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Abstract. First, we consider some fundamental properties including
dual spaces, complex interpolations of a-modulation spaces M;:g‘ with
0 < p, ¢ < co. Next, necessary and sufficient conditions for the scaling prop-
erty and the inclusions between aj-modulation and az-modulation spaces are
obtained. Finally, we give some criteria for a-modulation spaces constitut-
ing multiplication algebra. As a by-product, we show that there exists an
a-modulation space which is not an interpolation space between modulation
and Besov spaces. In a subsequent paper, we will give some applications of
a-modulation spaces to nonlinear dispersive wave equations.

1. Introduction and definition.

Frequency localization technique plays an important role in the modern theory of
function spaces. There are two kinds of basic partitions to the Euclidean space R™, one
is the dyadic decomposition R™ = {¢ : [¢| < 1}U(U;2,{€ : [¢] € [2771,27)}), another
is the uniform decomposition R™ = J,czn (k + [~1/2,1/2)"). According to these two
kinds of decompositions in frequency spaces, one can naturally introduce the dyadic
decomposition operators A; (j € Z4) whose symbol ¢; is localized in {€ : ¢ ~ 27},
and the uniform decomposition operator Oy (k € Z™) whose symbol oy, is supported in
k + [—1,1]". The difference between ¢; and oy is that the diameters of supp ¢, and
supp o are O(27) and O(1), respectively. All tempered distributions acted on these
decomposition operators with finite (7(LP) (quasi)-norms constitute Besov space Bj ,
and modulation space M , respectively.

P
The a-modulation spaces M, introduced by Grobner [11], are proposed to be

intermediate function spaces to coprﬁlect modulation space and Besov space with respect
to parameters o € [0, 1], which are formulated by some new kind of a-decomposition
operators OO (k € Z™). We denote by n§ the symbol of (0%, whose essential characteristic
is that the diameter of its support set has power growth as (k)®/(1=®).

Modulation spaces are special a-modulation spaces in the case a = 0, and Besov
space can be regarded as the limit case of a-modulation space when « " 1. Modulation

spaces were first introduced by Feichtinger [8] in the study of time-frequency analysis
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to consider the decay property of a function in both physical and frequency spaces.
His original idea is to use the short-time Fourier transform of a tempered distribution
equipping with a mixed L?(LP)-norm to generate modulation spaces Mg . Grochenig’s
book [12] systematically discussed the theory of time-frequency analysis and modulation
spaces. In Grobmer’s doctoral thesis, he used the a-covering to the frequency space
R™ and a corresponding bounded admissible partition of unity of order p (p-BAPU)
to define a-modulation spaces. Some recent works have been devoted to the study of
a-modulation spaces (see [1], [2], [7], [10], [14], [13] and references therein). Borup
and Nielsen [1] and Fornasier [10] constructed Banach frames for a-modulation spaces
in the multivariate setting, Kobayashi, Sugimoto and Tomita [14], [13] discussed the
boundedness for a class of pseudo-differential operators with symbols in a-modulation
spaces. Dahlke, Fornasier, Rauhut, Steidl and Teschke [7] established the relationship
between the generalized coorbit theory and a-modulation spaces. The aim of the present
paper is to describe some standard properties including the dual spaces, embeddings,
scaling and algebraic structure of a-modulation spaces.

Before stating the notion of a-modulation spaces, we introduce some notations fre-
quently used in this paper. A < B stands for A < CB, and A ~ B denote A < B and
B < A, where C' is a positive constant which can be different at different places. We write
aVb = max(a,b), aAb = min(a,b). Let .(R™) be the Schwartz space and .#'(R") be its
strongly topological dual space. Suppose f € /(R™) and A > 0, we write fx(-) = f(\-).
Let X be a (quasi-)Banach space, we denote by X* the dual space of X. For any
p € [1,00], p* will stand for the dual number of p, i.e., 1/p+1/p* =1, for any p € (0, 1),
we write p* = co. We denote by L? = LP(R™) the Lebesgue space for which the norm is
written by | -||,,, and by P the sequence Lebesgue space. We will write (x) = (14 |xz|?)/2.
For any multi-index § = (d1,da, ..., d,), we denote D° = 8?1832 <. 9% . Tt is convenient
to divide R" into n parts R7, j =0,1,2,...,n:

R} ={z e R" : [z;| < |yl i=1,...,5 -1, +1,...,n}.
We write J = (I — A)*/? and define the Sobolev space
H'R") = {f € /(") : | fllar- = |7l < o<}
and
00,6(Z" 17) = {{grdneze . gx € &' ®), ([~ llgillp |0 < 00}
Without additional note, we will always assume that
seR, 0<p, qg<o0, 0<ax<l.
Let us start with the third partition of unity on frequency space for a € [0,1) (see [1]).

We suppose ¢ < 1 and C > 1 are two positive constants, which relate to the space
dimension n, and a Schwartz function sequence {n§ }rez» satisfies
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g1 21, if [€ = (k)07 k| < e(k)™/ (1 =); (1.1a)
supp ny C {5: |§ — (k)a/(lfa)k‘ < C(k)o‘/(lfo‘)}; (1.1b)
S onp€) =1, VEeR™ (1.1¢)
kezZm
(k) 1V Do) S 1, VE € R™ (1.1d)
We denote
T = {{ni ez  {nf beezr satisfies (1.1)}. (1.2)

Corresponding to every sequence {nf }rez» € T, one can construct an operator sequence
denoted by {0% }xezn, and

o gL (1.3)

T is nonempty. Indeed, let p be a smooth radial bump function supported in B(0,2),
satisfying p(§) = 1 as |£] < 1, and p(§) = 0 as |¢| > 2. For any k € Z", we set

£~ <k>°‘/(1_"‘)k> 14

Pg(f) = P( C<k‘>o‘/(170‘)

and denote

UNGEHE (sz )
lezn

It is easy to verify that {7} } rez» satisfies (1.1). This type of decomposition on frequency
space is a generalization of the uniform decomposition and the dyadic decomposition.
When 0 < a < 1, on the basis of this decomposition, we define the a-modulation space
by

Mpe®R™) = {f € S (R") : | fllmgg = I{OR fiwezn g, zni10) < 0} (1.5)

Denote (&) = p(€) — p(2€), we may assume ¢(§) =1 if 5/8 < |¢| < 3/2. We introduce
the function sequence {¢g}72 o

p;i(§) = e(277¢), JEN,

wo(©=1- 3 es(0). o

Define

D= F 9,7, jeNU{0}, (L.7)
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{4132, is said to be the Littlewood-Paley (or dyadic) decomposition operators. Denote

B (") = {f € #'®"): |fl5;, = 1272 F Y sevvniorllpogir <00} (1)

Strictly speaking, (1.5) cannot cover the case @ = 1, however, we will denote M;; =B,
for convenience.

