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Abstract. For an infinite cardinal τ , let `f
2 (τ) be the linear span of the

canonical orthonormal basis of the Hilbert space `2(τ) of weight = τ . In this

paper, we give characterizations of topological manifolds modeled on `f
2 (τ)

and `f
2 (τ) × Q, where Q = [−1, 1]N is the Hilbert cube. We denote the full

simplicial complex of cardinality = τ and the hedgehog of weight = τ by ∆(τ)

and J(τ), respectively. Using our characterization of `f
2 (τ), we prove that both

the metric polyhedron of ∆(τ) and the space

J(τ)Nf = {x ∈ J(τ)N | x(n) = 0 except for finitely many n ∈ N}

are homeomorphic to `f
2 (τ).

1. Introduction.

Throughout the paper, all spaces are paracompact Hausdorff spaces and maps are
continuous maps. Given a space E, an E-manifold is a topological manifold modeled on
E, that is, a space such that each point has an open neighborhood homeomorphic to an
open subset of E, where E is called a model space. The Hilbert space of weight = τ is
denoted by `2(τ), that is,

`2(τ) =
{

x ∈ Rτ

∣∣∣∣
∑
γ∈τ

x(γ)2 < ∞
}

,

where τ is an infinite cardinal.1 Let `f
2 (τ) stand for the linear span of the canonical

orthonormal basis of the Hilbert space `2(τ), that is,

`f
2 (τ) = {x ∈ `2(τ) | x(γ) = 0 except for finitely many γ ∈ τ}.

In case τ = ℵ0, the linear spaces `2(ℵ0) and `f
2 (ℵ0) are simply denoted by `2 and `f

2 ,
respectively. Moreover, we denote the Hilbert cube by Q = [−1, 1]N.

For an open cover U of a space Y , a map f : X → Y is U-close to a map g : X → Y ,
which is denoted by f ∼U g, if for each x ∈ X, both f(x) and g(x) are contained in some
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member U ∈ U . In addition, when Y = (Y, d) is a metric space, for each ε > 0, we say
that f is ε-close to g, provided d(f(x), g(x)) < ε for every x ∈ X. A closed subset A of a
space X is said to be a Z-set (or a strong Z-set) in X if for each open cover U of X, there
exists a map f : X → X such that f is U-close to the identity idX and f(X) ∩ A = ∅
(or cl f(X) ∩ A = ∅). A countable union of Z-sets (or strong Z-sets) in X is called a
Zσ-set (or a strong Zσ-set). In addition, a Z-embedding is an embedding whose image
is a Z-set in the range. It is said that a space X is strongly universal for a class C when
the following condition is satisfied:

For each space A ∈ C, each closed subset B of A, each map f : A → X such that
the restriction f |B is a Z-embedding and each open cover U of X, there exists a
Z-embedding g : A → X such that g ∼U f and g|B = f |B .

In 1984, J. Mogilski [14] characterized `f
2 -manifolds as follows:

Theorem 1.1. A connected space X is an `f
2 -manifold if and only if the following

conditions are satisfied :

(1) X is an ANR and a countable union of finite-dimensional (briefly, f.d.) compact
metrizable spaces.

(2) X is strongly universal for f.d. compact metrizable spaces.
(3) Every f.d. compact subset of X is a strong Z-set in X.

By removing “finite-dimensionality” from the above conditions, the characterization
of (`f

2 ×Q)-manifolds can be obtained, see [14].
In 2003, Theorem 1.1 was generalized to the non-separable case by K. Sakai and

M. Yaguchi [19].

Theorem 1.2. Let τ be an infinite cardinal. A connected space X is an `f
2 (τ)-

manifold if and only if the following conditions hold :

(1) X is an ANR of weight = τ and a strongly countable-dimensional (briefly, s.c.d.)
σ-locally compact2 strong Zσ-space.

(2) X is strongly universal for s.c.d. locally compact metrizable spaces of weight ≤ τ .

Similar to the characterizations of J. Mogilski, removing “strongly countable-
dimensionality” allows us to characterize (`f

2 (τ)×Q)-manifolds, see [19].
Clearly, the strong universality for s.c.d. locally compact metrizable spaces (the

condition (2) of Theorem 1.2) is more difficult to verify than the strong universality for
f.d. compact metrizable spaces (the condition (2) of Theorem 1.1). In this paper, we
shall improve Theorem 1.2. For an infinite cardinal τ and a non-negative integer n, a
space X has the τ -discrete n-cells property if the following condition is satisfied:

Let D =
⊕

γ∈τ Dγ be a discrete union of n-cube Dγ ’s and f : D → X be a map.
Then, for each open cover U of X, there exists a map g : D → X such that g ∼U f

and {g(Dγ) | γ ∈ τ} is discrete in X.

2A space X is said to be σ-locally compact if X is a countable union of locally compact closed subsets.
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We shall use this property to give the following useful characterization to `f
2 (τ)-manifolds.

Main Theorem. For every infinite cardinal τ , a connected space X is an `f
2 (τ)-

manifold if and only if the following conditions hold :

(1) X is an ANR of weight = τ and a countable union of closed sets which are discrete
unions of f.d. compact metrizable spaces.

(2) X has the τ -discrete n-cells property for every non-negative integer n.
(3) X is strongly universal for f.d. compact metrizable spaces.
(4) Every f.d. compact subset of X is a strong Z-set in X.

A characterization of (`f
2 (τ)×Q)-manifolds can be obtained by the same argument

as the above, see Theorem 5.3.
For an infinite cardinal τ , let

`1(τ) =
{

x ∈ Rτ

∣∣∣∣
∑
γ∈τ

|x(γ)| < ∞
}

,

which has the norm ‖ · ‖1 defined by ‖x‖1 =
∑

γ∈τ |x(γ)|. For a simplicial complex K of
cardinality ≤ τ , the metric polyhedron |K|m of K is realized in `1(τ) with the all vertices
of K in one-to-one correspondence to the unit vectors of `1(τ), where |K|m admits the
metric induced by the norm ‖ · ‖1. A full simplicial complex K is a simplicial complex
such that any finite vertices of K spans a simplex of K. We denote the full simplicial
complex of cardinality of the vertices = τ by ∆(τ). The following assertion was proved
by K. Sakai in 1987 (cf. Proposition 4.1 of [15]).

Proposition 1.3. The metric polyhedron |∆(ℵ0)|m is homeomorphic to `f
2 .

By using our new characterization of `f
2 (τ)-manifolds, we can extend the above

assertion to the non-separable case.

Theorem A. For every infinite cardinal τ , the metric polyhedron |∆(τ)|m is home-
omorphic to `f

2 (τ).

For an infinite cardinal τ , the hedgehog J(τ) is the closed subspace in `1(τ) defined
as follows:

J(τ) = {x ∈ `1(τ) ∩ Iτ | x(γ) 6= 0 at most one γ ∈ τ}.

We define the subspace J(τ)Nf in the countable product of J(τ) as follows:

J(τ)Nf = {x ∈ J(τ)N | x(n) = 0 except for finitely many n ∈ N}.

Applying our characterization to J(τ)Nf , we can also prove the following theorem.

Theorem B. For each infinite cardinal τ , the space J(τ)Nf is homeomorphic to
`f
2 (τ).
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For spaces Y ⊂ X and F ⊂ E, the pair (X, Y ) is an (E, F )-manifold pair if each
point of X has an open neighborhood U such that the pair (U,U ∩ Y ) is homeomorphic
to a pair (V, V ∩ F ) for some open subset V of E. R. D. Anderson [1] characterized
the pair (`2, `

f
2 ) by using the notion of f.d. cap sets, which was generalized to (`2, `

f
2 )-

manifold pairs by T. A. Chapman in [7], [8]. In 1970, J. E. West extended this to the
non-separable case in his paper [24]. A subset A of a space X is said to be homotopy
dense in X if there exists a homotopy h : X× I → X such that h(x, 0) = x for all x ∈ X

and h(X × (0, 1]) ⊂ A. In the last section, combining West’s characterization with Main
Theorem, we shall obtain the following:

Theorem C. For spaces Y ⊂ X, the pair (X, Y ) is an (`2(τ), `f
2 (τ))-manifold pair

if and only if X is an `2(τ)-manifold, Y is an `f
2 (τ)-manifold and Y is homotopy dense

in X.

Then, Theorem A and B can be strengthened as follows:

Corollary A. For every infinite cardinal τ , the pair (cl`1(τ) |∆(τ)|, |∆(τ)|m) is
homeomorphic to (`2(τ), `f

2 (τ)).

Corollary B. Let τ be an infinite cardinal. The pair (J(τ)N, J(τ)Nf ) is homeo-
morphic to (`2(τ), `f

2 (τ)).

