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Abstract. Let p be a prime not equal to 2 or 3. In this paper we study
the Q-rational cuspidal group CQ of the jacobian J1(2p) of the modular curve
X1(2p). We prove that the group CQ is generated by the Q-rational cusps. We
determine the order of CQ, and give numerical tables for all p ≤ 127. These
tables give also other cuspidal class numbers for the modular curves X1(2p)
and X1(p). We give a basis of the group of the principal divisors supported
on the Q-rational cusps, and using this we determine the explicit structure of
CQ for all p ≤ 127. We determine the structure of the Sylow p-subgroup of CQ,
and the explicit structure for all p ≤ 4001.

1. Introduction.

1.1. The Q-rational cuspidal group.
Let X be a modular curve defined over Q of genus greater than 0, and let JX be

its jacobian defined over Q. Let us assume that the cusp P∞ on X represented by the
infinity is rational over Q. Let i∞ : P 7→ [P − P∞] be the cuspidal embedding of X into
JX sending a point P to the divisor class of P − P∞. When P is a cusp of X, the point
i∞(P ) is a torsion point of JX (Manin [11], Drinfeld [4]). Let T (JX)Q be the group of
all Q-rational torsion points of JX . Let C(JX) be the subgroup of JX generated by all
cusps of X, and let C(JX)Q be the subgroup of C(JX) consisting of all Q-rational points
of C(JX). Then we have C(JX)Q ⊂ T (JX)Q. We call C(JX)Q the Q-rational cuspidal
group of JX .

The group T (JX)Q is a very important object in the arithmetic theory of the modular
jacobian. But its study requires deep knowledge of the arithmetic algebraic geometry. On
the other hand, for some modular curves, the group C(JX)Q can be studied without the
knowledge of the arithmetic algebraic geometry. Moreover, in some cases it is verified
that C(JX)Q = T (JX)Q, and also conjectured that the equality holds generally. The
purpose of the present paper is to study the group C(JX)Q and its subgroups in the case
of X = X1(2p). First we recall some known results.

Let X = X0(n) (n ∈ N). Then X0(n) has a Q-rational model with P∞ a Q-rational
point. If n is square-free, then all cusps on X0(n) are Q-rational. Therefore, the group
C(JX)Q coincides with C(JX), and its order is known (cf. Ogg [13] for the case where
n is a prime, Takagi [20] for the case where n is arbitrary). In particular, when n is
a prime, Ogg [14] conjectured and Mazur [12] proved that C(JX)Q = T (JX)Q. When
n = pq with p, q distinct primes, Chua and Ling [2] determined the structure of the
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group C(JX)Q. For the twelve values n = 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49 with
the genus of X one, Ogg [13] determined the structure of the group C(JX)Q and verified
that C(JX)Q = T (JX)Q and it is generated by the Q-rational cusps. When n = 53,
Poulakis [16] proved that C(JX)Q = T (JX)Q and it is a cyclic group of order 25. When
n = pr with p a prime such that p ≥ 5 and p 6≡ 11 (mod 12), Lorenzini [10] proved that
the prime-to-2p parts of the groups C(JX)Q and T (JX)Q coincide, and determined its
structure. Also Ling [9], in the case where n = pr with p ≥ 3 a prime, determined the
structure of the group C(JX)Q, and proved that the prime-to-6p (respectively prime-to-
2p) parts of the groups C(JX)Q and T (JX)Q coincide if p ≥ 5 (respectively p ≥ 5 and
r = 2).

Let X = X1(n) (n ∈ N). Then X1(n) has a Q-rational model with P∞ a Q-rational
point. When n = p 6= 2, 3 is a prime, Conrad, Edixhoven and Stein [3, Conjecture 6.2.2.]
conjectured that the group T (JX)Q is generated by the ∞-cusps of X1(p), and verified
it for all primes p ≤ 157 except for p = 29, 97, 101, 109, and 113. (A cusp on X1(n) is
called an∞-cusp if it lies over the cusp∞ of the curve X0(n). All∞-cusps are Q-rational
points.) This conjecture is stronger than the statement C(JX)Q = T (JX)Q. Recently,
Ohta [15] proved that the conjecture of Conrad, Edixhoven and Stein is true up to 2-
torsion. For the values n = 13, 16, 18 with the genus of X two, Ogg [13] determined the
structure of the group C(JX)Q and verified that C(JX)Q = T (JX)Q and it is generated
by the Q-rational cusps.

Generally, let Γ be a subgroup of SL2(Z)/{±12} with Γ0(n)/{±12} ⊃ Γ ⊃
±Γ1(n)/{±12}. Let X = XΓ be the modular curve corresponding to Γ. The curve
XΓ has a Q-rational model with P∞ a Q-rational point. The group C(JX)Q contains
several subgroups. We denote by C(JX)∞, C(JX)1, or C(JX)2 the subgroup of C(JX)Q
generated by all ∞-cusps, the subgroup of C(JX)Q generated by all Q-rational cusps,
or the subgroup of C(JX)Q generated by all cuspidal divisors defined over Q, respec-
tively. (Similarly to the case of X1(n), a cusp on XΓ is called an ∞-cusp if it lies
over the cusp ∞ of the curve X0(n), and all ∞-cusps are Q-rational.) Then we have
C(JX)∞ ⊂ C(JX)1 ⊂ C(JX)2 ⊂ C(JX)Q ⊂ T (JX)Q.

The conjecture of Conrad, Edixhoven and Stein claims that C(JX)∞ = T (JX)Q for
X = X1(p) with p a prime. If it is true, then we have C(JX)∞ = C(JX)1 = C(JX)2 =
C(JX)Q = T (JX)Q for X = X1(p). (We can prove the first three equalities. For this,
see Subsection 1.3 below.) When X = X1(n), the group C(JX)∞ is studied by several
authors. The order of C(JX)∞ was determined first by Klimek [6] (the case where
n = p is a prime), next by Kubert and Lang [8] (the case where n is a power of a
prime p 6= 2, 3), and last by Yu [24] (the case where n is arbitrary). (In fact, they
considered the subgroup C(JX)0 of C(JX) supported on the 0-cusps. But it is isomorphic
to C(JX)∞.) Concerning the structure of C(JX)∞, Yang [23] constructs an explicit basis
for the group of modular units on X1(n) with n arbitrary whose divisors are supported
on ∞-cusps.

However, in general, on the contrary to the case X = X1(p), the group C(JX)∞
does not coincide with C(JX)Q. Chen [1] considers the curve X = XΓ with Γ satisfying
Γ0(p)/{±12} % Γ % ±Γ1(p)/{±12}, constructs an explicit basis for the group of modular
units whose divisors are supported on the divisors defined over Q, determines the order
of C(JX)2, and shows that C(JX)∞ $ C(JX)2. In this case the Q-rational cusps are
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∞-cusps, therefore, we have C(JX)∞ = C(JX)1. In [1] a numerical table is given. On
the other hand, Conrad, Edixhoven and Stein [3, Table 2–3.] also give some numerical
tables on the bound of the order of T (JX)Q. Comparing these tables, we can verify that
in several groups Γ with Γ0(p)/{±12} % Γ % ±Γ1(p)/{±12} the order of C(JX)2 and
the bound of the order of T (JX)Q coincide, which implies that in those cases we have
C(JX)2 = C(JX)Q = T (JX)Q.

1.2. Main results.
In the present paper we consider the modular curve X = X1(2p) with p 6= 2, 3 a

prime. In view of the results above, we might expect that C(JX)Q = T (JX)Q. In fact
there is an example of the equality. Let X = X1(14). The curve X1(14) is an elliptic
curve. We can prove that the group C(JX)Q is of order 6 (cf. Table 4). On the other
hand the group T (JX)Q is also a group of order 6. This follows from a deep result of
[12] that the only rational points of X1(14) are the rational cusps whose number is 6.
Therefore, in this case we have C(JX)Q = T (JX)Q. But the study of T (JX)Q is very hard.
Our objects of the study are the group C(JX)Q and its subgroups C(JX)∞, C(JX)1, and
C(JX)2.

In Takagi [21] we determined the cuspidal class number of the modular curve X1(2p).
The arguments of this paper is a continuation of [21]. For simplicity we denote the group
C(JX)Q by CQ. Also we denote simply by C∞, C1, and C2 the groups C(JX)∞, C(JX)1,
and C(JX)2, respectively. Note that in Introduction of [21] we denoted the group C(JX)2
by CQ.

In the following we state our main results. Concerning the relation between the
groups C∞, C1, C2 and CQ, we have the following.

Theorem 1.1. Let p be a prime ≥ 7, and let X = X1(2p). Let C∞, C1, C2 and CQ
be as above. Then we have C∞ & C1 = C2 = CQ.

The condition p ≥ 7 simply means that the genus of X1(2p) is not 0. The equalities
C1 = C2 = CQ are given by Theorems 3.7 and 4.11. The inequality C∞ & C1 follows from
the comparison of the orders of C∞ and C1 as stated below.

The equality C2 = CQ can be restated in the language of homological algebra. Let
IP be the group of principal divisors of all modular units on X1(2p). Since the cusps
of X1(2p) are rational over the field k2p = Q(ζ2p) with ζ2p = exp[2πi/2p], the group IP

is a G-module where G = Gal(k2p/Q). Let Hn(G, IP ) (respectively Hn(G, IP )) be the
n-th cohomology group (respectively homology group). Then we have the following (cf.
Theorem 4.13).

Theorem 1.2. For all n ≥ 1, we have H2n−1(G, IP ) = H2n(G, IP ) = 0.

Let

a =
p2 − 1

24
, (1.1)

A =
1
p

∏

ψ

(4− ψ(2)), (1.2)
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B = p
∏

ψ

(
1
4
B2,ψ

)
, (1.3)

where ψ runs over all even, primitive Dirichlet characters modulo p, and B2,ψ denotes
the generalized Bernoulli number defined by

B2,ψ = p

p−1∑
a=1

ψ(a)
{(

a

p

)2

− a

p
+

1
6

}
. (1.4)

Then a, A and B are positive integers.

Theorem 1.3. The order hQ of CQ is given by hQ = aAB2.

This is given by Theorem 5.3. The order h∞1 (2p) of C∞ is known to be equal to AB

(cf. [24]). Hence we have C∞ & C1 because aB 6= 1 (cf. Tables 1 and 3).
The orders of several cuspidal groups of the modular curves X1(2p) and X1(p) can

be expressed by the integers a, A, B. In fact, let h1(2p) be the full cuspidal class number
of X1(2p) (cf. [21]), h1(p) the full cuspidal class number of X1(p) (cf. Takagi [19]), and
h∞1 (p) the order of the subgroup of the cuspidal divisor class group of X1(p) which is
generated by the ∞-cusps (cf. [8, Chapter 6, Theorem 3.4]). Then we have h1(2p) =
aA2B4, h1(p) = B2 and h∞1 (p) = B. For the convenience of readers, instead of a
numerical table only for hQ, we give numerical tables for a, A, and B with 7 ≤ p ≤ 127
separately (cf. Tables 1–3).

For the study of the group structure of CQ = C1, we give an explicit basis of the
group of the principal divisors which are supported on the Q-rational cusps. But, since
it is complicated to state it in this Introduction, we refer the reader to Theorem 6.2. The
determination of the explicit group structure for each prime p amounts to computing
the Smith normal form of the matrix representing the divisors in the basis. A list of the
explicit structures for the primes 7 ≤ p ≤ 127 is given in Table 4.

Lastly, we determine the structure of the Sylow p-subgroup CQ,p of CQ. In order to
state the result, we define an integer W (q) for any prime q. Let n be an integer ≥ 0
satisfying

2qn−1 ≡ 1 (mod qn+1), (1.5)

which holds for any q if n = 0. Then there exists the maximal one of all such n, which
we denote by W (q) (cf. Proposition 7.12). A prime q is called a Wieferich prime if the
congruence (1.5) with n = 1 holds. Then a prime q is a Wieferich prime if and only if
W (q) ≥ 1 (cf. Proposition 7.12). Although the number of Wieferich primes is believed
to be infinite, the only ones that have been discovered so far are 1093 and 3511. Knauer
and Richstein [7] reported that there are no other Wieferich primes less than 1.25 · 1015.
Let q 6= 2, 3 be a prime, and a be an integer with 1 ≤ a ≤ (q−3)/2. We define an integer
B(q, 2a) for all pairs of q and a as follows. Let n ≥ 1 be an integer satisfying

B(2a−2)qn−1+2 ≡ 0 (mod qnZq), (1.6)
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where B(2a−2)qn−1+2 denotes the Bernoulli number. If there is no such integer n, then
put B(q, 2a) = 0. If there exists at least one, then it can be proved that there exists the
maximal one of all such n, which we denote by B(q, 2a) (cf. Proposition 7.17). A pair
(q, 2a) is called an irregular pair if the congruence (1.6) with n = 1 holds. Then a pair
(q, 2a) is an irregular pair if and only if B(q, 2a) ≥ 1 (cf. Proposition 7.17).

The group CQ,p contains two subgroups denoted by CQ,p(k,+) and CQ,p(k,−) corre-
sponding to each integer k with 1 ≤ k ≤ (p − 3)/2. For the precise definition of these
subgroups, see Section 7.3. Then we have the decomposition

CQ,p =
(p−3)/2⊕

k=1

CQ,p(k,+)⊕
(p−3)/2⊕

k=1

CQ,p(k,−) (1.7)

(cf. (7.26)). Let δ be the order of 2 in the group (Z/pZ)×. Then the group structure of
each subgroup is given as follows (cf. Theorems 7.24 and 7.25).

Theorem 1.4. Let k and δ be as above.

(1) If k = 1, then CQ,p(1,+) = 0.
(2) If 2 ≤ k ≤ (1/2)(p− 3), then

CQ,p(k,+) ∼=




Z/pB(p,p+1−2k)+W (p)+1Z

{
if δ is even and k = 1 + (δ/2)l
with l an odd integer,

Z/pB(p,p+1−2k)Z otherwise.

Theorem 1.5. Let k and δ be as above.

(1) If k = 1, then CQ,p(1,−) ∼= Z/pW (p)Z.
(2) If 2 ≤ k ≤ (1/2)(p− 3), then

CQ,p(k,−) ∼=
{
Z/pB(p,p+1−2k)+W (p)+1Z if k ≡ 1 (mod δ),

Z/pB(p,p+1−2k)Z otherwise.

In particular, when p is regular and not a Wieferich prime, we have the following
(cf. Corollary 7.26). The notation [x] (x ∈ R) denotes the greatest integer that is less
than or equal to x.

Theorem 1.6. Let p 6= 2, 3 be a regular prime and not a Wieferich prime. Let
f1 = [(1/2δ)(p− 5)] and f2 = [(1/2δ)(p− 5) + 1/2]. Then

CQ,p
∼=

{
(Z/pZ)f1 if δ is odd,

(Z/pZ)f1+f2 if δ is even.

When p is irregular or a Wieferich prime with p ≤ 4001, we have the following
results. The reason why we consider the primes with p ≤ 4001 is that we want to use
the table given in Washington [22, Section 2 of Tables] where all irregular pairs (p, 2a)
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with p ≤ 4001 are given. About the only known Wieferich primes 1093 and 3511, the
prime 1093 is regular and the prime 3511 is irregular. When p is irregular, we can verify
that B(p, 2a) = 1 for all irregular pairs (p, 2a) with p ≤ 4001 (cf. Example 7.20). We
denote by I(p) the number of the integers a such that (p, 2a) is an irregular pair, which
is called the index of irregularity of p. Then we have the following (cf. Examples 7.27,
7.28, 7.29).

Example 1.7. Let p be an irregular prime such that p ≤ 4001 and p 6= 3511. Let
f1 = [(1/2δ)(p− 5)] and f2 = [(1/2δ)(p− 5) + 1/2]. Then

CQ,p
∼=

{
(Z/pZ)f1+2I(p) if δ is odd,

(Z/pZ)f1+f2+2I(p) if δ is even.

Example 1.8. (1) Let p = 1093, which is the only known regular Wieferich prime.
Then

CQ,p
∼= (Z/1093Z)⊕ (Z/10932Z)2.

(2) Let p = 3511, which is the only known irregular Wieferich prime. Then

CQ,p
∼= (Z/3511Z)5.

The explicit structures of CQ,p for all primes p with 7 ≤ p ≤ 4001 are listed in
Table 5.

1.3. The case X = X1(p).
For the curve X = X1(p), we can prove that C(JX)∞ = C(JX)1 = C(JX)2 = C(JX)Q,

though their proofs are not given in this paper. The proofs of C(JX)1 = C(JX)2 = C(JX)Q
are similar to and simpler than those of the corresponding equalities in Theorem 1.1 given
in Sections 3 and 4 if we use the arguments in [19]. For the curve X1(p), a cusp is Q-
rational if and only if it is an ∞-cusp, therefore, we have C(JX)∞ = C(JX)1. Of course, if
the conjecture of Conrad, Edixhoven and Stein referred to above is true, these equalities
follow immediately.

1.4. The contents of each section.
The present paper is organized as follows. In Section 2, we define a Q-rational model

X1(2p)Q of X1(2p), study the Galois action on the cusps of X1(2p)Q, and define the three
subgroups C1, C2 and CQ of the Q-rational torsion group of J1(2p)Q. In Section 3 we prove
C1 = C2. In Section 4 we prove C2 = CQ. In Section 5 we determine the order of the
Q-rational cuspidal group CQ. In Section 6 we give a Z-basis of the group of the principal
divisors supported on the Q-rational cusps so that we can determine the structure of CQ
explicitly for a given value of p. In Section 7 we determine the structure of the Sylow
p-subgroup CQ,p of CQ. In Section 8 we give a few tables of computational results.

In the present paper we denote by N, Z, Q, R, C, 12, Zp, Qp the set of natural
numbers, the ring of rational integers, the field of rational numbers, the field of real
numbers, the field of complex numbers, the two-by-two identity matrix, the ring of p-
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adic integers, the field of p-adic numbers, respectively.

2. The Q-rational cuspidal group CQ of J1(2p)Q.

Let p be a prime 6= 2, 3. In this section we define a Q-rational model X1(2p)Q of
X1(2p), study the Galois action on the cusps of X1(2p)Q, and define the three subgroups
C1, C2 and CQ of the Q-rational torsion group of J1(2p)Q. Our object of the study is the
group CQ, the Q-rational cuspidal group of J1(2p)Q, which is isomorphic to a subgroup
of the cuspidal divisor class group of X1(2p).

2.1. A Q-rational model X1(N)Q of X1(N).
Let Γ be a Fuchsian group of the first kind. We denote by XΓ the complete non-

singular curve associated with the quotient Γ\H, where the symbol H denotes the upper
half plane.

Let N be a positive integer. Let Γ(N) be the principal congruence subgroup of
SL2(Z) consisting of all matrices

(
a b
c d

)
(∈ SL2(Z)) with a − 1 ≡ d − 1 ≡ b ≡ c ≡ 0

(mod N). When Γ = Γ(N), we denote the curve XΓ by X(N). Let Γ1(N) be the
subgroup of SL2(Z) consisting of all matrices

(
a b
c d

)
(∈ SL2(Z)) with a−1 ≡ d−1 ≡ c ≡ 0

(mod N). When Γ = Γ1(N), we denote the curve XΓ by X1(N).
We define a Q-rational model X1(N)Q of X1(N) as follows (cf. Shimura [18, Chapter

6]).
Let FN (respectively F1) denote the field of all automorphic functions with re-

spect to the group Γ(N) (respectively SL2(Z)) such that their Fourier coefficients belong
to the cyclotomic field kN = Q(e2πi/N ) (respectively Q). Then it is known that the
field FN is a Galois extension of F1, and its Galois group is isomorphic to the group
GL2(Z/NZ)/{±12}.

