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Abstract. Let S be a finite group with a character, sgn, of order 2, and
S′ its central extension by a group Z = 〈z〉 of order 2. A representation π of
S′ is called spin if π(zσ′) = −π(σ′) (σ′ ∈ S′), and the set of all equivalence
classes of spin irreducible representations (= IRs) of S′ is called the spin dual
of S′. Take a finite number of such triplets (S′j , zj , sgnj) (1 ≤ j ≤ m). We

define twisted central product S′ = S′1∗̂S′2∗̂ · · · ∗̂S′m as a double covering of S =
S1 × · · · × Sm, Sj = S′j/〈zj〉, and for spin IRs πj of S′j , define twisted central

product π = π1∗̂π2∗̂ · · · ∗̂πm as a spin IR of S′. We study their characters
and prove that the set of spin IRs π of this type gives a complete set of
representatives of the spin dual of S′. These results are applied to the case
of representation groups S′ for S = Sn and An, and their (Frobenius-)Young
type subgroups.

Introduction.

Let S′ be a central extension of a finite group S by a central subgroup Z = 〈z〉 of
order 2. A representation π of S′ is called spin if π(zσ′) = −π(σ′) (σ′ ∈ S′), and the

set of equivalence classes of spin irreducible representations (= IRs) is denoted by Ŝ′
spin

,
and is called the spin dual of S′. The category of such (S′, z) is denoted by G . Suppose
moreover that S has a character, denoted by sgn, of order 2, and extend it to S′ through
S′ → S. The subcategory consisting of all such triplets (S′, z, sgn) is denoted by G ′. For
(S′, z) ∈ G \ G ′, we add the superfluous datum sgn ≡ 1 for convenience.

A typical example in G ′ is given by S = Sn, n-th symmetric group, and its repre-
sentation group S̃n = T′n in the notation in [15, Section 3], and that of G \G ′ is given by
S = An, n-th alternating group, and Bn := Φ−1

S (An) with the canonical homomorphism
ΦS : S̃n → Sn. Bn is a representation group of An for n ≥ 4, 6= 6, 7 [15, Section 4].

We study here the twisted central product S′ = S′1∗̂S′2∗̂ · · · ∗̂S′m ∈ G of (S′j , zj , sgnj)
∈ G (j ∈ Im = {1, 2, . . . , m}) and the twisted central product π = π1∗̂π2∗̂ · · · ∗̂πm of
spin IRs πj of S′j as a spin IR of S′. They turn out to be non-twisted central products
if all (S′j , zj , sgnj) but with at most one exception belong to G \ G ′. The main idea
comes from Schur’s fundamental work [15] on spin (projective) representations of Sn
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and An, and the present paper clarifies the generality and the validity of his method,
which at the first glance seems to be very mysterious. Important examples are the case
of (Frobenius-)Young type subgroups Sν = Sν1 × Sν2 × · · · × Sνm ↪→ Sn and the
corresponding Schur-Young type subgroup S̃ν := Φ−1

S (Sν), where ν = (νj)j∈Im is a
partition of n : ν1 +ν2 + · · ·+νm = n. The latter is canonically isomorphic to the twisted
central product of S̃νj

(j ∈ Im). Also important is the case of An ∩Sν and Bn ∩ S̃ν .
Our main results here are

(1) by the method of taking the twisted central product π1∗̂π2∗̂ · · · ∗̂πm of spin IRs πj

of S′j , we obtain a complete set of representatives of spin dual of the twisted central
product S′1∗̂S′2∗̂ · · · ∗̂S′m of (S′j , zj , sgnj), j ∈ Im, and

(2) we give a formula for calculating the characters of twisted central product
π1∗̂π2∗̂ · · · ∗̂πm, and

(3) applying these methods to the case of Schur-Young type subgroups of S̃n and Bn,
we obtain a complete parametrization of their spin duals, and certain results on their
characters.

We observe that, contrary to the cases of ordinary tensor products and of non-
twisted central products, the associativity law does not hold in general for the method
of constructing twisted central product of πj ’s, that is, even though (π1∗̂π2)∗̂π3 and
π1∗̂(π2∗̂π3) are mutually equivalent, their intertwining operators are non-trivial and to
be determined by explicit calculations (see Section 3).

The category G was first introduced by Hoffman-Humphreys [6], and the twisted
central product of representations is studied in [7, Sections 3–5] and also in [8] (in
modular cases) in case m = 2. Here we study it from a more general standpoint following
ideas of Schur and clarifies the situation for general m ≥ 2 over C.

Our aim in the future is to apply these results to our study of spin (projective)
representations of complex reflection groups G(m, p, n), p|m, 4 ≤ n ≤ ∞, succeeding to
[2], [3] and [4] (cf. Section 10.5 below).

The present paper is organized as follows.
In Section 1, the twisted central product S′ = S′1∗̂S′2∗̂ · · · ∗̂S′m of groups (S′j , zj , sgnj)

∈ G (j ∈ Im) are studied. In Section 2, the twisted central product π1∗̂π2∗̂ · · · ∗̂πm of
spin representations πj of S′j , as a spin representation of S′, are defined and studied.
Here π1∗̂π2∗̂ · · · ∗̂πm is irreducible if so are all πj ’s. In Section 3, properties of these
twisted central products are examined.

In Section 4, a formula for calculating the character of π1∗̂π2∗̂ · · · ∗̂πm is given, and
the support of the character is evaluated. In Section 5, the completeness of the set of
spin IRs of type π1∗̂π2∗̂ · · · ∗̂πm of S′ is proved, that is, any spin IR of S′ is equivalent
to someone of the above form. In Section 6, the similar results are given for the normal
subgroup B′ := {σ′ ∈ S′; sgn(σ′) = 1} of index 2 of S′.

In Section 7, we explain the intimate relations of the present study to the study of
projective representations of finite groups in general, and to our study on projective IRs
in the case of complex reflection groups in particular.

In Section 8, spin representations of S̃n and those of Bn are reviewed for preparing
definitions and notations for Sections 9–10. In Section 9 and Section 10, the general
theory in Sections 1–6 is applied to the case of Schur-Young type subgroups S̃ν of S̃n
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and to the case of their normal subgroups Bn ∩ S̃ν of index 2 defined by sgn(·) = 1.

1. Twisted central products.

1.1. Categories of double covering finite groups.
Suppose a finite group S′ has a central element z of order 2 and a one-dimensional

character of order ≤ 2, denoted by sgn, such that sgn(z) = 1.
Denote by G the category of all such triplets (S′, z, sgn) (after [6]), and by G ′ the

subcategory of all such (S′, z, sgn) that the order of sgn is exactly 2. We denote (S′, z, sgn)
simply by S′ if there is no danger of misunderstanding.

Put S := S′/Z, Z := {e, z}, then {e} → Z → S′ Φ→ S → {e} is exact, where e

denotes the identity element and Φ denotes the natural homomorphism S′ → S. The
group S′ is a double covering of S, and sgn induces on S a character, denoted by sgnS

or again by sgn if there is no danger of confusion. In the case where sgn is of order 1 (or
trivial), the symbol sgn is superfluous and (S′, z, sgn) means simply a double covering
(S′, z) of S.

A representation π of S′ is called spin representation of S′ (also of S) if π(z) = −I,
where I denotes the identity operator. A representation π with π(z) = I is reduced to a
linear representation of S = S′/Z.

For a representation π of S′ (or of S), the product representation sgn ·π is called its
associate representation. In case π ∼= sgn ·π (equivalent), π is called self-associate. For a
character χ of S′ (or of S), sgn ·χ is called its associate character, and in case χ = sgn ·χ,
it is called self-associate (in [15, Section 14], Schur called this kind of character as
zweiseitige Charakter).

An element σ′ ∈ S′ is called even or odd according as sgn(σ′) = 1 or = −1, and we
put ord(σ′) = 0 or = 1 accordingly (the symbol ord(·) is an abbreviation of the word
order, and this is commonly used in our papers [2]–[4]). For σ = Φ(σ′) ∈ S, it is called
even or odd according to σ′, and we put ord(σ) := ord(σ′), sgn(σ) := sgn(σ′).

Notation 1.1. For (S′, z, sgn) ∈ G , put B′ := sgn−1({1}), C ′ := sgn−1({−1}),
and B := sgn−1

S ({1}), C := sgn−1
S ({−1}). Then, S′ = B′ t C ′, S = B t C.

Example 1.1. For n ≥ 2, let Sn be the n-th symmetric group, and si = (i i+1),
i ∈ In−1 := {1, 2, . . . , n − 1}, be simple transpositions. Further let S̃n be the double
covering group of Sn with a central subgroup Z = {e, z} of order 2 and a canonical
homomorphism ΦS : S̃n → Sn such that {e} → Z → S̃n

ΦS−→ Sn → {e} is exact, and
with generators {z, ri; i ∈ In−1} satisfying a set of fundamental relations

z2 = e, zri = riz (i ∈ In−1), r2
i = e, (riri+1)3 = e, rirj = zrjri (|i− j| ≥ 2),

and ΦS(ri) = si (i ∈ In−1) (in more detail, cf. Theorem 8.1 below). For n ≥ 4, S̃n is
a representation group of Sn which is introduced and denoted by T′n in [15, Section 3].
Put (S′, z, sgn) = (S̃n, z, sgn) for n ≥ 2. Then they are typical elements of the category
G ′, and B′ := Φ−1

S (An), C ′ = Cn := S̃n \Bn, S = Sn, B = An, C = Sn \ An. Note
that (B′, z, sgn |B′) belongs to G . For n = 1, put S̃1 := {e, z}, then S̃1 ∈ G \ G ′.
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Definition 1.1. For (S′j , zj , sgnj) ∈ G , j ∈ Im = {1, 2, . . . , m}, we define their
twisted central product in two steps.

First step. Prepare a central element z of order 2, and consider a set H of elements
expressed as zaσ′1σ

′
2 · · ·σ′m (a = 0, 1, σ′j ∈ S′j (j ∈ Im)). Preserving the product rule in

each S′j , we introduce in H a product by

σ′jσ
′
k := zord(σ′j) ord(σ′k)σ′kσ′j (j 6= k, j, k ∈ Im), (1.1)

and accordingly, for b = 0, 1 and σ′′j ∈ S′j (j ∈ Im),

(
zaσ′1σ

′
2 · · ·σ′m

)(
zbσ′′1σ′′2 · · ·σ′′m

)

:= za+b+
P

j>k ord(σ′j) ord(σ′′k ) · (σ′1σ′′1
)(

σ′2σ
′′
2

) · · · (σ′mσ′′m). (1.2)

Then H becomes a group. Define a one-dimensional character sgn of H by

sgn
(
zaσ′1σ

′
2 · · ·σ′m

)
:=

∏

j∈Im

sgnj(σ
′
j). (1.3)

Second step. Let Z ′ be the central subgroup of H generated by zjz
−1 = zjz

(j ∈ Im), and take the quotient group H := H/Z ′. Then a character, denoted again by
sgn, is induced from that on H, and the triplet (H, z, sgn) is an element of the category G .
H is called the twisted central product of S′j (j ∈ Im) and is denoted by S′1∗̂S′2∗̂ · · · ∗̂S′m.

Note that, when all S′j (j ∈ Im) are from G \ G ′ with at most one exception, then
S′1∗̂S′2∗̂ · · · ∗̂S′m is actually a non-twisted central product.

Each group S′j is contained in S′ := S′1∗̂S′2∗̂ · · · ∗̂S′m isomorphically and its image
is identified with S′j . Then S′j ∩ S′k = Z := 〈z〉 (j 6= k), and each element σ′ ∈ S′ is
expressed as σ′ = σ′1σ

′
2 · · ·σ′m (σ′j ∈ S′j). Introduce notations S = S′/Z, Sj := S′j/〈zj〉,

then S is canonically isomorphic to the direct product S1×S2×· · ·×Sm, and is identified
with it. Furthermore we put

{
B′

j := {σ′j ∈ S′j ; sgnj(σ′j) = 1}, C ′j := {σ′j ∈ S′j ; sgnj(σ′j) = −1};
Bj := {σj ∈ Sj ; sgnj(σj) = 1}, Cj := {σj ∈ Sj ; sgnj(σj) = −1}. (1.4)

Each (B′
j , zj , sgnj |B′j ) is an element of G with trivial sgnj |B′j , and the product

B′
1B

′
2 · · ·B′

m = {b′1b′2 · · · b′m; b′j ∈ B′
j (j ∈ Im)} in S′ is a group isomorphic to the non-

twisted central product B′
1∗̂B′

2∗̂ · · · ∗̂B′
m.

1.2. Conjugacy in a twisted central product.
Proposition 1.1. Express two elements of a twisted central product S′ :=

S′1∗̂ · · · ∗̂S′m as σ′ = σ′1 · · ·σ′m, σ′′ = σ′′1 · · ·σ′′m (σ′j , σ′′j ∈ S′j (j ∈ Im)).

( i ) σ′ and σ′′ coincide with each other if and only if

σ′j = zaj σ′′j (j ∈ Im), a1 + · · ·+ am ≡ 0 (mod 2).
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( ii ) If σ′ and σ′′ are conjugate to each other under S′, then for each j ∈ Im, σ′j is
conjugate to zaj σ′′j , with some aj = 0, 1, under S′j. Conversely if σ′j is conjugate
to zaj σ′′j under S′j, then σ′ and zaσ′′ are conjugate to each other under S′ with
some a = 0, 1.

Proof. (ii) Suppose that σ′ and σ′′ are conjugate to each other under ξ =
ξ1 · · · ξm (ξj ∈ S′j), that is, ξσ′ξ−1 = σ′′. The left hand side equals ξσ′ξ−1 =
za(ξ1σ

′
1ξ
−1
1 ) · · · (ξmσ′mξ−1

m ), with

a ≡
∑

j 6=k in Im

ord(σ′k) ord(ξj) +
∑

j<k in Im

ord(ξj) ord(ξk) (mod 2).