2. Preliminaries.

In this section, we shall prepare some notation and results which are used later. We
denote the set of all non-negative integers by ω. Let X and Y be spaces, and let A and
B be collections of subsets of X. When A is a refinement (or a star-refinement) of B,
we write A ≺ B (or A ≺? B). Moreover, let A ∧ B = {A ∩ B | A ∈ A, B ∈ B}. For a
subset C ⊂ X, the collection A ∧ {C} is denoted by A|C . We denote the collection of
all open covers of X by cov(X). For maps f, g : X → Y , we write f ' g if there is a
homotopy h : X×I → Y linking f and g. For each t ∈ I, the map ht : X → Y is defined
by ht(x) = h(x, t) for all x ∈ X. Moreover, for an open cover U ∈ cov(Y ), when h is a
U-homotopy, that is, {h({x} × I) | x ∈ X} ≺ U , we write f 'U g.

The following proposition can be proved by the same way as Corollary 1.8 of [6],
which is useful to us for detecting Z-sets in ANR’s.

Proposition 2.1. Let X be an ANR. If X has the ℵ0-discrete n-cells property for
every n ∈ ω, then every compact subset of X is a Z-set.

The following properties of (strong) Z-sets in ANR’s are well-known.

Proposition 2.2. Let X be an ANR.

(1) For every (strong) Z-set A in X and every open subset U of X, A∩U is a (strong)
Z-set in U .

(2) A locally finite union of (strong) Z-sets in X is a (strong) Z-set.
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The following proposition is very useful to estimate the distance between two maps
to a metric space (cf. (A) of Section 2 in [14]).

Proposition 2.3. Let Y = (Y, d) be a metric space. For each open cover U , there
is a map α : Y → (0, 1) such that for every space X and arbitrary maps f, g : X → Y , if
d(f(x), g(x)) < α(g(x)) for all x ∈ X, then f ∼U g.

We shall use the following lemma to construct a homeomorphism which approximates
a map in the next section. Refer to (D) of Section 2 in [14].

Lemma 2.4. Let X and Y = (Y, d) be metric spaces and {Yn}n∈N be a closed cover
of Y such that Y1 ⊂ Y2 ⊂ · · · . Suppose that {gn : X → Y }n∈N is a sequence of surjective
maps satisfying the following conditions:

(i) gn|g−1
n (Yn) : g−1

n (Yn) → Yn is bijective and for every point y ∈ Yn and every neigh-
borhood V of g−1

n (y) in X, there exists an open neighborhood U of y in Y such that
g−1

n (U) ⊂ V .
(ii) gn+1|g−1

n (Yn) = gn|g−1
n (Yn).

(iii) d(gn+1(x), gn(x)) < αn(gn(x)) for all x ∈ X \ g−1
n (Yn), where αn(y) =

2−n min{1, d(y, Yn)}, n ∈ N, and α0(y) = 1.

Then, a homeomorphism g :
⋃

n∈N g−1
n (Yn) → Y can be defined as follows:

g(x) = lim
n→∞

gn(x) for all x ∈
⋃

n∈N
g−1

n (Yn),

where d(g(x), g1(x)) < 1 for each x ∈ ⋃
n∈N g−1

n (Yn).

Let X and Y be spaces and A be a closed subset of X. The product of X and Y

reduced over A, which is denoted by (X × Y )A, is the space ((X \A)× Y ) ∪A endowed
with the topology generated by open subsets of the product space (X \ A) × Y and
sets ((U \A)× Y ) ∪ (U ∩A), where U is an open subset of X. Then, the product space
(X \A)×Y is an open subspace in (X×Y )A. Moreover, the projection prX : X×Y → X

is factored into the two natural maps q : X × Y → (X × Y )A and p : (X × Y )A → X

defined as follows:

{
q(x, y) = (x, y) if (x, y) ∈ (X \A)× Y,

q(x, y) = x if (x, y) ∈ A× Y,

{
p(x, y) = x if (x, y) ∈ (X \A)× Y,

p(x) = x if x ∈ A.

Note that if both X and Y are metrizable spaces, then (X × Y )A is also a metrizable
space by the Bing Metrization Theorem (Theorem 4.4.8 of [12]). We shall prove the
following lemma used the next section.

Lemma 2.5. Let X and Y be metrizable spaces and let A1 ⊂ A2 be closed subsets
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in X. Then, there exists U ∈ cov(X \A1) with the following property :

(∗) For a subspace B of (X \ A1) × Y and an embedding g : B → (X × Y )A2 \ A1,
if g ∼p−1(U) q|B, then g extends to the embedding g̃ : B ∪ A1 → (X × Y )A2 by
g̃|A1 = idA1 ,

where p, q are the natural maps, that is,

p : (X × Y )A2 \A1 = ((X \A1)× Y )A2\A1 → X \A1,

q : (X \A1)× Y → ((X \A1)× Y )A2\A1 = (X × Y )A2 \A1.

Moreover, if g is a closed embedding, that is, g(B) is closed in (X ×Y )A2 \A1, then g̃ is
also a closed embedding.

Proof. Taking an admissible metric d for X, we can define the desired open cover
U as follows:

U = {Bd(x, d(x,A1)/2) | x ∈ X \A1} ∈ cov(X \A1).

To show that U has the property (∗), let g : B → (X × Y )A2 \ A1 be an embedding
of B ⊂ (X \ A1) × Y , which is p−1(U)-close to q|B . We extend g to g̃ by g̃|A1 = idA1 .
Then, it is enough to show the continuity of both g̃ and g̃−1 : g(B)∪A1 → B∪A1. Since
(X \ A1) × Y and (X × Y )A2 \ A1 are respectively open subspaces of (X × Y )A1 and
(X × Y )A2 , we need to check that both g̃ and g̃−1 are continuous at each a ∈ A1.

First, to verify that g̃ is continuous at a ∈ A1, let ε > 0. Fix a point x ∈ Bd(a, ε/3) ⊂
X. In case x ∈ A1, we have

g̃(x) = x ∈ Bd(a, ε/3) ∩A1 ⊂ Bd(a, ε) ∩A2.

In case x /∈ A1, we have g̃(x, y) = g(x, y) for all y ∈ Y with (x, y) ∈ B. Since g ∼p−1(U)

q|B , there exists a point x0 ∈ X \A1 such that

pg̃(x, y) = pg(x, y), pq(x, y) = x ∈ Bd(x0, d(x0, A1)/2).

Then, we get

d(x0, A1) ≤ d(x0, a) ≤ d(x0, x) + d(x, a) <
1
2
d(x0, A1) +

ε

3
,

hence d(x0, A1) < 2ε/3. It follows that

d(pg̃(x, y), a) ≤ d(pg(x, y), x) + d(x, a) ≤ d(x0, A1) +
ε

3
≤ 2ε

3
+

ε

3
= ε,

so g̃(x, y) ∈ (Bd(a, ε) \A2)× Y ∪ (Bd(a, ε) ∩A2). Therefore
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g̃
(
(((Bd(a, ε/3) \A1)× Y ) ∩B) ∪ (Bd(a, ε/3) ∩A1)

)

⊂ (Bd(a, ε) \A2)× Y ∪ (Bd(a, ε) ∩A2),

which implies that g̃ is continuous at a.
Next, we show that g̃−1 is continuous at a ∈ A1. Given ε > 0, take any point

x ∈ ((Bd(a, ε/3) \A2)× Y ∪ (Bd(a, ε/3) ∩A2)) ∩ (g(B) ∪A1).

When x ∈ A1, we get

g̃−1(x) = x ∈ Bd(a, ε/3) ∩A1 ⊂ Bd(a, ε) ∩A1.

When x ∈ g(B) ⊂ (X × Y )A2 \A1, we have g̃(x′, y′) = g(x′, y′) = x for the unique point
(x′, y′) ∈ B. We can choose a point x0 ∈ X \A1 so that

p(x) = pg̃(x′, y′) = pg(x′, y′), pq(x′, y′) = x′ ∈ B(x0, d(x0, A1)/2)

because g ∼p−1(U) q|B . It follows that

d(x0, A1) ≤ d(x0, a) ≤ d(x0, p(x)) + d(p(x), a) <
1
2
d(x0, A1) +

ε

3
,

so d(x0, A1) ≤ 2ε/3. Therefore, we have

d(x′, a) ≤ d(x′, p(x)) + d(p(x), a) < d(x0, A1) +
ε

3
≤ 2ε

3
+

ε

3
= ε,

that is, g̃−1(x) = (x′, y′) ∈ (Bd(a, ε) \A1)× Y . Hence

g̃−1
(
((Bd(a, ε/3) \A2)× Y ∪ (Bd(a, ε/3) ∩A2)) ∩ (g(B) ∪A1)

)

⊂ (Bd(a, ε) \A1)× Y ∪ (Bd(a, ε) ∩A1),

so g̃−1 is continuous at a.
To prove the additional assertion, assume that g(B) is closed in (X × Y )A2 \ A1.