The paper is organized as follows. In Section 2, we show some basic properties on
a-modulation spaces, their dual and complex interpolation spaces are presented there.
In Section 3, we discuss the scaling property. In Section 4, the inclusions between «-
modulation spaces for different indices « (including Besov spaces) are obtained. In
Section 5, we study the regularity conditions so that a-modulation spaces form multipli-
cation algebra. Finally, we show the necessity for the conditions of scalings, embeddings
and algebra structures by constructing several counterexamples.

2. Some basic properties.

In the sequel, we give some basic properties of M *. We need the following

PROPOSITION 2.1 ([18], Convolution in LP withp < 1). Let0 <p < 1. L%(wo R) =
{f € LP(R") : suppf C B(xo,R)}, B(zo,R) = {z : |z — x9| < R}. Suppose that
f,g¢€ L%(wo R)’ then there exists a constant C > 0 which is independent of xo and R > 0

such that

1f * gllp < CR™ VPV £, llgll,-

ProprosITION 2.2 ([18], Nikol’skij’s inequality). Let £ C R™ be a compact set,
0 <r <oo. Let us denote o, =n(1/(r A1) — 1/2) and assume that s > o,. Then there
exists a constant C > 0 such that

|F 7 e Z £, < Cllel

flir (2.1)

holds for all f € L, .= {f € LP: supp f C O} and ¢ € H®. Moreover, if r > 1, then
(2.1) holds for all f € L".

PROPOSITION 2.3 (Equivalent norm). Let {ng}rezn, {07 kezn € Y, then they
generate equivalent quasi-norms on M.

PROOF.  See [1]. O
PROPOSITION 2.4 (Embedding). Let 0 < p; < ps < 00, 0 < q1,¢2 < 0. We have

(1) if 1 < ¢q2 and 51 > so +na(l/pr — 1/p2), then

MEve Moo (2.2)

P1,91 P2,q2’

(ii) if q1 > q2 and 81 > so + na(l/py — 1/p2) + n(l — a)(1/q2 — 1/q1), then
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Mo C M (2.3)

1,41 p2,q2°
PROOF. From scaling and Nikol’skij’s inequality it follows that
0% fllpe S (k) e/ GOt/ g (2.4)
Then (i) follows from ¢9* C £92 and (2.4). For (ii), we use Holder’s inequality to obtain

1 larzze, < IHOR f Y kezn

P2,92

rezn - :
o o{eznll oo

For the second term in the right-hand side, we easily see that it is finite by changing the
summation to an integration. O

PROPOSITION 2.5 (Completeness). (i) Mpg is a quasi-Banach space, and is a
Banach space if 1 <p<oo and1 < g < oo.
(ii) We have

S(R") C M3 (R") €7 (R"). (2:5)
Moreover, if 0 < p,q < oo, then /(R") is dense in M.
PROOF.  See [3]. =

PROPOSITION 2.6 (Isomorphism). For any o € R, the mapping J° : M5 —
M7 is isomorphic.

PROOF.  See [18]. O
PROPOSITION 2.7.  My5'(R") = H*(R") with equivalent norms.

PROOF. Plancherel’s identity implies the result, see [11]. O

2.1. Duality.
It is known that the dual space of Besov space B , is B(‘p‘j;i(l({l(fgi)‘l) (see [18])

and the dual space of modulation space M,  is M(;fn)*,(qw)* (see [19]). In this section

we study the dual spaces of a-modulation spaces.

ProOPOSITION 2.8.  Suppose 1 < p,q < co. Then we have
(62 (Z" IP))" = 07, (2" IF).

More precisely, f € (€2 ,(Z";LP))* is equivalent to that there erists a sequence
{f}rezn € E(fs’a(Z"; LP") such that for any g = {gr }rezn € 02 (Z"; LP), we have

()= | fil@)ge@)dr,

kezn
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02 o (Z;LP))* = H{fk}Hgfs o (Zn;LP™)
It is a direct consequence of Proposition 3.3 in [19].

LEMMA 2.1.  Let {gx}rezn € €1, (Z";LP), and T be a subset of Z", then we have

kagk S IKOR g beerlles , znize)- (2.6)
kel Mg
PrROOF. We introduce
Alk)y={lez" OOy f #0}. (2.7)

We denote the constant in (1.1b) relating to {n*};ez» by C, thus for every [ € A(k),
there holds

(k)y/ 0= (k; — ) < (1y*/ =) (1; 4 C), (2.8a)
<k>a/(1—a (k; +C) > (l>°‘/(1_“)(lj -C) (2.8b)

with 7 =1,...,n. For the above [ and k, we conclude that
(k) ~ (1). (2.9)

If |k S 1 (or || £1),itis easy to see that (2.9) follows from (2.8). Thus, it suffices
to show (2.9) in the case |k[ > 1 (or [I] > 1). When k € R} with k; > 0, from (2.8a);
whereas when k € R} but with k; < 0, from (2.8b)x(—1), we see (k)1 (=) < (/A=)
and symmetrically, we have (l)l/(l @) < (k)l/(l @), Therefore, we get (2.9). Suppose
both I and [ are in A(k). Substituting ! with {, (2.8a) and (2.8b) also hold. It follows
that

’<l>o</(1—a)lj o <Z’>a/(1—a)2}| < <k,>a/(1—a) + <l>a/(1—a) + <l~>a/(1—a).
Then Taylor’s theorem, combined with (2.9), gives |I; — E| < 1. It follows that
#A(k) ~ 1. (2.10)

One has that the right hand side of (2.6) is

(Z pysa/(-a)

lezn

Z 0705 9

kEA()NT

q\ 1/q 1/q
) S(ZW‘”“‘C’) o zgkng)
p l

€™ keA(l)nT

(Zlmgmq S yeaso- a)>1/q

kel leA(k)
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1/q
S (Tweisaly) L e
kel

We remark that in the second inequality of (2.11), by Young’s inequality, or by Proposi-
tion 2.1 we see that

BT fllp S 158 fllps

which enable us to remove OO%; and in the third inequality of (2.11), we have applied
(2.10) to remove the summation on I € A(k). O

THEOREM 2.1.  Suppose 0 < p,q < oo, then we have

s.a\ * —s+na(l/(1Ap)—1
(Mpe)" = My StreCrinm =1, (2.12)

- T Qvp)r,(1ve)*
PROOF. The proof is separated into four cases.