Accordingly ξjσ
′
jξ
−1
j = zaj σ′′j (∃aj , j ∈ Im), with a1 + · · ·+ am ≡ a.

Converse discussion is also valid. ¤

Example 1.2. For a σ′ ∈ S̃n, put σ = Φ(σ′) ∈ Sn. After Schur [15], we call σ′

(and σ) of the first kind or the second kind if σ′ is conjugate under S̃n to zσ′ or not.
Decompose σ into a product of mutually disjoint cycles σj as σ = σ1σ2 · · ·σt and let
`j be the length of cycle σj . Adjoining cycles of length 1 for conveniences, we assume
`1 +`2 + · · ·+`t = n. We call σ′ ∈ Bn (or σ ∈ An) of the third kind if `j ’s are all different.
We know from [15, Section 7, Satz IV] and [15, Section 9, Satz V] the following:

(1.2.1). σ′ ∈ S̃n is of the second kind if and only if one of the following conditions
holds:

(2-ev) sgn(σ) = 1 and `j ’s are all odd (or sgn(σj) = 1);
(2-od) sgn(σ) = −1 and `j ’s are all different.

(1.2.2). For σ′ ∈ Bn, σ′ and zσ′ are conjugate under S̃n but not under Bn if and
only if it is of the third kind.

A complete set of conjugacy classes of S̃n (or of Bn) is given as follows. For a
subinterval K = [p, q] = {p, p+1, . . . , q} of In, put σ′K := rprp+1 · · · rq−1 (σK = e if
p = q), then ΦS(σ′K) is the cyclic permutation (p p+1 . . . q). For a partition

` := (`1, `2, . . . , `t), `1 ≥ `2 ≥ · · · ≥ `t > 0, `1 + `2 + · · ·+ `t = n, (1.5)

of n, put M0 = 0, Mi = `1 + · · · + `i (i ∈ It), and let Ki := [Mi−1,Mi] (i ∈ It) be
subinterval of In and call σ′` := σ′K1

σ′K2
· · ·σ′Kt

the standard element of S̃n corresponding
to `. Let L(σ′) = L(σ) be the length of σ with respect to simple transpositions si =
(i i+1) (i ∈ In−1), then L(σ) =

∑
j∈It

(`j − 1). Put s(`) := ]{j ∈ It; `j even}, then
sgn(σ) = (−1)s(`). From (1.2.1) and (1.2.2) we obtain the following:

(1.2.3). A complete set of representatives of conjugacy classes of S̃n is given by

{
σ′`, zσ′`; s(`) = 0

} ⊔ {
σ′`, zσ′`; s(`) odd, `j all different

} ⊔ {
σ′`; other `

}
.
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Such a set for Bn is given by

{
σ′s(`), zσ′s(`); s(`) = 0

} ⊔ {
σ′s(`), zσ′s(`); s(`) > 0 even, `j all different

}

⊔ {
σ′s(`); s(`) > 0 even, `j ’s have multiplicities

}
.

Example 1.3. Take an ordered decomposition ν = (νj)j∈Im , |ν| := ν1 + ν2 + · · ·+
νm = n (here we do not assume the order of large or small among νj ’s), and take a
subgroup of (Frobenius-)Young type of Sn as Sν := Sν1 × Sν2 × · · · × Sνm

, then the
full inverse image S̃ν := Φ−1

S

(
Sν1 × · · · ×Sνm

)
is called a subgroup of Schur-Young type

of S̃n. Here Sνj
is identified with the symmetric group SJj

acting on the sub-interval
Jj := [ν1 + · · · + νj−1 + 1, ν1 + · · · +νj ] of In = [1, n] = {1, 2, . . . , n} (in particular,
J1 = [1, ν1]). In this case, S̃ν is naturally isomorphic to the twisted central product of
S̃νj

= Φ−1
S (Sνj

) (j ∈ Im), where S̃νj
= {e, z} if νj = 1 : S̃ν

∼= S̃ν1 ∗̂ · · · ∗̂S̃νm
.

A complete set of representatives of conjugacy classes of S̃ν is given by using (1.2.3).

2. Spin representations of twisted central product groups.

2.1. Spin representations of double covering groups.
Let (S′, z, sgn) ∈ G . If sgn is of order 2, B′ = {σ′ ∈ S′; ord(σ′) = 0} is a normal

subgroup of S′ of index 2, and C ′ = {σ′ ∈ S′; ord(σ′) = −1} = κ′B′ for any κ′ ∈ C ′.
When sgn is trivial, B′ = S′, C ′ = ∅.

Let Ŝ′
spin

be the set of all equivalence classes of irreducible spin representations of
S′, and call it the spin dual of S′. This is nearly a half of the total dual Ŝ′ as is shown
in the following proposition. Denote by [π] the equivalence class of π.

Proposition 2.1. For the spin dual Ŝ′
spin

of a group S′ ∈ G , there holds

∑

[π]∈cS′spin

(dimπ)2 =
1
2
|S′| = |S|. (2.1)

Proof. Note that Ŝ′ = Ŝ′
spin t Ŝ. Then the above formula comes from the

following two equalities for S′ and S:

∑

π∈cS′
(dimπ)2 = |S′|,

∑

π0∈bS
(dimπ0)2 = |S| = 1

2
|S′|. ¤

For (S′, z, sgn) ∈ G ′, an intimate relation between IRs of S′ and those of its normal
subgroup B′ is given as follows. We prepare a notation: for a representation π of S′,
denote by ResS′

B′π the restriction π|B′ .

Proposition 2.2. Let π be a spin IR of S′ ∈ G ′.

( i ) Assume that π is non-self-associate, that is, π 6∼= sgn ·π. Then the restriction
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ResS′
B′π of π onto B′ remains to be irreducible. Denote it by ρ, then κ′ρ ∼= ρ

for any κ′ ∈ C ′, where (κ′ρ)(τ ′) := ρ(κ′−1
τ ′κ′) (τ ′ ∈ B′), and for the induced

representation of ρ from B′ to S′,

IndS′
B′ ρ

∼= π ⊕ (sgn ·π).

( ii ) Assume that π is self-associate, that is, π ∼= sgn ·π. Then the restriction π|B′ splits
into a direct sum of two non-equivalent IRs ρ and ρ′, and ρ′ is equivalent to κ′ρ

for any κ′ ∈ C ′:

ResS′
B′π = ρ⊕ ρ′, ρ′ ∼= κ′ρ.

In this case, IndS′
B′ ρ

∼= IndS′
B′ ρ

′ ∼= π.

Proof. (1) Let ρ be an irreducible component of the restriction π|B′ . Let V (π)
and V (ρ) be their representation spaces. Then, since S′ = B′ t C ′, C ′ = κ′B′, we
have only two cases as follows: (Case 1) V (π) = V (ρ), π(κ′)V (ρ) = V (ρ), and (Case 2)
V (π) = V (ρ) + π(κ′)V (ρ) (direct sum).

On the subspace π(κ′)V (ρ), B′ acts according to κ′ρ. In fact, π(τ ′)(π(κ′)w) =
π(κ′)((κ′ρ)(τ ′)w) (τ ′ ∈ B′, w ∈ V (ρ)). Hence, in Case 1, we have necessarily κ′ρ ∼= ρ.

In Case 2, we have κ′ρ 6∼= ρ. In fact, if κ′ρ ∼= ρ, as is proved by calculations, there
exist non-trivial intertwining operators of π. This contradicts the irreducibility of π. So
κ′ρ 6∼= ρ.

(2) On the other hand, consider Π := IndG′
B′ ρ. We realize this as follows. The space

V (Π) consists of V (ρ)-valued functions ϕ on G′ satisfying the homogeneity condition

ϕ(τ ′σ′) = ρ(τ ′)ϕ(σ′) (τ ′ ∈ B′, σ′ ∈ S′), (2.2)

and the operator Π(σ′0) is given by Π(σ′0)ϕ(σ′) := ϕ(σ′σ′0) (σ′0, σ
′ ∈ S′). Taking a

complete set of representatives of the coset space B′\S′ as {e, κ′−1}, we define a map

Ψ : V (Π) 3 ϕ 7→ (
ϕ(e), ϕ(κ′−1)

) ∈ V (ρ)⊗ V (ρ).

Then, for ϕ′ := Π(τ ′)ϕ and ϕ′′ := Π(κ′)ϕ,

(
ϕ′(e), ϕ′(κ′−1)

)
=

(
ϕ(τ ′), ϕ(κ′−1

τ ′)
)

=
(
ρ(τ ′)ϕ(e), (κ′ρ)(τ ′)ϕ(κ′−1)

)
,

(
ϕ′′(e), ϕ′′(κ′−1)

)
=

(
ϕ(κ′), ϕ(e)

)
=

(
ρ(κ′2)ϕ(κ′−1), ϕ(e)

)
.

Therefore Π′ := Ψ ·Π ·Ψ−1 is expressed in a matrix form as

Π′(τ ′) =
(

ρ(τ ′) O
O (κ′ρ)(τ ′)

)
, Π′(κ′) =

(
O ρ(τ ′0)
I O

)
, (2.3)
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where τ ′0 := κ′ 2 ∈ B′, and I denote the identity operator on V (ρ).
Now, in Case 1, there exists an intertwining operator A on V (ρ) such that (κ′ρ)(τ ′) =

A−1ρ(τ ′)A (τ ′ ∈ B′). Then, for τ ′ ∈ B′,

{
ρ
(
τ ′0
−1

τ ′τ ′0
)

= A−1ρ
(
κ′−1

τ ′κ′
)
A = A−2ρ(τ ′)A2,

ρ
(
τ ′0
−1

τ ′τ ′0
)

= ρ
(
τ ′0

)−1
ρ(τ ′)ρ

(
τ ′0

)
,

and since ρ is irreducible, it follows that A2ρ(τ ′0)
−1 is a scalar operator. Replacing A by

its scalar multiple appropriately, we obtain A2 = ρ(τ ′0). Transform Π′ to Π′′ = Φ ·Π′ ·Φ−1

with Φ = diag(I, A), then

Π′′(τ ′) =
(

ρ(τ ′) O
O ρ(τ ′)

)
, Π′′(κ′) =

(
O A
A O

)
. (2.4)

A basis of the space of intertwining operators of Π′′ is given by two projections

P± :=
1√
2
(I ±Q) with I :=

(
I O
O I

)
, Q :=

(
O I
I O

)
.

For two irreducible components Π′′± := P±Π′′P± of Π′′, we have by simple calculations
Π′′−(τ ′) = Π′′+(τ ′), Π′′−(τ ′κ′) = −Π′′−(τ ′κ′) = sgn(τ ′κ′) ·Π′′−(τ ′κ′) for τ ′ ∈ B′.

Lastly in Case 2, since ρ 6∼= κ′ρ, we see from (2.3) that Π′ is irreducible. For the
character χΠ′ of Π′, we see immediately from (2.3) that χΠ′ = 0 on C ′ = κ′B′, and so
χΠ′ = sgn ·χΠ′ . This means that Π′ ∼= sgn ·Π′.

Summarizing altogether, we see that Case 1 and Case 2 correspond exactly to the
assertions (i) and (ii) of the proposition respectively. ¤

Proposition 2.3. In the converse way, take a spin IR ρ of B′ and put Π :=
IndS′

B′ ρ. Then Π|B′ ∼= ρ⊕ κ′ρ for any κ′ ∈ C ′.

( i ) Assume that κ′ρ ∼= ρ. Then Π is equivalent to a direct sum of non-equivalent spin
IRs π and sgn ·π : Π = IndS′

B′ ρ
∼= π ⊕ (sgn ·π).

( ii ) Assume that κ′ρ 6∼= ρ. Then Π is irreducible. Denoted it by π, then π ∼= sgn ·π.

Proof. Starting from a spin IR ρ of B′, we can read the part (2) of the above
proof for Proposition 2.2 as a proof of this proposition. ¤

For an S′ ∈ G , we introduce in the set of its representations an equivalence relation
ass∼ obtained by adding to the usual equivalence ∼= a new relation (new if S′ ∈ G ′) that π

and its associate sgn ·π are mutually equivalent, that is,

π
ass∼ π′ def⇐⇒ π′ ∼= π or π′ ∼= sgn ·π.

The equivalence class of spin IR π under ass∼ is denoted by [π]ass and is called the associate
equivalence class of π. If π is self-associate or non-self-associate, then [π]ass = [π] or
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[π]ass = [π] t [sgn ·π] correspondingly. Denote by assŜ′
spin

the set of all equivalence

classes of spin IRs under ass∼ , which is a quotient of Ŝ′
spin

.
For the set of spin IRs of B′, introduce an equivalence relation out∼ defined by ρ′ out∼

ρ
def⇐⇒ ρ′ ∼= ρ or ρ′ ∼= κ′ρ (∃κ′ ∈ C ′). This means that ρ′ is equivalent to xρ for some

x ∈ Ad(S′)|B′ = {Ad(σ′)|B′ ;σ′ ∈ S′} which may contain outer automorphisms of B′,
where Ad(σ′)(s′) := σ′s′σ′−1 (s′ ∈ S′). The equivalence class of ρ for out∼ is denoted by
[ρ]out. Then, [ρ]out = [ρ] or [ρ]out = [ρ] t [κ

′
ρ] according as ρ ∼= κ′ρ or not. The set of all

such equivalence classes is denoted by outB̂′spin
.