Then cl(X×Y )A2
g(B) ∩ ((X × Y )A2 \A1) = g(B). Therefore, we have

g̃(B ∪A1) = g(B) ∪A1

=
(
cl(X×Y )A2

g(B) ∩ ((X × Y )A2 \A1)
) ∪A1

= cl(X×Y )A2
g(B) ∪A1,

that is, g̃(B ∪A1) is closed in (X × Y )A2 . Hence g̃ is a closed embedding. ¤

Remark 1. In the above lemma, if g is a continuous map, then so the extension g̃
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is. When B = (X \A1)×Y and g : (X \A1)×Y → (X×Y )A2 \A1 is a homeomorphism,
g̃ : (X × Y )A1 → (X × Y )A2 is a homeomorphism.

3. E-Manifold Factors being E-Manifolds.

Throughout the section, let C be a class of spaces which has the following properties:

(∗) C is topological, that is, every space homeomorphic to some member of C is also a
member of C.

(∗∗) C is closed hereditary, that is, every closed subspace of a member of C is also a
member of C.

Moreover, let E be a locally convex topological linear metric space such that E is home-
omorphic to EN or

ENf = {x ∈ EN | x(n) = 0 except for finitely many n ∈ N},

and E satisfies the following conditions:

(?) E is a countable union of closed subspaces which belong to C.
(??) For any closed subset C of E, if C ∈ C, then C is a strong Z-set.

We shall use the following notation for subclasses of the class M of all metrizable
spaces:

M0 = the class of compact metrizable spaces,

Mf
0 = the class of f.d. compact metrizable spaces and

M0(n) = the class of compact metrizable spaces of dimension ≤ n.

For a cardinal τ and a class C, we denote by
⊕

τ C, the class of spaces X =
⊕

γ∈τ Xγ

which are discrete unions of spaces Xγ ∈ C. Note that the classes
⊕

τ M0,
⊕

τ Mf
0 and⊕

τ M0(n) are topological and closed hereditary. It is known that the locally convex
topological linear metric space `f

2 (τ) is homeomorphic to (`f
2 (τ))Nf . Let `Q

2 be the linear
subspace in `2 spanned by

∏
n∈N[−2−n, 2−n]. Then, it is also known that `f

2 (τ) ×Q is
homeomorphic to the locally convex topological linear metric space `f

2 (τ)× `Q
2 , which is

homeomorphic to (`f
2 (τ) × `Q

2 )Nf . Furthermore, `f
2 (τ) (respectively, `f

2 (τ) ×Q) satisfies
the conditions (?) and (??) with respect to

⊕
τ Mf

0 (respectively,
⊕

τ M0), which will be
seen in the proof of Theorem 5.2 (cf. Remark 4).

Remark 2. Let M be a connected E-manifold. Then M is a countable union
of strong Z-sets which belong to the class C. Indeed, Theorem 4 of [13] allows us to
regard an E-manifold M as an open subspace in E, that is, an Fσ-set, so we have
M =

⋃
m∈NDm, where each Dm is regarded as a closed subspace in E. On the other

hand, by the conditions (?) and (??) of E, we can write E =
⋃

n∈NEn such that every
En is a strong Z-set belonging to C. Since C is closed hereditary, Dm ∩ En ∈ C for all
m,n ∈ N. Furthermore, Dm ∩ En is a strong Z-set in M due to (??) and Proposition
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2.2(1). Therefore M =
⋃

m,n∈NDm ∩En is a countable union of strong Z-sets which are
members of C.

The following proposition, which was proved by H. Toruńczyk in Theorem B1 of
[23] (cf. Proposition 5.1 of [21]), shall play an important role in the proof of Theorem
3.3.

Proposition 3.1. Suppose that A is a strong Z-set in a space X. If X ×E is an
E-manifold, then for each open cover U ∈ cov((X×E)A), there exists a homeomorphism
h : X × E → (X × E)A such that h ∼U q and h(x, 0) = x for all x ∈ A, where
q : X × E → (X × E)A is the natural map.

Lemma 3.2. Let X be a strongly universal ANR for a class C. Suppose that f :
A → X is a map from a space A ∈ C to X and U is an open subset of X. Given any
open cover U of U , there exists a Z-embedding g : f−1(U) → U such that g ∼U f |f−1(U).

Proof. We write U =
⋃

n∈ω Cn, where Cn is a closed subset of X and

∅ = C0 ⊂ intX C1 ⊂ C1 ⊂ intX C2 ⊂ C2 ⊂ · · · .

Let An = f−1(Cn) and Bn = f−1(X \ intX Cn+1) for each n ∈ N. Then A1 ⊂ A2 ⊂ · · ·
and B1 ⊃ B2 ⊃ · · · are closed in A, An ∩ Bn = ∅ for each n ∈ N, f−1(U) =

⋃
n∈NAn

and A \ f−1(U) =
⋂

n∈NBn.
Let V ∈ cov(U) be a star-refinement of U . Give an admissible metric for X and take

a sequence {Un}n∈N of open covers of X so that meshUn ≤ 2−n and

Un ≺ (V ∧ {intX Ci+1 \ Ci−1 | i ∈ N})
⋃
{X \ Cn+2}.

By induction, we shall construct a sequence {fn : A → X}n∈N so as to satisfy the
following conditions:

(1)n fn|Bn
= f |Bn

,
(2)n fn|An

: An → U is a Z-embedding,
(3)n fn|An−1∪Bn

= fn−1|An−1∪Bn
,

(4)n fn ∼Un fn−1 and
(5)n fn(An \ intA An−1) ⊂ intX Cn+2 \ Cn−3,

where A0 = C−1 = C−2 = ∅, B0 = A and f0 = f . Assume that fm has been constructed
for all m ≤ n − 1. Since X is an ANR and X is strongly universal for C, we can
obtain a Un-homotopy h : A × I → X such that h0 = fn−1, h1 is a Z-embedding and
h1|An−1 = fn−1|An−1 . Taking an Urysohn map k : A → I so that k(Bn) = 0 and
k(An) = 1, we define the map fn : A → X by fn(x) = h(x, k(x)). Immediately, the
conditions (1)n, (3)n and (4)n hold from the definition. Observe that

An \ intA An−1 = An \ intA f−1(Cn−1) ⊂ An \ f−1(intX Cn−1) ⊂ An ∩Bn−2.

By the inductive assumption (1)n−2,
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fn−2(An ∩Bn−2) = f(An ∩Bn−2) ⊂ f(An) ∩ f(Bn−2) ⊂ Cn \ intX Cn−1,

where B−1 = A and f−1 = f . Furthermore, fn(An ∩ Bn−2) ⊂ intX Cn+2 \ Cn−3 due to
the condition (4)n−1 and (4)n. It follows that

fn(An \ intA An−1) ⊂ fn(An ∩Bn−2) ⊂ intX Cn+2 \ Cn−3,

hence (5)n holds. Since fn|An
= h1|An

is a Z-embedding into X and fn(An) ⊂
intX Cn+2 ⊂ U , it follows from Proposition 2.2(1) that fn(An) is a Z-set in U , that
is, (2)n also holds.

Now, we can define the desired map g : f−1(U) → U by g|An
= fn|An

because of
(3)n, where the continuity of g is guaranteed by (4)n and the condition meshUn < 2−n

for all n ∈ N. To verify that g ∼U f |f−1(U), let x ∈ f−1(U). Then, we have x ∈
An \ intA An−1 ⊂ An ∩Bn−2 for some n ∈ N, so

fn−2(x) = f(x) ∈ Cn and g(x) = fn(x) ∈ intX Cn+2.

Since fn−1 ∼Un−1 fn−2 and fn ∼Un
fn−1 by (4)n−1 and (4)n, respectively, we can choose

V, V ′ ∈ V so that fn−2(x), fn−1(x) ∈ V and fn−1(x), fn(x) ∈ V ′. Therefore,

f(x), g(x) ∈ V ∪ V ′ ⊂ W ∈ U for some W ∈ U

because V is a star-refinement of U , that is, g ∼U f |f−1(U). It remains to show that g

is a Z-embedding into U . It is clear that g is injective because f−1(U) =
⋃

n∈NAn and
g|An = fn|An is injective. For any closed subset D ⊂ f−1(U) and n ∈ N, due to (5)n,

g(D ∩An \ intA An−1) = fn(D ∩An \ intA An−1) ⊂ intX Cn + 2 \ Cn−3.

