisfy δ 6= 1/p− c and let

f(x) = (1 + |x|)−(n−1)/pw(|x|)−1/p

( ∫ |x|

0

1
w(ρ)

dρ + 1
)−1/p−δ

,

g(x) = h(x) = (1 + |x|)−(n−1)/p′w(|x|)−1/p′
( ∫ |x|

0

1
w(ρ)

dρ + 1
)−1/p′−δ

.

Then, f ∈ Lp(Rn) and g, h ∈ Lp′(Rn). For any x ∈ Rn with |x| ≥ 2,

∫

1≤|y|≤|x|/2

w0(|x + y|)f(x + y)w2(|y|)h(y)dy

=
∫

1≤|y|≤|x|/2

( ∫ |x+y|

0

1
w(ρ)

dρ + 1
)−1/p−a−δ
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· (1 + |y|)−(n−1) 1
w(|y|)

( ∫ |y|

0

1
w(ρ)

dρ + 1
)−1/p′−c−δ

dy. (4.1)

By (A1), if 1/p + a + δ ≥ 0, then for any y ∈ Rn with 0 ≤ |y| ≤ |x|/2,

( ∫ |x+y|

0

1
w(ρ)

dρ + 1
)−1/p−a−δ

≥
( ∫ 3|x|/2

0

1
w(ρ)

dρ + 1
)−1/p−a−δ

=
(

3
2

∫ |x|

0

1
w(3ρ/2)

dρ + 1
)−1/p−a−δ

≥
(

3C0

2

∫ |x|

0

1
w(ρ)

dρ + 1
)−1/p−a−δ

≥
(

3C0

2
+ 1

)−1/p−a−δ( ∫ |x|

0

1
w(ρ)

dρ + 1
)−1/p−a−δ

. (4.2)

Similarly, if 1/p + a + δ < 0, then for any y ∈ Rn with 0 ≤ |y| ≤ |x|/2,

( ∫ |x+y|

0

1
w(ρ)

dρ + 1
)−1/p−a−δ

≥
( ∫ |x|/2

0

1
w(ρ)

dρ + 1
)−1/p−a−δ

=
(

1
2

∫ |x|

0

1
w(ρ/2)

dρ + 1
)−1/p−a−δ

≥
(

1
2C0

∫ |x|

0

1
w(ρ)

dρ + 1
)−1/p−a−δ

≥ (2C0)1/p+a+δ

( ∫ |x|

0

1
w(ρ)

dρ + 1
)−1/p−a−δ

. (4.3)

In addition, if 1/p− c− δ > 0, then for any x ∈ Rn with |x| ≥ 4,

∫

1≤|y|≤|x|/2

(1 + |y|)−(n−1) 1
w(|y|)

( ∫ |y|

0

1
w(ρ)

dρ + 1
)−1/p′−c−δ

dy

= ωn−1

∫ |x|/2

1

(
r

1 + r

)n−1 1
w(r)

( ∫ r

0

1
w(ρ)

dρ + 1
)−1/p′−c−δ

dr

≥ 21−nωn−1

1/p− c− δ

(( ∫ |x|/2

0

1
w(r)

dr + 1
)1/p−c−δ

−
( ∫ 1

0

1
w(r)

dr + 1
)1/p−c−δ)
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≥ 21−nωn−1

1/p− c− δ

(
1−

(∫ 1

0
1

w(r)dr + 1
∫ 2

0
1

w(r)dr + 1

)1/p−c−δ)( ∫ |x|/2

0

1
w(r)

dr + 1
)1/p−c−δ

=
21−nωn−1

1/p− c− δ

(
1−

(∫ 1

0
1

w(r)dr + 1
∫ 2

0
1

w(r)dr + 1

)1/p−c−δ)(
1
2

∫ |x|

0

1
w(r/2)

dr + 1
)1/p−c−δ

≥ 21/p′−c−δ−nωn−1

(1/p− c− δ)C1/p−c−δ
0

(
1−

(∫ 1

0
1

w(r)dr + 1
∫ 2

0
1

w(r)dr + 1

)1/p−c−δ)

·
( ∫ |x|

0

1
w(r)

dr + 1
)1/p−c−δ

. (4.4)

If 1/p− c− δ < 0, then

∫

1≤|y|≤|x|/2

(1 + |y|)−(n−1) 1
w(|y|)