Noting that Frobenius reciprocity law says that, for any IRs π0 of S′ and ρ0 of B′,
[IndS′

B′ ρ0 : π0] = [ResS′
B′π0 : ρ0], we obtain from Propositions 2.2 and 2.3, the following

theorem.

Theorem 2.4. Let (S′, z, sgn) ∈ G ′.

( i ) There exists a natural bijective correspondence between the sets of equivalence

classes assŜ′
spin

and outB̂′spin
, and it is given by ResS′

B′ and IndS′
B′ as follows. For

[π]ass, take the equivalence class of outB̂′spin
which is represented by irreducible

components of ResS′
B′ . Conversely for [ρ]out, take the equivalence class of assŜ′

spin

which is represented by irreducible components of IndS′
B′ ρ.

( ii ) When π runs over a complete set of representatives of assŜ′
spin

, the set of irre-
ducible components of ResS′

B′π forms a complete set of representatives of the spin

dual B̂′spin
of B′.

For a self-associate spin IR π, the difference of characters of two IRs ρ, ρ′ of B′ is
called the complement of the character χπ (and of π too), after the terminology Komple-
ment in [15, Section 16], and is denoted by δπ:

δπ(τ ′) := χρ(τ ′)− χρ′(τ ′) = χρ(τ ′)− χρ

(
κ′−1

τ ′κ′
)

(τ ′ ∈ B′). (2.5)

Here we should specify ρ (from ρ′). We have irreducible characters of B′ as

χρ =
1
2
(χπ + δπ), χρ′ =

1
2
(χπ − δπ). (2.6)

We extend δπ from B′ to the whole S′ = B′ t C ′ by putting δπ(κ′) = 0 for κ′ ∈ C.

Lemma 2.5. Let π be a self-associate spin representation of S′ ∈ G ′ on a vector
space V (π). Then there exists a linear operator H on V (π) satisfying

H2 = I, tr(H) = 0, (2.7)
{

Hπ(τ ′) = π(τ ′)H (τ ′ ∈ B′),

Hπ(κ′) = −π(κ′)H (κ′ ∈ C ′).
(2.8)
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In case π is irreducible, H is unique up to the sign ±. Choose the sign appropriately,
then

tr
(
π(τ ′)H

)
= δπ(τ ′) (τ ′ ∈ B′), tr

(
π(κ′)H

)
= 0 (κ′ ∈ C ′). (2.9)

Proof. Suppose π is irreducible. As is seen in part (2) of the proof of Proposition
2.2, π is realized in the form of (2.3), so that we have an expression of π by matrices as

π(τ ′) =
(

ρ(τ ′) 0p

0p ρ′(τ ′)

)
, π(κ′) =

(
0p q(κ′)

q′(κ′) 0p

)
(τ ′ ∈ B′, κ′ ∈ C ′),

where p = dim ρ = dim ρ′, 0p and Ep are respectively zero matrix and identity matrix of
degree p, and q(κ′), q′(κ′) are matrices determined by κ′. Then we can take as H the
following: H = ±diag(Ep,−Ep).

Suppose π is not irreducible. Then, we see from Theorem 2.4 that, by irreducible
decomposition, π is a direct sum of self-associate IRs πj (j ∈ J) and pairs πk ⊕ (sgn ·πk)
(k ∈ K) of non-self-associate IRs. For each πj (j ∈ J), Hj on V (πj) is taken as above.

For a pair π′k := πk ⊕ (sgn ·πk), put V (π′k) := V
(0)
k ⊕ V

(1)
k , V

(α)
k := V ((sgn)α · πk) =

V (πk), α = 0, 1. By Proposition 2.2 (i), ρk := πk|B′ is irreducible, and so we can take as
Hk the interchange of V

(0)
k and V

(1)
k as Hk(v ⊕ v′) = v′ ⊕ v (v, v′ ∈ V (πk)). In fact, for

τ ′ ∈ B′, κ′ ∈ C ′, π′k(τ ′) = πk(τ ′)⊕ πk(τ ′), π′k(κ′) = πk(κ′)⊕ (−πk(κ′)).
The sum H of Hj (j ∈ J) and Hk (k ∈ K) satisfies the condition (2.7)–(2.8). ¤

2.2. Construction of spin representations of twisted central product.
Let (S′j , zj , sgnj) (j ∈ Im) be elements of G . Taking a spin representation πj of

S′j for each j ∈ Im, we construct a spin representation of the twisted central product
group S′ := S′1∗̂S′2∗̂ · · · ∗̂S′m, following the method of Schur [15, Section 27]. Since we
can add easily the part of (S′j , zj , sgnj) ∈ G \ G ′, with sgnj trivial and S′j = B′

j , later by
a (non-twisted) tensor product process, here we restrict ourselves to the case where all
sgnj are of order 2, i.e., (S′j , zj , sgnj) ∈ G ′ (j ∈ Im), for simplicity.

Assume that, among πj ’s given, πi (i ∈ Isa
m ) are self-associate, and πj (j ∈ Insa

m ) are
non-self-associate with Im = Isa

m t Insa
m . Express these sets of indexes as

Isa
m = {i1, . . . , ir}, i1 < · · · < ir, Insa

m = {j1, . . . , js}, j1 < · · · < js, (2.10)

where r + s = m.
First we prepare matrices F1, . . . , Fs of size 2s′ , s′ = [s/2], with F0 = E2s′ , satisfying

{
F 2

j = F0 (j ∈ Is),

FjFk = −FkFj (j, k ∈ Is, j 6= k).
(2.11)

As an example, we can take as follows: put

ε =
(

1 0
0 1

)
, a =

(
0 1
1 0

)
, b :=

(
0 −i
i 0

)
, c :=

(
1 0
0 −1

)
, (2.12)
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and with the notation x⊗k = x⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
k-times tensor product

(ignored if k = 0),





F2k−1 := c⊗(k−1) ⊗ a⊗ ε⊗(s′−k) (k ∈ Is′),

F2k := c⊗(k−1) ⊗ b⊗ ε⊗(s′−k) (k ∈ Is′),

F2s′+1 := c⊗s′ .

(2.13)

Then, for self-associate πj (j ∈ Isa
m ), we choose a linear operator Hj on V (πj) satisfying

the following condition: for τ ′j ∈ B′
j , κ′j ∈ C ′j = S′j \B′

j ,

{
H2

j = Ij , tr(Hj) = 0,

Hjπj(τ ′j) = πj(τ ′j)Hj , Hjπj(κ′j) = −πj(κ′j)Hj ,
(2.14)

where Ij denotes the identity operator on V (πj). The operator Hj is uniquely determined
up to a multiplicative sign if πj is irreducible.

Now we give operators π(σ′) for σ′ ∈ S′ = S′1∗̂S′2∗̂ · · · ∗̂S′m on the space V (π) :=
V0 ⊗ V (π1)⊗ · · · ⊗ V (πm) with V0 := C2s′

on which Fj ’s act.

Formula 2.1. As notation, we use symbols τ ′j ∈ B′
j , κ′j ∈ C ′j .

(1) Case of τ ′j ∈ B′
j for some j ∈ Im,

π(τ ′j) := F0 ⊗ I1 ⊗ · · · ⊗ Ij−1 ⊗ πj(τ ′j)⊗ Ij+1⊗ · · · ⊗ Im. (2.15)

(2) Case of κ′j ∈ C ′j for some j = ip ∈ Isa
m ,

π
(
κ′ip

)
:= F0 ⊗

( ⊗

k∈Im

Xk

)
, (2.16)

where

Xi =





Hiq

(
i = iq ∈ Isa

m , q < p
)
,

πip

(
κ′ip

) (
i = ip, in Isa

m

)
,

Ii

(
i ∈ Im, otherwise

)
.

(3) Case of κ′j ∈ C ′j for some j = jp ∈ Insa
m ,

π
(
κ′jp

)
:= Fp ⊗

( ⊗

k∈Im

Xk

)
, (2.17)

where
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Xi =





Hi

(
i ∈ Isa

m ),

πjp(κ′jp
)

(
i = jp, in Insa

m

)
,

Ii

(
i ∈ Insa

m , otherwise
)
.

We illustrate this formula in a special case where Isa
m = Ir, Insa

m = Im \ Ir. In
Case (2) above, for j ∈ Ir = Isa

m ,

π
(
κ′j

)
= F0 ⊗H1 ⊗ · · · ⊗Hj−1 ⊗ πj(κ′j)⊗ Ij+1 ⊗ · · · ⊗ Im. (2.18)

In Case (3) above, for j = r + p ∈ Im \ Ir = Insa
m ,

π
(
κ′j

)
= Fp ⊗H1 ⊗ · · · ⊗Hr ⊗ Ir+1 ⊗ · · · ⊗ Ij−1 ⊗ πj(κ′j)⊗ Ij+1 ⊗ · · · ⊗ Im. (2.19)

In general, we can easily show that the above set of operators satisfies





π
(
τ ′k

)
π
(
τ ′k′

)
= π

(
τ ′k′

)
π
(
τ ′k

) (
k, k′ ∈ Isa

m

)
,

π
(
τ ′j

)
π
(
κ′k

)
= π

(
κ′k

)
π
(
τ ′j

) (
k ∈ Isa

m , j ∈ Insa
m

)
,

π
(
κ′j

)
π
(
κ′j′

)
= −π

(
κ′j′

)
π
(
κ′j

) (
j, j′ ∈ Insa

m , j 6= j′
)
.

This means that this set of operators define a spin representation of the twisted central
product S′ = S′1∗̂S′2∗̂ · · · ∗̂S′m. We call it the twisted central product of π1, . . . , πm and
denote it by π1∗̂π2∗̂ · · · ∗̂πm.

Note 2.1. The formulas (2.18)–(2.19) are in a sense generic. However we should
keep in mind that the order of components πi’s here has a significant meaning for us. As
will be seen in the next section (Section 3), the above construction of twisted central prod-
uct π1∗̂π2∗̂ · · · ∗̂πm of spin representations πi’s does not satisfy in general the commutativ-
ity nor the associativity, unlike the usual tensor product operation. After calculating their
characters in Section 4, we know however that any permutation of components πi’s do not
affect their equivalence, that is, πi1 ∗̂πi2 ∗̂ · · · ∗̂πim of S′i1 ∗̂S′i2 ∗̂ · · ·S′im

∼= S′1∗̂S′2∗̂ · · · ∗̂S′m is
equivalent to π1∗̂π2∗̂ · · · ∗̂πm, where i1, i2, . . . , im is any permutation of 1, 2, . . . , m.

In this connection, see also Section 5.2.

Summarizing, we have the following theorem.

Theorem 2.6. Let (S′j , zj , sgnj) (j ∈ Im) be elements of G ′. For spin rep-
resentations πj of S′j for j ∈ Im, Formula 2.1 above defines a spin representation
π = π1∗̂π2∗̂ · · · ∗̂πm of S′ = S′1∗̂S′2∗̂ · · · ∗̂S′m, for each choice of Hj in (2.14) for self-
associate πj’s. Moreover dimπ = 2[s/2]

∏
j∈Im

dimπj. When all πj’s are irreducible, π

is irreducible.

We omit here a direct proof of irreducibility (cf. Proposition 5.1 (iii) for another
proof). The following lemma shows a peculiar property of the twisted central product
π1∗̂π2∗̂ · · · ∗̂πm.
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Proposition 2.7. According that the number s of non-self-associate πj’s is even
or odd, the twisted central product π = π1∗̂π2∗̂ · · · ∗̂πm of S′ = S′1∗̂S′2∗̂ · · · ∗̂S′m is self-
associate or non-self-associate.

Proof. We prove this for m = 2 and s = 2. The general case will become clear
in occasion of calculating characters later in Section 4.1. Note that B′ = B′

1B
′
2 t C ′1C

′
2,

C ′ = B′
1C

′
2 t C ′1B

′
2, where C ′1C

′
2 := {κ′1κ′2;κ′j ∈ C ′j (j ∈ I2)} etc. For s = 2, we have

2s′ = 2[s/2] = 2, and for σ′ = τ ′1κ
′
2 ∈ B′

1C
′
2 or σ′ = κ′1τ

′
2 ∈ C ′1B

′
2 respectively,

π(σ′) = π
(
τ ′1κ

′
2

)
= F2 ⊗ π1

(
τ ′1

)⊗ π2

(
κ′2

)
, or

π(σ′) = π
(
κ′1τ

′
2

)
= F1 ⊗ π1

(
κ′1

)⊗ π2

(
τ ′2

)
.

Hence, for the character χπ of π, we have χπ(σ′) = 0 for σ′ ∈ C ′. This means that
χπ = χsgn ·π, and so π ∼= sgn ·π, that is, π is self-associate. ¤

3. Remarks on the twisted central products.

3.1. On the twisted product of groups S′
1∗̂S′

2∗̂· · ·∗̂S′
m.

The associativity law holds for the twisted central product S′1∗̂S′2∗̂ · · · ∗̂S′m of groups
as is seen from the very Definition 1.1, that is, (S′1∗̂S′2)∗̂S′3 = S′1∗̂(S′2∗̂S′3).

Moreover, since S′1∗̂S′2 and S′2∗̂S′1 are naturally isomorphic, the commutativity law
is also valid for the twisted central product of groups.

3.2. On the associativity for the twisted central product π1∗̂· · ·∗̂πm.
We ask if the associativity law holds for the twisted central product of spin repre-

sentations π1∗̂π2∗̂ · · · ∗̂πm.