It follows from (2)n that

g(D) =
⋃

n∈N
g(D ∩An \ intA An−1) =

⋃

n∈N
fn(D ∩An \ intA An−1)

is a locally finite union of closed sets in U , that is, a closed subset of g(f−1(U)). Thus,
g : f−1(U) → g(f−1(U)) is a closed map. Moreover,

g(f−1(U)) =
⋃

n∈N
g(An \ intX An−1) =

⋃

n∈N
fn(An \ intX An−1)

is a locally finite union of Z-sets in U , that is, a Z-set by Proposition 2.2(2). As a result,
g is a Z-embedding. ¤

A map f : X → Y is a near-homeomorphism provided that for each open cover
U ∈ cov(Y ), there exists a homeomorphism h : X → Y with h ∼U f . The following
theorem is proved by analogy with Theorem 4 of [14].
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Theorem 3.3. Suppose that X is a connected ANR satisfying the following con-
ditions:

( i ) X is a countable union of closed subspaces which belong to C.
( ii ) X is strongly universal for C.
(iii) For every closed subset C ⊂ X, if C ∈ C, then C is a strong Z-set in X.

If X × E is an E-manifold, then the projection prX : X × E → X is a near-
homeomorphism.

Proof. According to Remark 2 and the conditions (i) and (iii), we can write
X ×E =

⋃
n∈NAn and X =

⋃
n∈NBn, where An and Bn are strong Z-sets which belong

to C. For any open cover U ∈ cov(X), X admits a metric d such that {Bd(x, 1) | x ∈
X} ≺ U due to Theorem 4.1 in Chapter II of [5]. Then, it is sufficient to construct a
homeomorphism k : X × E → X which is 1-close to the projection prX .

To begin with, we shall inductively construct a sequence of strong Z-sets C1 ⊂ C2 ⊂
· · · ⊂ X with X =

⋃
n∈ω Cn and homeomorphisms hn : X × E → (X × E)Cn , n ∈ N,

such that:

(1)n Bn ∪ Cn−1 ⊂ Cn,
(2)n hn(An) ⊂ Cn,
(3)n hn|h−1

n−1(Cn−1)
= hn−1|h−1

n−1(Cn−1)
and

(4)n d(pnhn(x), pn−1hn−1(x)) < αn−1(pn−1hn−1(x)) for all x ∈ (X × E) \ h−1
n−1(Cn−1),

where C0 = ∅, h0 : X × E → X × E is the identity, p0 : X × E → X is the projection
onto X, pn : (X × E)Cn

→ X is the natural map and αn : X \ Cn → (0, 1) is the map
defined by αn(y) = 2−n min{1, d(y, Cn)}, n ∈ N, and α0(y) = 1.

Suppose that Ci and hi satisfying (1)i, (2)i, (3)i and (4)i have been obtained for all
i ≤ n. We define the map αn : X \Cn → (0, 1) by αn(y) = 2−n min{1, d(y, Cn)}. Due to
Lemma 2.5, we can choose Un ∈ cov(X \ Cn) so that:

(a) For a map f : (X × E) \ h−1
n (Cn) → X, if f ∼st2 Un

pnhn|(X×E)\h−1
n (Cn), then

d(f(x), pnhn(x)) < αn(pnhn(x)) for all x ∈ (X × E) \ h−1
n (Cn).

(b) For a homeomorphism f ′ : (X \Cn)×E → (X \Cn)×E, if f ′ ∼p−1
n (stUn) id(X\Cn)×E ,

then f ′ extends to the homeomorphism f : (X×E)Cn
→ (X×E)Cn

by f |Cn
= idCn

.
(c) For a closed embedding v : hn(An+1)\Cn → X \Cn, if v ∼stUn

pn|hn(An+1)\Cn
, then

v extends to the closed embedding ṽ : hn(An+1) ∪ Cn → X by v|Cn = idCn .

Since hn is a homeomorphism and C is topological, hn(An+1) ∈ C is a strong Z-set in
(X × E)Cn

. Applying Lemma 3.2 to the map pn|hn(An+1) : hn(An+1) → X and the
open subset X \ Cn ⊂ X, we can find a Z-embedding v : hn(An+1) \ Cn → X \ Cn

such that v 'Un pn|hn(An+1)\Cn
. Let i : X \ Cn → (X \ Cn) × {0} ⊂ (X \ Cn) × E

be the natural inclusion. Then iv(hn(An+1) \ Cn) is a Z-set in (X \ Cn) × E. Hence
iv : hn(An+1)\Cn → (X \Cn)×E is a Z-embedding such that iv 'p−1

n (Un) idhn(An+1)\Cn

in (X \ Cn) × E because v 'Un
pn|hn(An+1) and E is contractible. On the other hand,

(X \ Cn) × E is an E-manifold as an open subspace of the E-manifold X × E. By
Proposition 2.2(1), hn(An+1) \ Cn = hn(An+1) ∩ (X \ Cn) × E is a strong Z-set in
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(X \ Cn) × E. Applying the Z-set Unknotting Theorem (cf. Theorem 2 of [9]3) to the
E-manifold (X \Cn)×E and using the condition (b), we can obtain a homeomorphism
f : (X × E)Cn → (X × E)Cn so that

f |hn(An+1)\Cn
= iv, f |(X\Cn)×E 'p−1

n (stUn) id(X\Cn)×E

and f |Cn
= idCn

. Then f ∼p−1
n (stUn) id(X×E)Cn

.
By the way, due to (c), the Z-embedding v extends to a closed embedding ṽ :

hn(An+1) ∪ Cn → X by v|Cn = idCn , so ṽ(hn(An+1)) ∈ C is a closed subspace in X,
which implies that ṽ(hn(An+1)) is a strong Z-set in X by (iii). Since Cn and Bn+1 are
strong Z-sets, it follows from Proposition 2.2 that

Cn+1 = ṽ(hn(An+1) ∪ Cn ∪Bn+1

is a strong Z-set in X, so Cn+1 \ Cn is a strong Z-set in X \ Cn. Let q : (X × E)Cn →
(X ×E)Cn+1 be the natural map defined by pn = pn+1q. Lemma 2.5 allows us to choose
Vn ∈ cov(X \ Cn) so that:

(d) Vn ≺ Un and
(e) For a homeomorphism g′ : (X \ Cn) × E → (X × E)Cn+1 \ Cn, if g′ ∼p−1

n+1(Vn)

q|(X\Cn)×E , then g′ extends to the homeomorphism g : (X × E)Cn
→ (X × E)Cn+1

by g|Cn = idCn .

Then, applying Proposition 3.1 and (e), we can find a homeomorphism g : (X ×E)Cn
→

(X × E)Cn+1 such that

g|(X\Cn)×E ∼p−1
n+1(Vn) q|(X\Cn)×E , g(x, 0) = x for all x ∈ Cn+1 \ Cn

and g|Cn = idCn . Then g ∼p−1
n+1(Un) q by (d).

Now, we have the homeomorphism hn+1 = gfhn : X × E → (X × E)Cn+1 . By the
definition of Cn+1, we have (1)n+1. It follows that

hn+1(An+1) = gfhn(An+1) = g(v(hn(An+1) \ Cn)× {0}) ∪ (hn(An+1) ∩ Cn)

⊂ g((Cn+1 \ Cn)× {0}) ∪ Cn = (Cn+1 \ Cn) ∪ Cn = Cn+1,

that is, (2)n+1 holds. Moreover, we get

hn+1(x) = gfhn(x) = hn(x) for every x ∈ h−1
n (Cn),

which means (3)n+1. Observe that

pn+1hn+1|(X×E)\h−1
n (Cn) = pn+1gfhn|(X×E)\h−1

n (Cn) ∼Un
pn+1qfhn|(X×E)\h−1

n (Cn)

= pnfhn|(X×E)\h−1
n (Cn) ∼stUn pnhn|(X×E)\h−1

n (Cn),

3Theorem 2 of [9] holds for a locally convex topological linear metric space E not only such that E

is homeomorphic to EN but also such that E is homeomorphic to ENf .
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hence pn+1hn+1|(X×E)\h−1
n (Cn) ∼st2 Un

pnhn|(X×E)\h−1
n (Cn). By (a), we have

d(pn+1hn+1(x), pnhn(x)) < αn(pnhn(x)) for every x ∈ (X × E) \ h−1
n (Cn),

so (4)n+1 holds. Thus, we complete the inductive step.
Finally, we shall construct the desired homeomorphism k : X × E → X by using

Lemma 2.4. Define the surjective maps kn = pnhn : X ×E → X, n ∈ ω. Since Bn ⊂ Cn

by (1)n for all n ∈ N, the increasing sequence {Cn}n∈ω is a closed cover of X. It follows
from (2)n that

An ⊂ h−1
n (Cn) = h−1

n p−1
n (Cn) = k−1

n (Cn),

which means that X×E =
⋃

n∈ω k−1
n (Cn). It remains to show that the sequence {kn}n∈ω

satisfies the conditions (i), (ii) and (iii) of Lemma 2.4.