Case 1: 1 < p,q < oo. First, we show that (M;5)* C M,.%". Noticing that
Mg s f—A0gf} e b (2" LP)

is an isometric mapping from M, onto a subspace X = {{O3f} : f € M5} of
02 (Z"; LP), so, any continuous functional g on M " can be regarded as a bounded linear
functional on X, which can be extended onto ¢2 ,(Z"; L?) (the extension is written as §)

and the norm of g is preserved. By Proposition 2.8, there exists {gx} € qusﬁa(Z”; L)
such that

G =3 / (@) (@) de (2.13)

kezn

2q

holds for all {fx} € €¢,(Z";LP). Moreover, |g||(arz:c) = ”{gk}Heqfsa(Z";LP*)' Since

M is isometric to X, we see that

(0, 0) = (5. {0 e}) = / S Biar@)e()ds, @€ M3, (2.14)
kezn

Hence, g = >} czn OF g (). In view of Lemma 2.1 and Young’s inequality,
Hg”M;jq"; S H{gk}kGZ" Hffs,a(z"?”*) = HgH(M;jf;)*v

which implies (M2:¢)" C M,.%2. Next, we prove the reverse inclusion. For any f €
M55 C ', we show that f € (M]f(‘;‘)* Let p € . We have
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{Z
leA(k) kezn

(F @) < IHOR Fhreznllper gocgory
e 02 (Zn;LP)

ST

<PHM;;{;-

The principle of duality implies M,.%% C (Mg)".
In the following, we discuss the left three cases. From (2.2) in Proposition 2.4, we
know

; s—na(l/(pAl)—1),c
Mpd C Myyp 1vg '

This combined with the principle of duality gives

s .o\ * s—na(l Al)—1),« * —s+na(l AN1)—1),«
(Mp:q) - (Mleyléq/(p Y ) - M(l\/p)ﬁ((lé((f))* e

Hence, only the reverse inclusion needs to be proven.

Case 2: 1 < p < oo, 0<q< 1 Forany f € (M3)", take any k € Z" and any
p € L(R™), we have

(O f, ) = [{f, Orel
< fllaggey- 185 llarg e

S RO Fllagziey-

ellp- (2.15)
This implies (Mg:¢)" C M,
Case 3: 0 < p,qg< 1. For any f € (M;g‘)* and k € Z", we have
O f (@) = |(f,-F g (z — )]
= [(f, Z (- — 2))

9\71771?(' - x)HM;:g

S Fllarsiey

< <k>S/(lfa)f(na/(lfa))(l/pfl)||f||(M;:;)*. (2.16)

~

This implies (M;g‘)* C M;f;‘o"a(l/p—l),a.

Case4: 0<p<1, 1<g<oo. Forany f € (M;g‘)* and every k € Z", there exists

some z € R" satisfying
105 flloo ~ | F 70 f (k).

Let {ax} be an arbitrary 6‘;7”&(1/]071)

namely {ay}, such that |ax| = |ag|, and the argument of @y, is the opposite number of the

sequence, and we construct another sequence
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principal argument of F 'y 7 f(xy). From (1.1b), (1.1d), we get [ i (- — zx)lp <
(k)= (ne/(=a))(A/p=1) " Therefore, we have

S Jaill0 e ~ <f,zakﬁf-1n;:<- - wk>>
k

kezn

< fllazey-

> anF (- — )
k

s,
My

S gy fanteeznlles (-

This implies (M;:Il)* C M;T;na(l/p—l)voé. -

2.2. Complex interpolation.

The complex interpolation for Besov spaces has a beautiful theory; cf. [18]. We can
imitate the counterpart for the Besov space to construct the complex interpolation for
a-modulation spaces. It will be repeatedly used in the following argument. Since there
is little essential modification in the statement, we only provide the outline of the proof.

We start with some abstract theory about complex interpolation on quasi-Banach
spaces. Let S = {z : 0 < Rez < 1} be a strip in the complex plane. Its closure
{2 :0 < Rez < 1} is denoted by S. We say that f(z) is an .#/(R")-analytic function in
S if the following properties are satisfied:

(i) for every fixed 2z € S, f(2) € /'(R");

(ii) for any ¢ € .7 (R"™) with compact support, .# 1p.Z f(x, z) is a uniformly contin-
uous and bounded function in R™ x S;

(iii) for any ¢ € .#(R") with compact support, .# ~1p.Z f(z, z) is an analytic function
in S for every fixed x € R™.

We denote the set of all ./(R™)-analytic functions in S by A(’'(R™)). The idea we
used here is due to Calderén [4], Calderén and Torchinsky [5], [6] and Triebel [18].

DEerINITION 2.1.  Let Ay and A; be quasi-Banach spaces, and 0 < 6 < 1. We
define

F(Ag, Ay) = {cp(z) € A(S'(R™) : (0 +it) € Ay, £=0,1, Vt € R,
()l ar) 2 axsupll(C+i0)la, b5 (2.17)
and
(Ao, Ar)o = {f € #'(R") : 3p(2) € F(Ao, Ar) such that f = o(0),
1o = inf () llpgaoan b (218)

where the infimum is taken over all ¢(z) € F(Ao, A1) such that ¢(0) = f.
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The following two propositions are essentially known in [18] and the references therein.

PROPOSITION 2.9.  Suppose all notations have the same meaning as in Definition
2.1, then we have

((AOv Al)ev ” : ||(A0,A1)e)

18 a quasi-Banach space.

PROPOSITION 2.10.  Suppose all notations have the same meaning as in Definition
2.1, then we have

110,400 = inf (sup o)1 sup le(1 + )[4, ), (2.19)
¥ NteR teR

where the infimum is taken over all p(z) € F(Ao, A1) such that p(0) = f.

We point out the interpolation functor referred in (2.18) is an exact interpolation
functor of exponent 6. For our purpose, we will use the following multi-linear case.

PROPOSITION 2.11.  Let T be a continuous multi-linear operator from A(()l) X Agz) X
S X Aém) to By and from Agl) X A§2) X oo X Ag’") to By, satisfying

[T (0 1@ £ g, < Co LI g
j=1

- ) e A(()j) ﬂAgj).
HT(f(l)’f(Q)v B "f(m))HBl <0 H Hf(l)HA(ll)’

j=1

Then T is continuous from (Aél), Agl))e X (AéZ), A§2))9 XX (A((Jm), Agm))e to (Bo, B1)g
with norm at most Cé_eCf, provided 0 < 6 < 1.

ProOF. From Proposition 2.10, we know there exist m sequences {gp,(vj)(z)}keN,
j=1,...,m satisfying

Jimsup ol (it) ||y sup [l (1 + it)][y, = 179 a0,a0)0- (2.20)

We put w,(gj)(z) = C’ézfl)/mez/mT(gpg)(z)). Tt is easy to see that w,(ej)(z) € F(By, By)
with 7 (6) = C4~'CyOT f9), and

el (€ +it)| ,, < O/ |Tel (0 +it)|,, < e @+t £=0,1.