Example 3.1. For spin irreducible representations πj of S′j for j ∈ I3, assume
that π1 is self-associate and π2, π3 are non-self-associate. Put π := (π1∗̂π2)∗̂π3, π′ :=
π1∗̂(π2∗̂π3). Then, noting that π1∗̂π2 is non-self-associate and π2∗̂π3 is self-associate
(by Proposition 2.7), we obtain the following, with Fj ’s of degree 2. Put Vj := V (πj)
(j ∈ I3), and V0 = C2 on which Fj ’s act, then the representation spaces are

V (π) = V0 ⊗
(
V1 ⊗ V2

)⊗ V3, V (π′) = V1 ⊗
(
V0 ⊗ V2 ⊗ V3

)
,

and let Rij : Vi⊗Vj → Vj ⊗Vi be the linear operator permuting components as Rij(vi⊗
vj) := vj ⊗ vi (vp ∈ Vp). For κ′j ∈ C ′j (j ∈ I3),





π(κ′1) = F1 ⊗
(
π1(κ′1)⊗ I2

)⊗ I3,

π(κ′2) = F1 ⊗
(
H1 ⊗ π2(κ′2)

)⊗ I3,

π(κ′3) = F2 ⊗
(
I1 ⊗ I2

)⊗ π3(κ′3),

(3.1)

and π is self-associate with the operator H = F3 ⊗ I1 ⊗ I2 ⊗ I3. Moreover
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



π′(κ′1) = π1(κ′1)⊗
(
F0 ⊗ I2 ⊗ I3

)
,

π′(κ′2) = H1 ⊗
(
F1 ⊗ π2(κ′2)⊗ I3

)
,

π′(κ′3) = H1 ⊗
(
F2 ⊗ I2 ⊗ π3(κ′3)

)
,

(3.2)

and π′ is self-associate with the operator H ′ = H1 ⊗ (F3 ⊗ I2 ⊗ I3).
Comparing these formulas for π and π′, it is difficult to say that they are the same,

but they are actually mutually equivalent as seen below.

Proposition 3.1. Let π1 be self-associate, and π2, π3 be non-self-associate. Then
two spin IRs π = (π1∗̂π2)∗̂π3 and π′ = π1∗̂(π2∗̂π3) of S′ = S′1∗̂S′2∗̂S′3 are mutually
equivalent, and an intertwining operator T : V (π) → V (π′) between them such as
π′(σ′)T = Tπ(σ′) (σ′ ∈ S′) is given by

T = (R01X)⊗ I2 ⊗ I3, X =
1
2
(F0 + F1)⊗ I1 +

1
2
(F0 − F1)⊗H1,

with X2 = F0 ⊗ I1, T−1 = (XR10)⊗ I2 ⊗ I3.

3.3. On the commutativity for the twisted central product π1∗̂· · ·∗̂πm.
Here we check if the commutativity law holds for the construction of π1∗̂ · · · ∗̂πm.

So we compare π := π1∗̂π2 and π′ := π2∗̂π1.

Example 3.2. Assume that π1, π2 are both self-associate. Then V (π) = V1 ⊗ V2

and V (π′) = V2 ⊗ V1, and for κ′j ∈ C ′j ,

{
π(κ′1) = π1(κ′1)⊗ I2,

π(κ′2) = H1 ⊗ π2(κ′2),

π: self-associate,

H = H1 ⊗H2.

{
π′(κ′1) = H2 ⊗ π1(κ′1),

π′(κ′2) = π2(κ′2)⊗ I1,

π′: self-associate,

H ′ = H2 ⊗H1.

An intertwining operator T , which proves the equivalence between π and π′, is given
as follows. Put

T ′ :=
1
2
(I1 + H1)⊗ I2 +

1
2
(I1 −H1)⊗H2,

a linear transformation on V (π). Take T = R12T
′ : V (π) → V (π′), then we obtain an

intertwining relation as π′(σ′) · T = T · π(σ′) (σ′ ∈ S′). Since T is not trivial, we can say
that the commutativity law fails to hold for π1∗̂π2 and π2∗̂π1.

Example 3.3. Assume that π1 and π2 are both non-self-associate. Then, V (π) =
V0 ⊗ V1 ⊗ V2, V (π′) = V0 ⊗ V2 ⊗ V1 with V0 = C2, and for κ′j ∈ C ′j ,
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{
π(κ′1) = F1 ⊗ π1(κ′1)⊗ I2,

π(κ′2) = F2 ⊗ I1 ⊗ π2(κ′2),

π: self-associate,

H = F3 ⊗ I1 ⊗ I2.

{
π′(κ′1) = F2 ⊗ I2 ⊗ π1(κ′1),

π′(κ′2) = F1 ⊗ π2(κ′2)⊗ I1,

π′: self-associate,

H ′ = F3 ⊗ I2 ⊗ I1.

Put T := (1/
√

2)(F1 + F2)⊗R12. Then T gives an equivalence between π and π′ as
π′(σ′)T = T π(σ′) (σ′ ∈ S′). This time again, T is not trivial, and we cannot say that
the commutativity holds for π1∗̂π2 and π2∗̂π1.

4. Characters of the twisted central product.

4.1. Characters of the twisted central product.
To calculate the character of π1∗̂ · · · ∗̂πm, it can be seen from Formula 2.1 that,

without loss of generality, we may assume that πj (j ∈ Ir) are self-associate and πj

(j ∈ Im\Ir) are non-self-associate. Put s := m−r. An element σ′ of S′ = S′1∗̂S′2∗̂ · · · ∗̂S′m
is expressed as σ′ = σ′1 · · ·σ′r · σ′r+1 · · ·σ′m, σ′j ∈ S′j (j ∈ Im). To calculate the character
χπ(σ′) = tr(π(σ′)) of π = π1∗̂ · · · ∗̂πm, we see easily from Formula 2.1, or more exactly
from the formula (2.18)–(2.19), the following two facts.

(4.1). Assume that σ′j is from C ′j = S′j \ B′
j for some j ∈ Ir. Put κ′j = σ′j and

insert it in Formula 2.1 (2), then, in the expression of

π(σ′) = π(σ′1) · · ·π(σ′j) · · ·π(σ′r+1) · · ·π(σ′m)

as a tensor product along the form of the space V (π) = V0 ⊗ V (π1) ⊗ · · · ⊗ V (πm), its
component on V (πj) is either πj(κ′j) or πj(κ′j)Hj , and in any case its trace is zero by
Lemma 2.5. Hence tr π(σ′) = 0.

Therefore, if trπ(σ′) 6= 0, then necessarily σ′j ∈ B′
j for any j ∈ Ir.

(4.2). Assume that σ′j ∈ C ′j for some j ∈ Im\ Ir. Then, in the expression of π(σ′)
in the form of tensor product, its component on the space V0 is the product of Fi over
such i ∈ Is that σ′j ∈ C ′j for j = r + i ∈ Im \ Ir. Then we apply the following lemma on
the trace of the products of Fi’s, and see that, if trπ(σ′) 6= 0, then s is odd and σ′j ∈ C ′j
for all j ∈ Im \ Ir.

Lemma 4.1. For a product F a1
1 F a2

2 · · ·F as
s , aj ≥ 0, of Fi’s, its trace is non-zero

only in the following two cases:

(1) aj ≡ 0 (mod 2,∀j ∈ Is), in this case,

tr
(
F a1

1 F a2
2 · · ·F as

s

)
= tr

(
E2[s/2]

)
= 2[s/2].

(2) aj ≡ 1 (mod 2,∀j ∈ Is) and s is odd, and in this case,

tr
(
F a1

1 F a2
2 · · ·F as

s

)
= tr

(
F1F2 · · ·Fs

)
= tr(abc)[s/2] = (2i)[s/2].
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Thus we obtain the following result for the character χπ of the twisted central
product π = π1∗̂ · · · ∗̂πm.

Lemma 4.2. For σ′ = σ′1σ
′
2 · · ·σ′m ∈ S′1∗̂S′2∗̂ · · · ∗̂S′m (σ′j ∈ S′j), the character

χπ(σ′) = trπ(σ′) is zero except the following two cases:
Case (1): σ′j = τ ′j ∈ B′

j (∀j ∈ Im) : π(σ′) = E2[s/2] ⊗ π1(τ ′1)⊗ · · · ⊗ πm(τ ′m),

χπ(σ′) = 2[s/2] · χπ1(τ
′
1) · · ·χπm

(τ ′m). (4.1)

Case (2): s is odd, and σ′j = τ ′j ∈ B′
j (∀j ∈ Ir) and σ′j = κ′j ∈ C ′j (∀j ∈ Im \ Ir) :

π(σ′) = (F1F2 · · ·Fs)⊗
(⊗

j∈Ir
πj(τ ′j)Hj

)⊗ (⊗
j∈Im\Ir

πj(κ′j)
)
,

χπ(σ′) = (2i)[s/2] ·
∏

j∈Ir

δπj
(τ ′j) ·

∏

j∈Im\Ir

χπj
(κ′j). (4.2)

For α = 0, 1, put π
(α)
j := (sgnj)α · πj . Then, by assumption on the indexing,

π
(1)
j

∼= π
(0)
j (j ∈ Ir), π

(1)
j 6∼= π

(0)
j (j ∈ Im \ Ir). Noting this, we obtain the following

results from the character formula above.

Proposition 4.3. Assume s = m− r be odd.

( i ) π = π1∗̂ · · · ∗̂πm is non-self-associate, and tr(π(σ′)) 6= 0 only in the following two
cases:
Case (1-odd): σ′ = τ ′1 · · · τ ′m with τ ′j ∈ B′

j (j ∈ Im). In this case the character χπ

is given by the formula (4.1).
Case (2-odd): σ′ = τ ′1 · · · τ ′rκ′r+1 · · ·κ′m with τ ′j ∈ B′

j (j ∈ Ir), κ′j ∈ C ′j (j ∈ Im\Ir).
In this case, the character χπ is given by the formula (4.2).

( ii ) For αj = 0, 1 (j ∈ Im),

π
(α1)
1 ∗̂ · · · ∗̂π(αm)

m
∼= (sgn)αr+1+···+αm · π1∗̂ · · · ∗̂πm. (4.3)

Proposition 4.4. Assume s = m − r be even. Then π = π1∗̂ · · · ∗̂πm is self-
associate, and for αj = 0, 1 (j ∈ Im),

π
(α1)
1 ∗̂ · · · ∗̂π(αm)

m
∼= π1∗̂ · · · ∗̂πm. (4.4)

As an operator H in (2.7)–(2.8) for π, we have

H = Fs+1 ⊗H1 ⊗ · · · ⊗Hr ⊗ Ir+1 ⊗ · · · ⊗ Im

(if s = 0, the term of Fs+1 is absent). For the complement δπ of π, if δπ(σ′) 6= 0 for
σ′ = σ′1 · · ·σ′m, then σ′j = τ ′j ∈ B′

j (j ∈ Ir), σ′j = κ′j ∈ C ′j (j ∈ Im \ Ir), and
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π(σ′)H = (F1 · · ·FsFs+1)⊗
(⊗

j∈Ir

πj(τ ′j)Hj

)
⊗

( ⊗

j∈Im\Ir

πj(κ′j)
)
,

δπ(σ′) = (2i)[s/2] ·
∏

j∈Ir

δπj (τ
′
j) ·

∏

Im\Ir

χπj (κ
′
j). (4.5)

4.2. Supports of characters and complements of π1∗̂· · ·∗̂πm.
Let (S′j , zj , sgnj) ∈ G . For the twisted central product of spin IRs π = π1∗̂ · · · ∗̂πm,

which is again irreducible and spin, we evaluate the supports of its character χπ, and of its
complement δπ when π is self-associate. This gives us very important information on the
property of π. We summarize the result in a form of a table. We prepare some notation
for subsets of the twisted central product S′ = S′1∗̂ · · · ∗̂S′m and of their components S′j ’s:

{
B′ = {σ′ ∈ S′; sgn(σ′) = 1},
C ′ = {σ′ ∈ S′; sgn(σ′) = −1},





B(πj) := {τ ′j ∈ B′
j ;χπj

(τ ′j) 6= 0},
C(πj) := {κ′j ∈ C ′j ;χπj (κ

′
j) 6= 0},

D(πj) := {τ ′j ∈ B′
j ; δπj

(τ ′j) 6= 0},




B(π1, . . . , πr) := B(π1) · · · B(πr),

C(πr+1, . . . , πm) := C(πr+1) · · · C(πm),

D(π1, . . . , πr) := D(π1) · · · D(πr).

Table 4.1. Supports of χπ and δπ for π = π1∗̂· · ·∗̂πm.
πi (i ∈ Ir) self-associate, πj (j ∈ Im \ Ir) non-self-associate, m = r + s.

• Case of s odd: χπ is non-self-associate, and

supp(χπ) ∩B′ ⊂ B(π1, . . . , πm),

supp(χπ) ∩ C ′ ⊂ D(π1, . . . , πr)C(πr+1, . . . , πm).

• Case of s even: χπ is self-associate, with H = Fs+1 ⊗ (H1 ⊗ · · · ⊗Hr) ⊗ (Ir+1 ⊗
· · · ⊗ Ir+s), and

supp(χπ) ⊂ B(π1, . . . , πm) ⊂ B′,

supp(δπ) ⊂ D(π1, . . . , πr)C(πr+1, . . . , πm) ⊂ B′.