(i): Note that

kn|k−1
n (Cn) = pnhn|k−1

n (Cn) = hn|k−1
n (Cn),

so kn|k−1
n (Cn) is bijective. Given a point x ∈ Cn and a neighborhood V of k−1

n (x) in
X×E, hn(V ) is a neighborhood of hn(k−1

n (x)) = p−1
n (x) = x in (X×E)Cn

. Then, there
exists an open neighborhood U of x in X such that

p−1
n (U) = (U ∩ Cn) ∪ (U \ Cn)× E ⊂ hn(V ),

hence it follows that k−1
n (U) = h−1

n p−1
n (U) ⊂ V .

(ii): By (3)n, we have

kn+1|k−1
n (Cn) = pn+1hn+1|h−1

n p−1
n (Cn) = pn+1hn+1|h−1

n (Cn)

= pnhn|h−1
n (Cn) = kn|k−1

n (Cn).

(iii): It follows from (4)n+1 that for all x ∈ (X × E) \ k−1
n (Cn),

d(kn+1(x), kn(x)) = d(pn+1hn+1(x), pnhn(x))

< αn(pnhn(x)) = αn(kn(x)).

In conclusion, we can obtain the desired homeomorphism k : X × E → X as follows:

k(x) = lim
n→∞

kn(x) for every x ∈ X × E,

where k is 1-close to k0 = p0h0 = prX . The proof is complete. ¤
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4. The Discrete Approximation Property.

For a cardinal τ > 1, a space X has the τ -discrete approximation property (or the
τ -locally finite approximation property) for a class C if the following condition is satisfied:

Let A =
⊕

γ∈τ Aγ be a discrete union of a collection {Aγ ∈ C | γ ∈ τ} and
f : A → X be a map. Then, for each open cover U , there exists a map g : A → X

such that g ∼U f and {g(Aγ) | γ ∈ τ} is discrete (or locally finite) in X.

For the sake of convenience, we abbreviate the τ -discrete approximation property for
C and the τ -locally finite approximation property for C to τ -DAP(C) and τ -LFAP(C),
respectively. When C = {C}, we simply write τ -DAP(C) and τ -LFAP(C). The τ -discrete
n-cells property is no other than τ -DAP(In). Moreover, τ -DAP({In | n ∈ ω}) is called
the τ -discrete cells property. The τ -discrete cells property is stronger than the τ -discrete
n-cells property for all n ∈ ω, but the same as τ -DAP(Q).

Lemma 4.1. For a cardinal τ > 1, a space X has the τ -discrete cells property if
and only if X has τ -DAP(Q).

Proof. Let Qγ be a copy of IN for all γ ∈ τ and U ∈ cov(X), where each Qγ

admits the following metric d:

d(x, y) = sup
i∈N

i−1|x(i)− y(i)| for x, y ∈ Qγ .

For each n ∈ N, the inclusion in : In → IN and the projection pn : IN → In are
respectively defined as follows:

in(x) = (x(1), . . . , x(n), 0, 0, . . . ) for x = (x(i))1≤i≤n and
pn(x) = (x(1), . . . , x(n)) for x = (x(i))i∈N.

Moreover, let i0 : I0 = {0} 3 0 7→ (0, 0, . . . ) ∈ IN and p0 : IN 3 x 7→ 0 ∈ I0 = {0}.
First, to show the “if” part, take any map f : D =

⊕
γ∈τ In(γ) → X, where

n(γ) ∈ ω for all γ ∈ τ . Define a map g :
⊕

γ∈τ Qγ → X by g|Qγ = f |In(γ)pn(γ) for
each γ ∈ τ . Since X has τ -DAP(Q), there is a map g′ :

⊕
γ∈τ Qγ → X such that

g′ ∼U g and {g′(Qγ) | γ ∈ τ} is discrete in X. Then, we define a map f ′ : D → X by
f ′|In(γ) = g′|Qγ in(γ) for each γ ∈ τ . It follows that

f ′|In(γ) = g′|Qγ in(γ) ∼U g|Qγ in(γ) = f |In(γ)pn(γ)in(γ) = f |In(γ) for every γ ∈ τ,

hence f ′ ∼U f . Moreover, f ′(In(γ)) = g′|Qγ
in(γ)(In(γ)) ⊂ g′(Qγ) for each γ ∈ τ , so the

collection {f ′(In(γ)) | γ ∈ τ} is discrete in X. As a result, X has the τ -discrete cells
property.

Next, to prove the “only if” part, take any map f :
⊕

γ∈τ Qγ → X. Let V ∈ cov(X)
be a star-refinement of U and εγ be a Lebesgue number for (f |Qγ )−1(V) ∈ cov(Qγ). Then,
we can choose n(γ) ∈ N so that n(γ)−1 < εγ . It is easy to see that idQγ

is n(γ)−1-close
to in(γ)pn(γ), hence f |Qγ

∼V f |Qγ
in(γ)pn(γ). Define a map g : D =

⊕
γ∈τ In(γ) → X by
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g|In(γ) = f |Qγ
in(γ) for each γ ∈ τ . Due to the τ -discrete cells property of X, we can find

a map g′ : D → X such that g′ ∼V g and {g′(In(γ)) | γ ∈ τ} is discrete in X. Then, we
define a map f ′ :

⊕
γ∈τ Qγ → X by f ′|Qγ = g′|In(γ)pn(γ) for each γ ∈ τ . Observe that

for every γ ∈ τ ,

f ′|Qγ = g′|In(γ)pn(γ) ∼V g|In(γ)pn(γ) = f |Qγ in(γ)pn(γ) ∼V f |Qγ ,

which means that f ′ ∼U f . Furthermore, f ′(Qγ) = g′|In(γ)pn(γ)(Qγ) = g′(In(γ)) for
all γ ∈ τ , so the collection {f ′(Qγ) | γ ∈ τ} is discrete in X. Consequently, X has
τ -DAP(Q). ¤

For a topological subclass C ⊂ M0, by the same argument as Lemma 4 of [2] (cf. [10])
we can show that τ -LFAP(C) coincides with τ -DAP(C), that is:

Lemma 4.2. Let τ be an infinite cardinal and let C be a topological subclass of M0.
A space X has τ -LFAP(C) if and only if X has τ -DAP(C).

Proposition 4.3. Let τ be a cardinal > 1 and n ∈ ω. Suppose that W is an
open set in an ANR X which is contractible in X. If X has the τ -discrete cells property
(respectively, the τ -discrete (2n+1)-cells property), then W has τ -DAP(M0) (respectively,
τ -DAP(M0(n))).

Proof. We may only prove the case when X has the τ -discrete (2n + 1)-cells
property because the other case is similarly proved by virtue of Lemma 4.1. Suppose that
f : A =

⊕
γ∈τ Aγ → W is a map, where Aγ ∈ M0(n) for all γ ∈ τ , and U ∈ cov(X). Due

to Lemma 4.2, we may construct a map h : A → W such that h ∼U f and {h(Aγ) | γ ∈ τ}
is locally finite in W . Denote D =

⊕
γ∈τ Dγ , where Dγ = I2n+1 for each γ ∈ τ . We may

assume that Aγ ⊂ Dγ for all γ ∈ τ .
Since W is an ANR, f extends to a map f̃ : V → W from an open neighborhood

V of A in D to W . Take an open neighborhood V ′ of A in D so that cl V ′ ⊂ V and
let k : D → I be an Urysohn map such that k−1(0) = A and k−1(1) = D \ V ′. By the
hypothesis, we have a contraction φ : W × I → X so that φ0 = idW and φ1(W ) = {x0}
for some x0 ∈ X. Then, we can define the map f̄ : D → X as follows:

f̄(x) = φ(f̃(x), k(x)) for each x ∈ V and f̄(D \ V ) = {x0}.

Now, we can write W =
⋃

i∈NWi, where Wi is an open set in X and clWi ⊂ Wi+1

for every i ∈ N. Let U0 ∈ cov(X) such that U0 ≺? U . We define closed subsets Ri ⊂ A,
i ∈ N, an open cover U ′ ∈ cov(W ) and open covers Ui ∈ cov(X), i ∈ N, as follows:

Ri = f−1(cl Wi \Wi−1), U ′ =
⋃

i∈N
U0|Wi\cl Wi−2

and Ui = U ′|W2i
∪ {X \ cl W2i−1},

where W−1 = W0 = ∅. Using the τ -discrete (2n + 1)-cells property of X, we can obtain
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a map gi : D → X such that gi 'Ui
f̄ and {gi(Dγ) | γ ∈ τ} is discrete in X. Then

gi|R2i−1 'U ′ f |R2i−1 for all i ∈ N. By the Homotopy Extension Theorem, we can take
a map g : A → W such that g 'U ′ f and g|R2i−1 = gi|R2i−1 for each i ∈ N. It
is easy to see that {g(Aγ ∩ R2i−1) | γ ∈ τ} is discrete in W2i \ cl W2i−3. Therefore
{g(Aγ ∩R2i−1) | γ ∈ τ, i ∈ N} is locally finite in W .