( ∫ |y|

0

1
w(ρ)

dρ + 1
)−1/p′−c−δ

dy

=
21−nωn−1

1/p− c− δ

(( ∫ 1

0

1
w(r)

dr + 1
)1/p−c−δ

−
( ∫ |x|/2

0

1
w(r)

dr + 1
)1/p−c−δ)

≥ 21−nωn

1/p− c− δ

(( ∫ 1

0

1
w(r)

dr + 1
)1/p−c−δ

−
( ∫ 2

0

1
w(r)

dr + 1
)1/p−c−δ)

·
( ∫ |x|

0

1
w(r)

dr + 1
)1/p−c−δ

. (4.5)

By (4.1), (4.2), (4.3), (4.5), and (4.5), there exists a positive constant C such that for
any x ∈ Rn with |x| ≥ 4

∫

1≤|y|≤|x|/2

w0(|x + y|)f(x + y)w2(|y|)h(y)dy

≥ C

( ∫ |x|

0

1
w(ρ)

dρ + 1
)−a−c−2δ

. (4.6)

Finally by (4.6), we have

∫∫
w0(|x + y|)w1(|x|)w2(|y|)|f(x + y)g(x)h(y)| dx dy

≥ C

∫

|x|≥4

(|x|+ 1)−(n−1) 1
w(|x|)

( ∫ |x|

0

1
w(ρ)

dρ + 1
)−1/p′−a−b−c−3δ

dx

≥ Cωn−1

(
4
5

)n−1 ∫ ∞

4

1
w(r)

( ∫ |x|

0

1
w(ρ)

dρ + 1
)−1/p′−a−b−c−3δ

dr
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≥ Cωn−1

(
4
5

)n−1(
log

( ∫ ∞

0

1
w(ρ)

dρ + 1
)
− log

( ∫ 4

0

1
w(ρ)

dρ + 1
))

= ∞

with δ ≤ (1/p− a− b− c)/3.

(ii) In the case where a + b < 0 or a + c < 0, by symmetry, it is sufficient to give a
counter example only in the case where a + b < 0. Let f and g be as in the case (iii)
with δ ≤ −(a + b)/2 and a + 1/p + δ 6= 1. Let

h(x) = χB(1)(x)
1

w2(|x|) .

Then, by (1.15), (4.4), and (4.5),

∫∫
w0(|x + y|)w1(|x|)w2(|y|)f(x + y)g(x)h(y) dy dx

≥
∫

|x|≥2

∫

|y|≤1

( ∫ |x+y|

0

1
w(ρ)

dρ + 1
)−a−1/p−δ

dy

· (1 + |x|)n−1 1
w(|x|)

( ∫ |x|

0

1
w(ρ)

dρ + 1
)−b−1/p′−δ

dx

≥ C

∫ ∞

2

1
w(r)

( ∫ r

0

1
w(ρ)

dρ + 1
)−a−b−1−2δ

dr

≥ C

∫ ∞

2

1
w(r)

( ∫ r

0

1
w(ρ)

dρ + 1
)−1

dr

≥ C

(
log

( ∫ ∞

0

1
w(ρ)

dρ + 1
)
− log

( ∫ 2

0

1
w(ρ)

dρ + 1
))

= ∞

with some positive constant C, as required.

(iii) In the case where a + b + c = 1/p and a + b = 0 or a + b = c, by symmetry, it is
sufficient to give a counter example in the case where a + b = 0. Let

J(r) =
∫ r

0

1
w(ρ)

( ∫ ρ

0

1
w(σ)

dσ + 1
)−1

dρ + 1,

f(x) = (1 + |x|)−(n−1)/pw(|x|)−1/p

( ∫ |x|

0

1
w(ρ)

dρ + 1
)−1/p

J(|x|)−1/p−δ,
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g(x) = h(x)

= (1 + |x|)−(n−1)/p′w(|x|)−1/p′
( ∫ |x|

0

1
w(ρ)

dρ + 1
)−1/p′

J(|x|)−1/p′−δ

for δ > 0. By (A1),

J(2r) =
∫ 2r

0

1
w(ρ)

( ∫ ρ

0

1
w(σ)

dσ + 1
)−1

dρ + 1

≤
∫ r

0

1
w(ρ)

( ∫ ρ

0

1
w(σ)

dσ + 1
)−1

dρ + 1

+
∫ r

0

1
w(r + ρ)