4.3. Sets of representatives of twisted central products π1∗̂· · ·∗̂πm.
Taking into account the equivalence relations (4.3) in case s odd and (4.4) in case s

even, let us choose sets of representatives of π = π1∗̂ · · · ∗̂πm for S′ = S′1∗̂ · · · ∗̂S′m.
In Section 2.1, for an S′ ∈ G , the equivalence relation ass∼ is introduced as π

ass∼
π′ def⇐⇒ π′ ∼= π or π′ ∼= sgn ·π, and the set of associated equivalence classes [π]ass of spin

IRs is denoted by assŜ′
spin

. Take a complete set of representatives of spin IRs Ω(S′) =

Ωsa(S′) t Ωnsa(S′) of assŜ′
spin

, where {[π]ass = [π];π ∈ Ωsa(S′)} covers the associate
equivalence classes of self-associate spin IRs, and {[π]ass = [sgn ·π]ass;π ∈ Ωnsa(S′)}
covers the associate equivalence classes of non-self-associate spin IRs.
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Denote by `2(B′) (resp. `2(S′)) the `2-space on B′ (resp. on S′) with respect to the
normalized invariant measure on B′ (resp. on S′). A function f on B′ (resp. on S′) is
called spin if f(zσ′) = −f(σ′) (σ′ ∈ B′) (resp. σ′ ∈ S′).

Lemma 4.5. (i) The set of spin functions on the subgroup B′ given by

{
1√
2
χπ

∣∣∣
B′

, 1√
2
δπ ; π ∈ Ωsa(S′)

}⊔ {
χπ|B′ ; π ∈ Ωnsa(S′)

}
(4.6)

gives an orthonormal basis of the subspace of `2(B′) consisting of spin central functions
on B′.

(ii) The set of functions on the group S′ given by characters as

{
χπ ; π ∈ Ωsa(S′)

} ⊔ {
χπ, sgn ·χπ ; π ∈ Ωnsa(S′)

}
(4.7)

gives an orthonormal basis of the subspace of `2(S′) consisting of spin central functions
on S′.

(iii) Denote by χπ|′B′ (resp. χπ|′C′) the trivial extension of χπ|′B′ (resp. χπ|′C′) by
putting 0 outside of B′ (resp. C ′). Then, χπ in the first subset of (4.7) can be replaced
by χπ|′B′ , and the pair {χπ, sgn ·χπ} in the second subset can be replaced by the pair
{√2 χπ|′B′ ,

√
2 χπ|′C′}.

Proof. (i) This comes from Theorem 2.4 (i).
(ii) The assertion comes from the definition of Ωsa(S′) and Ωnsa(S′).
(iii) The assertion is affirmed by the fact that χπ|C′ = 0 for π ∈ Ωsa(S′), and

(sgn ·χπ)|C′ = −χπ|C′ for π ∈ Ωnsa(S′). ¤

Now let S′ = S′1∗̂ · · · ∗̂S′m. For each S′j (j ∈ Im), take a complete set of representa-

tives Ω(S′j) = Ωsa(S′j)tΩnsa(S′j) of assŜ′j
spin

as above. For a set (πj)j∈Im
of πj ∈ Ω(S′j),

let s be the number of non-self-associate πj ’s, that is, s := ]{j ∈ Im;πj ∈ Ωnsa(S′j)},
where ]A denotes the order of a set A. Denote by Ωodd(S′) the set of the twisted central
products π = π1∗̂ · · · ∗̂πm with s odd (and so π is non-self-associate), and by Ωeven(S′)
the set of π = π1∗̂ · · · ∗̂πm with s even (and so π is self-associate), and put

Ω(S′) = Ωodd(S′) t Ωeven(S′).

The following lemma follows from the equivalence relations (4.3)–(4.4).

Lemma 4.6. Let S′ = S′1∗̂ · · · ∗̂S′m with S′j ∈ G . For a set (πj)j∈Im of spin IR πj

of S′j for j ∈ Im, let π = π1∗̂ · · · ∗̂πm be their twisted central product. If π is non-self-
associate, then it is equivalent to π′ or to sgn ·π′ for an element π′ ∈ Ωodd(S′). If π is
self-associate, then it is equivalent to an element π′ ∈ Ωeven(S′).

To prove the completeness of the set ftw(S′) of spin IRs obtained as twisted central
products, we need the following.
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Proposition 4.7. The set of spin IRs of S′ given by

{
π′, sgn ·π′ ; π′ ∈ Ωodd(S′)

} ⊔
Ωeven(S′) (4.8)

consists of mutually inequivalent IRs.

To prove this, since two sets {π′, sgn ·π′ ; π′ ∈ Ωodd(S′)} and Ωeven(S′) consist of
mutually inequivalent IRs, it is sufficient for us to prove that two sets of characters

{
χπ′ , sgn ·χπ′ ; π′ ∈ Ωodd(S′)

}
and

{
χπ′ ; π′ ∈ Ωeven(S′)

}

each consist of mutually orthogonal elements. For this, we should calculate explicitly us-
ing character formulas (4.1) and (4.2), and so it is convenient to postpone the calculations
in the next section (Section 5.2).

5. Completeness of the set of spin IRs π1∗̂· · ·∗̂πm.

Let (S′j , zj , sgnj) ∈ G for j ∈ Im, and take their twisted central product S′ =
S′1∗̂ · · · ∗̂S′m. In this section, we prove the completeness of the set ftw(S′) of spin IRs
obtained as twisted central products π = π1∗̂π2∗̂ · · · ∗̂πm of spin IRs πj of S′j (j ∈ Im),
that is to say, any spin IR of S′ is equivalent to someone in ftw(S′). The essential part
of the proof is the case where all S′j ’s are from the category G ′, and we treat this case
hereafter. Moreover, choosing certain ‘standard’ π = π1∗̂π2∗̂ · · · ∗̂πm, we obtain a subset
of ftw(S′), which gives a complete set of representatives of the spin dual Ŝ′

spin
of S′,

and so obtain a parametrization of Ŝ′
spin

.

5.1. Equalities for characters of π1∗̂· · ·∗̂πm.
First we give some equalities for the norm of χπ, π = π1∗̂π2∗̂ · · · ∗̂πm in `2(S′), which

in turn confirm the irreducibility of π. For convenience, we use the normalized invariant
measure µG on a finite group G and the integral notation in place of the sum notation
as follows. Denote by |G| the order of G, then for a function f on G,

∫

G

f(g)dµG(g) :=
1
|G|

∑

g∈G

f(g).

Proposition 5.1. Let πj be a spin IR of S′j for j ∈ Im, and s be the number of
non-self-associate πj’s. Let π = π1∗̂ · · · ∗̂πm be the twisted central product representation
of S′ = S′1∗̂ · · · ∗̂S′m.

( i ) If s is odd, then

∫

B′

∣∣χπ(σ′)
∣∣2dµS′(σ′) =

∫

C′

∣∣χπ(σ′)
∣∣2dµS′(σ′) =

1
2
. (5.1)

( ii ) If s is even, then
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∫

S′

∣∣χπ(σ′)
∣∣2dµS′(σ′) =

∫

B′

∣∣χπ(σ′)
∣∣2dµS′(σ′) = 1. (5.2)

(iii) The spin representation π = π1∗̂ · · · ∗̂πm of S′ = S′1∗̂ · · · ∗̂S′m is irreducible.

For the proof, we apply the following lemma.

Lemma 5.2. On the twisted central product S′, there holds the following multiple
integral formula: for a function f on S′,

∫

S′
f(σ′)dµS′(σ′) =

∫

S′1

· · ·
∫

S′m

f(σ′1σ
′
2 · · ·σ′m)dµS′1(σ

′
1) · · · dµS′m(σ′m).

Proof of Proposition. By the results in Section 4, we may assume that, among
πj ’s, πj (j ∈ Ir) are self-associate, and πj (j ∈ Im \ Ir) are non-self-associate. Then, for
j ∈ Ir, since πj is irreducible and πj

∼= sgn ·πj ⇐⇒ χπj = sgn ·χπj ⇐⇒ χπj = 0 on C ′j ,

∫

S′j

∣∣χπj
(σ′j)

∣∣2dµS′j (σ
′
j) =

∫

B′j

∣∣χπj
(τ ′j)

∣∣2dµS′j (τ
′
j) = 1,

and since (1/2)(χπj
± δπj

) are characters of non-equivalent IRs of B′, and µS′j |B′ =
(1/2)µB′ ,

∫

S′j

∣∣δπj
(σ′j)

∣∣2dµS′j (σ
′
j) =

∫

B′j

∣∣δπj
(τ ′j)

∣∣2dµS′j (τ
′
j) = 1.

For j ∈ Im \ Ir, since πj 6∼= sgn ·πj , we have the orthogonality χπj
⊥ sgn ·χπj

, and so

∫

B′j

∣∣χπj
(τ ′j)

∣∣2dµS′(τ ′j) =
∫

C′j

∣∣χπj
(κ′j)

∣∣2dµS′(κ′j) =
1
2
.

(i) If s = m− r is odd, then π is non-self-associate, and

χπ

(
τ ′1τ

′
2 · · · τ ′m

)
= 2[s/2] ·

∏

j∈Im

χπj
(τ ′j) for τ ′j ∈ B′

j (j ∈ Im),

χπ

(
τ ′1 · · · τ ′rκ′r+1 · · ·κ′m

)
= (2i)[s/2] ·

∏

j∈Ir

δπj
(τ ′j) ·

∏

j∈Im\Ir

χπj
(κ′j),

for τ ′j ∈ B′
j (j ∈ Ir), κ′j ∈ C ′j (j ∈ Im \ Ir),

and χπ(σ′) = 0 elsewhere. Therefore we have

∫

B′

∣∣χπ(σ′)
∣∣2dµS′(σ′) = 2s−1

∏

j∈Im\Ir

∫

B′j

∣∣χπj
(τ ′j)

∣∣2dµS′j (τ
′
j) =

1
2
,
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∫

C′

∣∣χπ(σ′)
∣∣2dµS′(σ′) = 2s−1

∏

j∈Im\Ir

∫

C′j

∣∣χπj
(κ′j)

∣∣2dµS′j (κ
′
j) =

1
2
.

(ii) If s = m− r is even, then π is self-associate, and

χπ

(
τ ′1τ

′
2 · · · τ ′m

)
= 2[s/2] ·

∏

j∈Im

χπj
(τ ′j) for τ ′j ∈ B′

j (j ∈ Im),

and χπ(σ′) = 0 elsewhere. Accordingly,

∫

S′

∣∣χπ(σ′)
∣∣2dµS′(σ′) = 2s

∏

j∈Im\Ir

∫

B′j

∣∣χπj (τ
′
j)

∣∣2dµS′j (τ
′
j) = 1.

(iii) The irreducibility of π is equivalent to ‖χπ‖`2(S′) = 1. ¤

5.2. Proof of Proposition 4.7.
For this purpose, we need to come back to the general situation where, among

πj ’s given, πi (i ∈ Isa
m ) are self-associate, and πj (j ∈ Insa

m ) are non-self-associate with
Im = Isa

m t Insa
m . Express these sets of indexes as

Isa
m = {i1, . . . , ir}, i1 < · · · < ir, Insa

m = {j1, . . . , js}, j1 < · · · < js, (5.3)

where r + s = m. The character formula for π = π1∗̂π2∗̂ · · · ∗̂πm of S′ = S′1∗̂S′2∗̂ · · · ∗̂S′m
in this general situation is given as follows.

(i) In case s is odd, π is non-self-associate, and

χπ

(
τ ′1τ

′
2 · · · τ ′m

)
= 2[s/2] ·

∏

j∈Im

χπj
(τ ′j) for τ ′j ∈ B′

j (j ∈ Im), (5.4)

χπ

(
σ′1σ

′
2 · · ·σ′m

)
= (2i)[s/2] ·

∏

j∈Isa
m

δπj
(τ ′j) ·

∏

j∈Insa
m

χπj
(κ′j), (5.5)

for σ′j = τ ′j ∈ B′
j (j ∈ Isa

m ), σ′j = κ′j ∈ C ′j (j ∈ Insa
m ).

(ii) In case s is even, π is self-associate, and

χπ

(
τ ′1τ

′
2 · · · τ ′m

)
= 2[s/2] ·

∏

j∈Im

χπj
(τ ′j) for τ ′j ∈ B′

j (j ∈ Im).

(iii) In any case, χπ(σ′) = 0 elsewhere.

Orthogonality for Ωodd(S′): To prove the mutual orthogonality of {χπ, sgn ·χπ ; π ∈
Ωodd(S′)}, we apply character formula (i) and (iii) above. Take another π′ =
π′1∗̂π′2∗̂ · · · ∗̂π′m from Ωodd(S′) with π′j ∈ Ω(S′j), for which π′j 6= πj for some j ∈ Im,
and s′ = ]{π′j ;π′j ∈ Ωnsa(S′j)}.

(1) Assume that π′j ∈ Ωsa(S′j) for j ∈ I ′sam and π′j ∈ Ωnsa(S′j) for j ∈ I ′nsa
m := Im\I ′sam .
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Then, we assert that χπ′ ⊥ (sgn)αχπ (α = 0, 1) unless Isa
m = I ′sam .

In fact, it is sufficient to prove that the integrals of χπ′(σ′)χπ(σ′) for the part (5.4)
and for the part (5.5) are both equal to 0. For the part (5.4), the integral is equal to

2[s/2]+[s′/2]
∏

j∈Im

∫

B′j

χπ′j (τ
′
j)χπj (τ ′j)dµS′j (τ

′
j) = 2[s/2]+[s′/2]−m

∏

j∈Im

〈χπ′j , χπj 〉`2(B′j). (∗)

This is equal to 0 because of Lemma 4.5 (i) applied to S′j for which π′j 6= πj .
For the part (5.5), the integral is trivially equal to 0 since the supports for χπ′ and

for χπ are mutually disjoint.
(2) Now assume that Isa

m = I ′sam . In this case, the integral for the part (5.4) is again
equal to the above integral (∗) and equal to 0 by the same reason. The integral for the
part (5.5) is equal to

4[s/2]
∏

j∈Isa
m

∫

B′j

δπ′j (τ
′
j)δπj

(τ ′j)dµS′j (τ
′
j)×

∏

j∈Insa
m

∫

C′j

χπ′j (κ
′
j)χπj

(κ′j)dµS′j (κ
′
j). (∗∗)

Then, for the integrals in the first factor, we apply Lemma 4.5 (i) to S′j for which π′j 6= πj

(if exists). For the integrals in the second factor, we apply Lemma 4.5 (iii) to S′j for which
π′j 6= πj (if exists). Thus we see that the integral (∗∗) is equal to 0.