Next, we can find an open refinement V ∈ cov(W ) of U0 so as to satisfy the following:

For every map h : A → W , h ∼V g implies that {h(Aγ ∩ R2i−1) | γ ∈ τ, i ∈ N} is
locally finite in W .

By the same construction as g, we can obtain a map h : A → W so that h 'V g and
{h(Aγ∩R2i) | γ ∈ τ, i ∈ N} is locally finite in W . It is follows from the definition of V that
{h(Aγ∩R2i−1) | γ ∈ τ, i ∈ N} is locally finite in W . Therefore {h(Aγ∩Ri) | γ ∈ τ, i ∈ N}
is locally finite in W , which means that {h(Aγ) | γ ∈ τ} is locally finite in W . Moreover,
h ∼V g ∼U ′ f , so h ∼U f . Thus, the proof is complete. ¤

A little stronger condition than τ -DAP will be introduced in the following proposi-
tion.

Proposition 4.4. Let τ be a cardinal > 1 and C be a topological and closed hered-
itary subclass of M0. Suppose that X is an ANR with τ -DAP(C) and that any closed
set C ∈ C in X is a strong Z-set. Then, for every map f : A =

⊕
γ∈τ Aγ → X from a

discrete union of Aγ ’s to X, where Aγ ∈ C, for every closed subset B ⊂ A such that the
restriction f |B is a closed embedding and for every U ∈ cov(X), there exists a map g : A

→ X such that g ∼U f , g|B = f |B and the collection {g(Aγ) | γ ∈ τ} is discrete in X.

Proof. We take U1, U2 ∈ cov(X) so that U Â? U1 Â? U2. Let Bγ = Aγ ∩ B for
each γ ∈ τ . Since f |B is a closed embedding, {f(Bγ) | γ ∈ τ} is a discrete collection in
X. Then, we can find a pairwise disjoint collection {Uγ | γ ∈ τ} of open subsets of X so
that f(Bγ) ⊂ Uγ for each γ ∈ τ .

Take U ′2 ∈ cov(X) such that

U ′2 ≺ U2 ∧ {Uγ , X \ f(B) | γ ∈ τ}.

Since f(Bγ) ∈ C for every γ ∈ τ , it follows from Proposition 2.2(2) that f(B) =⋃
γ∈τ f(Bγ) is a strong Z-set in X. Then, we can obtain a U ′2-homotopy h′ : X × I → X

and an open neighborhood W of f(B) in X such that h′0 = f and h′1(X) ⊂ X \ W .
We write Wγ = W ∩ Uγ for each γ ∈ τ . Let h = h′(f × idI) : A × I → X, so h is a
U ′2-homotopy and h0 = h′0f = f . Observe that h(Bγ×I) ⊂ Uγ for each γ ∈ τ . Since each
Bγ is compact, we can find an open neighborhood Vγ of Bγ in Aγ so that h(Vγ×I) ⊂ Uγ .
Take an Urysohn map k : A → I such that k−1(0) = B and k−1(1) = A \⋃

γ∈τ Vγ and
define the map f ′ : A → X by f ′(x) = h(x, k(x)) for x ∈ A. It is easy to see that
f ′ ∼U ′2 f and f ′|B = h0|B = f |B . Moreover, f ′ satisfies the following condition:

(1) f ′(A \ Vγ) ∩Wγ = ∅ for any γ ∈ τ .

Indeed, take any point x ∈ A \ Vγ . When x ∈ A \⋃
γ∈τ Vγ ,
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f ′(x) = h1(x) = h′1f(x) ∈ X \W ⊂ X \Wγ .

When x ∈ Vγ′ for some γ′ 6= γ,

f ′(x) = hk(x)(x) ∈ Uγ′ ⊂ X \ Uγ ⊂ X \Wγ .

We take an open neighborhood W ′
γ of f(Bγ) for each γ ∈ τ so that cl W ′

γ ⊂ Wγ .
Let U ′1 ∈ cov(X) such that

U ′1 ≺ U1 ∧
{

W ′
γ ,Wγ \ f(Bγ), X \

⋃

γ′∈τ

cl W ′
γ′ | γ ∈ τ

}
.

Applying τ -DAP(C) of X to f ′, we can obtain a U ′1-homotopy h′′ : A × I → X so that
h′′0 = f ′ and

(2) {h′′1(Aγ) | γ ∈ τ} is discrete in X.

Since h′′ is a U ′1-homotopy and h′′0 |B = f ′|B = f |B , it follows that h′′(Bγ × I) ⊂ W ′
γ

for each γ ∈ τ . Because of the compactness, each Bγ has an open neighborhood Gγ

in Aγ such that h′′(Gγ × I) ⊂ W ′
γ . Let k′ : A → I be an Urysohn map such that

(k′)−1(0) = B and (k′)−1(1) = A \ ⋃
γ∈τ Gγ . Now, we can define the desired map

g : A → X by g(x) = h′′(x, k′(x)) for all x ∈ A. Observe that g ∼U ′1 f ′ and the
restriction g|B = h′′0 |B = f ′|B , hence g ∼U f and g|B = f |B . Thus, it remains to show
that {g(Aγ) | γ ∈ τ} is discrete in X.

Fix a point x ∈ X. Due to (2), the collection {g(Aγ \Gγ) | γ ∈ τ} is discrete in X,
hence there exists an open neighborhood Ux of x in X such that

card({γ ∈ τ | g(Aγ \Gγ) ∩ Ux 6= ∅}) ≤ 1.

(Case 1) card({γ ∈ τ | g(Aγ \Gγ) ∩ Ux 6= ∅}) = 0.
When x ∈ X \⋃

γ∈τ cl W ′
γ , the subset U ′

x = Ux\
⋃

γ∈τ cl W ′
γ is an open neighborhood

of x in X. Since g(Gγ) ⊂ W ′
γ , we have U ′

x ∩ g(Gγ) = ∅, so U ′
x ∩ g(Aγ) = ∅ for any γ ∈ τ .

When x ∈ ⋃
γ∈τ cl W ′

γ , x ∈ cl W ′
γ0

for the unique γ0 ∈ τ . Then U ′
x = Ux \

⋃
γ 6=γ0

cl W ′
γ is

an open neighborhood of x in X such that U ′
x ∩ g(Aγ) = ∅ for all γ 6= γ0.

(Case 2) card({γ ∈ τ | g(Aγ \Gγ) ∩ Ux 6= ∅}) = 1.
We may assume that g(Aγ0 \ Gγ0) ∩ Ux 6= ∅ for the unique γ0 ∈ τ . Note that

g(Aγ0 \ Gγ0) is a closed set in X because of the compactness of Aγ0 , so we can turn
the case when x /∈ g(Aγ0 \ Gγ0) into Case 1 by replacing Ux by Ux \ g(Aγ0 \ Gγ0).
When x ∈ g(Aγ0 \ Gγ0), we have x ∈ X \⋃

γ 6=γ0
cl W ′

γ . Otherwise x ∈ cl W ′
γ1

for some
γ1 6= γ0. As x ∈ g(Aγ0 \ Gγ0), the point x = g(a) for a point a ∈ Aγ0 \ Gγ0 . Then
f ′(a) ∈ Wγ1 because g ∼U ′1 f ′. On the other hand, since Aγ0 ⊂ A \ Vγ1 , it follows from
(1) that f ′(Aγ0)∩Wγ1 = ∅, which is a contradiction. Now x has the open neighborhood
U ′

x = Ux \
⋃

γ 6=γ0
cl W ′

γ in X such that U ′
x ∩ g(Aγ) = ∅ for every γ 6= γ0. ¤
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5. A Proof of Main Theorem.

This section is devoted to proving Main Theorem. The following proposition follows
from A. H. Stone’s Theorem (Theorem 4.4.1 of [12]).

Proposition 5.1. Let X be a metrizable space. Then X is a countable union of
closed subsets which are discrete unions of f.d. compact metrizable spaces if and only if
X is a countable union of locally compact locally f.d. closed subsets.

Proof. The “only if” part is obvious. To prove the “if” part, we assume that
X =

⋃
n∈ω Xn, where Xn is a locally compact locally f.d. closed subsets for all n ∈ ω.

By the local compactness and the local finite-dimensionality, each Xn has an open cover
Un such that for every U ∈ Un, the closure of U is compact and finite-dimensional. Due
to A. H. Stone’s Theorem, each Un has a σ-discrete open refinement Vn =

⋃
m∈ω Vm

n ∈
cov(Xn), where Vm

n is discrete in Xn. Then, Am
n =

⋃
V ∈Vm

n
cl V is a closed subset of Xn

which is a discrete union of f.d. compact metrizable spaces. Evidently X =
⋃

n,m∈ω Am
n .