Thus, combining Proposition 2.10, we have
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7D P 00,

Cl 0019 H Hw(]) |(BO7B1)9

J=1

<cy- ecfn(sup||¢k (it)|| 5. Sup||1/)(])1+it)||(;1>

Jj=1
<ot H (sgp Hcp,(cj)(it)Hf4 sup ng(J) + it)H;l) (2.21)
The conclusion follows from (2.21), (2.20). O

THEOREM 2.2.  Suppose 0 < 0 <1 and

1 1-66 6 1 1-6 60
s=(1-0)sg+0s1, —= +—, -= +—, (2.22)
b Po n q do q1

then we have
(MSO ML )9 = M;;f;. (2.23)

Po0,90° P1,q1

SKETCH OF PROOF. For z € S, we write

() (1 ) n 1 1—z+z 1 1—z+z
s(z)=(1—2)sg+ 281, — = — —— = —.
Vop(z) po poq(2) o @

For any f € Mp, we set

oz, z) = Z <k>(1/<1 a))[sq/a(z S(Z)]”Daqu/q p/p(Z)(Dgf)p/p(Z)(x).
kezr

Obviously, ¢(z) € A(<'(R™)) and ¢(#) = f. Direct calculation shows
le(C+it)lazee <N fllagg, £=0,1.

This proves that Mj¢ C (Mgoe , Msie),.

Conversely, for any f e (Moo, Msie)  if o € A('(R")) such that ¢(f) = f,
for some 6 € (0,1), we can find two positive functions o (6,t) and pq(6,t) in (0,1) x R

satisfying
0/r

(1-6)/r 1
9211, < (5 [Iotelumenn) (5 [ 1ozeasiol,me.0a)

with (1/(1—0)) [p 1o(60,t)dt = (1/8) [ pa(6,t)dt = 1. Taking the £ , norm of both sides
leads to
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(1-6)/r
« 1 SoT —Q « . I
L P g A Kall= 2 ]
o R gao/r
1 . 0/r
< g [T+ ) a6, (2.24)
R va1/r
Then, Minkowski’s inequality implies that
Iflage < sup llo(it) || agzoe sup (1 +it)|[ a0 -
t t !
This proves (Mpjoe  Msie ), C Mo, O

The following is a natural consequence of Proposition 2.11 and Theorem 2.2, and is
frequently used later on.

<)
COROLLARY 2.1.  Suppose T is a continuous multi-linear mapping from M;gl) ’:;él) X

(m)

s NeY . . . L.

X MGy to Mpodt with norm Mo, and is also continuous, multi-linear from
Py 5499 ’

(1

(m)
s; 7« s e . . . .
M} X -+ X M} to M3 with norm Ml. Then T is continuous and multi-
p(ll) qgl) pgm) q;m) P1,91

(1) (m)
; st sTha s,0 ; 1-60 376 .
linear from Mpu),q(l) X o X Mp(m),qm) to My with norm at most My~" My, provided
0<0<1, and

. ; ; 1 1—40 0 1 1-6 0
O = (=0 +057, =G5+ =gty i=l0m
p Po Pq 4 ) 5
3. Scaling property.
For Besov space, it is well known that
£l S APV )| flBs,- 3.1)

For modulation spaces with s = 0 and 1 < p, ¢ < o0, the sharp dilation property was
obtained in [15] and they showed

IFallao S )\—”/P)\OV?“b(l/q—1/1))Vn(1/p+1/q—1)||f||MU , A> 1 (3.2)
[ £xllaro, S AP OVRQ/p= 1/ @V =Lp =L/l £l A < 1. (3.3)

In this section, we study the scaling property of a-modulation spaces. For
0<p, g <ooand (ag,a) € [0,1] x [0, 1], we denote

Rip.q: a1, 00) = 0V [n(al ~ ) (; - ;)} v [n(al ) (; + é - 1)] (3.4)

which will be frequently used in this and the next sections. Then, we divide R% into 3
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sub-domains in two ways (see Figure 1). One way is, Ri = S1 USs US3 with

11
S = - -] eRrR%:
! {<p Q) *

Ss = R3\{S; USs}.

Another way is, Ri =Ty UTy U T3 with

T3 = R3\{T; UT,}.

1/q
S2
Sl
(1/2,1/2)
S, (1,00 1/p
(0,0)

V= =

%

+
R Q=

1/q

(0,1)

(0,0)

SR
N

INA
\.H
RSN
IN
N |
o

1/p

Figure 1. Distribution of s.. The left-hand side figure
is for A > 1, the right-hand side figure is for A < 1.

If a1 > as, then

1 11
n(ay az)( - ) (,> € Si;
q p b q
R( )= dn( )(1+ 1) (1 1)68 (3.5)
y 4501, = nloap —« - - ) —y ; .
P, q; a1, (2 1 2 » g 7' q 2
11
0, (,)ESg.
b q

If oy < as, then
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11 11
R(p,q; a1,a2) = ¢ n(ar — az)(p + = - 1>, <, ) € To; (3.6)

n-w(}-3)

Before describing the dilation property of the a-modulation spaces, we introduce
some critical powers. Let us write s, = n(1/(1 Ap) — 1) and

R(p,¢;1, ),  A>1,
So = (3.7)
7R(p7q7a31)7 )\S 1.
THEOREM 3.1. Let0<a <1, A>0 and s+ s.#0. Then
A lazse S APV ) VAT || £ s (3.8)

holds for all f € Myg. Conversely, if

A lazze S AT PRl arzee
holds for some F': (0,00) — (0,00) and all f € Mp:g, then F(X) 2 (1V A)*r v AsFoe.

p,q "’

PrOOF (Sufficiency). We denote by OF | P the pseudo-differential operator with
symbol (7). For every [ € Z"™ and A > 0, we introduce

AN ={kez": OO0 f # 0}. (3.9

For any k € A(l, \), it follows from (1.1b) that k,! and X satisfy
M0 A=) (1 — C) < (k)= (k; + C); (3.10a)
MDY= (1 4+ C) > (k)= (k; — O) (3.10b)

with j = 1,2,...,n. In view of (3.10), one sees that k € A(l,\) is equivalent to [ €
A(k,1/X). Moreover, if (3.10) holds, then

Iy <1V A=) ifand only if (k) <1V AlTe (3.11)

Iy >1v A~ (1=2) " without loss of generality, we may assume [ belongs to some RY,
when I; > 0, from (3.10a); whereas when [; < 0, from (3.10b) x(—1), we see (k)}/(1=) >
M)/ (A=2) - Conversely, for k € A(l,\) N R?, also from (3.10), we have (k)1/(=a) <
M) (1=2)  Thus we have

(k) ~ A7), (3.12)
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Since the volumes of supp(n)x and suppnf* are O(A~"(k)"*/(1=2)) and O((1)ne/(A=a)),
respectively, we see that

HA(I,N) ~ 1V AnI—), (3.13)

When g = 1, from Lemma 2.1, we have

ZDka =3 (k) 0% fallp

kel ,1 kel
= (k)@ 0 )
kel
= AT (k)T sl
kel
e S N ) AN N [ o o (3.14)
ker leA(k,1/X)
1 N ~
/a i il
(1,1)
I 1T
111 1l
I (1/2,1/2)
| r (1,00 1/p
(0,0)

Figure 2. 9 regions for the proof of Theorem 3.1.