Let G1(N) be the subgroup of GL2(Z/NZ)/{±12} consisting of elements of the
form ±(

1 b
0 d

)
with b, d arbitrary. Let F1(N) be the subfield of FN corresponding to

the subgroup G1(N). Then the field F1(N) consists of all automorphic functions with
respect to the group Γ1(N) such that their Fourier coefficients belong to Q. It is known
that the field Q is algebraically closed in F1(N) and the field CF1(N) is the field of all
automorphic functions with respect to Γ1(N). Hence the filed F1(N) defines a Q-rational
model X1(N)Q of X1(N). We shall consider this model.

2.2. A parametrization of the cusps on X1(M) with M square-free.
Here we give a parametrization of the cusps on X1(N) by an abelian group when N

is square-free.
Let M 6= 1 be a square-free integer, and put N = M . In order to parametrize the

cusps on X1(M), we recall the results in [21, Section 2].
Let T be the set of all positive divisors of M . We regard it as a group with the

product defined by r ◦ s = rs/(r, s)2 where (r, s) denotes the greatest common divisor of
r and s (r, s ∈ T ). Let O be the order defined by O =

∑
r∈T Z

√
r. We denote by G(

√
M)

the subgroup of SL2(O) consisting of all elements α of the form

α =

(
a
√

r b
√

r∗

c
√

r∗ d
√

r

)
, (2.1)
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where a, b, c, d ∈ Z, r ∈ T and r∗ = M/r. We call r the type of α, and denote it by
t(α). Let I be the ideal of O defined by I =

√
MO. We denote by Γ(I) the subgroup

of G(
√

M) consisting of all elements α satisfying α ≡ 12 (mod I), and call it a principal
congruence subgroup of G(

√
M). When Γ = Γ(I), we denote the curve XΓ by XI . Since

we have

Γ(I) =
(

1 0
0
√

M

)−1

Γ1(M)
(

1 0
0
√

M

)
, (2.2)

the curve X1(M) is isomorphic to the curve XI .
Let F

(M)
I (respectively F

(M)
1 ) denote the field of all automorphic functions with

respect to the group Γ(I) (respectively G(
√

M)) such that their Fourier coefficients belong
to the cyclotomic field kM (respectively Q). Let GI denote the subgroup of GL2(O/I)
consisting of all elements α which can be represented by a matrix A (∈ M2(O)) of the
form

A =

(
a
√

r b
√

r∗

c
√

r∗ d
√

r

)
, (2.3)

where a, b, c, d ∈ Z, r ∈ T and r∗ = M/r. It is known that the field F
(M)
I is a Galois

extension of F
(M)
1 , and its Galois group is isomorphic to the group GI(±) def= GI/{±12}

([19, Section 1 (1.15)]). Let α be an element of GI or GI(±). We denote by σ(α) the
element of the Galois group Gal(F(M)

I /F
(M)
1 ) corresponding to α. Let α be represented

by the matrix A in (2.3). Then the element r of T is determined only by α. We call r

the type of α, and denote it by t(α).
Let P∞ denote the prime divisor of F

(M)
I defined by the q-expansion. Let P be a

prime divisor of F
(M)
I , and νP the valuation of P. For any element σ of Gal(F(M)

I /F
(M)
1 ),

we define the prime divisor Pσ by νPσ (hσ) = νP(h) (h ∈ F
(M)
I ), which defines a right

action of the group Gal(F(M)
I /F

(M)
1 ). The conjugates Pσ

∞ are of degree one, and can
be identified with the cusps on the curve XI . If α ∈ GI is represented by a matrix
A ∈ G(

√
M), the prime divisor Pσ(α)

∞ corresponds to the cusp on XI represented by
A−1(∞). The conjugates Pσ

∞ are called the cuspidal prime divisors.
Let CI be the subgroup of GI consisting of all elements α which can be represented

by a matrix A (∈ M2(O)) of the form

A =

(
a
√

r b
√

r∗

b
√

r∗ a
√

r

)
(2.4)

with a, b ∈ Z, r ∈ T and (ar, br∗,M) = 1. It is an abelian subgroup of GI , and called a
Cartan group.

Every cuspidal prime divisor can be expressed as Pσ(α)
∞ with a unique element α ∈

CI(±) def= CI/{±12}. Thus the set of cusps on the curve XI can be parametrized by
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the abelian group CI(±) using the bijective mapping α 7→ Pσ(α)
∞ . This gives also the

parametrization of the cusps on the curve X1(M).

2.3. The Galois action on the cusps of X1(M)Q.
Let M and I be the same as in the subsection 2.2. We define a Q-rational model of

the curve XI as follows (cf. [19, Section 1]).
Let HI be the subgroup of GI consisting of the elements of the form

(
1 0
0 d

)
with d

arbitrary. Let F
(M)
I,Q be the subfield of F

(M)
I corresponding to the subgroup HI . Then

the field F
(M)
I,Q consists of all automorphic functions with respect to the group Γ(I) such

that their Fourier coefficients belong to Q. It is known that the field Q is algebraically
closed in F

(M)
I,Q and the field CF

(M)
I,Q is the field of all automorphic functions with respect

to Γ(I). Hence the field F
(M)
I,Q defines a Q-rational model XI,Q of XI .

The mapping f(τ) 7→ f(τ/
√

M) defines an isomorphism of the function field F1(M)
onto the function field F

(M)
I,Q . Hence the curve X1(M)Q is isomorphic over Q to the curve

XI,Q. We shall consider the cusps of XI,Q instead of X1(M)Q.
Since the cuspidal prime divisors of F

(M)
I are of degree one, the cusps of XI,Q are

rational over kM . We consider the action of the Galois group Gal(kM/Q) on the cusps of
XI,Q. Let d be an integer satisfying (d,M) = 1, and let σd ∈ Gal(kM/Q) be the element
defined by

σd : ζM 7→ ζd
M (2.5)

where ζM = exp[2πi/M ]. Let P be a cusp of XI,Q, and let Pσd be the image of P by the
action of σd. Let f be an element of F

(M)
I,Q which is defined at P . Then the value f(P )

of f at P belongs to kM . The image Pσd satisfies by definition

f(Pσd) = f(P )σd . (2.6)

Proposition 2.1. Let d and σd be as above. Let γd be the element of GI represented
by the matrix

(
1 0
0 d

)
. Let P be a cusp of XI,Q, and let P be the cuspidal prime divisor of

F
(M)
I corresponding to P . Then the cuspidal prime divisor of F

(M)
I corresponding to the

conjugate cusp Pσd is Pσ(γd).

Proof. Let f be an element of F
(M)
I,Q which is defined at P . Let mP be the maximal

ideal of the valuation ring of P. Then we have

f ≡ f(P ) (modmP).

Hence fσ(γd) ≡ f(P )σ(γd) (mod(mP)σ(γd)). Since f ∈ F
(M)
I,Q , we have fσ(γd) = f . Also we

have f(P )σ(γd) = f(P )σd = f(Pσd) and (mP)σ(γd) = mPσ(γd) . Hence

f ≡ f(Pσd) (modmPσ(γd)).

This proves that the cusp Pσd corresponds to the cuspidal prime divisor Pσ(γd). ¤
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We can describe the action of Gal(kM/Q) on the cusps by the use of the parametriza-
tion by the Cartan group.

Proposition 2.2. Let d, σd and γd be as in Proposition 2.1. Let d1 be an integer
satisfying dd1 ≡ 1 (mod M). Let P be a cusp of XI,Q corresponding to a cuspidal prime

divisor Pσ(α−1)
∞ of F

(M)
I , where α is an element of CI represented by a matrix

(
a
√

r b
√

r∗

b
√

r∗ a
√

r

)

(cf. (2.4)). Then the cusp Pσd corresponds to the cuspidal prime divisor Pσ(α−1
1 )

∞ of F
(M)
I ,

where α1 is the element of CI represented by the matrix
(

a
√

r bd1
√

r∗

bd1
√

r∗ a
√

r

)
.

Proof. By Proposition 2.1, the cusp Pσd corresponds to the cuspidal prime di-
visor Pσ(α−1)σ(γd)

∞ = Pσ(α−1γd)
∞ . Let Pσ(α−1γd)

∞ = Pσ(α−1
1 )

∞ with an element α1 ∈ CI(±).
Then we have Pσ(α−1γdα1)∞ = P∞, whence α−1γdα1 ∈ ±HI (cf. [21, Section 2.6]). This
implies that

α−1γdα1

(
1
0

)
≡ ±

(
1
0

)
(mod I),

which gives

α1

(
1
0

)
≡ ±

(
a
√

r

bd1

√
r∗

)
(mod I).

This proves the proposition. ¤

We determine the Q-rational cusps of XI,Q.

Theorem 2.3. Let P be a cusp of XI,Q corresponding to a cuspidal prime divisor

Pσ(α−1)
∞ of F

(M)
I with α an element of CI of type r. Then P is Q-rational if and only if

one of the following (1)–(4) holds:
(1) r = 1; (2) r = 2 and M is even; (3) r = 3 and M = 3, 6; (4) r = 6 and

M = 6.

Proof. Let d, σd and d1 be as in Proposition 2.2. Then, by the proposition,
Pσd = P if and only if

(
a
√

r

b
√

r∗

)
≡ ±

(
a
√

r

bd1

√
r∗

)
(mod I),

which is equivalent to that the following (i) or (ii) holds:

( i ) b ≡ bd1 (mod r),
( ii ) a ≡ −a (mod r∗), b ≡ −bd1 (mod r).

Since (ar, br∗,M) = 1, we have (a, r∗) = (b, r) = 1. It is easy to see that the
condition (i) is equivalent to d1 ≡ 1 (mod r), and (ii) is equivalent to that 2 ≡ 0 (mod r∗)
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and d1 ≡ −1 (mod r). If (i) or (ii) holds for any d1 with (d1,M) = 1, then d1 ≡ ±1
(mod r), i.e., (Z/rZ)× = 1 or {±1}. This implies that r = 1, 2, 3, 6. If r = 1, then (i)
holds for any d1 with (d1,M) = 1. If r = 2, then M must be even. In this case, for any
d1 with (d1,M) = 1, we have d1 ≡ 1 (mod r), hence (i) holds. If r = 3, then M must
be a multiple of 3. For any d1 with (d1,M) = 1, we have d1 ≡ 1 (mod r) or d1 ≡ −1
(mod r). If d1 ≡ 1 (mod r), then (i) holds. If d1 ≡ −1 (mod r), then (i) does not hold,
hence we must have 2 ≡ 0 (mod r∗), whence r∗ = 1, 2. This implies that M is 3 or 6. If
r = 6, then M must be a multiple of 6. For any d1 with (d1,M) = 1, we have d1 ≡ 1
(mod r) or d1 ≡ −1 (mod r). If d1 ≡ 1 (mod r), then (i) holds. If d1 ≡ −1 (mod r),
then (i) does not hold, hence we must have 2 ≡ 0 (mod r∗), whence r∗ = 1. This implies
M = 6. Thus the proof is completed. ¤

2.4. The cuspidal divisor class group of X1(2p).
Let p be a prime 6= 2, 3. Henceforth, we assume that

M = 2p. (2.7)

Let D be the free abelian group generated by the cuspidal prime divisors of FI , and
D0 the subgroup of D consisting of all elements of degree 0. Let R = Z[CI(±)] be the
group ring of CI(±), and R0 the additive subgroup of R consisting of all elements of
degree 0. Let

ϕ : D ∼= R (2.8)

be the isomorphism defined by the mapping Pσ(α)
∞ 7→ α.

Let F or FC be the group of all modular units in F
(M)
I or CF

(M)
I respectively. Since

FC = C×F ([21, Corollary 3.1]), the divisor group div(F) can be identified with the
divisor group div(FC). We call the factor group

C = D0/ div(F) (2.9)

the cuspidal divisor class group of the curve XI and the order of C the cuspidal class
number of XI or of X1(2p).

We denote by IP the image ϕ(div(F)) of the principal divisors div(F). Then it is
an additive subgroup of R0, and moreover an ideal of R (cf. [21, Remark 5.1]).

Put DQ = D⊗Q and RQ = R ⊗ Q. Then we have an isomorphism DQ ∼= RQ the
extension of ϕ, which we also denote by ϕ. In order to describe the group IP , we define
two elements θ2 and θp of RQ as follows (cf. [21, (2.42), Proposition 3.1]):

θ2 =
1
24

{
−

∑

t(α)=1

p · α−1 +
∑

t(α)=2

p · α−1 −
∑

t(α)=p

α−1 +
∑

t(α)=2p

α−1

}
, (2.10)
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θp =
∑

t(α)=1

pB2

(〈
a

p

〉)
· α−1 +

∑

t(α)=2

p

2
B2

(〈
2a

p

〉)
· α−1

+
1
6

∑

t(α)=p

α−1 +
1
12

∑

t(α)=2p

α−1, (2.11)

where in each summation the element α runs over the group CI(±) with the described

type, and in (2.11) we assume that α is represented by a matrix
(

a 0
0 a

)
or

( a
√

2
√

p√
p a

√
2

)

(a ∈ Z) according as t(α) = 1 or 2 respectively.
Let α be any element of CI(±) of type r. Let a(α) and b(α) be integers such that α

can be represented by the matrix

(
a(α)

√
r b(α)

√
r∗

b(α)
√

r∗ a(α)
√

r

)
. (2.12)

Although such integers a(α) and b(α) are not unique, the residue classes a(α) (mod r∗)
and b(α) (mod r) are uniquely determined up to the multiplication by ±1. In particular,
the element α determines the residue class a(α)2 (mod p) (respectively b(α)2 (mod p))
uniquely when r = 1, 2 (respectively r = p, 2p).

We have the following theorem (cf. [21, Theorem 5.1]). In the theorem we denote
by C

(r)
I (±) (r ∈ T ) the subset of CI(±) consisting of the elements of type r, and by

C
(r,s)
I (±) (r, s ∈ T , r 6= s) the subset of CI(±) consisting of the elements of type r or s.

Theorem 2.4. Let ϕ : D ∼= R be the isomorphism (2.8). Let div(F) be the group
of the principal divisors of the modular units in FI . Then the image IP = ϕ(div(F))
coincides with the subgroup of RQ consisting of all elements 2kθ2+

{ ∑
α∈CI(±) m(α)α

}
θp,

where k and m(α) are integers such that the following congruences (i)–(iv) hold :

( i ) k +
∑

α∈CI(±) t(α)m(α) ≡ 0 (mod 12),
( ii )

∑
α∈C

(1,2)
I (±)

m(α) + p
∑

α∈C
(p,2p)
I (±)

m(α) ≡ 0 (mod 4),

(iii)
∑

α∈C
(1)
I (±)

a(α)2m(α) + 2
∑

α∈C
(2)
I (±)

a(α)2m(α) ≡ 0 (mod p),

(iv)
∑

α∈C
(2p)
I (±)

b(α)2m(α) + 2
∑

α∈C
(p)
I (±)

b(α)2m(α) ≡ 0 (mod p).

Remark 2.5. Since ϕ(div(F)) is contained in R0, this theorem implies that the
elements of the form 2kθ2 +

{ ∑
α∈CI(±) m(α)α

}
θp satisfying the congruences (i)–(iv) are

contained in R0, in other words their coefficients are integers. In the statement of [21,
Theorem 5.1] the group RQ is replaced by R0, but we can use RQ by its proof.

2.5. The Q-rational divisors on X1(2p)Q.
Let Dg be the free abelian group generated by the cusps of the curve XI,Q, and let

Dg,0 be the subgroup of Dg consisting of all elements of degree 0. We call the elements
of Dg the cuspidal divisors on XI,Q. We identify the cusps of the curve XI,Q with the
cuspidal prime divisors of F

(2p)
I , and denote by the same symbol ϕ the isomorphism of

Dg to R which corresponds to the isomorphism (2.8):
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ϕ : Dg
∼= R. (2.13)

Proposition 2.6. Let d and σd be as in Proposition 2.1 with M = 2p. We denote
by 〈d〉 the element of CI(±) represented by the matrix

(
d 0
0 d

)
. Let P be a cusp of XI,Q

with ϕ(P ) = α (∈ CI(±)). Let r be the type of α. Then ϕ(Pσd) = α or α〈d〉 according
as r = 1, 2 or p, 2p respectively.

Proof. The case r = 1, 2 follows from Theorem 2.3. Assume r = p, 2p. The cusp
P corresponds to the cuspidal prime divisor Pσ(β−1)

∞ with β = α−1. Let β be represented
by a matrix

(
a
√

r b
√

r∗

b
√

r∗ a
√

r

)
. Let d1 be an integer with dd1 ≡ 1 (mod 2p). Then, by

Proposition 2.2, the cusp Pσd corresponds to Pσ(β−1
1 )

∞ , where β1 is represented by the
matrix

(
a
√

r bd1
√

r∗

bd1
√

r∗ a
√

r

)
. Since r = p, 2p and d1 ≡ 1 (mod 2), we have ad1

√
r ≡ a

√
r

(mod I). This implies β1 = β〈d1〉, therefore ϕ(Pσd) = α〈d〉. ¤

Let d and σd be as in Proposition 2.6. Let D=
∑

P m(P )P be an element of
Dg with P the cusps of XI,Q and m(P ) ∈ Z. The action of σd on D is defined by
Dσd=

∑
P m(P )Pσd . We say that D is Q-rational if Dσd=D for any d.

Let ξ =
∑

α∈CI(±) m(α)α be an element of R with m(α) ∈ Z. We define the action
of σd on ξ by ξσd =

∑
α∈CI(±) m(α)ασd , where

ασd =

{
α if t(α) = 1, 2,

α〈d〉 if t(α) = p, 2p.
(2.14)

Corollary 2.7. Let D be an element of Dg. Then D is Q-rational if and only if
ϕ(D) ∈ ∑

α∈C
(1,2)
I (±)

Zα + Z
∑

α∈C
(p)
I (±)

α + Z
∑

α∈C
(2p)
I (±)

α.

Proof. This follows immediately from Proposition 2.6. ¤

2.6. The cuspidal group of J1(2p)Q and its subgroups C1, C2 and CQ.
Let C ∼= R0/IP be the isomorphism induced by (2.8). We define three subgroups C1,

C2 and CQ of C using this isomorphism as follows.
Put R(1,2) = Z[C(1,2)

I (±)] and R
(1,2)
0 = R(1,2) ∩R0. The group C1 is the subgroup of

C defined by

C1
∼= R

(1,2)
0 /

(
IP ∩R(1,2)

)
. (2.15)

By Theorem 2.3 this is the subgroup generated by the Q-rational cusps.
For r = p, 2p, put

µ(r) =
∑

α∈C
(r)
I (±)

α. (2.16)

Let RQ0 = RQ ∩R0, where
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RQ = R(1,2) + Zµ(p) + Zµ(2p). (2.17)

Then the group C2 is the subgroup of C defined by

C2
∼= RQ0 /

(
IP ∩RQ

)
. (2.18)

By Corollary 2.7 this is the subgroup generated by the Q-rational cuspidal divisors.
Let d be an integer prime to 2p that generates the cyclic group (Z/2pZ)×/{±1}.