The proof is complete. ¤

Remark 3. When X is a countable union of closed subsets which are discrete
unions of f.d. compact metrizable spaces, we can write X =

⋃
n∈ω Xn, where each Xn

is a closed subspace which is discrete unions of compact metrizable spaces of dimension
≤ n. Moreover, it is should be noted that a metrizable space X satisfies this condition if
and only if X is s.c.d. σ-locally compact.

Now, we shall show the following characterization.

Theorem 5.2. Let τ be an infinite cardinal. For a connected space X, the following
conditions (1), (2) and (3) are equivalent :

(1) X is an `f
2 (τ)-manifold.

(2) (a) X is an ANR of weight = τ and a countable union of closed sets which are
discrete unions of f.d. compact metrizable spaces.

(b) X is strongly universal for
⊕

τ M0(n) for all n ∈ ω.
(c) For every subset C ⊂ X, if C ∈ Mf

0 , then C is a strong Z-set in X.
(3) (a) X is an ANR of weight = τ and a countable union of closed sets which are

discrete unions of f.d. compact metrizable spaces.
(b) ( i ) X has τ -DAP(M0(n)) for all n ∈ ω.

( ii ) X is strongly universal for Mf
0 .

(c) For every subset C ⊂ X, if C ∈ Mf
0 , then C is a strong Z-set in X.

Proof. The implication (2) ⇒ (3) is clear. According to Proposition 4.4, the
condition (b) of (3) implies the condition (b) of (2), so the implication (3) ⇒ (2) also
holds. Now, we shall show the equivalence (1) ⇔ (2).

(1) ⇒ (2): Due to Proposition 4.5 of [20], X is an ANR which is a countable union of
locally compact locally f.d. closed subsets. By Proposition 5.1, X is a countable union
of closed subsets which are discrete unions of f.d. compact metrizable spaces. Moreover,
since X is connected, we have w(X) = w(`f

2 (τ)) = τ . Therefore X satisfies the condition
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(a).
By 1.1 of [20], every space in

⊕
τ M0(n), n ∈ ω, can be embedded into `f

2 (τ) as a
closed subspace. Hence, the condition (b) follows from the Strong Universality Theorem
(cf. Lemma 5.1 of [9]4). Furthermore, since the condition (b) implies that X has the
τ -discrete n-cells property for all n ∈ ω, any f.d. compact subset C ⊂ X is a Z-set in X

by Proposition 2.1. Then C is a strong Z-set in X due to A1 of [23], which means that
the condition (c) holds.

(2) ⇒ (1): Obviously, the class C =
⋃

n∈ω

⊕
τ M0(n) is topological and closed hereditary.

As is seen in the proof of (1) ⇒ (2), the locally convex topological linear metric space
`f
2 (τ) satisfies the condition (2). Due to the condition (a) and Remark 3, with respect to

C the space `f
2 (τ) and the connected ANR X satisfy (?) in Section 3 and (i) in Theorem

3.3, respectively. Combining the condition (c) with Proposition 2.2(2) implies that `f
2 (τ)

and X satisfy (??) in Section 3 and (iii) in Theorem 3.3 with respect to C, respectively.
The condition (b) is no other than the condition (ii) in Theorem 3.3. On the other
hand, since X is an ANR of weight = τ and a countable union of locally compact locally
f.d. closed subsets, applying Theorem 4.3 of [20] to X × `f

2 (τ), we have X × `f
2 (τ) is an

`f
2 (τ)-manifold. According to Theorem 3.3, X is homeomorphic to X× `f

2 (τ), that is, an
`f
2 (τ)-manifold. ¤

Remark 4. As is seen in the above, the space `f
2 (τ) has the properties (?) and

(??) in Section 3 with respect to the class C =
⋃

n∈ω

⊕
τ M0(n). Then, it follows from

C ⊂ ⊕
τ Mf

0 that `f
2 (τ) satisfies (?) with respect to

⊕
τ Mf

0 , immediately. Moreover,
combining (c) of Theorem 5.2 with Proposition 2.2(2) implies the stronger assertion
that `f

2 (τ) satisfies (??) with respect to
⊕

τ Mf
0 , actually. In addition, removing “finite-

dimensionality”, we have `f
2 (τ)×Q satisfies (?) and (??) with respect to the class

⊕
τ M0.

Using the above characterization, we shall prove Main Theorem.

Proof of Main Theorem. Using the condition (3) of Theorem 5.2, we can ob-
tain the “only if” part immediately. Now, we shall prove the “if” part. Since X is locally
contractible, each point x ∈ X has an open neighborhood W which is contractible in X.
It is enough to show that W is an `f

2 (τ)-manifold, that is, W satisfies (3) of Theorem
5.2.

It follows from Proposition 2.2(1) that W satisfies the condition (c). To verify the
condition (b-ii), suppose that f : A → W is a map from A ∈ Mf

0 such that the restriction
f |B on a closed subset B of A is a Z-embedding. For each open cover W ∈ cov(W ),
the collection U = W ∪ {X \ f(A)} ∈ cov(X) because A is compact. Then, applying
the strong universality of X to f allows us to find a Z-embedding g : A → X such that
g ∼U f and g|B = f |B . Due to the definition of U , we have g(A) ⊂ W and g ∼W f .
Thus, W satisfies (b-ii). The contractibility of W in X and the τ -discrete n-cells property
of X, n ∈ ω, imply that W has τ -DAP(M0(n)) for all n ∈ ω by Proposition 4.3, namely,
the condition (b-i) is satisfied. It remains to check the condition (a). It follows from

4Lemma 5.1 of [9] holds for a locally convex topological linear metric space E not only such that E

is homeomorphic to EN but also such that E is homeomorphic to ENf .
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τ -DAP(M0(n)) of W that τ ≤ w(W ) ≤ w(X) = τ , hence w(W ) = τ . Since W is an
open subset in X, it is an ANR and an Fσ-set in X. Then, because X is a countable
union of closed subsets which are discrete unions of f.d. compact metrizable space, so an
Fσ-set W is. Therefore, the condition (a) holds. ¤

By removing “finite-dimensionality” from the characterization of `f
2 (τ)-manifolds,

we can similarly prove the following characterization of (`f
2 (τ)×Q)-manifolds.

Theorem 5.3. Let τ be an infinite cardinal. A connected space X is an (`f
2 (τ)×Q)-

manifold if and only if the following conditions are satisfied :

(1) X is an ANR of weight = τ and a countable union of closed sets which are discrete
unions of compact metrizable spaces.

(2) X has the τ -discrete cells property.
(3) X is strongly universal for M0.
(4) For every subset C ⊂ X, if C ∈ M0, then C is a strong Z-set in X.

6. A Proof of Theorem A.

Throughout Sections 6 and 7, we consider τ an infinite cardinal. Then, we can
regard `1(τ) as a linear subspace in Rτ . Now, we shall fix some notation for the sake of
convenience in Sections 6 and 7. Define the vector eγ ∈ `1(τ) for each γ ∈ τ as follows:

eγ(γ′) =

{
eγ(γ′) = 1 if γ′ = γ,

eγ(γ′) = 0 if γ′ 6= γ,

that is, eγ is an unit vector of `1(τ). For a subset Γ ⊂ τ , we identify

RΓ = {x ∈ Rτ | x(γ) = 0 for all γ /∈ Γ}.

Then, the projection pΓ : `1(τ) → `1(τ) ∩ RΓ is defined by

pΓ(x)(γ) =

{
x(γ) if γ ∈ Γ,

0 if γ /∈ Γ.

Moreover, let B1(x, ε) = {y ∈ `1(τ) | ‖x − y‖1 < ε} for each x ∈ `1(τ) and ε > 0. For a
simplicial complex K and n ∈ ω, let K(n) be the n-skeleton of K. The set of all vertices
of a simplex σ is denoted by σ(0).

Proposition 6.1. For any simplicial complex K, the metric polyhedron |K|m is a
countable union of closed sets which are discrete unions of f.d. compact metrizable spaces.

Proof. For each simplex σ ∈ K, let σ̂ and ∂σ be the barycenter and the boundary
of σ, respectively. Given σ ∈ K \K(0) and t ∈ I,

σ[t] = {(1− s)σ̂ + sx | x ∈ ∂σ, 0 ≤ s ≤ t}
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is a closed subset of σ. Let A0 = K(0) and An = {σ[1 − 2−n] | σ ∈ K(n) \K(0)} for all
n ∈ N, so An is a discrete collection of f.d. compact metrizable spaces in |K|m. Then
|K|m =

⋃
n∈ω(

⋃An). Consequently, the assertion holds. ¤

The following lemma is a reformulation of Lemma 6.1 of [4], which is a non-separable
version of Lemma 1 of [11].