Case 1: A <1, (1/p,1/q) € TUIL For p = 1,00, we apply the same technique as
that appeared in Proposition 2.3 to remove Uy, /\ in (3.14). When [k < 1, from (3.11)

we see that for I € A(k,1/)), there is 1 < (1)/(1=2) < 1/), which leads to

Y Oih

[k|<1

CSATYE S IOl S ATV Y (v )T OO £

My H<A—(-a) lezn

APV gz (3.15)

By Plancherel’s identity,
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YA S A—"/Q( D (Rt

k<1 M k<1

)1/2

Z Oy 1/,\Dz

IEA(K,1/N)

1/2
5A—"/2( S fQ)

(A==

SN2V A e (3.16)

When [k] > 1, from (3.12)—(3.14), we see that

> Oih

k|1

SATEEE YT O

My |k|>11€A(k,1/X)

< \—n/p+s Z<Z>S/(1*Q) Z 107 f1l

1 kEA(LN)

SN fllagee (3.17)

In view of Plancherel’s formula,

> Ofh

[k|>1

1/2
O S SRS =)

M3y |k|>11€A(k,1/\)

1/2
5 )\n/2+s<z<l>25/(10‘) Z |||:|k 1/)\|:|2Xf||g>

L keA(l,N)
SATE  llarg g (3.18)
Combining (3.15)—(3.18), we use complex interpolation to get
I larze S APV A Fllagse- (3.19)
Case 2: A > 1, (1/p,1/q) € TUIII*. Through the point (1/p,1/q), one can draw
the parallel line to the 1/¢-axis. We assume there exists some (0,7) € [0, 1] x [0, 1], such

that the parallel line cuts the line segment connecting (0,1), (1/2,1) and the line segment
connecting (0,0),(1/2,1/2) at (6/2,1) and (6/2,6/2), respectively. Assume that

1 6 1 0
==, —=1—(1—=]n.
p 2 q 2

When [k| < A17% from (3.11) and (3.14), we have

D DA S 2Bl Do (O S (v AT s

k] SAL— MIH <t kEA(N)

(3.20)
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By the Schwartz inequality and the Plancherel identity,

1/2 1/2
=SS o) (3 )

My <1 M keA(lN) keA(l,N)

Y Oih

|k|<At—e

SATRAVAFROZN £ e (3.21)

From (3.11), we have

Y. Oih

[B|SAt =

S sup (R)Y7OTV07 Al
M  IRISAT=e

S(AVA®) sup Z 1051280 flloo
IRISAM ™ e Ak, 1/0)

S (VA7) sup 07 flleo S (VA1 fllarzes. - (3.22)

=t

In view of Plancherel’s equality,

1/2
=T 5( Dy <’€>23/(1_“)||D%h§)

[k|SAL—« 2 > [k|SAL—«
1/2
< )\n/2< Z(l V. )\5)2 Z ”Da Daf2) /
N k1S T2
l11<1 keA(lL,N)

1/2
a2 ( TIGSE) SV g
1N<1 (
3.23)

When |k| > A1~% from (3.12)—(3.14), we have

> Oih

SN WY S 0 e ST sz

s,

|k >AL—e M [1>>1 kEA(LN)
(3.24)
By Jensen’s inequality,
YooOORA| SATEE Y @O Y 000 e
[k >A1-e M3 lL[>1 kEA(LN)
1/2
e S A (S IR AOrR)
lI>1 keA(L,N)

< AT/ 2Hst(n/2) (1) Hf||M;jf- (3.25)
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From (3.12), (3.13), we have

> Oih

|k|>A1—e

< Sl;p<k>s/(1_”) 107 15 flloo

ER
M oo

S ATsup DRl (=i

leA(k,1/X)
S NNl - (3.26)
Similar to (3.18), one has that
SOOpA| SATEEI g (3.27)
k| >A1-a M3

Since n(1 — a)(1 —0/2) = (1 — 0)n(l — a) + 0(n/2)(1 — «), combining (3.20), (3.24),
(3.21), (3.25), complex interpolation yields

Iallagge | < A@2m (v A= U=0R e (3.28)
Combining (3.22), (3.26), (3.23), (3.27), complex interpolation yields
Iallarg ) S ARV X fllarg (3.29)
Interpolating (3.28) and (3.29), we have
A llagze S ATP(1y AFnAmed/a=t/e)y || £ oo (3.30)

Case 3: A > 1, (1/p,1/q) € IIUIIL. Through the point (1/p,1/q) one can make
the parallel line to the 1/¢-axis. We assume there exists some (6,7) € [0,1] x [0,1],
such that the parallel line cuts the line segment connecting (1,1),(1/2,1) and the line
segment connecting (1,0),(1/2,1/2) at (1 —60/2,1) and (1 — 6/2,6/2), respectively. We

can assume that
1 0 1 0
—=1-=, ==1—(1—=|n.
P 20 q 2

When |k| < A1~% similarly to (3.20) and (3.22), we have

Do ORA| SATAV AT fllaes (3.31)
[k|<AL—a My

S ooh| SATAVA) e (3.32)
k| <AL= MPS
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When |k| > M=% similarly to (3.24) and (3.26), we have

>, Oih 5 AT £ e (3.33)
[k[>Al—e My

Y. Oih SN fllagg - (3.34)
[k[>Al—e M S

Combining (3.31), (3.33), (3.21), (3.25), complex interpolation yields

[ fallagse S ATO/DA0/2) (1 \stn=a)A=0/2))| £l o0 (3.35)

2/(2-0),1 ™ 2/(2-0),1°

Combining (3.32), (3.34), (3.23), (3.27), complex interpolation yields

IAllaege, e S A 2O AV A Iz, , o (3.36)
Interpolating (3.35) and (3.36), we have
A lagze S ATP(1y A=) /pH/a=Dy | £ o (3.37)

Cased: A< 1, (1/p,1/q) € {T*UIT*UIIIUIIT* ]\ {(0, 1] x [0,1]}; or A > 1, (1/p,1/q) €
I* UIT*\{(1,0)}. We observe that, for any (1/p,1/q) € I* UII*, we have (1/p*,1/¢*) €
TUII. By duality,

1 1
[(fx, 9)] = )\7|<f791//\>| < ﬁ||f||M;;g||91//\HMI;ﬁ;;~ (3.38)

If we denote [|fxl[arse S F(s, A0, @)||fllar5:e, from the previous several cases, we know
that