Let σ = σd be the automorphism of k2p defined by (2.5). Let η be an element of R. We
define the action of σ on the divisor class η + IP by

(η + IP )σ = ησ + IP , (2.19)

which is well defined because Iσ
P = IP . We say that a divisor class η + IP is Q-rational if

and only if ησ + IP = η + IP . It is equivalent to that ησ−η belongs to IP . Let R∗ be the
subgroup of R consisting of the elements η such that ησ−η ∈ IP , and put R∗0 = R∗∩R0.
It is obvious that IP ⊂ R∗0. Then the group CQ is the subgroup of C defined by

CQ ∼= R∗0/IP . (2.20)

This is the subgroup generated by the Q-rational divisor classes. Since RQ ⊂ R∗ by
(2.14), we have

C1 ⊂ C2 ⊂ CQ. (2.21)

Let g be the genus of X1(2p). Then we have g = (1/8){(p − 4)2 − 1}, hence g = 0
or > 0 according as p = 5 or p ≥ 7 respectively. Let p ≥ 7. Let J1(2p)Q (respectively
JI,Q) be the Jacobian of X1(2p)Q (respectively XI,Q) defined over Q. Then the Jacobians
J1(2p)Q and JI,Q are isomorphic over Q.

Let P∞ be the cusp on X1(2p)Q (respectively XI,Q) represented by the infinity.
By Theorem 2.3, the cusp P∞ is Q-rational. Let i∞ : P 7→ [P − P∞] be the cuspidal
embedding of X1(2p)Q (respectively XI,Q) into J1(2p)Q (respectively JI,Q) sending a
point P to the divisor class of P − P∞. Let D be a divisor supported on cusps. Then
i∞(D) is a torsion point on J1(2p)Q (respectively JI,Q).

The cuspidal embedding i∞ induces an isomorphism of the cuspidal divisor class
group C onto the subgroup of the torsion group of J1(2p)Q (respectively JI,Q) generated by
the images of the cusps of X1(2p)Q (respectively XI,Q), which we call the cuspidal group
of J1(2p)Q (respectively JI,Q) and denote by i∞(C). The cuspidal groups of J1(2p)Q and
JI,Q are isomorphic. Let D be a divisor supported on cusps. Then i∞(D) is Q-rational
if and only if the divisor class of D is Q-rational.

The images of the three subgroups C1, C2 and CQ are the following.

(1) The group i∞(C1) is the subgroup of i∞(C) generated by the images of the Q-rational
cusps.

(2) The group i∞(C2) is the subgroup of i∞(C) generated by the images of the Q-rational
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cuspidal divisors.
(3) The group i∞(CQ) is the subgroup of i∞(C) generated by the Q-rational points of

i∞(C), which we call the Q-rational cuspidal group.

For simplicity we omit the notation i∞, and consider the groups C, C1, C2 and CQ as
the subgroups of the Jacobian JI,Q (or J1(2p)Q) if p ≥ 7.

In the following two sections, we prove C1 = C2 = CQ.

3. The proof of C1 = C2.

Let p be a prime 6= 2, 3. In this section we prove C1 = C2.

3.1. The group IP ∩ RQ of the Q-rational principal divisors.
Put RC = R ⊗ C. For any element ξ =

∑
α∈CI(±) m(α)α ∈ RC (m(α) ∈ C) we

denote by ξ(r) (r ∈ T ) the element of RC defined by

ξ(r) =
∑

α∈C
(r)
I (±)

m(α)α, (3.1)

and by ξ(r,s) (r 6= s ∈ T ) the element ξ(r) + ξ(s). We denote by µ the element of R

defined by

µ =
∑

α∈CI(±)

α. (3.2)

Then the notation µ(r) in (2.16) coincides with that defined by (3.1). Let us recall the
definitions of C1 and C2 ((2.15), (2.18)):

C1
∼= R

(1,2)
0 /

(
IP ∩R(1,2)

)
, (3.3)

C2
∼= RQ0 /

(
IP ∩RQ

)
. (3.4)

In this subsection we study the group IP ∩ RQ which is the Q-rational principal
divisors supported on the cusps.

For any r ∈ T , we denote by [r] the element of C
(r)
I (±) represented by the matrix( √

r
√

r∗√
r∗

√
r

)
(cf. [21, (2.45)]). Let ψ be any character of the group C

(1)
I (±). We put

e
〈1〉
ψ =

1∣∣C(1)
I (±)

∣∣
∑

α∈C
(1)
I (±)

ψ(α)α−1. (3.5)

For an element ξ =
∑

α∈CI(±) m(α)α of RC, we denote by ξ
(r)
ψ the number defined by

ξ
(r)
ψ =

∑

α∈C
(1)
I (±)

m(α[r])ψ(α). (3.6)
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Since ξ(r) =
{ ∑

α∈C
(1)
I (±)

m(α[r])α
}
[r], we have

ξ(r) =
{ ∑

ψ

ξ
(r)
ψ e

〈1〉
ψ

}
[r], (3.7)

where ψ runs over all characters of the group C
(1)
I (±).

Let us denote by the same symbol ψ the character of (Z/pZ)× induced by the
character ψ of the group C

(1)
I (±) (cf. [21, (5.8)]). We denote by B(ψ) the number

defined by

B(ψ) = p

p−1∑
a=1

ψ(a)B2

(
a

p

)
. (3.8)

If ψ is non-trivial, then B(ψ) coincides with the usual generalized Bernoulli number B2,ψ.
By (3.7) and the definition (2.11) of θp, we have

θp =
∑

ψ

(
1
2
B(ψ̄)

)
e
〈1〉
ψ +

∑

ψ

(
1
4
B(ψ̄)

)
e
〈1〉
ψ [2] +

p− 1
12

e
〈1〉
1 [p] +

p− 1
24

e
〈1〉
1 [2p], (3.9)

where ψ̄ denotes the complex conjugate of ψ.
Put RQC = RQ ⊗ C. Then

RQC = C
[
C

(1,2)
I (±)

]
+ Cµ(p) + Cµ(2p). (3.10)

Lemma 3.1. Let ξ ∈ RC with ξθp ∈ RQC . Then, for any character ψ 6= 1 of C
(1)
I (±),

we have ξ
(p)
ψ = ξ

(2p)
ψ = 0.

Proof. We have

(ξθp)(2p) = ξ(1)θ(2p)
p + ξ(2)θ(p)

p + ξ(p)θ(2)
p + ξ(2p)θ(1)

p .

Since [2][p] = 〈p + 2〉[2p] and 〈p + 2〉e〈1〉ψ = ψ(2)e〈1〉ψ , we have

ξ(p)θ(2)
p =

{ ∑

ψ

ξ
(p)
ψ e

〈1〉
ψ

}
[p] ·

{ ∑

ψ

(
1
4
B(ψ̄)

)
e
〈1〉
ψ

}
[2]

=
{ ∑

ψ

(
ψ(2)ξ(p)

ψ · 1
4
B(ψ̄)

)
e
〈1〉
ψ

}
[2p].

Also we have
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ξ(2p)θ(1)
p =

{ ∑

ψ

ξ
(2p)
ψ e

〈1〉
ψ

}
[2p] ·

{ ∑

ψ

(
1
2
B(ψ̄)

)
e
〈1〉
ψ

}

=
{ ∑

ψ

(
ξ
(2p)
ψ · 1

2
B(ψ̄)

)
e
〈1〉
ψ

}
[2p],

hence

ξ(p)θ(2)
p + ξ(2p)θ(1)

p =
{ ∑

ψ

((
ψ(2)ξ(p)

ψ + 2ξ
(2p)
ψ

) · 1
4
B(ψ̄)

)
e
〈1〉
ψ

}
[2p]. (3.11)

Since ξθp ∈ RQC , we have (ξθp)(2p) ∈ Cµ(2p). By (3.9) we have ξ(1)θ
(2p)
p +ξ(2)θ

(p)
p ∈ Cµ(2p).

Hence we have ξ(p)θ
(2)
p + ξ(2p)θ

(1)
p ∈ Cµ(2p), which implies that the coefficients of e

〈1〉
ψ

with ψ 6= 1 in (3.11) are 0. Since B(ψ̄) = B2,ψ̄ 6= 0 for any ψ 6= 1, we have

ψ(2)ξ(p)
ψ + 2ξ

(2p)
ψ = 0. (3.12)

We have

(ξθp)(p) = ξ(1)θ(p)
p + ξ(2)θ(2p)

p + ξ(p)θ(1)
p + ξ(2p)θ(2)

p .

In the exactly same manner, considering this equation, we have

2ξ
(p)
ψ + ξ

(2p)
ψ = 0. (3.13)

By (3.12) and (3.13) we have ξ
(p)
ψ = ξ

(2p)
ψ = 0. ¤

Lemma 3.2. Let ξ ∈ R with ξθp ∈ RQC . Then there exists an element η ∈ R(1,2)

such that ξθp = ηθp and ξ − η ∈ Z(µ(1) + µ(p)) + Z(µ(2) + µ(2p)).

Proof. By Lemma 3.1 we have ξ
(p)
ψ = ξ

(2p)
ψ = 0 for all ψ 6= 1. This implies that,

by (3.7), ξ(p) = ξ
(p)
1 e

〈1〉
1 [p] ∈ Cµ(p) and ξ(2p) = ξ

(2p)
1 e

〈1〉
1 [2p] ∈ Cµ(2p). Since ξ ∈ R,

we have ξ(p) = mµ(p) and ξ(2p) = nµ(2p) with m,n ∈ Z. By [21, Proposition 3.2],
we have (µ(1) + µ(p))θp = 0 and (µ(2) + µ(2p))θp = 0, whence µ(p)θp = −µ(1)θp and
µ(2p)θp = −µ(2)θp. Therefore, we have

ξθp =
(
ξ(1) + ξ(2) + mµ(p) + nµ(2p)

)
θp

=
{(

ξ(1) −mµ(1)
)

+
(
ξ(2) − nµ(2)

)}
θp.

Put η = (ξ(1) − mµ(1)) + (ξ(2) − nµ(2)). Then we have η ∈ R(1,2), ξθp = ηθp and
ξ − η ∈ Z(µ(1) + µ(p)) + Z(µ(2) + µ(2p)), which completes the proof. ¤

Let I12 be the subgroup of R consisting of all elements
∑

α∈CI(±) m(α)α of R with
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m(α) ∈ Z such that the integers m(α) satisfy the following condition (i*) and the condi-
tions (ii)–(iv) of Theorem 2.4 (cf. [21, (5.5)]):

(i*)
∑

α∈CI(±)

t(α)m(α) ≡ 0 (mod 12). (3.14)

Lemma 3.3. The elements µ(1) + µ(p) and µ(2) + µ(2p) belong to I12.

Proof. This can be verified directly. ¤

The following theorem describes the Q-rational principal divisors supported on the
cusps.

Theorem 3.4. The group IP ∩RQ consists of all elements of the form 2kθ2+ξθp ∈
RC where k ∈ Z and ξ =

∑
α∈C

(1,2)
I (±)

m(α)α ∈ R(1,2) with m(α) ∈ Z such that the
following congruences (i)–(iii) hold :

( i ) k +
∑

α∈C
(1)
I (±)

m(α) + 2
∑

α∈C
(2)
I (±)

m(α) ≡ 0 (mod 12),
( ii )

∑
α∈C

(1,2)
I (±)

m(α) ≡ 0 (mod 4),

(iii)
∑

α∈C
(1)
I (±)

a(α)2m(α) + 2
∑

α∈C
(2)
I (±)

a(α)2m(α) ≡ 0 (mod p).

Proof. Let η = 2kθ2 + ξ′θp be any element of IP ∩ RQ, where ξ′ =∑
α∈CI(±) m′(α)α ∈ R, and k and m′(α) are integers satisfying the conditions (i)–(iv)

of Theorem 2.4. Since 2kθ2 ∈ RQC , we have ξ′θp ∈ RQC . By Lemma 3.2, there exists an
element ξ ∈ R(1,2) such that ξ′θp = ξθp and ξ′−ξ ∈ Z(µ(1)+µ(p))+Z(µ(2)+µ(2p)). Write
ξ =

∑
α∈C

(1,2)
I (±)

m(α)α with m(α) ∈ Z. By Lemma 3.3, the integers k and m(α) also

satisfy the conditions (i)–(iv) of Theorem 2.4. This proves that any element of IP ∩RQ

can be written in the form stated above.
Conversely, let η = 2kθ2 + ξθp be any element of RC with k ∈ Z, ξ =∑

α∈C
(1,2)
I (±)

m(α)α ∈ R(1,2) and m(α) ∈ Z such that k and m(α) satisfy the condi-

tions (i)–(iii) stated above. By Theorem 2.4, we have η ∈ IP . Since ξ(p) = ξ(2p) = 0, we
have

(ξθp)(p) = ξ(1)θ(p)
p + ξ(2)θ(2p)

p ∈ Cµ(p),

(ξθp)(2p) = ξ(1)θ(2p)
p + ξ(2)θ(p)

p ∈ Cµ(2p).

Combining these with 2kθ2 ∈ RQC , we have η(p) ∈ Cµ(p) and η(2p) ∈ Cµ(2p). Therefore
we have η ∈ RQC . Since η ∈ IP ⊂ R, we have η ∈ RQ. This proves η ∈ IP ∩RQ. Thus the
proof is completed. ¤

Let η = 2kθ2 + ξθp be an element of IP ∩ RQ with k ∈ Z and ξ ∈ R(1,2). Then k

and ξ are uniquely determined by η. More generally we have the following.

Proposition 3.5. Let η = 2kθ2 + ξθp be an element of RC such that k ∈ Z and
ξ ∈ R(1,2). Then k and ξ are uniquely determined by η.
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Proof. It is proved in [21, Proof of Proposition 5.3] that k is determined uniquely
by η. Let ξ1θp = ξ2θp with ξi ∈ R(1,2) (i = 1, 2). Then (ξ1−ξ2)θp = 0. By [21, Corollary
5.1] the eχ-components of θp are non-zero for all χ 6= χ(0), χ(2). This implies that
ξ1 − ξ2 ∈ Ceχ(0) + Ceχ(2) . Since ξ1 − ξ2 ∈ R, by [21, Lemma 5.1], we have ξ1 − ξ2 =
m(µ(1) +µ(p))+n(µ(2) +µ(2p)) with m,n ∈ Z. Since ξ1−ξ2 ∈ R(1,2), we have m = n = 0.
Therefore, ξ1 = ξ2. This completes the proof. ¤

3.2. Proof of C1 = C2.
First we prove that there exist special elements η1 and η2 of IP ∩ RQ satisfying (i)

η
(p)
1 = µ(p), η

(2p)
1 = 0 and (ii) η

(p)
2 = 0, η

(2p)
2 = µ(2p). Let η = 2kθ2 +ξθp be an element of

IP ∩RQ, where k = k(η) ∈ Z and ξ = ξ(η) =
∑

α∈C
(1,2)
I (±)

m(α)α ∈ R(1,2) with m(α) ∈ Z
such that the conditions (i)–(iii) of Theorem 3.4 hold. Then we have

η(p) = 2kθ
(p)
2 + ξ(1)θ(p)

p + ξ(2)θ(2p)
p = A(η)µ(p), (3.15)

η(2p) = 2kθ
(2p)
2 + ξ(1)θ(2p)

p + ξ(2)θ(p)
p = B(η)µ(2p), (3.16)

where

A(η) = − k

12
+

1
6

deg ξ(1) +
1
12

deg ξ(2), (3.17)

B(η) =
k

12
+

1
12

deg ξ(1) +
1
6

deg ξ(2). (3.18)

By the Lagrange’s four-square theorem, the prime p can be expressed as a sum of
at most four integer squares:

p = a2
1 + · · ·+ a2

l , 2 ≤ l ≤ 4, ai ∈ N (1 ≤ i ≤ l). (3.19)

Proposition 3.6. There exists an element η1 ∈ IP ∩RQ such that A(η1) = 1 and
B(η1) = 0, and also an element η2 ∈ IP ∩RQ such that A(η2) = 0 and B(η2) = 1.

Proof. Let l and ai be as in (3.19). First, assume that l = 2 or 4. Let αi (1 ≤
i ≤ l) be the element of C

(1)
I (±) represented by the matrix

(
ai 0
0 ai

)
. Put η1 = −8θ2 +ξ1θp

where k(η1) = −4 and ξ(η1) = ξ1 = (4/l)(α1 + · · · + αl) (∈ R(1,2)). It is easy to see
that this element η1 satisfies the conditions (i)–(iii) of Theorem 3.4, and A(η1) = 1,
B(η1) = 0. Put η2 = η1[2]. Since θ2[2] = −θ2, we have η2 = 8θ2 + ξ2θp where k(η2) = 4
and ξ(η2) = ξ2 = ξ1[2] (∈ R(1,2)). It is easy to see that this element η2 satisfies the
conditions (i)–(iii) of Theorem 3.4, and A(η2) = 0, B(η2) = 1. This proves the case l = 2
or 4.

Next, assume that l = 3. Let ai be as in (3.19). Since a2
1 + a2

2 + a2
3 ≡ 0 (mod p) and

ai 6≡ 0 (mod p) for all i, there exist integers x and y such that 1 + x2 + y2 ≡ 0 (mod p),
x 6≡ 0 (mod p) and y 6≡ 0 (mod p). Let α0 be the element of C

(1)
I (±) represented by the

matrix
(

1 0
0 1

)
. Let α1 and α2 be the elements of C

(2)
I (±) represented by the matrices(

x
√

2
√

p√
p x

√
2

)
and

(
y
√

2
√

p√
p y

√
2

)
respectively. Put η1 = −12θ2 + ξ1θp where k(η1) = −6 and
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ξ(η1) = ξ1 = 2α0 +α1 +α2 (∈ R(1,2)). Then it is easy to see that this element η1 satisfies
the conditions (i)–(iii) of Theorem 3.4, and A(η1) = 1, B(η1) = 0. Put η2 = η1[2]. We
have η2 = 12θ2 + ξ2θp where k(η2) = 6 and ξ(η2) = ξ2 = ξ1[2] (∈ R(1,2)). It is easy to
see that this element η2 satisfies the conditions (i)–(iii) of Theorem 3.4, and A(η2) = 0,
B(η2) = 1. This proves the case l = 3. ¤

Now we have the following

Theorem 3.7. C1 = C2.

Proof. By the isomorphisms (3.3) and (3.4) it is sufficient to prove that the
homomorphism φ : R

(1,2)
0 /(IP ∩ R(1,2)) → RQ0 /(IP ∩ RQ) induced by the inclusion map

R
(1,2)
0 → RQ0 is an isomorphism. Since φ is injective, it is sufficient to show that φ is

surjective. Let ξ be any element of RQ0 . Then ξ(p,2p) ∈ Zµ(p) + Zµ(2p). By Proposition
3.6, there exists an element η ∈ IP ∩RQ such that ξ(p,2p) = η(p,2p). Put ξ1 = ξ−η. Then
ξ1 ∈ R

(1,2)
0 and ξ + IP ∩RQ = φ(ξ1 + IP ∩R(1,2)). This proves the theorem. ¤

4. The proof of C2 = CQ.
Let p be a prime 6= 2, 3. In this section we prove C2 = CQ.
Let d be an integer such that (d, 2p) = 1 and it generates the cyclic group

(Z/2pZ)×/{±1}. In this section we fix such an integer d. Let σ = σd be the auto-
morphism of k2p defined by (2.5).

4.1. The group IN
P .

Let R∗ and R∗0 be the subgroups of R defined in subsection 2.6, i.e., R∗ is the group
consisting of the elements η such that ησ−η ∈ IP , and R∗0 = R∗∩R0. By (2.20) we have

CQ ∼= R∗0/IP . (4.1)

Lemma 4.1. Let ξ be an element of R. Then ξ = ησ − η with some η ∈ R if and
only if ξ ∈ R(p,2p) and deg ξ(p) = deg ξ(2p) = 0.