Orthogonality for Ωeven(S′): The mutual orthogonality of the set of characters
{χπ;π ∈ Ωeven(S′)} comes from the character formula (ii)–(iii) above and Lemma 4.5 (i)
applied to each S′j (j ∈ Im).

Now the proof of Proposition 4.7 is complete.

5.3. Proof of the completeness.
Let us prove the completeness of the set ftw(S′) of twisted central prod-

ucts π1∗̂ · · · ∗̂πm. For this, we apply the equality (2.1) in Proposition 2.1. Since
dim(π1∗̂ · · · ∗̂πm) = 2[s/2]

∏
j∈Im

dimπj , we have

(
dim(π1∗̂ · · · ∗̂πm)

)2 =

{
2s−1

∏
j∈Im

(dimπj)2 if s is odd,

2s
∏

j∈Im
(dimπj)2 if s is even.

(1). For the convenience of notations, we return to the case where, among πj ’s,
πj (j ∈ Ir) are self-associate, and πj (j ∈ Im \ Ir) are non-self-associate. (But the
calculations have generalities.) When s is odd, by Proposition 4.3 (ii),

(
dim(π1∗̂ · · · ∗̂πm)

)2 =
1
2

∑
αj=0,1

(j∈Im\Ir)

∏

j∈Ir

(dimπj)2
∏

j∈Im\Ir

(
dim(sgnj)

αj πj

)2
. (5.6)

Here, for representations themselves, we have
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π1∗̂ · · · ∗̂πr∗̂
(
(sgnr+1)

αr+1πr+1

)∗̂ · · · ∗̂((sgnm)αmπm

)

∼= sgnαr+1+···+αm ·π1∗̂ · · · ∗̂πm,

and the parity of the sum
∑j=m

j=r+1 αj = 0, 1 (mod 2) determines the equivalence class of
the twisted central product representation above. Hence, we get from (5.6) that

∑
αm=0,1

(
dim(π1∗̂ · · · ∗̂πr∗̂πr+1∗̂ · · · ∗̂πm−1∗̂((sgnm)αmπm)

)2

=
∑

αj=0,1
(j∈Im\Ir)

∏

j∈Ir

(dimπj)2
∏

j∈Im\Ir

(
dim(sgnj)

αj πj

)2
. (5.7)

(2). When s is even, by Proposition 4.4, we have similarly

(
dim(π1∗̂ · · · ∗̂πm)

)2 =
∑

αj=0,1
(j∈Im\Ir)

∏

j∈Ir

(
dimπj

)2 ∏

j∈Im\Ir

(
dim(sgnj)

αj πj

)2
. (5.8)

(3). In the discussions until here, we assumed that, among spin IRs πj , self-associate
ones are πj with j ∈ Ir and non-self-associate ones are πj with j ∈ Im \ Ir. Now, in
the general case, when we fix the set A of suffixes j of self-associate πj ’s, then that of
non-self-associate πj ’s is B = Im \A, and we can obtain similarly as above the equalities
corresponding to (5.7) and (5.8), with (A,B) in place of (Ir, Im \ Ir).

Adding thus obtained equalities over all different (A,B), we arrive to

∑

[π1∗̂···∗̂πm]

(
dim(π1∗̂ · · · ∗̂πm)

)2 =
∏

j∈Im

∑

[πj ]∈cS′j
spin

(dimπj)2 =
∏

j∈Im

1
2
|S′j | =

1
2
|S′|,

where the sum on the left hand side is over different equivalence classes [π1∗̂ · · · ∗̂πm].
This is exactly the equality (2.1) to be proved.

Thus we have proved the following completeness theorem:

Theorem 5.3. For (S′j , zj , sgnj) ∈ G ′ (j ∈ Im), let ftw(S′) be the set of spin IRs
of the twisted central product S′ = S′1∗̂S′2∗̂ · · · ∗̂S′m obtained as twisted central products
π1∗̂π2∗̂ · · · ∗̂πm of spin IRs πj of S′j (j ∈ Im). Then it is complete in the sense that any
spin IR of S′ is equivalent to someone in ftw(S′).

Note that the same assertion is valid in more general case of (S′j , zj , sgnj) (j ∈ Im)
taken from the bigger category G .

(4). For an S′ ∈ G , let ass∼ be the equivalence relation introduced in Section 2.1,
that is, π

ass∼ π′ def⇐⇒ π′ ∼= π or π′ ∼= sgn ·π. The equivalence class of spin IR π under ass∼
is denoted by [π]ass and the set of equivalence classes is denoted by assŜ′

spin
.

Now let S′ = S′1∗̂S′2∗̂ · · · ∗̂S′m. Recall the notations introduced in Section 4.3. For
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each S′j , take a complete set of representatives Ω(S′j) = Ωsa(S′j) t Ωnsa(S′j) of assŜ′j
spin

,
where {[πj ]ass;πj ∈ Ωsa(S′j)} covers associate equivalence classes of self-associate spin
IRs, and {[πj ]ass;πj ∈ Ωnsa(S′j)} covers those of non-self-associate spin IRs. For a set
(πj)j∈Im

of πj ∈ Ω(S′j), let s := ]{j ∈ Im;πj ∈ Ωnsa(S′j)}, and denote by Ωeven(S′) the
set of π = π1∗̂ · · · ∗̂πm with s even, and by Ωodd(S′) the one for s odd.

Theorem 5.4. For (S′j , zj , sgnj) ∈ G ′ (j ∈ Im), take their twisted central product
S′ = S′1∗̂S′2∗̂ · · · ∗̂S′m. Then the set Ωeven(S′) can be taken as a set of representatives
Ωsa(S′), and the one Ωodd(S′) as such a set Ωnsa(S′), that is to say, {[π];π ∈ Ωeven(S′)}
is the totality of equivalence classes of self-associate spin IRs, and {[π], [sgn ·π];π ∈
Ωodd(S′)} is the totality of equivalence classes of non-self-associate spin IRs. In this
sense, the union Ωass(S′) := Ωeven(S′)tΩodd(S′) gives a parametrization of the spin dual

Ŝ′
spin

of S′, modulo ‘association’, that is, a parametrization of assŜ′
spin

= Ŝ′
spin

/
ass∼ .

Note 5.1. When s is odd, pick up one non-self-associate πi ∈ Ωnsa(S′i), then

sgn ·(π1∗̂π2∗̂ · · · ∗̂πm) ∼= π1∗̂ · · · ∗̂πi−1∗̂(sgni ·πi)∗̂πi+1∗̂ · · · ∗̂πm.

6. Spin IRs of normal subgroup B′ = Ker(sgn ) of S′ = S′
1∗̂S′

2∗̂· · ·∗̂S′
m.

The kernel B′ = Ker(sgn) of the character sgn of the twisted central product S′ =
S′1∗̂S′2∗̂ · · · ∗̂S′m is normal and of index 2. Therefore Proposition 2.2 can be applied to the
pair (S′, B′). By this, we can obtain from Theorem 5.4 a parametrization of spin dual

B̂′spin
of B′ as follows:

Theorem 6.1. Let (S′j , zj , sgnj) ∈ G for j ∈ Im, and suppose that at least one S′j
comes from the subcategory G ′. For the normal subgroup B′ = Ker(sgn) of the twisted
central product S′ = S′1∗̂S′2∗̂ · · · ∗̂S′m, a complete set of representatives of its spin dual

B̂′spin
is obtained from the complete set Ωass(S′) of representatives of spin dual Ŝ′

spin
/

ass∼
modulo ‘association’ of S′, in Theorem 5.4, as follows.

The restriction π|B′ onto B′ of each π = π1∗̂ · · · ∗̂πm ∈ Ωeven(S′) is a direct sum
of mutually non-equivalent two spin IRs ρ′ = ρ′(π1∗̂ · · · ∗̂πm) and ρ′′ = ρ′′(π1∗̂ · · · ∗̂πm),
and with any element κ′ in C ′ = S′ \ B′, ρ′′ ∼= κ′(ρ′). Denote by Ωeven(B′) the totality
of thus obtained spin IRs of B′.

The restriction π|B′ onto B′ of each π = π1∗̂ · · · ∗̂πm ∈ Ωodd(S′) is itself a spin IR
ρ(π1∗̂ · · · ∗̂πm). Denote by Ωodd(B′) the totality of these IRs of B′.

Then the union Ωspin(B′) := Ωeven(B′)tΩodd(B′) is a complete set of representatives

of the spin dual B̂′spin
of B′.

7. Relation to projective representations of finite groups.

In his papers [13] and [14], Schur founded the theory of projective representations
of finite groups. The motivation to our present study comes principally from general
theory of such representations and also from our recent studies on irreducible projective
(spin) representations of complex reflection groups. So we should explain the relations of
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the present paper to these subjects a little in detail, to justify the present study on spin
representations of double covering groups. For an introduction to the theory of projective
representations, we refer e.g. [5].

7.1. Stand point in the general theory of projective representations.
The notion of a projective representation of a finite group G is first introduced

by Schur [13] in 1904 and its general theory is founded by his work [13] and [14]. A
projective representation T of G is a map from G into the group GL(V ) of invertible
linear operators on a (finite-dimensional) vector space V which satisfies

T (e) = I, T (g)T (h) = rg,hT (gh), (7.1)

where I is the identity operator on V and rg,h ∈ C× := {w ∈ C;w 6= 0}. (We call T

often spin representation of G.) The function rg,h on G × G is called the factor set of
T . When T (g) is replaced by T ′(g) := λgT (G) with λg ∈ C×, the factor set r′g,h of T ′ is
given by

r′g,h =
λgλh

λgh
· rg,h.

Introducing equivalence relation (rg,h) ∼ (r′g,h), we come to the cohomology group
H2(G, C×), which is called Schur multiplier of G.

On the other hand, consider a central extension G̃ of G by an abelian group Z as
1 → Z → G̃ → G → 1 (exact), and take a section s : G → G̃. Let T̃ be an irreducible
linear representation of G̃ and put T (g) := T̃ (s(g)). Then we have T (g)T (h) = rg,hT (gh)
with rg,h ∈ C×. In fact, s(g)s(h) = zg,hs(gh) with a zg,h ∈ Z, and T̃ (zg,h) = rg,hI since
T̃ is irreducible. Schur proved that, for any finite group G, there exists a finite central
extension G̃ such that

(∗) any projective representation of G is obtained in this way from a linear representation
of G̃.

A representation group of G is defined as a central extension of G with the property (∗)
and with minimum degree among such coverings. In [13] the following are proved:

(1). For any finite group G, there exist a finite number of non-isomorphic represen-
tation groups. However the central subgroup Z for extension is unique and isomorphic
to the Schur multiplier H2(G, C×).

The representation theory for these representation groups are mutually equivalent,
and so we take one of them and denote it by R(G). Since the set of linear representations
of R(G) covers the set of projective representations of G, we can replace largely the study
of projective representations of G to that of linear representations of R(G).

In the case of a connected Lie group G, any projective representation of G can be
linearized if we go up to its universal covering group. So that, even for a finite group G,
we may call R(G) a universal covering group of G, even though it is not unique.

A characterization of representation group is given as follows (cf. [14, Introduction]).
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(2). A group G∗ is a representation group of a finite group G if and only if there
exists a central subgroup Z of G∗ such that

( i ) Z is contained in [G∗, G∗] ∩ Z(G∗), where Z(G∗) denotes the center of G∗,
( ii ) 1 −→ Z −→ G∗ −→ G −→ 1 (exact),
(iii) |Z| = |H2(G, C×)|.

For the study of linear representations of R(G) of a specified group G, one-
dimensional characters of the abelian group Z = H2(G, C×) have important meaning
as explained below, and this invite us to the study of spin representations of a double
covering groups of G in many cases. This is one of our motivations to the present paper.

Now, take an IR π of R(G), then every element z ∈ Z ⊂ Z(G) is mapped to a scalar
operator, that is, π(z) = χπ

Z(z)I, where χπ
Z is a character of Z, which we call central

type of π. Hence the set of IRs of R(G) is divided into subsets

Irr
(
R(G);χ

)
:= {π ; χπ

Z = χ}, χ ∈ Ẑ.

For χ ∈ Ẑ, put Zχ := Ker(χ) and G̃χ := R(G)/Zχ. Then any IR π with χπ
Z = χ can

be considered as a representation of the quotient group G̃χ. This is, in turn, a central
extension of G by central subgroup Z/Zχ, and so a qχ-times covering group of G, where
qχ := |Z/Zχ| is the order of χ. Thus we arrive naturally at the following fundamental
problems for construction of spin irreducible representations.

Problem 7.1. Let G be a finite group, and Zq a cyclic group of order q. Let G̃

be a central extension of G with central subgroup Zq as 1 → Zq → G̃ → G → 1 (exact).
Give a general method to construct spin IRs of G̃ with central type χ ∈ Ẑq.

Problem 7.2. Let G′1 and G′2 be central extensions by Zq of finite groups G1

and G2 respectively. Define a twisted central product G′1∗̂qG
′
2 as a central extension of

G1 ×G2 by Zq which contains naturally both G′1 and G′2.
Moreover, for spin IR πi of G′i of the same central type χ ∈ Ẑq for i = 1, 2, give a

general formula for constructing twisted central product π1∗̂qπ2 as a spin IR of G′1∗̂qG
′
2

extending πi of G′i ⊂ G′1∗̂qG
′
2 for i = 1, 2.