Y P TS I Iy (3.39)
By the principle of duality, it follows from (3.38) and (3.39) that
I£sllaggg S AT F (=8, 375 0%, @) fllaggsg - (3.40)
For A <1 with (1/p,1/q) € {T* UTIT}\{1} x [0, 1], from Case 2, (3.40) gives
[ \llaggg S AP (LY ATHAm I WETUD) | £l (341)
For A <1 with (1/p,1/q) € {II* UTIT*}\{(0,1)}, from Case 3, (3.40) gives
I llagze S ATP(Lv A=) A=Va1/p) | £l ea (3.42)

For A > 1 with (1/p,1/q) € I UII"\{(1,0)}, from Case 1, (3.40) gives
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1z S APV A fllarge - (3.43)
Case 5: (1/p,1/q) € {TUII}\(1,00) x (1,00). Since ¢4 C ¢*, we know

IO falle SATP 7 08 508 fll
1EA(K,1/N)

1/q
sw/p< 3 Dg,mmffng) . (3.44)

1eA(k,1/X)

From (3.44), (3.11), when A <1 and |k| < 1, we conclude that

1/q
< ( T <k>S(I/(1_a)||D(§fx|go>

> Oih

[k|<1 M35 [k|<1
) 1/q
< ( IRy ||Dz,1/AD?f||go)
k| <1 1eA(k,1/N)
1/q
s( 3 IID?‘fIIZo> SOV fle:  (345)
(HSA—0=)

and when A > 1 and |k| < A1,

1/q
S Oph s( <k>sq/<1—“>||mm|zo)
k| <AL= My k| SAL-
1/q
s( Ryl 3 IID?fIIZo>
[k|<Al-a leA(k,1/N)
1/q
5( =TTy <k>8q/<la>)
ISt [ Ao
< (1 A=/ £l (3.46)

When [k| > 1V A~ from (3.44), (3.12), (3.13), we have

1/q
s( IRCRARY IIDE’fIIZo>

Y. DA

[k >1vAl—o M [k >1V A= lEA(k,1/N)
1/q
v (S oo S o)
[1|>1 keA(l,N)

SNV VY fllapze,. (3.47)



a-modulation spaces (I) 1335
Therefore, combining (3.45)—(3.47), we get

I llarze S TV ATV A=/ £l ea (3.48)

o0,q N

The same for M;;". Corresponding to (3.48), we get
||f)\||Mf;’ 5 )\—n(l VB LAY )\s-&-n(l—a)/q) Hf”Mf,‘; (3'49)
Whereas when p =2, A <1 and |k| <1, from (3.44), (3.11), we have

> Oih

|kI<1

1/q
S )\_n/2< Z <k>5q/(1_0‘) Z ||Dk 1/)\Di\f”g>

Mg k<1 leA(k,1/))

1/q
< A-”/Q( ) IID?‘fII%)

HA-(=)

ATV A) gz (3.50)

When X > 1, |k| < A~ by (3.44), (3.11) and Hélder’s inequality, we have

> Oih

k| SAt =

1/q
(T T oy, ,org )
M3 [1|<1 kEA(,N)

q/2
SA”/Z[Z ( 3 ||D:,1/Amf‘f||§)

[11<1 NkeA(l,N)

(2-0)/211/4
x( 3 <k>2sq/<<1a><2q>>> ]

LIS

< A2 (1v /\s+n(170¢)(1/4*1/2))||fHM§:;_ (3.51)

When |k| > 1V A=2 in view of (3.44), (3.12), (3.13) and Hélder’s inequality, we have

Y. Oih

|k|>1VvAL—

1/q
< )\—n/2+s( Z <l>sq/(1—a) Z |y ?,1/>\f||g>

1]>1 kEA(LN)

q/211/q
sx"/“S[Z<Z>sq/<1-a>[#A<z,w-q”( 3 ID?D%,WfII%) ]

|1]3>1 EEA(LN)

s,a
M,

S )\—n/2+s(1 vV )\)"(1—‘1)(1/‘1_1/2) ||f||M;;’ . (352)
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Therefore, combining (3.50)—(3.52), we get

I llagge S A2 (L VA v AT Q1 2 ) £l o
For (1/p,1/q) €1, complex interpolation between (3.48) and (3.53) yields

Iallage S AP (VA v XA Q D) | e

(3.53)

(3.54)

while for (1/p,1/q) € II\(1, 00) x (1, 00), complex interpolation between (3.49) and (3.53)

yields

||f>\||M;;g < )fn/p(l VSV >\s+n(1*a)(1/p+1/qfl)) HfHM;;;"

Case 6: (1/p,1/q) € III. Since [P C I, we know
1/p
108 fally = A 2I0% 1 ya fllp < A"/p( > ||D§,1/ADf‘f||§) :
1eA(k,1/X)
When A <1 and |k| <1, from (1.1b), (3.12), we see that
diam supp Z [(Z ' (1)x) (@ — )07 F()] S 1/
By Proposition 2.1, we get
108 1200 Fllp S 1Z 7 )l 107 £l
< @A (0 ) IO S I07
From (3.56), (3.57), the embedding ¢! C ¢%/P, and Holder’s inequality, we have

Y Oif

k| <1

. q/p11/4q
< /P Z sq/( a)( Z ([m} 1/ ?f£> ]
E|<1 leA

(k,1/2)

My

leA(k,1/N)

< A~ /P

1/p
) “/,,( P Y 10,00 R)

(U (1 @) kST [k|<1

APV A fllagge-

(3.55)

(3.56)

(3.57)

1 (a—p)/q p/a11/p
( 3 (kv —a)(q—p») ( > IID?fIIZ> ]

(3.58)
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When A <1 and |k| > 1, from (1.1b), (3.12), we see that
diam supp FI(F (1)) (= — 7 SO) S (B0
Similarly to (3.57), we get
1021307 £l S (/=0 /0 70 (g Ry 0" D g £
S NG (3.59)

From (3.56), (3.59), (3.12), (3.13), we have

) q/p71/q
SA-”/P[ZU@SM -a>( ) ||Dk1/xmff||g) }

k1 1EA(K,1/N)

1/q
5A—n/p+8( ST#AR NS <l>sq/“‘“>llﬂf’fllz)

[k|>1 leA(k,1/N)

> Oih

[k[>1

s 00
Mpq

1/q
5A—n/p+s—n<1—a)<1/p—1/q)<Z<l>sq/(1—a> 3 ||D?f|g>

1 kEA(LN)

< )\—n/p+s—n(1—a)(1/p—1/q)||f||M;:g. (3.60)
For A > 1 and |k| < A'72, from (1.1b), (3.12), we know
diam supp Z[(F ' (7)) (@ — )07 f()] £ 1.
Similarly to (3.57), we get

a a a n(l 1
105 1 a08 flly S (M (k) C=e) P g (3.61)

From (3.56), (3.61), (3.11), we have

> Oih

[kl SA1=o

1 q/p11/q
< )\—n/p|: Z <k>sq/( —a)< Z ||Dg)1/,\[]?f||g> ]
leA

[k|<Al—e (k,1/X)