Proof. Assume that ξ = ησ − η with η ∈ R. Then by (2.14) we have ξ =
η(p,2p)(〈d〉 − 1) ∈ R(p,2p), ξ(p) = η(p)(〈d〉 − 1) and ξ(2p) = η(2p)(〈d〉 − 1), which implies
that deg ξ(p) = deg ξ(2p) = 0. This proves the only if part. Conversely, assume that
ξ ∈ R(p,2p) and deg ξ(p) = deg ξ(2p) = 0. Since 〈d〉 generate C

(1)
I (±), we can write

ξ =
∑l−1

i=0 mi〈d〉i[p]+
∑l−1

i=0 ni〈d〉i[2p] with l = (p−1)/2 and mi, ni ∈ Z. Since deg ξ(p) =
deg ξ(2p) = 0, we have

ξ =
l−1∑

i=1

mi(〈d〉i − 1)[p] +
l−1∑

i=1

ni(〈d〉i − 1)[2p] = η(〈d〉 − 1),

where
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η =
l−1∑

i=1

mi(〈d〉i−1 + · · ·+ 1)[p] +
l−1∑

i=1

ni(〈d〉i−1 + · · ·+ 1)[2p] ∈ R(p,2p).

This implies that ξ = ησ − η, which proves the if part, and the proof is completed. ¤

Put

IN
P = {ξ ∈ IP | ξ = ησ − η with some η ∈ R}. (4.2)

By Lemma 4.1, that ξ ∈ IN
P is equivalent to that ξ ∈ IP ∩ R(p,2p) with deg ξ(p) =

deg ξ(2p) = 0. Write ξ = ξ0[p] with an element ξ0. Then, the property of ξ is equivalent
to that ξ0 ∈ IP ∩R(1,2) with deg ξ

(1)
0 = deg ξ

(2)
0 = 0 because IP is an ideal of R (cf. [21,

Remark 5.1]). Hence we have

IN
P =

{
ξ ∈ IP ∩R(1,2) | deg ξ(1) = deg ξ(2) = 0

}
[p]. (4.3)

4.2. The study of IP ∩ R(1,2).
Taking account of (4.3) we study here the group IP ∩ R(1,2), which is the group of

the principal divisors supported on the Q-rational cusps.

Lemma 4.2. Let η = 2kθ2+ξθp be an element of IP ∩RQ with k ∈ Z and ξ ∈ R(1,2)

satisfying the conditions (i)–(iii) of Theorem 3.4. Then we have η ∈ R(1,2) if and only if
deg ξ(1) = −deg ξ(2) = k.

Proof. By (3.15) and (3.16), we have η ∈ R(1,2) if and only if A(η) = B(η) = 0,
which is equivalent to deg ξ(1) = −deg ξ(2) = k. ¤

Let θ be the element of RQ defined by

θ = θ
(1,2)
2 + θ(1,2)

p . (4.4)

The following theorem describes the group of the principal divisors supported on
the Q-rational cusps.

Theorem 4.3. The group IP ∩R(1,2) consists of all elements of the form ξθ ∈ RC
where ξ =

∑
α m(α)α ∈ R(1,2) (m(α) ∈ Z) such that deg(ξ) = 0 and the integers m(α)

satisfy the congruence

∑

α∈C
(1)
I (±)

a(α)2m(α) + 2
∑

α∈C
(2)
I (±)

a(α)2m(α) ≡ 0 (mod p).

Proof. Let η = 2kθ2 + ξθp be an element of IP ∩R(1,2) with k ∈ Z and ξ ∈ R(1,2)

satisfying the conditions (i)–(iii) of Theorem 3.4. We have η = η(1,2) = 2kθ
(1,2)
2 + ξθ

(1,2)
p .

By (2.10), we have θ
(1,2)
2 = θ

(1)
2 − θ

(1)
2 [2] = θ

(1)
2 (1 − [2]). By Lemma 4.2, we have

ξ(1)θ
(1)
2 = (deg ξ(1))θ(1)

2 = kθ
(1)
2 and ξ(2)θ

(1)
2 = (deg ξ(2))θ(1)

2 [2] = −kθ
(1)
2 [2]. Hence we
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have

ξθ
(1,2)
2 = ξθ

(1)
2 (1− [2]) =

(
ξ(1)θ

(1)
2 + ξ(2)θ

(1)
2

)
(1− [2])

= kθ
(1)
2 (1− [2])2 = 2kθ

(1)
2 (1− [2]) = 2kθ

(1,2)
2 .

Here we used the equality θ
(1)
2 [2]2 = θ

(1)
2 . Thus we have η = 2kθ

(1,2)
2 + ξθ

(1,2)
p = ξθ

(1,2)
2 +

ξθ
(1,2)
p = ξθ. Since deg ξ = deg ξ(1) + deg ξ(2) = k − k = 0, the element η has the desired

form.
Conversely, let η = ξθ, where ξ =

∑
α m(α)α ∈ R(1,2) with deg(ξ) = 0 and the

integers m(α) satisfy the given congruence. Put k = deg ξ(1) (∈ Z). It is easy to see that
the integers k and m(α) satisfy the congruences (i)–(iii) of Theorem 3.4. Therefore, the
element η1 = 2kθ2+ξθp belongs to IP ∩RQ by Theorem 3.4. Since deg ξ(1) = −deg ξ(2) =
k, the element η1 = 2kθ2 + ξθp belongs to R(1,2) by Lemma 4.2. The argument above
shows that η1 = ξθ = η. This completes the proof. ¤

Let η = ξθ be an element of IP∩R(1,2) with ξ ∈ R(1,2). Then ξ is uniquely determined
by η. In fact we have the following.

Proposition 4.4. The element θ is invertible in the algebra R
(1,2)
C = R(1,2) ⊗ C.

Proof. Let χ be any character of C
(1,2)
I (±), and put

e〈1,2〉
χ =

1

|C(1,2)
I (±)|

∑

α∈C
(1,2)
I (±)

χ(α)α−1.

Let ψχ denote the character of (Z/pZ)× induced by χ (cf. [21, (5.8)]). Let χ0 be the
character of C

(1,2)
I (±) which is trivial on C

(1)
I (±) and satisfies χ0([2]) = −1. Then we

have

θe〈1,2〉
χ =





(
1
4
B2, ψχ

)
(2 + χ([2]))e〈1,2〉

χ if χ | C(1)
I (±) 6= 1,

− 1
24

(p2 − 1)e〈1,2〉
χ if χ = χ0,

−1
8
(p2 − 1)e〈1,2〉

χ if χ = 1.

(4.5)

Since θe
〈1,2〉
χ 6= 0 for all χ, the element θ is invertible. ¤

4.3. A basis of IN
P over Z.

Here we give a basis of the group IN
P over Z.

Let J0,0 be the subgroup of R(1,2) consisting of the elements ξ satisfying deg ξ(1) =
deg ξ(2) = 0 and the congruence of Theorem 4.3.

Lemma 4.5. We have IN
P = J0,0θ[p].
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Proof. Let ξ ∈ R
(1,2)
C and put ξ1 = ξθ. Then we have

deg ξ
(1)
1 = deg ξ(1) deg θ(1) + deg ξ(2) deg θ(2), (4.6)

deg ξ
(2)
1 = deg ξ(1) deg θ(2) + deg ξ(2) deg θ(1). (4.7)

Assume that ξ ∈ J0,0, and put ξ1 = ξθ. Since deg ξ(1) = deg ξ(2) = 0, we have
deg ξ

(1)
1 = deg ξ

(2)
1 = 0 by (4.6) and (4.7). Also, since deg ξ = deg ξ(1) + deg ξ(2) = 0, we

have ξ1 ∈ IP ∩R(1,2) by Theorem 4.3. This implies that J0,0θ[p] ⊂ IN
P by (4.3).

Conversely, Let η = ξ1[p] be any element of IN
P , where ξ1 ∈ IP ∩R(1,2) and deg ξ

(1)
1 =

deg ξ
(2)
1 = 0. By Theorem 4.3, we can write ξ1 = ξθ with an element ξ ∈ R(1,2) satisfying

deg ξ = 0 and the congruence of the theorem. We have deg ξ(1) + deg ξ(2) = deg ξ = 0.
Since deg ξ(2) = −deg ξ(1), we have deg ξ(1)(deg θ(1) − deg θ(2)) = 0 by (4.6). Since
deg θ(1) − deg θ(2) = −(1/24)(p2 − 1) 6= 0, we have deg ξ(1) = 0, hence deg ξ(2) = 0. This
implies ξ ∈ J0,0, thus we have IN

P ⊂ J0,0θ[p]. This completes the proof. ¤

We define the elements ξi (0 ≤ i ≤ l − 3) and λi (i = 1, 2) of R
(1,2)
0 as follows with

l = (1/2)(p− 1):

ξi = 〈d〉i(〈d〉 − d2
)
(〈d〉 − 1), (4.8)

λ1 = p(〈d〉 − 1), λ2 = (2− [2])(〈d〉 − 1). (4.9)

Proposition 4.6. Let ξi (0 ≤ i ≤ l − 3) and λi (i = 1, 2) be as above. Then the
set

{
ξi (0 ≤ i ≤ l − 3), ξi[2] (0 ≤ i ≤ l − 3), λ1, λ2

}

is a basis of the group J0,0 over Z. (When p = 5, the elements ξi and ξi[2] do not exist.)

Proof. Let ξ be any one of the elements ξi, ξi[2] and λi. Then it is easily verified
that deg ξ(1) = deg ξ(2) = 0 and the congruence of Theorem 4.3, hence ξ is contained in
J0,0. Let J∗0,0 be the subgroup of J0,0 generated by the elements ξi, ξi[2] and λi over Z.
Since the rank of J0,0 over Z is 2(l − 1) which is equal to the number of the elements
above, it is sufficient to prove that J0,0 = J∗0,0. Let ξ be any element of J0,0. Since 〈d〉
generates C

(1)
I (±) and deg ξ(1) = deg ξ(2) = 0, we can write

ξ =
l−1∑

i=1

mi

(〈d〉i − 1
)

+
l−1∑

i=1

ni

(〈d〉i − 1
)
[2]

with mi, ni ∈ Z. Since 〈d〉i − 1 = (〈d〉i−1 + · · ·+ 1)(〈d〉 − 1), we have

ξ ∈
l−2∑

k=0

Z〈d〉k(〈d〉 − 1) +
l−2∑

k=0

Z〈d〉k(〈d〉 − 1)[2]. (4.10)
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Since ξi ∈ J∗0,0, we have 〈d〉i+1(〈d〉−1) ≡ d2〈d〉i(〈d〉−1) (mod J∗0,0) for i = 0, . . . , l−3,
hence

〈d〉k(〈d〉 − 1) ≡ d2〈d〉k−1(〈d〉 − 1) ≡ · · · ≡ d2k(〈d〉 − 1) (modJ∗0,0)

for k = 0, . . . , l − 2. Combining this with (4.10) we have

ξ ∈ Z(〈d〉 − 1) + Z(〈d〉 − 1)[2] + J∗0,0. (4.11)

By (4.11) we can write ξ = ξ∗ + ξ∗∗, where ξ∗ = m(〈d〉 − 1) + n(〈d〉 − 1)[2] with
m, n ∈ Z and ξ∗∗ is an element of J∗0,0. Since ξ ∈ J0,0, we have ξ∗ ∈ J0,0. Since
ξ∗ = −m + m〈d〉 − n[2] + n〈d〉[2] satisfies the congruence of Theorem 4.3, we have

1 · (−m) + d2 ·m + 2{1 · (−n) + d2 · n} ≡ 0 (mod p),

whence (m + 2n)(d2 − 1) ≡ 0 (mod p). If p ≥ 7, then d2 − 1 6≡ 0 (mod p) because l ≥ 3.
If p = 5, then d2 ≡ −1 (mod 5), whence d2 − 1 6≡ 0 (mod p). We have therefore for any p

(6= 2, 3) m + 2n ≡ 0 (mod p). Put m + 2n = ps with s ∈ Z. Substituting −2n + ps for m

we have

ξ∗ = ps(〈d〉 − 1)− n(2− [2])(〈d〉 − 1)

= sλ1 − nλ2,

therefore ξ∗ ∈ J∗0,0. This proves ξ = ξ∗ + ξ∗∗ ∈ J∗0,0, which completes the proof. ¤

By Lemma 4.5 and Proposition 4.6 we have the following.

Proposition 4.7. Let l, ξi, λ1 and λ2 be the same as in Proposition 4.6. Then
the set

{
ξi[p]θ (0 ≤ i ≤ l − 3), ξi[2][p]θ (0 ≤ i ≤ l − 3), λ1[p]θ, λ2[p]θ

}

is a basis of the group IN
P over Z.

4.4. Proof of C2 = CQ.
First we define a subgroup ID

P of IN
P by

ID
P = {ξ ∈ IP | ξ = ησ − η with some η ∈ IP

}
, (4.12)

and prove ID
P = IN

P .

Lemma 4.8. Let η = η0θp with η0 ∈ R. Then ησ − η = η
(p,2p)
0 (〈d〉 − 1)θ.

Proof. By Proposition 2.6, we have ησ − η = η(p,2p)(〈d〉 − 1). Since
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η(p,2p) = η
(p,2p)
0 θ(1,2)

p + η
(1,2)
0 θ(p,2p)

p

= η
(p,2p)
0 θ − η

(p,2p)
0 θ

(1,2)
2 + η

(1,2)
0 θ(p,2p)

p

and θ
(1,2)
2 (〈d〉−1) = θ

(p,2p)
p (〈d〉−1) = 0, we have η(p,2p)(〈d〉−1) = η

(p,2p)
0 (〈d〉−1)θ. This

proves the lemma. ¤

Proposition 4.9. (1) Put η0 = 〈d〉i(〈d〉 − d2)(−p + [p]) and η = η0θp with i ≥ 0,
∈ Z. Then we have η ∈ IP , and ησ − η = 〈d〉i(〈d〉 − d2)(〈d〉 − 1)[p]θ.

(2) Put η0 = 〈d〉i(〈d〉 − d2)(−p + [p])[2] and η = η0θp with i ≥ 0, ∈ Z. Then we have
η ∈ IP , and ησ − η = 〈d〉i(〈d〉 − d2)(〈d〉 − 1)[2][p]θ.

(3) Put η0 = p(−p+[p]) and η = η0θp. Then we have η ∈ IP , and ησ−η = p(〈d〉−1)[p]θ.
(4) Put η0 = (2 − [2])(−p + [p]) and η = η0θp. Then we have η ∈ IP , and ησ − η =

(2− [2])(〈d〉 − 1)[p]θ.

Proof. In every case of (1)–(4) we can prove that the element η0 belongs to I12

(cf. (3.14)). In fact, for each η0 of (1)–(4), the value of the term on the left-hand side of
(3.14) is 0, and the value of the term on the left-hand side of (ii) of Theorem 2.4 is also
0. It is also easy to verify that each η0 of (1)–(4) satisfies the congruences (iii) and (iv)
of Theorem 2.4. For example, take the element η0 of (2). Put α = 〈d〉i[2][p]. Then we
have b(α)2 ≡ (2 + p)2d2i (mod p). The term on the left-hand side of (iv) is congruent to
(2 + p)2d2i · d2 + (2 + p)2d2i+2 · (−1) modulo p, whence η0 satisfies the congruence (iv).
Since η0 ∈ I12, we have η ∈ IP by Theorem 2.4. The equality for ησ − η follows from
Lemma 4.8. ¤

Proposition 4.10. IN
P = ID

P .

Proof. Since ID
P ⊂ IN

P , it is sufficient to prove IN
P ⊂ ID

P . In order to prove
IN
P ⊂ ID

P it is sufficient to show that each element of a basis of IN
P over Z is contained in

ID
P . By Proposition 4.7 the elements ξi[p]θ (0 ≤ i ≤ l−3), ξi[2][p]θ (0 ≤ i ≤ l−3), λ1[p]θ

and λ2[p]θ constitute a basis. The inclusions ξi[p]θ ∈ ID
P , ξi[2][p]θ ∈ ID

P , λ1[p]θ ∈ ID
P

and λ2[p]θ ∈ ID
P follow directly from (1), (2), (3) and (4) of Proposition 4.9 respectively.

This proves the proposition. ¤

Now we have the following

Theorem 4.11. C2 = CQ.

Proof. By the isomorphisms (3.4) and (4.1) it is sufficient to prove that the
homomorphism φ : RQ0 /(IP ∩ RQ) → R∗0/IP induced by the inclusion map RQ0 → R∗0 is
an isomorphism. Since φ is injective, it is sufficient to prove that φ is surjective. Let
η be any element of R∗0. Then ησ − η ∈ IP , hence ησ − η ∈ IN

P . Since IN
P = ID

P by
Proposition 4.10, there exists an element ξ ∈ IP such that ησ − η = ξσ − ξ. Hence we
have (η − ξ)σ = η − ξ. This implies that η − ξ ∈ RQ0 . Put η1 = η − ξ. Then we have
η + IP = φ(η1 + IP ∩RQ) ∈ Im(φ). This proves the theorem. ¤

By Theorems 3.7 and 4.11 we have C1 = CQ. If p ≥ 7, then the genus of X1(2p) is
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not 0, and we have the following.

Theorem 4.12. Let p be a prime ≥ 7. Then the genus of X1(2p) is not 0, and the
Q-rational cuspidal group of J1(2p) is generated by the Q-rational cusps.

Put G = Gal(k2p/Q). The group IP is a G-module. Let Hn(G, IP ) (respectively
Hn(G, IP )) be the n-th cohomology group (respectively homology group). Then Propo-
sition 4.10 is equivalent to the following theorem.

Theorem 4.13. For all n ≥ 1, we have H2n−1(G, IP ) = H2n(G, IP ) = 0.

Proof. Put l = (1/2)(p− 1). Let N : IP → IP be the homomorphism defined by
N(ξ) =

∑l−1
i=0 ξσi

. Let D : IP → IP be the homomorphism defined by D(ξ) = ξσ − ξ.
Since G is a finite cyclic group, we have H2n−1(G, IP ) = H2n(G, IP ) = ker(N)/ Im(D)
(cf. Rotman [17, Theorems 9.27 and 9.48]). Since N(ξ) = lξ(1,2) + (deg ξ(p))µ(p) +
(deg ξ(2p))µ(2p), we have N(ξ) = 0 if and only if ξ(1,2) = 0 and deg ξ(p) = deg ξ(2p) = 0.
Hence we have ker(N) = IN

P by (4.3). Also we have Im(D) = ID
P by (4.12). Since

IN
P = ID

P by Proposition 4.10, we have the proof. ¤

5. The class number formula for CQ.
Let p be a prime 6= 2, 3. In this section we determine the order of the Q-rational

cuspidal group CQ.
By Theorems 3.7 and 4.11, the group CQ coincides with C1, where C1

∼= R
(1,2)
0 /I

(1,2)
P

with I
(1,2)
P = IP ∩R(1,2) (2.15). Let J0 be the subgroup of R

(1,2)
0 consisting of all elements

ξ satisfying the congruence of Theorem 4.3. Then by the theorem we have I
(1,2)
P = J0θ,

therefore we have

CQ ∼= R
(1,2)
0 /J0θ. (5.1)

Let hQ be the order of CQ.
Let A and B be two lattices of R

(1,2)
0,Q = R

(1,2)
0 ⊗Q, and let C be a lattice contained in

A∩B. Then the quotient [A : C]/[B : C] does not depend on the choice of C. We denote
this number by [A : B]. It satisfies the usual multiplicative property, namely [A : B] =
[A : D][D : B]. In particular, we have [R(1,2)

0 : J0θ] = [R(1,2)
0 : R

(1,2)
0 θ][R(1,2)

0 θ : J0θ].
Since θ is invertible by Proposition 4.4, we have [R(1,2)

0 θ : J0θ] = [R(1,2)
0 : J0]. Hence we

have

hQ =
[
R

(1,2)
0 : R

(1,2)
0 θ

][
R

(1,2)
0 : J0

]
. (5.2)

Proposition 5.1.
[
R

(1,2)
0 : J0

]
= p.