Extend this to the case of G′i (i = 1, 2, . . . , m) and also for πi (i = 1, 2, . . . , m).

In the book [10], we see many explicit examples of Schur multipliers Z = H2(G, C×),
and find that prime factors of the order of Z are dominantly powers of 2. Hence the case
of q = 2, or of double covering groups, is of great importance. This is the case which we
treat here.

7.2. Studies on projective representations of complex reflection groups.
Let Dn(T ) = Tn be the direct product of n copies of T = Zm (understood as

a multiplicative group), and make Sn acts on it as permutations of coordinates. We
consider the semidirect product Sn(T ) := Dn(T ) oSn. Moreover, for a subgroup S of
T , define a normal subgroup as Sn(T )S := {(d, σ) ∈ Sn(T );P (d) ∈ S}, where P (d) :=
t1t2 · · · tn for d = (tj)j∈In . Note that any subgroup T = Zm is given as S(p) := {tp; t ∈
T} for a factor p of m. Then Sn(Zm) is a realization of the complex reflection group
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G(m, 1, n) called a generalized symmetric group, and for p|m, Sn(Zm)S(p) is a realization
of complex reflection group G(m, p, n). Note that G(1, 1, n) = Sn, and G(2, 1, n) and
G(2, 2, n) are respectively the Weyl groups of type BCn and Dn.

Projective representations of Weyl groups and generalised symmetric groups have
been studied by many mathematicians, in particular by A.O. Morris et al. We are now
studying construction of spin IRs and calculation of their characters (called spin charac-
ters) by a quite different method (cf. [3] and [4]), and the limiting process as n →∞. In
these studies, Schur multipliers are fundamental ingredients at the starting point. They
are determined for Weyl groups in [9], for generalized symmetric groups G(m, 1, n) in
[1], and for complex reflection groups G(m, p, n) in [12]. For these groups G, they are
all of the form of Zk

2 . This means that studies on double covering groups of G and their
spin representations are decisive.

The important part of our studies is on generalized symmetric groups, and the most
interesting case is the case of m even. For n ≥ 4, the Schur multiplier H2(G(m, 1, n),C×)
is isomorphic to the abelian group Z ′ := 〈z1, z2, z3〉 ∼= Z3

2 generated by 3 generators zi

(i ∈ I3) of order 2. A representation group R(G(m, 1, n)) of G(m, 1, n) is 8-times covering
group (8 = 23), and contains naturally the representation group S̃n (double covering) of
Sn, and

{e} −→ Z ′ −→ R
(
G(m, 1, n)

) Φ−→ G(m, 1, n) −→ {e} (exact),

where Φ is the natural homomorphism. The restriction ΦS := Φ|eSn
is the natural

homomorphism S̃n → Sn (cf. [3, Section 3, Theorem 3.3]). A spin IR π of G(m, 1, n) is
a linear representation of R(G(m, 1, n)) with a certain central character χπ

Z′ as π(z) =
χπ

Z′(z)I (z ∈ Z ′).
When we construct spin IRs of G(m, 1, n), with a fixed central character χπ

Z′ , the
study of spin IRs of subgroups of Schur-Young type S̃ν of S̃n, defined in Example
1.3, becomes essential. For an ordered decomposition ν = (νj)j∈Im , |ν| := ν1 + ν2 +
· · · + νm = n, take a subgroup of Schur-Young type S̃ν := Φ−1

S (Sν1 × · · · × Sνm
) of

S̃n, which is isomorphic to the twisted central product of S̃νj = Φ−1
S (Sνj ) (j ∈ Im):

S̃ν
∼= S̃ν1 ∗̂ · · · ∗̂S̃νm

. Then we need to treat the twisted central product π1∗̂π2∗̂ · · · ∗̂πm

of spin IRs πj of S̃νj
(j ∈ Im), and so on.

8. Spin representation of Sn and its subgroups.

This section is devoted to review, with appropriate renewals, necessary informations
from Schur’s paper [15], thus preparing definitions and notations for the succeeding
sections. In [15], spin representations of the representation groups Tn of Sn and Bn of
An have been studied in detail.

8.1. Representation groups of Sn and An.
As an application of the general theory developed in Sections 1–6, we treat spin

IRs of Schur-Young subgroups of the n-th symmetric group Sn. As an abstract group,
Sn is given by a set of generators {s1, s2, . . . , sn−1} and a set of fundamental relations:
s2

i = e(i ∈ In−1), (sisi+1)3 = e (i ∈ In−2), sisj = sjsi (|i− j| ≥ 2, i, j ∈ In−1). Here si
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corresponds to a simple reflection si = (i i+1).
Representation groups of Sn are isomorphic to Sn itself for n = 2, 3. For n ≥ 4,

we have two representation groups, given in [15, Section 3] as Tn and T′n, not mutually
isomorphic for n 6= 6. Here we use the latter T′n and denote it by S̃n.

Theorem 8.1. For n ≥ 2, define a double covering group S̃n by giving a set of
generators {z, r1, r2, . . . , rn−1} and a set of fundamental relations





z2 = e, zri = riz (i ∈ In−1),

r2
i = e (i ∈ In−1),

(riri+1)3 = e (i ∈ In−2),

rirj = zrjri (|i− j| ≥ 2, i, j ∈ In−1).

(8.1)

Put Z := {e, z}, then the chain {e} → Z = {z, e} → S̃n
ΦS→ Sn → {e} is exact, where

the covering map ΦS : S̃n → Sn is given by z → e and ri → si (i ∈ In−1).
For n ≥ 4, S̃n is a representation group of Sn.

Note that S̃n := Sn × Z (n = 2, 3), and we put S̃1 := Z for convenience. For
an element σ ∈ Sn, let L(σ) be the length of σ with respect to simple reflections, and
sgn(σ) := (−1)L(σ) the sign of σ. For a cycle ξ = (i1 i2 . . . i`), put `(ξ) := ` its
length, then L(ξ) ≡ `(ξ)− 1 (mod 2). For an element σ′ of the covering group S̃n, take
σ = ΦS(σ′) ∈ Sn and define L(σ′) := L(σ), sgn(σ′) := sgn(σ). According to sgn(σ′) = 1
or −1, we call σ′ even or odd.

A representation group of the alternating group An is given as follows. For n ≥ 3,
we have a double covering group of An = {σ ∈ Sn; sgn(σ) = 1} as

Bn :=
{
σ′ ∈ S̃n; sgn(σ′) = 1

}
= KereSn

(sgn). (8.2)

For n = 1, 2, we put Bn := Z. Representation groups of An is unique up to isomorphism.
For n ≥ 4, 6= 6, 7, Bn is a representation group of An. For n = 6, 7, representation
group is 6-times covering of An, and Bn is its quotient [15, Section 5]. In any case,
(Bn, z, sgn |Bn), with the trivial sgn |Bn , is an element of G \ G ′.

8.2. Schur’s ‘Hauptdarstellung’ of S̃n.
In [15, Section 22], a fundamental spin IR ∆n of Sn or an IR of the representation

group Tn, called Hauptdarstellung, is constructed. We transcribe it to our group S̃n =
T′n and denote it by ∆′

n and call it again ‘Hauptdarstellung’. Let ε, a, b, c be 2 × 2
matrices given in (2.12). For n ≥ 3, put N := [(n − 1)/2] and consider square matrices
Xj (j ∈ I2N+1) of degree M = 2N as





X2k−1 := c⊗(k−1) ⊗ a⊗ ε⊗(N−k) (1 ≤ k ≤ N),

X2k := c⊗(k−1) ⊗ b⊗ ε⊗(N−k) (1 ≤ k ≤ N),

X2N+1 := c⊗N .

(8.3)
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Then they satisfy X2
j = E (j ∈ In−1), XjXk = −XkXj (j 6= k, j, k ∈ In−1), with

E = EM the unit matrix. Putting Tj := aj−1Xj−1 + bjXj (X0 := O) for j ∈ In−1, we
wish to have the following property, corresponding to (8.1):





T 2
j = E (j ∈ In−1),

(TjTj+1)3 = E (j ∈ In−2),

TjTk = −TkTj (|j − k| ≥ 2, j, k ∈ In−1).

(8.4)

For the second equality, it is sufficient to have TjTj+1 + Tj+1Tj + E = O (j ∈ In−2). In
fact, multiply (TjTj+1 − E) from the left, then, under T 2

j = E, T 2
j+1 = E,

O = (TjTj+1 − E)(TjTj+1 + Tj+1Tj + E)

= (TjTj+1)2 + E + TjTj+1 − TjTj+1 − Tj+1Tj − E,

and so (TjTj+1)2 = Tj+1Tj . Multiply TjTj+1 from the left, then (TjTj+1)3 = E.
Hence we get the following equations for the coefficients aj , bj :





a0 = 0, b2
1 = 1,

a2
j−1 + b2

j = 1 (j ∈ In−1),

2ajbj = −1 (j ∈ In−2).

(8.5)

Lemma 8.2. A set of solutions of (8.5) is given by a0 = 0, b1 = 1, and





a2ν = −
√

ν√
2ν + 1

, b2ν+1 =
√

ν + 1√
2ν + 1

(2ν + 1 ≤ n− 1),

a2ν+1 = −
√

2ν + 1
2
√

ν + 1
, b2ν+2 =

√
2ν + 3

2
√

ν + 1
(2ν + 2 ≤ n− 1).

Theorem 8.3. Let n ≥ 4. For j ∈ In−1, put Tj := aj−1Xj−1 + bjXj. Then,
∆′

n(rj) := Tj gives a spin IR ∆′
n of S̃n, which is called ‘Hauptdarstellung’.

For the character χ∆′n of ‘Hauptdarstellung’ of S̃n and the complement δ∆′n when
∆′

n is self-associate, we transcribe Schur’s result. A cycle decomposition of σ ∈ Sn is
σ = σ1σ2 · · ·σt with disjoint cycles σj such that supp(σj)∩ supp(σk) = ∅ (j 6= k). Admit
cycles of length 1, and if `1 + · · · + `t = n with `j = `(σj), we call this decomposition
saturated. For σ′ ∈ S̃n, let σ = σ1σ2 · · ·σt be a saturated cycle decomposition of σ =
ΦS(σ′), and take an inverse image σ′j ∈ S̃n, σj = ΦS(σ′j), appropriately, then we have
σ′ = σ′1σ

′
2 · · ·σ′t (call this a cycle decomposition of σ′). On the other hand, any element

of S̃n is conjugate to σ′ or zσ′ for a standard element σ′ of the form

σ′ = σ′1σ
′
2 · · ·σ′t, σ′j = rLj+1rLj+2 · · · rLj+1−1 (j ∈ It), (8.6)
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with L0 = 0, Li = `1 + · · ·+ `i (i ∈ It).

Theorem 8.4. Assume n ≥ 4. For a σ′ ∈ S̃n, let a saturated cycle decomposition
be σ′ = σ′1σ

′
2 · · ·σ′t.

( i ) Let σ′ be even. Then χ∆′n(σ′) 6= 0 only if all σ′j are even, and with N = [(n−1)/2],

χ∆′n(σ′) = 2N ·
∏

j∈It

χ∆′n(σ′j)/2N = ±(−1)(n−t)/2 2[(t−1)/2].

If σ′ is a standard element as in (8.6), the above top sign is +.
( ii ) Let n be even. Then ∆′

n is non-self-associate. For κ′ ∈ Cn = S̃n\Bn, χ∆′n(κ′) 6= 0
only when κ = ΦS(κ′) is a cycle of the longest length n, and for the standard
element κ′ = r1r2 · · · rn−1,

χ∆′n(κ′) = iN
√

N + 1 = in/2−1
√

n/2.

(iii) Let n be odd. Then ∆′
n is self-associate. For the complement δ∆′n , δ∆′n(τ ′) 6= 0

for τ ′ ∈ Bn only when τ = ΦS(τ ′) is a cycle of the longest length n, and for the
standard κ′ = r1r2 · · · rn−1,

δ∆′n(κ′) = iN
√

2N + 1 = i(n−1)/2
√

n.

8.3. Spin irreducible representations of S̃n and of Bn.
Take an ordered partition ν = (νi)i∈Im , n = ν1 + ν2 + · · · + νm, νj ≥ 1, of n, and

define subintervals of In = {1, 2, . . . , n} = [1, n] as J1 := [1, ν1], Ji := [ν1 + · · ·+ νi−1 +
1, ν1 + · · ·+ νi] (2 ≤ i ≤ m). Consider a (Frobenius-)Young type subgroup of Sn = SIn

as

Sν := SJ1 ×SJ2 × · · · ×SJm
∼= Sν1 ×Sν2 × · · · ×Sνm

, (8.7)

denoted as Sν = Sν1 ×Sν2 × · · · ×Sνm
for brevity. For the double covering group S̃n,

its Schur-Young type subgroup is by definition the full inverse image of Sν as

S̃ν := Φ−1
S

(
Sν

)
= Φ−1

S

(
Sν1 ×Sν2 × · · · ×Sνm

)
. (8.8)

Denote S̃Ji := Φ−1
S (SJi) ∼= S̃νi simply by S̃νi . Then, S̃ν is a double covering of Sν ,

and naturally isomorphic to the twisted central product S̃ν1 ∗̂S̃ν2 ∗̂ · · · ∗̂S̃νm
.