,
qu

q/pq1/a
5An/p+n<1/p1>[ ST (ke e/ ()1 /p) (Z”D?ﬂp) ]

[k SAT = [t

S Afn/p+n(1/p71) (1 V )\sfnoz(l/pfl)Jrn(lfa)/q) ”fHM;’g (362)
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When A > 1 and |k| > A\ ~9, similarly to (3.59), we get

151200 fllp < 157 fllp- (3.63)
From (3.56), (3.63), (3.12), and the embedding ¢* C ¢4/, we have

> Oih

|k|>Al—e

. q/p71/q
sw/p[ S (ke “>< 3 ||Dk1/AD?f||z) ]

[k A1—o 1eA(k,1/X)

1/q
sw/p“( DS <z>sq/<1a>||mff|z)

[k]>AL—a 1eA(k,1/\)

1/q
5)\—7l/p+s< Z<l>sq/(1—a) Z | f||c1>

|11 kEA(L,N)

Mo

p,q

< )\—n/p+s+n(1—a)/q||f||M;:f;_ (3.64)
We summarize the argument in this case as: if A <1, (3.58) and (3.60) give
M largzg S AT (1 v Azl e e (3.65)
else if A > 1, (3.62) and (3.64) give
Hf)\HM,fg‘ 5 )\—n/p—i-n(l/p—l) (1 V. )\s—na(l/p—l)-‘rn(l—a)/q) ||fHM§§“ (3.66)

Case 7: (1/p,1/q) € 1IN (1,00) x (1,00). It is a natural consequence of Cases 5 and
6 by complex interpolation.

(3.8) in the case A > 1 follows from (3.30), (3.54), (3.37), (3.55), (3.43), (3.66). (3.8)
in the case A < 1 follows from (3.19), (3.54), (3.55), (3.41), (3.66), (3.42). O

REMARK 3.1. If s = —s,, we have the substitution for (3.8):

Iallarg:e S ATPEN) I argee (3.67)

where
(In \)OV(/a=1/p)V(/a+1/p=1) A>1, p>1;

F()\) = ATU/P= 1 (In A, A>Lpst (3.68)
B ( 1\ o0v@/p=1/q)v(1-1/p=1/q) '
In )

- A<,
A )
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4. Embedding between a-modulation and Besov spaces.

As 1 < p, q < oo, some sufficient conditions for the inclusions between modulation
and Besov spaces were obtained by Grobner [11], then Toft [16] improved Grobner’s
sufficient conditions, which were proven to be necessary by Sugimoto and Tomita [15].
Their results were generalized to the cases 0 < p, ¢ < oo in [19], [20]. Grobner [11]
also considered the inclusions between ai-modulation and as-modulation spaces for
1 <p, ¢ < oo and his results are optimal in the cases (1/p,1/q) is located in the vertices
of the square [0,1]2. We will improve Grobner’s results in the cases 1 < p, ¢ < oo and
our results also cover the cases 0 < p<lor0<gqg<1.

4.1. Embedding between a-modulation spaces.
THEOREM 4.1.  Let (a1, 2) € 10,1) x [0,1). Then

Mp g™ © Mpg™ (4.1)
holds if and only if 1 > s + R(p, q; a1, aa).

REMARK. In the first versions of the paper, we obtain the sufficiency of Theorem
4.1, soon after Toft and Wahlberg [17] independently considered the embeddings between
a-modulation and Besov spaces in the cases 1 < p, ¢ < oo and they first showed the
necessity of Theorem 4.1 in the regions (1/p,1/q) € (S2US3) N [0,1]? (see Figure 3).
After their work we can finally show the necessity of Theorem 4.1 in all cases.

1/q 1/q
S‘Z
s, (0,1)
(1/2,1/2)
T2
S, (1,00 1/p
(0,0) (0,0)

Figure 3. In Theorem 4.1, the left-hand side figure is for a1 > ao;
while the right-hand side figure is for a1 < .

PRrROOF (Sufficiency). For every k € Z", we introduce
A(k)={lez" OO f #0}. (4.2)
If O;20;" f # 0, then k and I satisfy

)2/ 0= (1; =€) < (R 4=k + O,
()2 0=+ €) > (1™ 4=k, = )
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for all j =1,2,...,n. If |k| < 1, it is easy to see that |I| < 1. If |k| > 1, analogous to
(3.12), we have

(1) ~ (k)Ume2)/ e, (4.4)
Assume that p > 1, ¢ = 1 and sy = 0, we have

11 pgoez < > > IIDO‘IDazf\IpSZ#A TR flp- (4.5)

keZm™ leA(k)

We need an estimate of #A(k). Similar to (3.13), we have
#A(k) ~ 1V (k)yMea—a)/(=a1), (4.6)

If p = 2, inserting (4.6) into (4.5) and noticing (4.4), in view of Jensen’s inequality we
get

M;?1+0V(n(a1*042)/(2(1*%))),041 N M25721,a2. (4.7)

If p=o0or 1, from (4.5), (4.6), (4.4), one can directly obtain that

M§§)+0V("(041 az)/(1—au1)),a1 ng,ftz7 (4.8)
Mfi—&-o\/(n(oq—042)/(1—041)),0(1 SN Mlsfl,ag. (49)

Case 1: (1/p,1/q) € I. For any 6 € [0,1], (/2,1) is at the line connecting (1/2,1)
and (0,1). By complex interpolation between (4.7) and (4.8), one has that

0V(1-0/2)(n(a1—az)/(1-a1)),a1 0,a
M2/9,1 e “ “ M2/921 (410)

Since (/2,1 —60/2) is at the line segment by connecting (1/2,1/2) and (0,1), A complex
interpolation combined with Proposition 2.7 and (4.8) yields

ovV(1-0)(n(ar1—az)/(1—a )) 0,2
M2/9,2/(2—9) T ' M2/9 2/(2—-6)" <411)

For any (1/p,1/q) € I, we may suppose that there exists some (6,7) € [0, 1] x [0, 1], such
that

1 0

1,

q 2

Therefore, a complex interpolation between (4.10) and (4.11) implies that

MEH a1 DoV oz o1, s (4.12)



a-modulation spaces (I) 1341

Case 2: (1/p,1/q) € II. For any 6 € [0,1], (1 —60/2,1 — 0/2) is at the line segment
connecting (1/2,1/2) and (1,1). From Proposition 2.7 and (4.9), we see that

s2+(1-0)[0Vn(ar—as)],« S2,a
Myja o) ojamey 7 Majs70)0/(0-0) (4.13)

Noticing that (1 — 6/2,1) is a point at the line segment connecting (1/2,1) and (0, 1),
from (4.7) and (4.9), we see that

s2+(1-6/2)[0Vn(a; —az2)],« S92,
M2/2(2—9)71 PR e My7052 0y 1 (4.14)

Noticing that for any (1/p,1/q) € II, there exists some (6,7) € [0,1] x [0, 1] satisfying

1 0 1 0
1, 8 1_, o
p 2 q 2
on the basis of (4.13) and (4.14), we conclude that
M;;zq+(1/p+l/q—1)[0Vn(a1—az)]yal s Mmoo, (4.15)

When oy < g, (4.15) coincides with (4.12).