Proof. Let ξ be an element of R
(1,2)
0 . Let φ(ξ) be the element of Z/pZ defined

by the term on the left-hand side of Theorem 4.3. Then φ is a homomorphism of R
(1,2)
0

to Z/pZ, and its kernel is J0. Put ξ = −1 + [2]. Then we have ξ ∈ R
(1,2)
0 and φ(ξ) ≡ 1
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(mod p). This proves that φ is surjective, whence the proof is completed. ¤

Proposition 5.2.
[
R

(1,2)
0 : R

(1,2)
0 θ

]
= ((p2−1)/24)

∏
ψ 6=1{(4−ψ(2))((1/4)B2,ψ)2},

where ψ runs over all non-trivial, even characters of (Z/pZ)×.

Proof. Let f : R
(1,2)
0,Q → R

(1,2)
0,Q be the linear transformation on the vector space

R
(1,2)
0,Q over Q defined by the multiplication by θ. Then we have [R(1,2)

0 : R
(1,2)
0 θ] =

|det(f)| by the theory of elementary divisors and the definition of [R(1,2)
0 : R

(1,2)
0 θ].

Let χ be any character of C
(1,2)
I (±), and let χ0, e

〈1,2〉
χ , ψχ be the same as in the proof

of Proposition 4.4. Since the elements e
〈1,2〉
χ with χ non-trivial constitute a basis of

R
(1,2)
0,C = R

(1,2)
0,Q ⊗ C over C, we have det(f) =

∏
χ6=1 χ(θ), where χ runs over all non-

trivial characters of C
(1,2)
I (±) and χ(θ) is the number defined by θe

〈1,2〉
χ = χ(θ)e〈1,2〉

χ . By
(4.5), we have

χ(θ) =





(
1
4
B2,ψχ

)
(2 + χ([2])) if χ | C(1)

I (±) 6= 1,

− 1
24

(p2 − 1) if χ = χ0,

(5.3)

therefore

|det(f)| = 1
24

(p2 − 1)
∣∣∣∣

∏

χ6=1, χ0

{(
1
4
B2,ψχ

)
(2 + χ([2]))

}∣∣∣∣. (5.4)

Let ψ be a non-trivial, even character of (Z/pZ)×. Then the set of characters χ of
C

(1,2)
I (±) with ψχ = ψ consists of two elements. Let χ be anyone of them. Then the

other is χχ0. We prove that

∏

χ:ψχ=ψ

(2 + χ([2])) = 4− ψ(2). (5.5)

In fact, since (χχ0)([2]) = χ0([2])χ([2]) = −χ([2]), the left-hand side of (5.5) is equal to
4−χ([2]2). By the definition of [2] the element [2]2 is an element of C

(1)
I (±) represented

by the matrix (2 + p)12. Hence we have χ([2]2) = ψ(2), which proves (5.5). Since we
have

∏

χ6=1, χ0

{(
1
4
B2, ψχ

)
(2 + χ([2]))

}
=

∏

ψ 6=1

∏

χ:ψχ=ψ

{(
1
4
B2, ψχ

)
(2 + χ([2]))

}

=
∏

ψ 6=1

{
(4− ψ(2))

(
1
4
B2, ψ

)2}
(5.6)

by (5.5) and the value of the right-hand side of (5.6) is a positive real number, combining
the equality (5.4) with [R(1,2)

0 : R
(1,2)
0 θ] = |det(f)|, we have the proof. ¤
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By (5.2) and Propositions 5.1 and 5.2, we have the following

Theorem 5.3. Let p be a prime ≥ 5. Let hQ be the order of CQ. Then we have

hQ =
p2 − 1

24
p

∏

ψ

{
(4− ψ(2))

(
1
4
B2,ψ

)2}
,

where ψ runs over all even, primitive Dirichlet characters modulo p.

Remark 5.4. When p ≥ 7, this gives the order of the Q-rational cuspidal group
of J1(2p).

6. A basis of the modular units with divisors supported on Q-rational
cusps.

Let p be a prime 6= 2, 3. As stated at the beginning of Section 5, the Q-rational
cuspidal group CQ is isomorphic to R

(1,2)
0 /I

(1,2)
P , and I

(1,2)
P = J0θ where J0 is the subgroup

of R
(1,2)
0 consisting of the elements ξ satisfying the congruence of Theorem 4.3. In this

section we give a Z-basis of I
(1,2)
P so that we can determine the structure of CQ explicitly

for a given value of p.
Let d be the same as in Section 4, i.e., an integer such that (d, 2p) = 1 and it

generates the cyclic group (Z/2pZ)×/{±1}. Let ξi (0 ≤ i ≤ l − 3) be the elements
defined in (4.8). We define the elements ξl−2 and ηj (0 ≤ j ≤ l − 1) of R

(1,2)
0 as follows:

ξl−2 = (〈d〉 − 1) + (d2 − 1)(1− [2]), (6.1)

ηj = 〈d〉j(〈d〉 − d2)(1− [2]) (0 ≤ j ≤ l − 2), ηl−1 = p(1− [2]). (6.2)

Proposition 6.1. Let ξi (0 ≤ i ≤ l− 2) and ηj (0 ≤ j ≤ l− 1) be as above. Then
the set

{ξi (0 ≤ i ≤ l − 2), ηj (0 ≤ j ≤ l − 1)}

is a basis of the group J0 over Z.

Proof. It is easy to verify that these elements satisfy the congruence of Theorem
4.3, hence they are contained in J0. Let J∗0 denote the subgroup of J0 generated by these
elements. Since the rank of J0 is 2l − 1 which is equal to the number of the elements
above, it is sufficient to prove that J0 = J∗0 . Let ξ be any element of J0. Since 〈d〉
generates C

(1)
I (±) and deg ξ = 0, we can write

ξ =
l−1∑

i=1

mi

(〈d〉i − 1
)

+
l−1∑

i=0

ni

(〈d〉i[2]− 1
)

with mi, ni ∈ Z. Since
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〈d〉i[2]− 1 =
(〈d〉i − 1

)− 〈d〉i(1− [2])

and 〈d〉i − 1 = (〈d〉i−1 + · · ·+ 1)(〈d〉 − 1) (i ≥ 1), we have

ξ ∈
l−2∑

k=0

Z〈d〉k(〈d〉 − 1) +
l−1∑

k=0

Z〈d〉k(1− [2]). (6.3)

Since ξi ∈ J∗0 , we have 〈d〉i+1(〈d〉 − 1) ≡ d2〈d〉i(〈d〉 − 1) (mod J∗0 ) for i = 0, . . . , l − 3,
hence

〈d〉k(〈d〉 − 1) ≡ d2〈d〉k−1(〈d〉 − 1) ≡ · · · ≡ d2k(〈d〉 − 1) (modJ∗0 ) (6.4)

for k = 0, . . . , l−2. Also since ηj ∈ J∗0 , we have 〈d〉j+1(1− [2]) ≡ d2〈d〉j(1− [2]) (modJ∗0 )
for j = 0, . . . , l − 2, hence

〈d〉k(1− [2]) ≡ d2〈d〉k−1(1− [2]) ≡ · · · ≡ d2k(1− [2]) (modJ∗0 ) (6.5)

for k = 0, . . . , l − 1. Combining (6.4) and (6.5) with (6.3), we have

ξ ∈ Z(〈d〉 − 1) + Z(1− [2]) + J∗0 . (6.6)

By (6.6) we can write ξ = ξ∗ + ξ∗∗, where ξ∗ = m(〈d〉 − 1) + n(1 − [2]) with
m, n ∈ Z and ξ∗∗ is an element of J∗0 . Since ξ ∈ J0, we have ξ∗ ∈ J0. Since ξ∗ =
(−m + n) + m〈d〉 − n[2] satisfies the congruence of Theorem 4.3, we have

1 · (−m + n) + d2 ·m + 2 · 1 · (−n) ≡ 0 (mod p),

whence n ≡ m(d2 − 1) (mod p). Put n = m(d2 − 1) + ps with s ∈ Z. Then we have

ξ∗ = m
{
(〈d〉 − 1) + (d2 − 1)(1− [2])

}
+ s · p(1− [2])

= mξl−2 + sηl−1,

therefore ξ∗ ∈ J∗0 . This proves ξ = ξ∗ + ξ∗∗ ∈ J∗0 , which completes the proof. ¤

Since I
(1,2)
P = J0θ and θ is invertible, we have the following

Theorem 6.2. Let ξi (0 ≤ i ≤ l − 2) and ηj (0 ≤ j ≤ l − 1) be the same as in
Proposition 6.1. Then the set

{ξiθ (0 ≤ i ≤ l − 2), ηjθ (0 ≤ j ≤ l − 1)}

is a basis of the group I
(1,2)
P over Z.
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7. The Sylow p-subgroup of CQ.
Let p be a prime 6= 2, 3. In this section we determine the structure of the Sylow

p-subgroup CQ,p of CQ.

7.1. The χ-eigen components.
As stated at the beginning of Section 5, the Q-rational cuspidal group CQ is isomor-

phic to R
(1,2)
0 /I

(1,2)
P , and I

(1,2)
P = J0θ where J0 is the subgroup of R

(1,2)
0 consisting of the

elements ξ satisfying the congruence of Theorem 4.3:

CQ ∼= R
(1,2)
0 /J0θ. (7.1)

Since the Sylow p-subgroup CQ,p of CQ is isomorphic to CQ ⊗ Zp, we have

CQ,p
∼=

(
R

(1,2)
0 ⊗ Zp

)
/(J0θ ⊗ Zp). (7.2)

Let α be any element of C
(1,2)
I (±). Then α2 ∈ C

(1)
I (±) ∼= (Z/pZ)×/{±1}, therefore

αp−1 = 1. Let χ be any character of C
(1,2)
I (±). Then χ(α) is a (p− 1)st root of 1. Since

Z×p contains all (p− 1)st roots of 1, we can embed the group of (p− 1)st roots of 1 in C
into Z×p . We fix such an embedding and consider χ as a homomorphism into Z×p . Then

χ(α) ∈ Z×p for all α ∈ C
(1,2)
I (±).

Let e
〈1,2〉
χ be the element defined in the proof of Proposition 4.4:

e〈1,2〉
χ =

1

|C(1,2)
I (±)|

∑

α∈C
(1,2)
I (±)

χ(α)α−1. (7.3)

Since |C(1,2)
I (±)| = p − 1 ∈ Z×p , we have e

〈1,2〉
χ ∈ Zp[C

(1,2)
I (±)] = R(1,2) ⊗ Zp. Let

ξ =
∑

α∈C
(1,2)
I (±)

z(α)α (z(α) ∈ Zp) be an element of R(1,2) ⊗ Zp. Put

χ(ξ) =
∑

α∈C
(1,2)
I (±)

z(α)χ(α). (7.4)

Then we have

ξe〈1,2〉
χ = χ(ξ)e〈1,2〉

χ . (7.5)

As is well-known, we have 1 =
∑

χ e
〈1,2〉
χ and the elements e

〈1,2〉
χ satisfy the orthogo-

nality relation. Combining these facts with (7.5) we have the direct sum decomposition

R
(1,2)
0 ⊗ Zp =

⊕

χ6=1

Zpe
〈1,2〉
χ . (7.6)

In the following we identify the group CQ,p with the group (R(1,2)
0 ⊗ Zp)/(J0θ ⊗
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Zp) through the isomorphism (7.2). Since IP is an ideal of R, the additive subgroup
I
(1,2)
P ⊗ Zp = J0θ ⊗ Zp is also an ideal of R(1,2) ⊗ Zp. Therefore, the group CQ,p is an

(R(1,2) ⊗ Zp)-module. Put

CQ,p(χ) =
{
m ∈ CQ,p | αm = χ(α)m for all α ∈ C

(1,2)
I (±)

}
. (7.7)

We call the subgroup CQ,p(χ) of CQ,p the χ-eigen component of CQ,p.

Proposition 7.1. (1) CQ,p =
⊕

χ6=1 CQ,p(χ).

(2) CQ,p(χ) ∼= Zpe
〈1,2〉
χ /

(
Zpe

〈1,2〉
χ ∩ (J0θ ⊗ Zp)

)
or = 0 according as χ 6= 1 or = 1.

Proof. Since 1 =
∑

χ e
〈1,2〉
χ and e

〈1,2〉
χ are orthogonal idempotents, we have the

ring decomposition R(1,2)⊗Zp =
⊕

χ e
〈1,2〉
χ (R(1,2)⊗Zp), hence as an (R(1,2)⊗Zp)-module

we have

CQ,p =
⊕

χ

e〈1,2〉
χ CQ,p.

If m ∈ CQ,p(χ), then e
〈1,2〉
χ1 m = m or 0 according as χ1 = χ or not, hence we have

e
〈1,2〉
χ CQ,p = CQ,p(χ). For the trivial character we have CQ,p(1) = 0 by (7.6). This proves

(1). (2) follows from (7.6) and CQ,p(χ) = e
〈1,2〉
χ CQ,p. ¤

Since θ ∈ Q[C(1,2)
I (±)], we can regard the element θ as an element of Qp[C

(1,2)
I (±)].

Also we regard Zp[C
(1,2)
I (±)] as a subgroup of Qp[C

(1,2)
I (±)]. Then we have

J0θ ⊗ Zp = (J0 ⊗ Zp)θ ⊂ Zp

[
C

(1,2)
I (±)

]
. (7.8)

Though θ /∈ Zp[C
(1,2)
I (±)], the value χ(θ) ∈ Qp can be defined exactly in the same

manner as (7.4). Then we have θe
〈1,2〉
χ = χ(θ)e〈1,2〉

χ exactly in the same manner as (7.5).

Proposition 7.2. Let χ be a non-trivial character of C
(1,2)
I (±). Let χ(θ) be as

above. Then we have Zpe
〈1,2〉
χ ∩ (J0θ ⊗ Zp) = χ(J0 ⊗ Zp)χ(θ)e〈1,2〉

χ .

Proof. We prove the inclusion ⊂. Let η be any element of Zpe
〈1,2〉
χ ∩ (J0θ ⊗ Zp).

Then we have η = ze
〈1,2〉
χ = ξθ with z ∈ Zp and ξ ∈ J0 ⊗ Zp by (7.8). Hence η =

(ze
〈1,2〉
χ )e〈1,2〉

χ = (ξθ)e〈1,2〉
χ = χ(ξ)χ(θ)e〈1,2〉

χ . This prove the inclusion.
Next we prove the reverse inclusion ⊃. Let η be any element of χ(J0⊗Zp)χ(θ)e〈1,2〉

χ .
Then we have η = χ(ξ)χ(θ)e〈1,2〉

χ with ξ ∈ J0 ⊗ Zp. Put η1 = ξθe
〈1,2〉
χ . Since J0θ ⊗ Zp

is an ideal of Zp[C
(1,2)
I (±)], we have η1 ∈ J0θ ⊗ Zp. On the other hand, we have η1 =

ξθe
〈1,2〉
χ = χ(ξ)χ(θ)e〈1,2〉

χ = η, whence η ∈ Zpe
〈1,2〉
χ ∩ (J0θ ⊗ Zp). This proves the reverse

inclusion. Thus the proof is completed. ¤

By Propositions 7.1 and 7.2, for any character χ 6= 1, we have
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CQ,p(χ) ∼= Zp/(χ(J0 ⊗ Zp)χ(θ)). (7.9)

7.2. The group χ(J0 ⊗ Zp).
Here we study the subgroup χ(J0 ⊗ Zp) of Zp, which is an ideal of Zp.
Let J̄0 denote the subgroup of R(1,2) ⊗ Zp consisting of all elements ξ =∑

α∈C
(1,2)
I (±)

z(α)α (z(α) ∈ Zp) such that deg(ξ) = 0 and the coefficients z(α) satisfy the
congruence

∑

α∈C
(1)
I (±)

a(α)2z(α) + 2
∑

α∈C
(2)
I (±)

a(α)2z(α) ≡ 0 (mod p). (7.10)

Proposition 7.3. J̄0 = J0 ⊗ Zp.

Proof. It is easy to verify that J0 ⊗ Zp is contained in J̄0. We prove the reverse
inclusion. Let ξ =

∑
α∈C

(1,2)
I (±)

z(α)α (z(α) ∈ Zp) be any element of J̄0. Since deg(ξ) =

0, we can write ξ =
∑

α∈C
(1,2)
I (±)

z(α)(α− 1). For each α ∈ C
(1,2)
I (±), let m(α) ∈ Z and

z′(α) ∈ Zp be chosen as z(α) = m(α) + pz′(α). Then by (7.10) the integers m(α) satisfy
the congruence of Theorem 4.3. Since deg(ξ) = 0, we have 0 =

∑
α∈C

(1,2)
I (±)

m(α) +
p

∑
α∈C

(1,2)
I (±)

z′(α), hence

∑

α∈C
(1,2)
I (±)

m(α) ≡ 0 (mod p). (7.11)

Put

ξ0 =
∑

α∈C
(1,2)
I (±)

m(α)α−
( ∑

α∈C
(1,2)
I (±)

m(α)
)
· 1 =

∑

α∈C
(1,2)
I (±)

m(α)(α− 1). (7.12)

Since the element
( ∑

α∈C
(1,2)
I (±)

m(α)
) · 1 satisfies the congruence of Theorem 4.3 by

(7.11), the element ξ0 also satisfies the congruence of Theorem 4.3. By this and the
equality deg(ξ0) = 0, we have ξ0 ∈ J0. Now we have

ξ = ξ0 +
∑

α∈C
(1,2)
I (±)

z′(α) · p(α− 1). (7.13)

Since p(α−1) ∈ J0, the equality (7.13) implies ξ ∈ J0⊗Zp. This completes the proof. ¤

Let ξ =
∑

α∈C
(1,2)
I (±)

z(α)α (z(α) ∈ Zp) be any element of R(1,2) ⊗ Zp. Then
deg(ξ) = 0 if and only if ξ is of the form

∑
α6=1,∈C

(1,2)
I (±)

z(α)(α − 1), so that ξ is

determined by the elements z(α) with α 6= 1, ∈ C
(1,2)
I (±). Moreover, by Proposition 7.3,

we have ξ ∈ J0 ⊗ Zp if and only if these elements z(α) (α 6= 1, ∈ C
(1,2)
I (±)) satisfy the

congruence
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∑

α6=1,∈C
(1)
I (±)

(a(α)2 − 1)z(α) +
∑

α∈C
(2)
I (±)

(2a(α)2 − 1)z(α) ≡ 0 (mod p). (7.14)

Put Fp = Z/pZ. Let V be the vector space over Fp of all Fp-valued functions on the
set C

(1,2)
I (±) \ {1}. For two elements f , g of V , we define the inner product (f, g) by

(f, g) =
∑

α∈C
(1,2)
I (±)−{1}

f(α)g(α). (7.15)

For any element ξ =
∑

α6=1,∈C
(1,2)
I (±)

z(α)(α− 1) of J0⊗Zp, we define a function fξ ∈ V

by

fξ(α) = z(α) (mod p) for all α ∈ C
(1,2)
I (±) \ {1}, (7.16)

and denote by X the subspace of V consisting of all functions fξ with ξ ∈ J0 ⊗ Zp. We
define a function fa ∈ V by

fa(α) =





(a(α)2 − 1) (mod p) if α ∈ C
(1)
I (±) \ {1},

(2a(α)2 − 1) (mod p) if α ∈ C
(2)
I (±).