Now, let us describe a complete set of representatives of spin IRs for the spin dual
of the whole group S̃n. To do so, we change the symbol ν = (νj)j∈Im

with λ = (λj)j∈Im

and assume that

λ1 > λ2 > · · · > λm > 0 (n = λ1 + · · ·+ λm). (8.9)

Let Pstr
n be the set of all such strict partitions of n where m varies, and introduce
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in it the inverse lexicographic order ≺, cf. [15, Section 37], so that (n) ≺ (n − 1, 1) ≺
(n − 2, 2) ≺ (n − 3, 2, 1) ≺ · · · , for n ≥ 6. Put s(λ) := ]{j ∈ Im;λj even} for λ ∈ Pstr

n ,
then s(λ) ≡ n−m (mod 2). Define subsets of Pstr

n as

{Pstr
n,od :=

{
λ ∈ Pstr

n ; s(λ) odd
}
,

Pstr
n,ev :=

{
λ ∈ Pstr

n ; s(λ) even
}
.

(8.10)

For λ = (λj)j∈Im
∈ Pstr

n , take spin IR ∆′
λj

of S̃λj
(j ∈ Im) and then its twisted

central product ∆′
λ := ∆′

λ1
∗̂∆′

λ2
∗̂ · · · ∗̂∆′

λm
, and induce it up to S̃n as

Πλ := Ind
eSn

eSλ
∆′

λ. (8.11)

Lemma 8.5. (i) For λ ∈ Pstr
n,od, ∆′

λ and Πλ are non-self-associate.
(ii) For λ ∈ Pstr

n,ev, ∆′
λ and Πλ are self-associate.

Apply Propositions 4.3 and 4.4 to the twisted central product ∆′
λ =

∆′
λ1
∗̂∆′

λ2
∗̂ · · · ∗̂∆′

λm
, then we obtain explicitly the characters χ∆′λ and the complement

δ∆′λ (if s(λ) is even) from Theorem 8.4. Then the character χΠλ
can be calculated.

There exists a unique irreducible component of Πλ, denoted by πλ and determined
inductively along ≺, such that Πλ is a direct sum of πλ and of multiples of πλ′ , sgn ·πλ′ ,
λ′ ≺ λ. This means that πλ is the top irreducible component of Πλ. More in detail, in
the level of characters,

χΠλ
= χπλ

+
∑

λ′≺λ
λ′∈Pstr

n,ev

m(λ′,λ)χπλ′ +
∑

λ′≺λ
λ′∈Pstr

n,od

m(λ′,λ)
(
χπλ′ + sgn ·χπλ′

)
,

where m(λ′,λ) denotes the multiplicity of πλ′ in Πλ.
The matrix of multiplicities (m(λ′,λ)), λ′,λ ∈ Pstr

n , is upper triangular with diag-
onal entries all equal to 1. Irreducible characters χπλ

, restricted on Bn, can be obtained
by Gram-Schmidt orthogonalization process in `2(Bn) applied to the set of induced char-
acters {χΠλ

|Bn
;λ ∈ Pstr

n }. In [15, Absch. IX–X], spin irreducible characters χπλ
on Bn

are studied by another method in detail in relation to induced characters χΠλ′ |Bn
, and

character formula for χπλ
|Bn

is given. The character πλ on Cn = S̃n \ Bn, and the
complement δπλ

(if s(λ) is even) can be calculated more easily. Final result is given in
Satz IX in [15, Section 41].

Classification of spin IRs of S̃n and that of spin IRs of Bn are given in [15, Section
42] by means of so-called shifted Young diagrams λ ∈ Pstr

n . They are summarized as
follows.

Theorem 8.6. ( i ) For n ≥ 4, a complete set of representatives for spin dual
̂̃
Sn

spin

is given by {πλ, sgn ·πλ (λ ∈ Pstr
n,od), πλ (λ ∈ Pstr

n,ev)}.
( ii ) For n ≥ 4, a complete set of representatives for spin dual B̂n

spin
is given by
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{ρλ := πλ|Bn
(λ ∈ Pstr

n,od), ρ′λ, ρ′′λ (λ ∈ Pstr
n,ev)}, where πλ|Bn

∼= ρ′λ ⊕ ρ′′λ for
λ ∈ Pstr

n,ev.

9. Spin IRs of Schur-Young type subgroups.

Let ν = (νj)j∈Im
be an ordered partition of n ≥ 4 (here we do not assume the order

of large or small among νj ’s), and take Schur-Young type subgroup S̃ν = Φ−1
S (Sν1×· · ·×

Sνm

)
) ∼= S̃ν1 ∗̂ S̃ν2 ∗̂ · · · ∗̂ S̃νm

of S̃n. Then, applying Theorem 5.4 to S′ = S′1∗̂ · · · ∗̂S′m,
S′j = S̃νj

, and Theorem 6.1 to B′ = Ker(sgn), we obtain complete sets of representatives
for the spin dual of S̃ν and that of the spin dual of its normal subgroup Bn ∩ S̃ν of
index 2.

9.1. Spin IRs of S̃ν .
By Theorem 8.6, we prepare for each S′j = S̃νj

, a complete set of representatives of

its spin dual Ŝ′j
spin

as

{
πλ(j) , sgn ·πλ(j) (λ(j) ∈ Pstr

νj ,od), πλ(j) (λ(j) ∈ Pstr
νj ,ev)

}
,

where λ(j) = (λ(j)
i )i∈Imj

, νj = λ
(j)
1 + · · ·+ λ

(j)
mj , λ

(j)
1 > λ

(j)
2 > · · · > λ

(j)
mj > 0, is a shifted

Young diagram of size νj . Put Λ := (λ(j))j∈Im
and denote by s(Λ) the number of even

λ
(j)
i ’s: s(Λ) = s(λ(1))+ · · ·+s(λ(m)), then s(Λ) ≡ n−∑

j mj (mod 2). Take the twisted
central product

πΛ := πλ(1) ∗̂πλ(2) ∗̂ · · · ∗̂πλ(m) . (9.1)

Then, by Propositions 4.3 and 4.4, πΛ is self-associate or not according as s(Λ) is even
or odd. Moreover Theorem 5.4 gives us the following.

Theorem 9.1. Let ν = (νj)j∈Im
be an ordered partition of n ≥ 4, and S̃ν =

S̃ν1 ∗̂ S̃ν2 ∗̂ · · · ∗̂ S̃νm be the corresponding Schur-Young subgroup of S̃n. Then a complete

set of representatives of the spin dual ̂̃
Sν

spin

of S̃ν is given by the union of two sets as

{
πΛ, sgn ·πΛ ; Λ = (λ(j))j∈Im

, λ(j) ∈ Pstr
νj

, s(Λ) odd
}

⊔ {
πΛ ; Λ = (λ(j))j∈Im , λ(j) ∈ Pstr

νj
, s(Λ) even

}
.

9.2. Spin IRs of B′ = Bn ∩ S̃ν .
Take a standard normal subgroup B′ = Bn∩S̃ν of S̃ν of index 2. Then, by Theorem

6.1, a complete set of representatives of its spin dual B̂′ spin
is deduced from Theorem 9.1

as follows.

Theorem 9.2. Let the notation be as in the preceding theorem. Then a complete
set of representatives of the spin dual of B′ := Bn ∩ S̃ν is given by the union of two sets
as
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{
ρΛ := πΛ

∣∣
B′ ; Λ = (λ(j))j∈Im

, λ(j) ∈ Pstr
νj

, s(Λ) is odd
}

⊔ {
ρ′Λ, ρ′′Λ ; Λ = (λ(j))j∈Im

, λ(j) ∈ Pstr
νj

, s(Λ) is even
}
,

where πΛ|B′ ∼= ρ′Λ ⊕ ρ′′Λ for Λ, with s(Λ) even.

10. Characters of spin representations.

We introduce certain subsets of S̃n. Let Bn be the set of σ′ ∈ S̃n such that
σ = ΦS(σ′) has a cycle decomposition σ = σ1σ2 · · ·σt with `j = `(σj) all odd. Moreover
we denote the set of σ′ ∈ S̃n such that σ = ΦS(σ′) are cycles of the maximum length n,
by Cn if n is even, and by Dn if n is odd.

10.1. ‘Hauptdarstellung ∆′
n of S̃n.

We see from Theorem 8.4 that

if n is odd, then supp(χ∆′n) ⊂ Bn, supp(δ∆′n) ⊂ Dn ⊂ Bn;
if n is even, then supp(χ∆′n) ∩Bn ⊂ Bn, supp(χ∆′n) ∩ Cn ⊂ Cn.

10.2. Fundamental spin IR ∆′
λ of S̃λ.

For an ordered partition λ = (λj)j∈Im
of n, in Schur-Young type subgroup S̃λ =

S̃λ1 ∗̂ S̃λ2 ∗̂ · · · ∗̂ S̃λm
, we put

Bλ := Bλ1 ·Bλ2 · · ·Bλm
=

{
b′1b

′
2 · · · b′m; b′j ∈ Bλj ⊂ S̃λj

}
.

Moreover, the subset Xλ1 ·Xλ2 · · ·Xλm
with Xλj

= Dλj
or Cλj

(in S̃λj
) according as

λj is odd or even, is denoted by Cλ if s(λ) is odd, and by Dλ if s(λ) is even. Then we
see from Table 4.1 that, for spin IR ∆′

λ = ∆′
λ1
∗̂ · · · ∗̂∆′

λm
of S̃λ,

if s(λ) is odd, then

{
supp(χ∆′λ) ∩ [sgn = 1] ⊂ Bλ ⊂ S̃λ ∩Bn,

supp(χ∆′λ) ∩ [sgn = −1] ⊂ Cλ ⊂ S̃λ ∩ Cn;

if s(λ) is even, then

{
supp(χ∆′λ) ⊂ Bλ ⊂ S̃λ ∩Bn,

supp(δ∆′λ) ⊂ Dλ ⊂ S̃λ ∩Bn;

where [sgn = ε1], ε = ±, denotes the subset defined by the condition sgn(σ′) = ε1.

10.3. Spin IR πλ of S̃n.
For a spin IR πλ of S̃n with a shifted Young diagram λ,

if s(λ) is odd, then

{
supp(χπλ

) ∩Bn ⊂ [Bλ],

supp(χπλ
) ∩ Cn ⊂ [Cλ];

if s(λ) is even, then

{
supp(χπλ

) ⊂ [Bλ],

supp(δπλ
) ⊂ [Dλ],
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where, for a subset K of S̃n, [K] denotes the union of σ′Kσ′−1 over σ′ ∈ S̃n.

10.4. Spin IR πΛ of Schur-Young type subgroup S̃ν .
For an ordered partition ν = (νj)j∈Im

of n, take an m-tuple Λ = (λ(j))j∈Im
of

shifted Young diagrams with νj = |λ(j)| the size of λ(j). Define subsets BΛ, DΛ and CΛ

of S̃ν as follows: put

BΛ := Bλ(1) ·Bλ(2) · · ·Bλ(m)

and the subset Xλ(1) ·Xλ(2) · · ·Xλ(m) with Xλ(j) = Dλ(j) or Cλ(j) (in S̃νj
) according as

s(λ(j)) is even or odd, is denoted by CΛ if s(Λ) is odd, and by DΛ if s(Λ) is even.

Theorem 10.1. For spin IR πΛ, Λ = (λ(j))j∈Im
, λ(j) = (λ(j)

i )i∈Imj
of S̃ν , its

character χπΛ
and complement δπΛ

(if s(Λ) is odd) are given by Propositions 4.3 and
4.4, by means of characters and complements of πλ(j) ’s. Their supports are evaluated as
follows:

if s(Λ) is odd, then

{
supp(χπΛ

) ∩ [sgn = 1] ⊂ BΛ,

supp(χπΛ
) ∩ [sgn = −1] ⊂ CΛ,

if s(Λ) is even, then

{
supp(χπΛ

) ⊂ BΛ,

supp(δπΛ
) ⊂ DΛ.

10.5. Increasing sequence of groups.
The group Sn is naturally imbedded into Sn+1 as a subgroup consisting elements

leaving n + 1 invariant, and the covering group S̃n is imbedded into S̃n+1 as the full
inverse image Φ−1

S (Sn) for ΦS : S̃n+1 → Sn+1. Then we have an increasing sequence of
groups as · · · ⊂ S̃n ⊂ S̃n+1 ⊂ · · · , which goes up to a double covering S̃∞ of the infinite
symmetric group S∞. Take a spin IR πn of S̃n for each S̃n, and consider the series of
their normalized characters χ̃πn

. The study of the limit limn→∞ χ̃πn
in relation to S̃∞,

is started from Vershik-Kerov [16] and is continued by them and others (cf. [11]).
In the case of spin (projective) representations of generalized symmetric groups

G(m, 1, n), in some types of spin IRs, the asymptotic theory of characters as above is
reduced essentially to such problem for Schur-Young type subgroups S̃ν as n = |ν| → ∞
(cf. Example 1.2, and [2], [3] and [4]). In that case the following result has an important
meaning.

Theorem 10.2. ( i ) Let the notations be as in Theorems 9.2 and 10.1. For spin
IR πΛ of S̃ν with n = |ν|, if it is restricted on the subgroup S̃n−1 ∩ S̃ν , then the
support of its character is contained in BΛ. In other words, for σ′ ∈ S̃ν , suppose
the order of the support of σ = Φ(σ′) is ≤ n − 1, then χπΛ

(σ′) 6= 0 only when
σ′ ∈ BΛ.

( ii ) On the subgroup S̃n−1 ∩ S̃ν , the normalized characters χ̃πΛ
and χ̃π′Λ with π′Λ =

sgn ·πΛ, and also χ̃ρΛ
(if s(Λ) is odd), χ̃ρ′Λ , χ̃ρ′′Λ (if s(Λ) is even), are all essentially

equal to each other and zero outside BΛ.
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Proof. (i) This follows from Theorem 10.1. In fact, if |supp(σ)| ≤ n− 1, then σ′

can be an element of neither CΛ nor DΛ. Then, (ii) is easy to prove. ¤
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