Case 3: (1/p,1/q) € " UIT*. When (1/p,1/q) € T*, (1/p*,1/¢*) is in I. From (4.12),
we know

—52,02 —s2—(1/p=1/q)[0Vn(az—ai)],aa
Mp* - Mp*,q* .

The duality of a-modulation space implies that

M2 p=t/@ovn(es—anlar  prszee (4.16)

Py
When (1/p,1/q) € II*, by (4.15) and duality one has that
M;qur(lfl/pfl/q)[O\/n(agfal)Lal SN M;gq,az. (417)

When a; > ag, (4.17) coincides with (4.16).

Case 4: (1/p,1/q) € IIIUIII*. We may assume that for any (1/p,1/q) € III (III*),
there exists a 7 € (0,1) satisfying

1 1 1-—
AL
q p p

Notice that (1/p,1/p) and (1/p,1 — 1/p) are at the boundaries of II and I* (IT* and 1),
respectively. If (1/p,1/q) € 111, a complex interpolation between (4.15) and (4.16) yields

M;?q+[n(a1—ozg)(l/p-‘rl/q—l)\/n(O‘Q—041)(1/19_1/‘1)]70‘1 < M;?q,OLQ. (4.18)
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If (1/p,1/q) € IIT*, a complex interpolation between (4.12) and (4.17) yields

M;?qu[n(al7012)(l/qfl/p)Vn(OtQ*041)(1*1/17*1/11)]’0‘1 N sz?q’aQ' (4.19)

When a3 > ag, (4.18) and (4.19) coincide with (4.15) and (4.12), respectively. When
a1 < ag, (4.18) and (4.19) coincide with (4.16) and (4.17), respectively.

Case 5: (1/p,1/q) € L Imitating the proof as in the counterpart of Theorem 3.1, we
can easily get
M;gZOV(n(m—az)/(l—al))(l/Q)m C M;g’;”,
So+0V 11— 1—ay 1/9—1/2),a1 S2,(
M2,2q (n(ar—a2)/(1—a1))(1/9—1/2),c CM2,2q 2

A complex interpolation yields
Mgz OV (n(ea—az)/(A-a)(1/a=1/phes o ppsses, (4.20)

(4.20) coincides with (4.12).
Case 6: (1/p,1/q) € IT1. From (1.1b), as well as (4.4), we see that

diamsupp F[F i (@ — O f()] S (k) (rVa/tmen),
In view of Proposition 2.1,
107205 fllp < (k) (/P DOVR(eama)/Umen) mpa g (4.21)

Inserting (4.21), (4.4), (4.6), from the embedding ¢7 C ¢! and with the aid of Jensen’s
inequality, we have

a/py1/9
”f”M;?q’aQ < |: Z <l>32Q/(1—a2)< Z <k>(1—P)(OVn(a1—a2))/(1—a1)||:|zlf||g> :|
lezn keA(l)

< <Z<l>82Q/(1a2)+((0Vn(azal))/(loéz))(Q/pl)
l

1/q
= <k>nq<1/p1><ov<a1M))/(lal)”D?ﬂm)
keA(l)

s9q Vn(ag—a V(g —o 1/q
= <Z<k>f%1+° {21700 (3 -1) g SR (;+31)|IDZ1fIIZ> - (422
k

When a; < as, (4.22) gives

Mgfq+n(@2—@1)(1/19—1/(1)7041 c M;?qva?; (4.23)
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whereas when a1 > aw, (4.22) gives
M;?q+n(a1faz)(l/erl/qfl)’al C Mo, (4.24)

(4.23) and (4.24) coincide with (4.16) and (4.15), respectively.

Case 7: (1/p,1/q) € II. This is a consequence of the results in Cases 5 and 6 by
complex interpolation. O

4.2. Embedding between Besov space and a-modulation space.

In this section, we study the embedding between 1-modulation space and a-
modulation spaces. In an analogous way to the previous subsection, we start with the
embedding for the same indices p, g.

THEOREM 4.2.  Let a € [0,1). Then Bjl, C Mj% holds if and only if s; >
sz + R(p,q; 1, ). Conversely, M5, C B,? holds if and only if s1 > s2 + R(p,q; o, 1).

PRrROOF (Sufficiency). For every j € Z, we introduce
AG) = {k € Z":Op A, #0,f € &' (®R")}: (4.25)
and for every k € Z", we introduce
Ak)={jeZs 0N f #£0,Vf € S (R™)}. (4.26)

To aj € Zy, for any k € A(j), it is easy to see that the quantitative relationship between
k and j is

(k)Y (=) 97, (4.27)

When p > 1,¢g =1 and s = 0, we have

IFloe < 30 D 10281 = > 7 14,08 £l (4.28)

keZ™ jeA(K) JELL keA(H)
For any k € Z™ and any j € Z, it is easy to see
#A(k) ~ 1, #A() ~ 207, (4.29)

Thus when p = 2, combining (4.28), (4.29), also with the aid of Jensen’s inequality, we
get

s+n(l—a)/2 s,«
By "R o gy, (4.30)

If p =1 or oo, combining (4.29), (4.28), we get
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Bian(lfoc) N Mi,ix, (4.31)
BT e e (4.32)

Case 1: (1/p,1/q) € I. For any 6 € [0, 1], a complex interpolation between (4.30)
and (4.32) yields

s+(1-60/2)n(1—a) s, |
By g1 = My 45 (4.33)

while combined with Proposition 2.7 and (4.32), yields

s+(1-0)n(l—a) ,
32/0,2/(2—9) - MS/%,Q/(Q—G)- (4.34)

In analogy to (4.12), we get from (4.33), (4.34) that

Bytn(i/a-1/p(=a) , prse (4.35)

p.q

Conversely, when we encounter the embedding of a-modulation spaces into Besov
spaces, for 2 < p < oo, considering (4.29), we have

Illse, < >0 >0 NORA e < D IOl = 1 g, (4.36)
)

JELT kEA(j keZm
which gives
Mg = By (4.37)

Case 2: (1/p,1/q) € II. For any 6 € [0,1], a complex interpolation between (4.30)
and (4.31) yields

+(1-6/2)n(1—-a) s,
B;/(Q—é‘),l e (_)M2/(2_9),1' (4.38)

From Proposition 2.7 and (4.31) it follows that

s+(1-0)n(1—a) ENeY
By -0y 2/2—0) ™ Ma)2_0),2/(2—0)- (4.39)

Analogous to (4.15), one can conclude 