(7.17)

The function fa is not 0 because fa([2]) = 1. We denote by Y the one-dimensional
subspace Fpfa of V .

A function f ∈ V belongs to X if and only if it satisfies the condition (7.14) with
z(α) (mod p) = f(α), which is equivalent to (f, fa) = 0. Therefore, the space X is the
orthogonal complement of the space Y .

Let χ be a character of C
(1,2)
I (±). We define a function fχ ∈ V by

fχ(α) = (χ(α)− 1) (mod p) for all α ∈ C
(1,2)
I (±) \ {1}. (7.18)

Let ξ =
∑

α6=1,∈C
(1,2)
I (±)

z(α)(α − 1) be an element of J0 ⊗ Zp. Then by the definition
(7.4) of χ(ξ) we have

χ(ξ) (mod p) = (fχ, fξ). (7.19)

Let q be any prime. Let ωq : (Z/qZ)× → Z×q be the Teichmüller character with
respect to q, i.e., ωq is the unique homomorphism of (Z/qZ)× to Z×q such that its values
are (q − 1)st roots of 1 and it satisfies

ωq (a mod q) ≡ a (mod q) (7.20)

for all a ∈ Z with (a, q) = 1. It is also well-known that the following holds:

ωq (a mod q) ≡ aqn

(mod qn+1) (7.21)
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for all a ∈ Z with (a, q) = 1 and n ≥ 0, ∈ Z.
Put ω = ωp. As is well-known ω(−1) = −1, hence ω2 is a character of

(Z/pZ)×/{±1}. Since the group C
(1)
I (±) can be identified with (Z/pZ)×/{±1}, we re-

gard ω2 as a character of C
(1)
I (±).

Let χ be a character of C
(1,2)
I (±) such that its restriction to C

(1)
I (±) coincides with

ω2. Since [2]2 is an element of C
(1)
I (±) represented by the matrix

( 2+p 0
0 2+p

)
, we have

χ2([2]) = χ([2]2) = ω2(2 + p) = ω2(2), whence χ([2]) = ±ω(2). We denote by χω the
character of C

(1,2)
I (±) defined by the following equalities:

χω | C(1)
I (±) = ω2 and χω([2]) = ω(2). (7.22)

Lemma 7.4. The function fχω coincides with the function fa.

Proof. If α ∈ C
(1)
I (±) \ {1}, then fχω

(α) = (χω(α) − 1) (mod p) = (ω2(α) − 1)
(mod p) = (ω2(a(α) mod p) − 1) (mod p). By (7.20) we have ω(a(α) mod p) ≡ a(α)
(mod p). Hence fχω (α) = (a(α)2 − 1) (mod p) = fa(α). If α ∈ C

(2)
I (±), then α is

represented by the matrix 〈a(α)〉[2] where 〈a(α)〉 =
( a(α) 0

0 a(α)

)
. Hence we have fχω (α) =

(χω(〈a(α)〉[2])−1) (mod p) = (χω(〈a(α)〉)χω([2])−1) (mod p) = (ω2(a(α)mod p)ω(2)−1)
(mod p). Since ω(2) ≡ 2 (mod p) by (7.20), we have fχω

(α) = (2a(α)2 − 1) (mod p) =
fa(α). This completes the proof. ¤

Lemma 7.5. Let χi (i = 1, 2) be two characters of C
(1,2)
I (±). If fχ1 = fχ2 , then

χ1 = χ2. In particular, if χ 6= 1, then fχ 6= 0.

Proof. If fχ1 = fχ2 , then χ1(α) ≡ χ1(α) (mod p) for all α ∈ C
(1,2)
I (±), hence

(χ1χ
−1
2 )(α) ≡ 1 (mod p) for all α ∈ C

(1,2)
I (±). Since the (p − 1)st roots of 1 are the

representatives of Z×p /(1 + pZp), we have χ1χ
−1
2 = 1, i.e., χ1 = χ2. In particular, since

f1 = 0, if χ 6= 1, then fχ 6= f1(= 0). This completes the proof. ¤

Now we can determine the ideal χ(J0 ⊗ Zp).

Proposition 7.6. Let χ be a non-trivial character of C
(1,2)
I (±). Then the ideal

χ(J0 ⊗ Zp) of Zp is pZp or Zp according as χ = χω or 6= χω respectively.

Proof. Assume that χ(J0 ⊗ Zp) ⊂ pZp. Then χ(ξ) (mod p) = 0 for all ξ ∈
J0⊗Zp. By (7.19) we have (fχ, f) = 0 for all f ∈ X, hence fχ belongs to the orthogonal
complement of X. On the other hand X is the orthogonal complement of the space
Y = Fpfa. Therefore fχ is an element of Fpfa, i.e., there exists an element c ∈ Fp such
that fχ = cfa. Considering the values at [2], we have fχ([2]) = cfa([2]), i.e., (χ([2])− 1)
(mod p) = c(2 − 1), hence χ([2]) (mod p) = c + 1. Again considering the values at
[2]2, we have fχ([2]2) = cfa([2]2), i.e., (χ([2]2) − 1) (mod p) = c((2 + p)2 − 1) (mod p),
hence χ([2]2) (mod p) = 3c + 1. Since χ([2]2) (mod p) = (χ([2]) (mod p))2, we have
3c + 1 = (c + 1)2, i.e., c(c − 1) = 0, hence c = 0 or 1. If c = 0, then fχ = 0. Since
χ is non-trivial, this is a contradiction by Lemma 7.5. Therefore we have c = 1, i.e.,
fχ = fa. By Lemma 7.4 we have fa = fχω

, hence fχ = fχω
, which implies that χ = χω
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by Lemma 7.5. This proves that if χ 6= χω then χ(J0 ⊗ Zp) = Zp. Let χ = χω. Since
χω(ξ) (mod p) = (fχω

, fξ) = (fa, fξ) = 0 for all ξ ∈ J0⊗Zp, we have χω(J0⊗Zp) ⊂ pZp.
Put ξ = p([2]− 1) ∈ J0 ⊗ Zp. Then χω(ξ) = p(χω([2])− 1) = p(ω(2)− 1). By (7.20) we
have ω(2) − 1 ≡ 1 (mod p), i.e., ω(2) − 1 ∈ Z×p , which implies that χω(J0 ⊗ Zp) = pZp.
This completes the proof. ¤

7.3. The number χ(θ).
Here we study the number χ(θ).
Let χ be a non-trivial character of C

(1,2)
I (±). Let ψχ be the character of (Z/pZ)×

associated with χ as defined in the proof of Proposition 4.4. Let χ0 be the character of
C

(1,2)
I (±) which is trivial on C

(1)
I (±) and satisfies χ0([2]) = −1. Then by (4.5) we have

χ(θ) =





(
1
4
B2, ψ−1

χ

)
(2 + χ([2])) if χ | C(1)

I (±) 6= 1,

− 1
24

(p2 − 1) if χ = χ0.

(7.23)

Proposition 7.7. Let χ0 be as above. Then CQ,p(χ0) = 0.

Proof. By (7.9) we have CQ,p(χ0) ∼= Zp/(χ0(J0⊗Zp)χ0(θ)). Since χ0(J0⊗Zp) =
Zp by Proposition 7.6 and χ0(θ) ∈ Z×p by (7.23), we have the proof. ¤

By Proposition 7.7, in order to study the χ-eigen component, it is sufficient to
consider the case where the restriction of χ to C

(1)
I (±) is non-trivial. Let χ be a character

of C
(1,2)
I (±) such that χ | C(1)

I (±) 6= 1. Since any character of (Z/pZ)× into Z×p can be
expressed as a power of ω, we can write

χ | C(1)
I (±) = ω2k with 1 ≤ k ≤ 1

2
(p− 3) (k ∈ Z). (7.24)

Since χ([2])2 = χ([2]2) = ω2k([2]2) = ω2k(2), we have

χ([2]) = ±ω(2)k. (7.25)

We denote by χk,+ (respectively χk,−) the character χ which satisfies the condition
(7.24) and χ([2]) = ω(2)k (respectively χ([2]) = −ω(2)k). Also we denote by CQ,p(k,+)
(respectively CQ,p(k,−)) the eigen component CQ,p(χk,+) (respectively CQ,p(χk,−)). Then
we have

CQ,p =
(p−3)/2⊕

k=1

CQ,p(k,+)⊕
(p−3)/2⊕

k=1

CQ,p(k,−). (7.26)

7.3.1. The study of 2 + χ([2]).
Here we study the number 2 + χ([2]). Let δ be the order of 2 in the group (Z/pZ)×.

Lemma 7.8. Let q be any prime. Let a and x be integers. Let n be a non-negative
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integer. Then if x ≡ a (mod q), then xqn ≡ aqn

(mod qn+1).

Proof. Cf. Ireland and Rosen [5, Chapter 4, Lemma 3]. ¤

Lemma 7.9. Let χ = χk,+. Then we have 2 + χ([2]) ∈ pZp if and only if δ is even
and k = 1 + δ1l with δ1 = δ/2 and l an odd integer.

Proof. Assume that δ is even and k = 1 + δ1l with δ1 = δ/2 and l a positive,
odd integer. Then 2δ1 ≡ −1 (mod p). Since ω(2)k ≡ 2k = 21+δ1l (mod p) by (7.20), we
have 2+χ([2]) = 2+ω(2)k ≡ 2(1+2δ1l) ≡ 2{1+ (−1)l} (mod p). Since l is odd, we have
2 + χ([2]) ≡ 0 (mod p). This proves the if part.

Conversely, assume that 2 + χ([2]) = 2 + ω(2)k ≡ 0 (mod p). Then, by (7.20), we
have 2 + 2k ≡ 2(1 + 2k−1) ≡ 0 (mod p), i.e., 2k−1 ≡ −1 (mod p). Since 22(k−1) ≡ 1
(mod p), we have 2(k − 1) ≡ 0 (mod δ). If δ is odd, then k − 1 ≡ 0 (mod δ), hence we
have 2k−1 ≡ 1 (mod p). This contradicts the congruence 2k−1 ≡ −1 (mod p), therefore
δ is even. Put δ = 2δ1. Since 2(k − 1) ≡ 0 (mod 2δ1), we have k − 1 ≡ 0 (mod δ1). Put
k = 1 + δ1l with l ≥ 0, ∈ Z. Then 2k−1 ≡ 2δ1l ≡ (2δ1)l (mod p). Since 2δ1 ≡ −1 (mod p),
we have −1 ≡ (−1)l (mod p). This implies that l is odd, and the only-if part is proved.

¤

Lemma 7.10. Let χ = χk,−. Then we have 2 + χ([2]) ∈ pZp if and only if k ≡ 1
(mod δ).

Proof. Since ω(2)k ≡ 2k (mod p) by (7.20), we have 2 + χ([2]) = 2 − ω(2)k ≡
2− 2k ≡ 2(1− 2k−1) (mod p). Therefore, 2 + χ([2]) ≡ 0 (mod p) if and only if 2k−1 ≡ 1
(mod p). Since this is equivalent to k ≡ 1 (mod δ), we have the proof. ¤

As mentioned in Introduction, a prime q is called a Wieferich prime if it satisfies

2q−1 ≡ 1 (mod q2). (7.27)

Although the number of Wieferich primes is believed to be infinite, the only ones that
have been discovered so far are 1093 and 3511. Knauer and Richstein [7] reported that
there are no other Wieferich primes less than 1.25 · 1015.

Definition 7.11. Let q be a prime. If there exists the greatest integer n ≥ 0 that
satisfies

2qn−1 ≡ 1 (mod qn+1), (7.28)

then we denote it by W (q).

Proposition 7.12. Let q be a prime. Then we have the following.

(1) The integer W (q) exists.
(2) If n is an integer satisfying 0 ≤ n ≤ W (q), then 2qn−1 ≡ 1 (mod qn+1).
(3) The prime q is a Wieferich prime if and only if W (q) ≥ 1.
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Proof. (1) There exists at least one integer n ≥ 0 which satisfies (7.28) because
it holds with n = 0. Assume that there is an infinite sequence of integers 0 ≤ n1 <

n2 < · · · < nk < · · · such that all nk satisfy the congruence (7.28). Then 2qnk ≡ 2
(mod qnk+1) for all nk. Let ωq be the Teichmüller character with respect to q. Since we
have ωq(2) = limk→∞ 2qnk by (7.21), the validity of the congruence for all nk implies
ωq(2) = 2. Since ωq(2) is a (q−1)st root of 1, we have 2q−1 = 1, which is a contradiction.
Therefore, there exists the greatest integer n ≥ 0. This proves (1).

(2) It is sufficient to prove that the congruence 2qn+1−1 ≡ 1 (mod qn+2) implies the
congruence 2qn−1 ≡ 1 (mod qn+1) for n ≥ 0. If q = 2, then 2qn+1−1 6≡ 1 (mod qn+2)
for any n ≥ 0. Therefore we can assume that q 6= 2. Since 2q ≡ 2 (mod q), we
have 2qn+1 ≡ 2qn

(mod qn+1) by Lemma 7.8. Since q 6= 2, we have 2qn+1−1 ≡ 2qn−1

(mod qn+1). Combining this with the assumption 2qn+1−1 ≡ 1 (mod qn+2), we have
2qn−1 ≡ 1 (mod qn+1). This proves (2).

(3) This follows from (2) immediately. ¤

Now we determine the p-order of 2 + χ([2]).

Proposition 7.13. Let χ = χk,+ (1 ≤ k ≤ (1/2)(p − 3)). Let δ and W (p) be as
above. Then we have the following.

(1) If δ is even and k = 1 + δ1l with δ1 = δ/2 and l an odd integer, then 2 + χ([2]) ∈
pW (p)+1Z×p .

(2) Otherwise, 2 + χ([2]) ∈ Z×p .

Proof. (2) follows from Lemma 7.9. We prove (1). By (7.21), 2 + χ([2]) =
2 + ω(2)k ≡ 2 + 2kpn ≡ 2(1 + 2pn−1 · 2δ1lpn

) (mod pn+1) for any n ≥ 0, ∈ Z. Since
2δ1 ≡ −1 (mod p), we have 2δ1pn ≡ (−1)pn ≡ −1 (mod pn+1) by Lemma 7.8. Hence,
since l is odd, we have 2δ1lpn ≡ −1 (mod pn+1), therefore 2 + χ([2]) ≡ 2(1 − 2pn−1)
(mod pn+1). This implies that 2 + χ([2]) ≡ 0 (mod pn+1) or 6≡ 0 (mod pn+1) according
as n ≤ W (p) or > W (p), which completes the proof. ¤

Proposition 7.14. Let χ = χk,− (1 ≤ k ≤ (1/2)(p − 3)). Let δ and W (p) be as
above. Then we have the following.

(1) If k ≡ 1 (mod δ), then 2 + χ([2]) ∈ pW (p)+1Z×p .
(2) Otherwise, 2 + χ([2]) ∈ Z×p .

Proof. (2) follows from Lemma 7.10. We prove (1). By the assumption we
write k = 1 + δl with l ∈ Z. Then, by (7.21), 2 + χ([2]) = 2 − ω(2)k ≡ 2 − 2kpn ≡
2(1 − 2pn−1 · 2δlpn

) (mod pn+1). Since 2δ ≡ 1 (mod p), we have 2δpn ≡ 1 (mod pn+1)
by Lemma 7.8, hence 2δlpn ≡ 1 (mod pn+1). Thus we have 2 + χ([2]) ≡ 2(1 − 2pn−1)
(mod pn+1). This implies that 2 + χ([2]) ≡ 0 (mod pn+1) or 6≡ 0 (mod pn+1) according
as n ≤ W (p) or > W (p), which completes the proof. ¤

7.3.2. Properties of generalized Bernoulli numbers.
Let µ be an even Dirichlet character of conductor p with values in Z×p . Here we

summarize some properties of the generalized Bernoulli numbers B2,µ.
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Proposition 7.15. Let µ = ω2a (1 ≤ a ≤ (p − 3)/2, a ∈ Z). Then we have the
following.

(1) If a = (p− 3)/2, then

B2,µ ∈ −1
p

+ Zp.

(2) If 1 ≤ a ≤ (p− 5)/2, then B2,µ ∈ Zp, and for any l ≥ 0, ∈ Z, we have

B2,µ ≡ 1
apl + 1

B2apl+2 (mod pl+1Zp).

Proof. (1) Since ω2a = ω−2, this is the case n = 2 of Washington [22, Exercise
7.6 (d)]. (2) In [22, Exercise 7.5] we replace the notation a by l, and put m = 2,
n = 2apl + 2 and χ = ωn. Since n ≡ 2a + 2 6≡ 0 (mod p− 1), we have χ 6= 1. Also since
m ≡ n (mod pl), we have, by this exercise, the congruence

(
1− (χω−m)(p) · pm−1

)Bm, χω−m

m
≡ (

1− (χω−n)(p) · pn−1
)Bn, χω−n

n
(mod pl+1).

Since χω−m = ω2apl

= ω2a 6= 1, we have (χω−m)(p) = 0. Since χω−n = 1, we have
(χω−n)(p) = 1, and 1− (χω−n)(p) · pn−1 = 1− pn−1. Since n− 1 = 2apl +1 > (1+1)l ≥
l + 1, we have 1− pn−1 ≡ 1 (mod pl+1). Thus we have

B2,µ

2
≡ Bn,1

n
=

1
2apl + 2

B2apl+2 (mod pl+1Zp),

which proves (2). ¤

7.3.3. The study of B2,ψ−1
χ

.
Here we study the number B2,ψ−1

χ
.

Definition 7.16. Let q be a prime 6= 2, 3. Let a be an integer with 1 ≤ a ≤
(q − 3)/2. If there exists the greatest integer n ≥ 1 that satisfies

B(2a−2)qn−1+2 ≡ 0 (mod qnZq), (7.29)

then we denote it by B(q, 2a). If there are no integers n which satisfy the congruence
above, then put B(q, 2a) = 0.

Let q be a prime 6= 2, 3. If B2a ≡ 0 (mod qZq) for 0 < 2a < q − 1, then the pair
(q, 2a) is called an irregular pair. The congruence (7.29) with a = 1 does not hold for
any n ≥ 1 because B2 = 1/6. Hence we have B(q, 2) = 0 for any q 6= 2, 3.

Proposition 7.17. Let q be a prime 6= 2, 3. Let a be an integer with 1 ≤ a ≤
(q − 3)/2.
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(1) The integer B(q, 2a) exists.
(2) If B(q, 2a) ≥ 1 and n is an integer satisfying 1 ≤ n ≤ B(q, 2a), then B(2a−2)qn−1+2 ≡

0 (mod qnZq).
(3) The pair (q, 2a) is an irregular pair if and only if B(q, 2a) ≥ 1.