( ∫ ρ

0

1
w(σ)

dσ + 1
)−1

dρ + 1

≤ (1 + C0)J(r). (4.7)

In addition, with any k ≥ 0 let rk > 0 satisfy

∫ rk

0

1
w(ρ)

dρ = 2k − 1,

where rk is determined uniquely, since
∫ r

0
1/w(ρ)dρ is a monotone increasing function of

r. Then, we estimate

J(rk) =
k∑

j=1

∫ rj

rj−1

1
w(ρ)

( ∫ ρ

0

1
w(σ)

dσ + 1
)−1

dρ

≥
k∑

j=1

( ∫ rj

0

1
w(σ)

dσ + 1
)−1( ∫ rj

0

1
w(ρ)

dρ−
∫ rj−1

0

1
w(ρ)

dρ

)

=
k∑

j=1

2−j(2j − 2j−1) =
k

2
. (4.8)

This shows limr→∞ J(r) = ∞. By (4.4), (4.5), and (4.7), for any x ∈ Rn with |x| ≥ 4
and 0 < δ < 1/p

∫

1≤|y|≤|x|/2

w0(|x + y|)f(x + y)w2(|y|)h(y)dy

=
∫

1≤|y|≤|x|/2

( ∫ |x+y|

0

1
w(ρ)

dρ + 1
)−1/p−a

J(|x + y|)−1/p−δ

· (1 + |y|)−(n−1) 1
w(|y|)

( ∫ |y|

0

1
w(ρ)

dρ + 1
)−1

J(|y|)−1/p′−δdy
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≥ C

( ∫ |x|

0

1
w(ρ)

dρ + 1
)−1/p−a

J(2|x|)−1/p−δ

·
∫ |x|/2

1

1
w(r)

( ∫ r

0

1
w(ρ)

dρ + 1
)−1

J(r)−1/p′−δdr

≥ C(1 + C0)−1/p−δ 1
1/p− δ

( ∫ |x|

0

1
w(ρ)

dρ + 1
)−1/p−a

J(|x|)−1/p−δ

· (J(|x|)1/p−δ − J(1)1/p−δ
)

≥ C(1 + C0)−1/p−δ 1
1/p− δ

(
1− (J(1)/J(2))1/p−δ

)( ∫ |x|

0

1
w(ρ)

dρ + 1
)−1/p−a

· J(|x|)−2δ (4.9)

with some positive constant C. Then, by (4.9) and (4.8), for 0 < δ ≤ 1/(3p), we estimate

∫∫
w0(|x + y|)w1(|x|)w2(|y|)f(x + y)g(x)h(y) dy dx

≥
∫

|x|≥4

∫

1≤|y|≤|x|/2

w0(|x + y|)w1(|x|)w2(|y|)f(x + y)g(x)h(y) dy dx

≥ C(1 + C0)−1/p−δ 1
1/p− δ

(
1− (J(1)/J(2))1/p−δ

)

·
∫ ∞

4

1
w(r)

( ∫ r

0

1
w(ρ)

dρ + 1
)−1

J(r)−1/p′−3δdr

≥ C(1 + C0)−1/p−δ 1
1/p− δ

(
1− (J(1)/J(2))1/p−δ

)(
lim

r→∞
log J(r)− log J(4)

)

= ∞,

as required. ¤

Theorem 4.2. Let w ∈ F and let w0, w1, w2 be as in Theorem 1.2 with a, b,
c ∈ R.

(1) In the case I, the trilinear estimate in Theorem 1.2 holds for any a, b, c ∈ R
(2) In the case II, let a, b, c satisfy either (iii) or (iv) or (v) in Theorem 4.1, then the

trilinear estimate in Theorem 1.2 fails for some f ∈ L∞(Rn), g, h ∈ L1(Rn).
(3) In the case II, let a = b = c = 0. Then, the trilinear estimates holds.

Proof. The proofs of (1) and (2) are the same as in the proof of Theorem 4.1,
while (3) follows from the Hölder and Young inequalities as below:
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∫∫
w0(|x + y|)w1(|x|)w2(|y|)|f(x + y)g(x)h(y)| dx dy

≤
∫∫

|f(x + y)g(x)h(y)| dx dy

=
∫∫

|f(x)g(x− y)h(y)| dy dx

≤ ‖f‖L∞‖g ∗ h‖L1

≤ ‖f‖L∞ ‖g‖L1 ‖h‖L1 . ¤
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