Proof. (1) Assume that the integer B(q, 2a) does not exist. Then a 6= 1, i.e.,
a ≥ 2, and there is an infinite sequence of integers 1 ≤ n1 < n2 < · · · < nk < · · · such
that all nk satisfy the congruence (7.29) with n = nk. Let µ = ω2a−2

q . Then by (2) of
Proposition 7.15, we have

B2,µ ≡ 1
(a− 1)qnk−1 + 1

B(2a−2)qnk−1+2 ≡ 0 (mod qnkZq)

for all nk, which implies that B2,µ = 0. Since B2,µ 6= 0 as is well-known, this is a
contradiction. Therefore, the number of the integers n ≥ 1 that satisfy (7.29) is finite.
This proves (1).

(2) It is sufficient to prove that the congruence B(2a−2)ql+2 ≡ 0 (mod ql+1Zq) implies
the congruence B(2a−2)ql−1+2 ≡ 0 (mod qlZq) for l ≥ 1. Put m = (2a − 2)ql−1 + 2 and
n = (2a−2)ql +2. Since m 6≡ 0 (mod q−1) and m ≡ n (mod(q−1)ql−1), by the Kummer
congruences [5, Chapter 15, Theorem 5] we have

(1− qm−1)
Bm

m
≡ (1− qn−1)

Bn

n
(mod qlZq).

Combining this with Bn = B(2a−2)ql+2 ≡ 0 (mod ql+1Zq), we have Bm = B(2a−2)ql−1+2 ≡
0 (mod qlZq). This proves (2).

(3) This follows from (2). ¤

Now we consider the case q = p.

Proposition 7.18. Let µ = ω2a (1 ≤ a ≤ (p − 5)/2, a ∈ Z). Then B2,µ ∈
pB(p,2a+2)Z×p .

Proof. Assume that B(p, 2a + 2) = 0. Then (p, 2a + 2) is not an irregular pair,
i.e., B2a+2 6≡ 0 (mod pZp). By (2) of Proposition 7.15 we have B2,µ ≡ (1/(a + 1))B2a+2

(mod pZp). This implies that B2,µ 6≡ 0 (mod pZp), i.e., B2,µ ∈ Z×p . Next, assume that
B(p, 2a + 2) ≥ 1. By (2) of Proposition 7.15 we have B2,µ ≡ (1/(apl−1 + 1))B2apl−1+2

(mod plZp) for l ≥ 1. This implies that B2,µ ≡ 0 (mod plZp) or 6≡ 0 (mod plZp) according
as l ≤ B(p, 2a + 2) or > B(p, 2a + 2), which proves B2,µ ∈ pB(p,2a+2)Z×p . This completes
the proof. ¤

The following proposition determines the p-order of B2,ψ−1
χ

.

Proposition 7.19. Let χ = χk,+ or χk,− (1 ≤ k ≤ (1/2)(p − 3)). Then we have
the following.

(1) If k = 1, then B2,ψ−1
χ
∈ −(1/p) + Zp.
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(2) If 2 ≤ k ≤ (1/2)(p− 3), then B2,ψ−1
χ
∈ pB(p,p+1−2k)Z×p .

Proof. Since ψ−1
χ = ω−2k = ωp−1−2k, put 2a = p − 1 − 2k. Then 1 ≤ a ≤

(1/2)(p−3), and a = (1/2)(p−3) if and only if k = 1. (1) follows from (1) of Proposition
7.15. (2) follows from Proposition 7.18 because 2a + 2 = p + 1− 2k. This completes the
proof. ¤

7.3.4. The determination of B(p,2a) for all irregular pairs (p,2a) with
p ≤ 4001.

In [22, Section 2 of Tables] all irregular pairs (p, 2a) with p ≤ 4001 are given.
We can determine the values of B(p, 2a) for all of them by a method explained in this
subsubsection. The result is the following.

Example 7.20. For all irregular pairs (p, 2a) with p ≤ 4001, we have B(p, 2a) = 1.

In the following we explain the method of computation. Let m and n be positive
integers. We define Sm(n) by

Sm(n) =
n−1∑

k=0

km. (7.30)

Then we have the following well-known equality (cf. [5, Theorem 1 in Chapter 15]):

(m + 1)Sm(n) =
m∑

k=0

(
m + 1

k

)
Bknm+1−k. (7.31)

Proposition 7.21. Let p be a prime 6= 2, 3. Let r ≥ 1 be an integer satisfying
2r 6≡ 0 (mod p− 1). Let l ≥ 0 be an integer. Put m = 2rpl + 2. Then

pBm ≡ Sm(p) (mod pl+3Zp).

Proof. If we put n = p in the equality (7.31) and divide it by m + 1, we have

pBm = Sm(p)−
m−1∑

k=0

1
m + 1

(
m + 1

k

)
Bkpm+1−k.

Since m is even with m ≥ 4, the integer m− 1 is odd with m− 1 ≥ 3, whence Bm−1 = 0.
Since

1
m + 1

(
m + 1

k

)
Bkpm+1−k =

1
m + 1

(
m + 1

h

)
Bm+1−hph

with h = m + 1− k, put

Dh =
1

m + 1

(
m + 1

h

)
Bm+1−hph.
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Then we have pBm = Sm(p)−D, where D =
∑m+1

h=3 Dh.
As to the term D3 we have

D3 =
m(m− 1)

6
p3Bm−2. (7.32)

Since m − 2 = 2rpl ≡ 2r 6≡ 0 (mod p − 1), we have Bm−2 ∈ (m − 2)Zp by a result of
Adams [5, Proposition 15.2.4], whence Bm−2 ∈ plZp. Since p 6= 2, 3, we have

D3 ∈ pl+3Zp (7.33)

by (7.32).
As to the terms Dh with h ≥ 4 we have

Dh = (m− 2)
ph−1

h(h− 1)(h− 2)(h− 3)
m(m− 1)

(
m− 3
h− 4

)
pBm+1−h. (7.34)

We prove that

ph−1

h(h− 1)(h− 2)(h− 3)
∈ p3Zp. (7.35)

In fact, if the integers h − i (0 ≤ i ≤ 3) are all prime to p, then (7.35) holds because
h − 1 ≥ 3. Let one of the integers h − i (0 ≤ i ≤ 3) be a multiple of p. Since p ≥ 5,
only one of them is divisible by p and the others are prime to p. Let h− i = peq where
e and q are positive integers and (q, p) = 1. Then the p-order of the number of (7.35) is
(h− 1)− e, for which we have

(h− 1)− e = peq + i− 1− e ≥ (1 + 4)e − 1− e

≥ 1 + 4e− 1− e = 3e ≥ 3.

This proves (7.35). Since m− 2 ∈ plZ and pBm+1−h ∈ Zp, combining these with (7.35),
we have

Dh ∈ pl+3Zp (7.36)

by (7.34).
By (7.33) and (7.36) we have D ∈ pl+3Zp. This completes the proof. ¤

Though it is difficult to determine the value of B(p, 2a) by its definition, the following
proposition gives a useful method. Since B(p, 2) = 0, it is sufficient to consider the case
a ≥ 2.

Proposition 7.22. Let a be an integer with 2 ≤ a ≤ (p − 3)/2, and assume that
the pair (p, 2a) is an irregular pair. Let l ≥ 0 be an integer. Let ml = (2a − 2)pl + 2.
Then we have the following.
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(1) If Sml
(p) ≡ 0 (mod pl+2), then B(p, 2a) ≥ l + 1.

(2) If Sml
(p) 6≡ 0 (mod pl+2), then B(p, 2a) ≤ l.

(3) If Sml
(p) ≡ 0 (mod pl+2) and Sml+1(p) 6≡ 0 (mod pl+3), then B(p, 2a) = l + 1.

Proof. Since 2a − 2 6≡ 0 (mod p − 1), by Proposition 7.21, we have Bml
≡ 0

(mod pl+1Zp) or 6≡ 0 (mod pl+1Zp) according as Sml
(p) ≡ 0 (mod pl+2) or 6≡ 0 (mod pl+2)

respectively. By Definition 7.16 and Proposition 7.17, these hold according as B(p, 2a) ≥
l + 1 or ≤ l. Thus we have (1) and (2). (3) follows from (1) and (2). ¤

Corollary 7.23. Let a be an integer with 2 ≤ a ≤ (p−3)/2, and assume that the
pair (p, 2a) is an irregular pair. Let m1 = (2a − 2)p + 2. If Sm1(p) 6≡ 0 (mod p3), then
B(p, 2a) = 1.

Proof. Let m0 = (2a−2)p0+2 = 2a. Then by Proposition 7.21 we have Sm0(p) ≡
pB2a (mod p3Zp). Since (p, 2a) is an irregular pair, we have B2a ≡ 0 (mod pZp), whence
Sm0(p) ≡ 0 (mod p2Zp). Combining this and the assumption Sm1(p) 6≡ 0 (mod p3) with
(3) of Proposition 7.22, we have the proof. ¤

We computed the residue of Sm1(p) modulo p3 for all irregular pairs (p, 2a) with
p ≤ 4001, and verified that all of them satisfy that Sm1(p) 6≡ 0 (mod p3). Hence, by
Corollary 7.23, we obtain the result stated in Example 7.20.

7.4. The determination of the Sylow p-subgroup.
Here we determine the structure of the Sylow p-subgroup CQ,p of CQ. In view of

the decomposition (7.26), it is sufficient to determine the structures of CQ,p(k,+) and
CQ,p(k,−). As before, let δ be the order of 2 in the group (Z/pZ)×. For the notation
W (p) (respectively B(p, 2a)), see Definition 7.11 (respectively Definition 7.16). Then we
have the following theorems.

Theorem 7.24. Let k be an integer with 1 ≤ k ≤ (1/2)(p− 3). Then the structure
of the group CQ,p(k,+) is given as follows.

(1) If k = 1, then CQ,p(1,+) = 0.
(2) If 2 ≤ k ≤ (1/2)(p− 3), then

CQ,p(k,+) ∼=




Z/pB(p,p+1−2k)+W (p)+1Z

{
if δ is even and k = 1 + (δ/2)l
with l an odd integer,

Z/pB(p,p+1−2k)Z otherwise.

Proof. By (7.9) and (7.23), we have

CQ,p(k,+) ∼= Zp/
(
χk,+(J0 ⊗ Zp)(2 + χk,+([2]))B2,ψ−1

χk,+

)
.

Since χω = χ1,+, by Proposition 7.6, we have χk,+(J0 ⊗ Zp) = pZp or Zp according
as k = 1 or 6= 1 respectively. By Proposition 7.13, 2 + χ1,+([2]) ∈ Z×p , and by (1)
of Proposition 7.19, B2,ψ−1

χ
∈ −(1/p) + Zp with χ = χ1,+. These results imply that
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χ1,+(J0 ⊗ Zp)(2 + χ1,+([2]))B2,ψ−1
χ

= Zp with χ = χ1,+. This proves (1). Let k 6= 1.
Since χk,+(J0 ⊗Zp) = Zp, the statement (2) follows immediately from Propositions 7.13
and 7.19. ¤

Theorem 7.25. Let k be an integer with 1 ≤ k ≤ (1/2)(p− 3). Then the structure
of the group CQ,p(k,−) is given as follows.

(1) If k = 1, then CQ,p(1,−) ∼= Z/pW (p)Z.
(2) If 2 ≤ k ≤ (1/2)(p− 3), then

CQ,p(k,−) ∼=
{
Z/pB(p,p+1−2k)+W (p)+1Z if k ≡ 1 (mod δ),

Z/pB(p,p+1−2k)Z otherwise.

Proof. Since χk,− 6= χω(= χ1,+), we have χk,−(J0 ⊗ Zp) = Zp by Proposition
7.6. Hence, by (7.9) and (7.23), we have

CQ,p(k,−) ∼= Zp/
(
(2 + χk,−([2]))B2,ψ−1

χk,−

)
Zp.

By Proposition 7.14, 2+χ1,−([2]) ∈ pW (p)+1Z×p , and by (1) of Proposition 7.19, B2,ψ−1
χ
∈

−1/p + Zp with χ = χ1,−. Hence we have ((2 + χ1,−([2]))B2,ψ−1
χ

)Zp = pW (p)Zp with
χ = χ1,−. This proves (1). Let k 6= 1. Then the statement (2) follows immediately from
Propositions 7.14 and 7.19. ¤

When p is regular and is not a Wieferich prime, the Sylow p-subgroup can be com-
pletely determined as follows. In the following corollary, we denote by [x] (x ∈ R) the
greatest integer that is less than or equal to x.

Corollary 7.26. Let p 6= 2, 3 be a regular prime and not a Wieferich prime. Let
f1 = [(1/2δ)(p− 5)] and f2 = [(1/2δ)(p− 5) + 1/2]. Then

CQ,p
∼=

{
(Z/pZ)f1 if δ is odd,

(Z/pZ)f1+f2 if δ is even.

Proof. Let 1 ≤ k ≤ (1/2)(p − 3). By the assumption we have W (p) = B(p, p +
1− 2k) = 0. Hence, by Theorems 7.24 and 7.25, we have

CQ,p(k,+) ∼=
{
Z/pZ if δ is even and k = 1 + (δ/2)l with l an odd integer,

0 otherwise,

and

CQ,p(k,−) ∼=
{
Z/pZ if k ≡ 1 (mod δ) and k ≥ 2,

0 otherwise.
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Let f1 be the number of k with CQ,p(k,−) ∼= Z/pZ. Since in that case k = 1 + nδ with
n ∈ N and k ≤ (1/2)(p−3), we have 1 ≤ n ≤ (1/2δ)(p−5), therefore f1 = [(1/2δ)(p−5)].
If δ is odd, we have CQ,p(k,+) = 0 for all k. This proves the case of odd δ. Let δ be even.
Let f2 be the number of k with CQ,p(k,+) ∼= Z/pZ. In that case we have k = 1 + (δ/2)l,
l = 2m−1 with m ∈ N and k ≤ (1/2)(p−3). Hence we have 1 ≤ m ≤ (1/2δ)(p−5)+1/2,
therefore f2 = [(1/2δ)(p− 5) + 1/2]. This proves the case of even δ. ¤

In the following examples we consider the irregular primes or the Wieferich primes
with p ≤ 4001. In [22, Section 2 of Tables] all irregular pairs (p, 2a) with p ≤ 4001 are
given. The only known Wieferich primes are 1093 and 3511. The prime 1093 is regular
and the prime 3511 is irregular. First we consider the irregular primes such that p ≤ 4001
and p 6= 3511. For any irregular prime q, the number of the integers a such that (q, 2a)
is an irregular pair is called the index of irregularity of q. We denote it by I(q).

Example 7.27. Let p be an irregular prime such that p ≤ 4001 and p 6= 3511. Let
f1 = [(1/2δ)(p− 5)] and f2 = [(1/2δ)(p− 5) + 1/2]. Then

CQ,p
∼=

{
(Z/pZ)f1+2I(p) if δ is odd,

(Z/pZ)f1+f2+2I(p) if δ is even.

Proof. Let (p, 2a) be an irregular pair. Let ka = (p + 1)/2 − a. Then 2 ≤ ka ≤
(p − 3)/2. We can verify, for all irregular pairs (p, 2a) such that p ≤ 4001 and not a
Wieferich prime, that ka 6≡ 1 (mod δ), and also ka 6≡ 1 (mod δ/2) if δ is even. This
implies that if k ≡ 1 (mod δ), or if k ≡ 1 (mod δ/2) when δ is even, then k 6= ka for
any irregular pair (p, 2a), hence B(p, p + 1− 2k) = 0. Since p is not a Wieferich prime,
we have W (p) = 0. Also, by Example 7.20, we have B(p, p + 1 − 2ka) = B(p, 2a) = 1.
Therefore, by Theorems 7.24 and 7.25, we have, for each k with 1 ≤ k ≤ (1/2)(p− 3),

CQ,p(k,+) ∼=




Z/pZ

{
if (i) δ is even and k = 1 + (δ/2)l with l an odd integer,
or (ii) k = ka for some irregular pair (p, 2a),

0 otherwise,

and

CQ,p(k,−) ∼=




Z/pZ

{
if (i) k ≡ 1 (mod δ) and k ≥ 2,
or (ii) k = ka for some irregular pair (p, 2a),

0 otherwise.

Let g1 be the number of k with CQ,p(k,−) ∼= Z/pZ. Let f1 be the number of k with
k ≡ 1 (mod δ) and k ≥ 2. Then f1 = [(1/2δ)(p− 5)] as is shown in the proof of Corollary
7.26, and g1 = f1 + I(p). Let g2 be the number of k with CQ,p(k,+) ∼= Z/pZ. If δ is odd,
then g2 = I(p). Hence CQ,p

∼= (Z/pZ)g1+g2 = (Z/pZ)f1+2I(p). This proves the case of
odd δ. Let δ be even. Let f2 be the number of k such that k = 1 + (δ/2)l with l an odd
integer. Then f2 = [(1/2δ)(p− 5) + 1/2] as is shown in the proof of Corollary 7.26, and
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g2 = f2 + I(p). Hence CQ,p
∼= (Z/pZ)g1+g2 = (Z/pZ)f1+f2+2I(p). This proves the case of

even δ. ¤

Next we consider the only known Wieferich primes.

Example 7.28. Let p = 1093, which is the only known regular Wieferich prime.
Then

CQ,p
∼= (Z/1093Z)⊕ (Z/10932Z)2.

Proof. We have δ = 364, and W (1093) = 1 because 2p2−1 ≡ 581 794 064 6≡ 1
(mod p3). Let 1 ≤ k ≤ (1/2)(p−3) = 545. Since p is regular, we have B(p, p+1−2k) = 0.
Hence, by Theorems 7.24 and 7.25, we have

CQ,p(k,+) ∼=
{
Z/p2Z if k = 1 + 182l with l an odd integer,

0 otherwise,

and

CQ,p(k,−) ∼=





Z/pZ if k = 1,

Z/p2Z if k ≡ 1 (mod 364) and k ≥ 2,

0 otherwise.

If 1 ≤ k ≤ 545 and k = 1+182l with l an odd integer, then k = 183. Hence, CQ,p(k,+) ∼=
Z/p2Z or 0 according as k = 183 or not, respectively. If 2 ≤ k ≤ 545 and k ≡ 1 (mod 364),
then k = 365. Hence, CQ,p(k,−) ∼= Z/pZ, Z/p2Z, 0 according as k = 1, 365, otherwise,
respectively. ¤

Example 7.29. Let p = 3511, which is the only known irregular Wieferich prime.
Then

CQ,p
∼= (Z/3511Z)5.

Proof. We have δ = 1755, and W (3511) = 1 because 2p2−1 ≡ 628 683 172 6≡ 1
(mod p3). Let 1 ≤ k ≤ (1/2)(p− 3) = 1754. By Theorems 7.24 and 7.25, we have

CQ,p(k,+) ∼=
{

0 if k = 1,

Z/pB(p,p+1−2k)Z otherwise,

and

CQ,p(k,−) ∼=





Z/pZ if k = 1,

Z/pB(p,p+1−2k)+2Z if k ≡ 1 (mod 1755) and k ≥ 2,

Z/pB(p,p+1−2k)Z otherwise.
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The irregular pairs (p, 2a) are (3511, 1416) and (3511, 1724), hence a = 708, 862. Put
ka = (p + 1)/2 − a. Then ka = 1048, 894 according as a = 708, 862 respectively. By
Example 7.20, we have B(p, p+1−2k) = 1(= B(p, 2a)) or 0 according as k = ka for some a

or not, respectively. Hence, B(p, p+1−2k) = 1 for k = 1048, 894, and = 0 for other values
of k. Thus, we have CQ,p(k,+) ∼= Z/3511Z for k = 894, 1048, and CQ,p(k,−) ∼= Z/3511Z
for k = 1, 894, 1048. For other values of k, we have CQ,p(k,+) = CQ,p(k,−) = 0. ¤

8. Numerical results.

Let p be a prime 6= 2, 3. In this section we give several tables of computational
results.

8.1. Several cuspidal class numbers of X1(2p) and X1(p).
Let

a =
p2 − 1

24
, (8.1)

A =
1
p

∏

ψ

(4− ψ(2)), (8.2)

B = p
∏

ψ

(
1
4
B2,ψ

)
, (8.3)

where ψ runs over all even, primitive Dirichlet characters modulo p. Then a, A and B

are positive integers.
We consider here several cuspidal class numbers of the modular curves X1(2p) and

X1(p).
We denote the order hQ of CQ by hQ1 (2p). Then, by Theorem 5.3, we have

hQ1 (2p) = aAB2. (8.4)

Let h1(2p) be the full cuspidal class number of X1(2p). Then, by [21, Theorem 5.2], we
have

h1(2p) = aA2B4. (8.5)

Let h1(p) be the full cuspidal class number of X1(p). Let h∞1 (2p) (respectively h∞1 (p))
be the order of the subgroup of the cuspidal divisor class group of X1(2p) (respectively
X1(p)) which is generated by the ∞-cusps. (A cusp on X1(n) with n ∈ N is called an
∞-cusp if it lies over the cusp ∞ of X0(n).) The formula for h1(p) is given by [19,
Theorem 4.1]. The formula for h∞1 (p) is given by [8, Theorem 3.4 in Chapter 6]. The
formula for h∞1 (2p) is given by [24]. Then we have

h∞1 (2p) = AB, (8.6)

h1(p) = B2, (8.7)

h∞1 (p) = B. (8.8)
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8.2. Tables.
In Tables 1–3 we list the values a, A and B for all primes p with 7 ≤ p ≤ 127. Note

that if p = 5, then the genus of X1(10) is 0, and a = A = B = 1. In Table 4 we give the
structure of the Q-rational cuspidal group CQ = C1(2p)Q of J1(2p)Q for all primes p with
7 ≤ p ≤ 127. There the notation [n1, n2, . . .] denotes the group (Z/n1Z)⊕ (Z/n2Z)⊕· · · .
In Table 5 we give the structure of the Sylow p-subgroup CQ,p = C1(2p)Q,p of the Q-
rational cuspidal group C1(2p)Q for all primes p with 7 ≤ p ≤ 4001. In that table, if
p 6= 1093, then the number e indicates that C1(2p)Q,p

∼= (Z/pZ)e, and if p = 1093, then
the numbers e = 1, 2 indicates that C1(2p)Q,p

∼= (Z/pZ)⊕ (Z/p2Z)2.

Table 1. The value of a = (p2 − 1)/24.

p a p a p a p a

7 2 31 23 · 5 61 5 · 31 97 23 · 72

11 5 37 3 · 19 67 11 · 17 101 52 · 17
13 7 41 2 · 5 · 7 71 2 · 3 · 5 · 7 103 2 · 13 · 17
17 22 · 3 43 7 · 11 73 2 · 3 · 37 107 32 · 53
19 3 · 5 47 22 · 23 79 22 · 5 · 13 109 32 · 5 · 11
23 2 · 11 53 32 · 13 83 7 · 41 113 22 · 7 · 19
29 5 · 7 59 5 · 29 89 2 · 3 · 5 · 11 127 25 · 3 · 7

Table 2. The value of A.

p A p A

7 3 61 3 · 52 · 7 · 11 · 13 · 31 · 41 · 151 · 331 · 1321
11 31 67 3 · 7 · 23 · 89 · 683 · 20 857 · 599 479
13 3 · 5 · 7 71 11 · 31 · 43 · 127 · 281 · 86 171 · 122 921
17 3 · 52 · 17 73 311 · 74 · 194 · 733

19 32 · 7 · 73 79 3 · 7 · 2731 · 8191 · 121 369 · 22 366 891
23 89 · 683 83 13 367 · 164 511 353 · 8831 418 697
29 5 · 43 · 113 · 127 89 33 · 234 · 893 · 6834

31 32 · 113 · 312 97 33 · 52 · 72 · 132 · 172 · 97 · 2412 · 2572 · 6732

37 32 · 5 · 7 · 13 · 19 · 73 · 109 101 53 · 11 · 31 · 41 · 251 · 601 · 1801 · 4051 · 8101 · 268 501
41 3 · 54 · 112 · 312 · 41 103 3 · 7 · 307 · 2143 · 2857 · 6529 · 11 119 · 43 691 · 131 071
43 32 · 432 · 1273 107 6361 · 69 431 · 20 394 401 · 28 059 810 762 433
47 178 481 · 2796 203 109 38 · 53 · 73 · 133 · 193 · 373 · 733 · 1092

53 5 · 157 · 1613 · 2731 · 8191 113 33 · 54 · 294 · 434 · 1133 · 1274

59 233 · 1103 · 2089 · 3033 169 127 38 · 439 · 1278
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Table 3. The value of B

p B

7 1
11 5
13 19
17 23 · 73
19 32 · 487
23 11 · 37 181
29 26 · 3 · 7 · 43 · 17 837
31 22 · 52 · 7 · 11 · 2302 381
37 32 · 5 · 7 · 19 · 37 · 73 · 577 · 17 209
41 24 · 5 · 13 · 312 · 431 · 250 183 721
43 22 · 7 · 19 · 29 · 463 · 1051 · 416 532 733
47 23 · 139 · 82 397 087 · 12 451 196 833
53 7 · 13 · 85 411 · 96 331 · 379 549 · 641 949 283
59 29 · 59 · 9988 553 613 691 393 812 358 794 271
61 5 · 72 · 112 · 19 · 31 · 2081 · 2801 · 40 231 · 411 241 · 514 216 621
67 11 · 67 · 193 · 6612 · 2861 · 8009 · 11 287 · 9383 200 455 691 459
71 5 · 7 · 31 · 113 · 211 · 281 · 7012 · 12 713 · 13 070 849 919 225 655 729 061
73 23 · 32 · 11 · 79 · 89 · 241 · 23 917 · 3341 773 · 11 596 933 · 31 964 959 893 317 833
79 13 · 157 · 199 · 5212 · 1249 · 4447 · 1130 429 · 323 623 · 68 438 648 614 508 149 381
83 41 · 17 210 653 · 151 251 379 · 18 934 761 332 741 · 48 833 370 476 331 324 749 419
89 23 ·5 ·11 ·13 ·37 ·397 ·4027 ·262 504 573 ·15 354 699 728 897 ·49 135 060 828 995 551

670 374 357
97 24 · 52 · 72 · 17 · 149 · 241 · 367 · 421 · 2753 · 147 689 · 651 997 · 21 205 889 · 41 481 169

· 5429 704 177 · 2758 053 952 369
101 52 · 19 · 101 · 1201 · 52 951 · 54 371 · 599 491 · 1493 651 · 12 355 051 · 709 068 505 801 ·

58 884 077 243 434 864 347 851
103 72 · 13 · 172 · 103 · 613 · 100 458 793 666 879 · 123 953 701 101 455 911 613 · 60

417 254 667 158 883 466 061 055 469
107 53 · 304 009 · 1598 587 · 7762 787 405 087 851 · 1827 219 997 313 025 527 · 340

411 510 885 100 431 606 787 699 221
109 24 ·39 ·372 ·103·1272 ·3187·22 483·129 763·2230 759·144 218 626 120 352 809·7225

241 488 211 218 811 391 927 451
113 220 · 32 · 5 · 7 · 132 · 41 · 1597 · 2689 · 5419 · 7393 · 33 181 · 47 609 · 83 685 281 · 1338

273 009 109 · 3747 533 743 340 403 014 797 054 313
127 28 · 32 · 72 · 193 · 113 · 181 · 197 · 1303 · 2647 · 8461 · 36 037 · 62 497 · 310 631 203 ·

10 360 369 321 · 404 502 990 175 243 · 1383 982 596 554 597 891 267 948 732 467
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Table 4. The structure of the group C1(2p)Q.

p C1(2p)Q
7 [6]
11 [5, 775]
13 [133, 1995]
17 [8760, 595 680]
19 [9, 4383, 33 595 695]
23 [408 991, 546 949 390 174]
29 [4, 4, 4, 172, 322 136 220, 32 360 838 252 540]
31 [2, 110, 110, 164 873 503 410, 36 272 170 750 200]
37 [19, 87 381, 160 516 686 697 605, 3411 782 175 757 594 275]
41 [155, 775, 5927 283 967 445 469 200, 10 206 782 991 941 097 962 400]
43 [2, 254, 25 615 681 147 891 287 499 998, 1972 407 448 387 629 137 499 846]
47 [3279 937 688 802 933 030 787, 150 596 232 943 748 173 091 148 093 312 463 772]
53 [182 427 302 879 183 759 829 891 277, 604 558 524 480 886 037 852 237 469 814 929

069 041 745]
59 [17 090 415 233 025 974 812 945 896 997 681, 4035 404 732 342 277 108 170

716 765 844 763 161 918 273 801 455]
61 [11, 2387, 11 935, 56 225 660 010 204 969 117 708 316 979 075, 41 551 702

665 883 717 153 363 255 281 876 574 280 013 975]
67 [661, 661, 228 166 524 544 404 715 482 454 653 548 693 117, 15 663 080 867 536

742 150 839 527 629 458 568 154 286 994 804 349 521 577]
71 [701, 6106 411, 846 772 703 911 192 558 471 548 563 811 885 556 615, 113

145 744 367 708 244 484 094 396 172 159 112 123 891 138 288 052 908 150]
73 [2, 18, 18, 7182, 524 286, 289 531 651 675 514 560 686 218 323 729 279 418 167

306 307 934, 10 712 671 111 994 038 745 390 077 977 983 338 472 190 333 393 558]
79 [521, 521, 29 427 100 164 209 457 485 089 447 933 533 181 481 550 301 759,

9756 906 232 145 215 045 426 321 958 474 091 161 603 333 533 130 029 106 098
424 849 722 260]

83 [98 686 349 372 029 170 201 616 572 533 501 298 687 049 100 544 333 193, 550
046 338 223 536 944 537 177 801 039 598 479 975 252 869 789 692 614 645 701
297 283 093 053 307 377]

89 [2, 2, 2, 94 254, 41 943 030, 70 265 056 281 482 671 660 937 420 666 518 844 451
392 907 429 147 495 037 877 039 790, 772 915 619 096 309 388 270 311 627 331
707 288 965 321 981 720 622 445 416 647 437 690]

97 [7, 35, 35, 143 395, 143 395, 1244 192 473 582 723 094 429 387 076 766 808 629
065 856 227 229 359 353 230 662 320 127 421 680, 20 275 360 549 504 055 546 821
291 802 991 913 419 257 193 078 929 640 020 246 873 168 796 463 697 280]

101 [25, 383 117 416 917 938 352 821 669 377 816 486 750 985 276 713 608 300 916
153 150 414 182 182 375, 1089 927 841 549 376 523 065 381 215 693 745 802
372 768 032 196 246 699 028 918 876 820 398 242 643 144 597 836 660 823 482
589 375]
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p C1(2p)Q
103 [17, 221, 514 392 345 891 589 895 637 048 628 820 472 810 730 201 209 034 367 243

706 045 518 045 882 353, 286 995 107 375 502 283 436 235 629 741 272 483 303 400
322 442 880 784 642 402 227 938 248 338 023 704 082 167 228 437 263 282 542 534]

107 [124 368 774 979 658 821 687 008 991 761 829 524 338 976 491 262 179 565 361 941
056 699 780 117 649 583, 14 993 542 105 818 702 095 231 514 512 965 884 941 527
289 785 953 606 709 533 622 214 968 128 417 472 411 947 197 406 991 349 579 948
549 843 373]

109 [333, 333, 999, 7612 380, 2882 435 299 380, 2098 254 297 692 675 704 196 841 472
130 099 322 860 334 318 873 515 928 004 254 333 139 440 932 364 772 140, 23 080
797 274 619 432 746 165 256 193 431 092 551 463 677 507 608 675 208 046 797 664
533 850 256 012 493 540]

113 [4, 4, 4, 16, 16, 16, 80, 80, 494 111 280, 55 834 574 640, 5483 524 885 024
393 161 762 841 970 809 345 247 950 732 845 933 100 542 058 585 370 932
546 237 525 349 573 520, 2187 926 429 124 732 871 543 373 946 352 928 753
932 342 405 527 307 116 281 375 563 002 085 948 772 614 479 834 480]

127 [2, 2, 2, 2, 2, 2, 2, 2, 258, 32 766, 32 766, 32 766, 32 766, 4357 878, 4357
878, 355 545 311 789 286 764 686 582 131 743 881 757 199 809 814 062 904 079
693 483 879 940 487 081 326 438 386 594 437 423 721 679 286, 39 821 074 920
400 117 644 897 198 755 314 756 806 378 699 175 045 256 925 670 194 553
334 553 108 561 099 298 576 991 456 828 080 032]
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Table 5. The structure of the Sylow p-subgroup of C1(2p)Q.

p e p e p e p e p e p e p e

7 0 191 0 421 2 661 0 941 0 1217 13 1493 0
11 0 193 1 431 4 673 17 947 0 1223 0 1499 2
13 0 197 0 433 7 677 2 953 15 1229 2 1511 0
17 1 199 0 439 2 683 32 967 0 1231 0 1523 2
19 0 211 0 443 0 691 6 971 6 1237 2 1531 0
23 0 223 2 449 1 701 0 977 1 1249 7 1543 0
29 0 227 0 457 5 709 0 983 0 1259 0 1549 0
31 2 229 2 461 2 719 0 991 0 1277 0 1553 7
37 2 233 5 463 2 727 4 997 2 1279 2 1559 2
41 1 239 0 467 4 733 2 1009 1 1283 2 1567 0
43 2 241 9 479 0 739 2 1013 10 1289 3 1571 0
47 0 251 4 487 0 743 0 1019 0 1291 4 1579 2
53 0 257 17 491 6 751 2 1021 2 1297 5 1583 0
59 2 263 2 499 2 757 2 1031 0 1301 2 1597 4
61 0 269 0 503 0 761 3 1033 3 1303 0 1601 3
67 2 271 2 509 0 769 1 1039 0 1307 4 1607 0
71 0 277 2 521 1 773 2 1049 3 1319 2 1609 5
73 3 281 3 523 2 787 0 1051 2 1321 21 1613 32
79 0 283 4 541 2 797 2 1061 2 1327 4 1619 2
83 0 293 2 547 4 809 5 1063 0 1361 1 1621 2
89 3 307 4 557 2 811 4 1069 2 1367 2 1627 2
97 1 311 2 563 0 821 2 1087 0 1373 0 1637 2
101 2 313 1 569 1 823 0 1091 2 1381 2 1657 17
103 2 317 0 571 4 827 2 1093 1, 2 1399 2 1663 4
107 0 331 10 577 5 829 0 1097 3 1409 3 1667 0
109 2 337 7 587 4 839 2 1103 18 1423 2 1669 4
113 3 347 2 593 5 853 0 1109 0 1427 0 1693 0
127 8 349 0 599 0 857 1 1117 2 1429 18 1697 1
131 2 353 7 601 11 859 0 1123 0 1433 3 1699 2
137 1 359 0 607 2 863 0 1129 3 1439 2 1709 6
139 0 367 0 613 2 877 2 1151 6 1447 0 1721 5
149 2 373 0 617 9 881 9 1153 5 1451 0 1723 2
151 4 379 4 619 2 883 0 1163 6 1453 0 1733 4
157 6 383 0 631 10 887 2 1171 0 1459 2 1741 0
163 0 389 2 641 9 907 0 1181 4 1471 2 1747 0
167 0 397 8 643 2 911 4 1187 0 1481 3 1753 13
173 0 401 3 647 6 919 2 1193 5 1483 2 1759 2
179 0 409 3 653 2 929 5 1201 5 1487 0 1777 25
181 0 419 0 659 2 937 3 1213 0 1489 1 1783 0
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p e p e p e p e p e p e p e

1787 2 2099 2 2399 0 2719 0 3049 5 3389 6 3701 0
1789 6 2111 2 2411 6 2729 1 3061 16 3391 18 3709 0
1801 35 2113 47 2417 1 2731 104 3067 0 3407 4 3719 0
1811 10 2129 3 2423 4 2741 0 3079 0 3413 0 3727 0
1823 0 2131 0 2437 0 2749 2 3083 2 3433 3 3733 0
1831 4 2137 3 2441 7 2753 3 3089 5 3449 3 3739 6
1847 6 2141 0 2447 0 2767 4 3109 6 3457 5 3761 19
1861 0 2143 22 2459 0 2777 3 3119 2 3461 0 3767 0
1867 0 2153 2 2467 0 2789 4 3121 19 3463 2 3769 1
1871 2 2161 1 2473 3 2791 4 3137 3 3467 0 3779 2
1873 1 2179 2 2477 0 2797 0 3163 2 3469 2 3793 1
1877 2 2203 2 2503 2 2801 1 3167 0 3491 2 3797 2
1879 2 2207 0 2521 1 2803 0 3169 1 3499 0 3803 0
1889 5 2213 2 2531 0 2819 0 3181 4 3511 5 3821 6
1901 2 2221 0 2539 0 2833 25 3187 0 3517 4 3823 2
1907 0 2237 0 2543 2 2837 0 3191 28 3527 0 3833 9
1913 3 2239 2 2549 0 2843 0 3203 2 3529 5 3847 0
1931 0 2243 0 2551 0 2851 0 3209 1 3533 4 3851 4
1933 6 2251 2 2557 2 2857 29 3217 3 3539 4 3853 2
1949 0 2267 2 2579 2 2861 2 3221 6 3541 14 3863 0
1951 2 2269 0 2591 4 2879 0 3229 4 3547 0 3877 0
1973 0 2273 7 2593 15 2887 0 3251 4 3557 0 3881 13
1979 2 2281 11 2609 1 2897 1 3253 0 3559 4 3889 5
1987 2 2287 2 2617 1 2903 0 3257 5 3571 0 3907 0
1993 3 2293 2 2621 2 2909 4 3259 2 3581 2 3911 0
1997 4 2297 1 2633 2 2917 2 3271 2 3583 2 3917 2
1999 2 2309 4 2647 3 2927 2 3299 0 3593 5 3919 0
2003 10 2311 0 2657 17 2939 6 3301 4 3607 4 3923 0
2011 4 2333 0 2659 0 2953 5 3307 0 3613 2 3929 1
2017 7 2339 0 2663 2 2957 4 3313 5 3617 5 3931 0
2027 0 2341 2 2671 6 2963 0 3319 0 3623 0 3943 8
2029 0 2347 2 2677 0 2969 3 3323 2 3631 4 3947 0
2039 2 2351 24 2683 0 2971 26 3329 3 3637 4 3967 2
2053 2 2357 2 2687 16 2999 2 3331 14 3643 0 3989 2
2063 0 2371 4 2689 13 3001 1 3343 2 3659 0 4001 5
2069 0 2377 3 2693 0 3011 2 3347 0 3671 2
2081 1 2381 6 2699 0 3019 0 3359 0 3673 3
2083 0 2383 6 2707 0 3023 2 3361 19 3677 2
2087 4 2389 2 2711 0 3037 0 3371 0 3691 0
2089 35 2393 3 2713 1 3041 1 3373 2 3697 3
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