Lemma 6.2. Let G = (G, d) be a topological group with a left-invariant metric d

and θ ∈ G be the unit element. Suppose that S is a submonoid 5 in G which is locally
path-connected at θ. If S satisfies the following condition:

(∗) For any neighborhood V of θ in S, there is a subset T ⊂ V with card (T ) = τ so
that there exists δ > 0 such that d(x, y) ≥ δ for every distinct points x, y ∈ T ,

then S has the τ -discrete n-cells property for all n ∈ ω.

Using the above lemma and the technique of Proposition 7.1 of [4], we shall prove
the following.

Proposition 6.3. For every n ∈ ω, the metric polyhedron |∆(τ)|m has the τ -
discrete n-cells property.

Proof. For the sake of convenience, we denote X = |∆(τ)|m and L = `1(τ), and
define the admissible metric d on L× R as follows:

d((x, s), (y, t)) = ‖x− y‖1 + |s− t| for every x, y ∈ L and s, t ∈ R.

Furthermore, we use the following notation for subsets and a point of L× R:

S = {(tx, t) | x ∈ X, t ∈ [0,∞)} ⊂ L× R,

X[t1, t2] = {(tx, t) | x ∈ X, t1 ≤ t ≤ t2} ⊂ S for 0 ≤ t1 ≤ t2 < ∞
and θ = (0, 0) ∈ S.

Note that X[1, 1] is homeomorphic to X. It is easy to see that the map r : S \ {θ} 3
(x, t) 7→ x/t ∈ X is a retraction of S \ {θ} onto X and the restriction r|X[1/2,3/2] is a
perfect map.

We shall show that if S has the τ -discrete n-cells property, then X has the τ -discrete
n-cells property. Let D =

⊕
γ∈τ Dγ , where Dγ = In. Given any map f : D → X and

any open cover U ∈ cov(X), we define a map f ′ : D → X[1, 1] ⊂ S and an open cover
Ũ ∈ cov(S) as follows:

f ′(x) = (f(x), 1) for all x ∈ D and

Ũ =
{

S \X

[
3
4
,
5
4

]
, U

(
1
2
,
3
2

) ∣∣∣∣ U ∈ U
}

,

5We call S a submonoid of G if θ ∈ S and xy ∈ S for any x, y ∈ S.
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where U

(
1
2
,
3
2

)
=

{
(tx, t)

∣∣∣∣ x ∈ U,
1
2

< t <
3
2

}
.

Then, we can find a map f̃ : D → S such that f̃ ∼Ũ f ′ and {f̃(Dγ) | γ ∈ τ} is discrete in
S. Note that f̃(D) ⊂ X[1/2, 3/2], so we can define the map g : D → X as the composition
g = rf̃ . Then g ∼U f . Moreover, it follows from the discreteness of {f̃(Dγ) | γ ∈ τ} and
the perfectness of r|X[1/2,3/2] that {g(Dγ) | γ ∈ τ} is locally finite in X. Consequently,
X has τ -LFAP(In). Due to Lemma 4.2, X has the τ -discrete n-cells property.

Now, using Lemma 6.2, we shall show that S has the τ -discrete n-cells property.
First, S is a submonoid in L × R. Let x, y ∈ X and s, t ∈ [0,∞). Since X is a convex
subset of L, we have z = tx/(t + s) + sy/(t + s) ∈ X. Then,

(tx, t) + (sy, s) = (tx + sy, t + s)

=
(

(t + s)
(

tx

t + s
+

sy

t + s

)
, t + s

)

= ((t + s)z, t + s) ∈ S,

so S is a submonoid in L× R.
Second, to check the local path-connectedness of S at θ, let V be a neighborhood

of θ in S. Then, we can choose t > 0 so that W = S ∩ (B1(0, t) × (−t, t)) ⊂ V . Given
x1, x2 ∈ X and s1, s2 ∈ [0, t), the two points (s1x1, s1), (s2x2, s2) ∈ W can be connected
by the path α : I → W defined as follows:

α(x) =





((1− 2s)s1x1, (1− 2s)s1) if 0 ≤ s ≤ 1
2
,

((2s− 1)s2x2, (2s− 1)s2) if
1
2
≤ s ≤ 1.

Hence S is locally path-connected at θ.
Finally, we show that S satisfies the condition (∗) in Lemma 6.2. Note that X is

contained in the unit sphere of L. For each neighborhood V of θ, we can take t > 0 so
that T = {(tv, t) | v ∈ ∆(τ)(0)} ⊂ V . Then card (T ) = card(∆(τ)(0)) = τ . Moreover, for
every distinct vertices v, v′ ∈ ∆(τ)(0),

d((tv, t), (tv′, t)) = ‖tv − tv′‖1 + |t− t| = t‖v − v′‖1 = 2t,

that is, T is the desired subset. Thus, the proof is complete. ¤

Proposition 6.4. Every simplex σ of the full simplicial complex ∆(τ) is a strong
Z-set in |∆(τ)|m.

Proof. Let α : |∆(τ)|m → (0, 1) be a map. Due to Proposition 2.3, it is sufficient
to show that there exists a map f : |∆(τ)|m → |∆(τ)|m such that ‖x − f(x)‖1 ≤ α(x)
for x ∈ |∆(τ)|m and cl f(|∆(τ)|m) ∈ |∆(τ)|m \ σ. Fix a vertex v0 ∈ ∆(τ)(0) \ σ(0). Since
∆(τ) is a full simplicial complex, we can define the desired map f : |∆(τ)|m → |∆(τ)|m
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as follows:

f(x) =
(

1− α(x)
2

)
x +

α(x)
2

v0 for every x ∈ |∆(τ)|m.

Indeed, for each x ∈ |∆(τ)|m,

‖x− f(x)‖1 =
∥∥∥∥x−

(
1− α(x)

2

)
x +

α(x)
2

v0

∥∥∥∥
1

≤ α(x)
2

(‖x‖1 + ‖v0‖1) =
α(x)

2
2 = α(x).

Then, it remains to prove that cl f(|∆(τ)|m) ∈ |∆(τ)|m \ σ. On the contrary, we
assume that there is a point x ∈ cl f(|∆(τ)|m)∩ σ. It follows from the compactness of σ

that we can choose

0 < α0 = min{α(y) | y ∈ σ} ≤ α(x).

By the continuity of α, there is δ > 0 such that α(y) > 2α0/3 for all y ∈ B1(x, δ)∩|∆(τ)|m.
On the other hand, we have a sequence {f(xn)}n∈N ⊂ |∆(τ)|m converges to x because
x ∈ cl f(|∆(τ)|m). Remark that for every n ∈ N,

‖x− f(xn)‖1 =
∥∥∥∥x−

(
1− α(xn)

2

)
xn − α(xn)

2
v0

∥∥∥∥
1

≥ α(xn)
2

since v0 /∈ σ(0). Then, we can take n0 ∈ N so that ‖x− f(xn0)‖1 < min{δ, α0}/3, hence
we get

α(xn0) ≤ 2‖x− f(xn0)‖1 <
2
3

min{δ, α0}.

It follows that

‖x− xn0‖1 ≤ ‖x− f(xn0)‖1 + ‖xn0 − f(xn0)‖1
≤ ‖x− f(xn0)‖1 + α(xn0)

<
δ

3
+

2δ

3
= δ,

which implies α(xn0) > 2α0/3. This is a contradiction. Consequently, cl f(|∆(τ)|m)∩σ =
∅. Thus, the proof is complete. ¤

While every compact subspace of the polyhedron endowed with the weak topology
is covered by finitely many simplexes, the following holds with respect to the metric
polyhedron.
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Lemma 6.5. Let K be an infinite simplicial complex and A be a compact subset of
|K|m. Then, there exists a countable subcomplex L ⊂ K such that A ⊂ |L|.

Proof. By Theorem 1 of [16], the identity id : |K|w → |K|m is a fine homotopy
equivalence, where |K|w is the polyhedron of K endowed with the weak topology. Then,
for each n ∈ N, we can find a map fn : |K|m → |K|w such that id fn is 1/n-close to the
identity map id|K|m . Since fn(A) is compact in |K|w, there exists a finite subcomplex
Ln of K such that fn(A) ⊂ |Ln|.

Let L =
⋃

n∈N Ln. Clearly, L is a countable subcomplex of K. Moreover, A ⊂ |L|.
On the contrary, we suppose that there is a point x ∈ A \ |L|. Since A is compact and
|L| is closed in |K|m, we can choose n ∈ N so that infy∈|L| ‖x− y‖1 > 1/n. On the other
hand, we have fn(x) ∈ |Ln| ⊂ |L| and ‖x − fn(x)‖1 < 1/n because id fn is 1/n-close to
id|K|m . This is a contradiction. Hence A ⊂ |L|, which means that the proof is completed.

¤

Combining the results which we have obtained, we can establish the following propo-
sition.

Proposition 6.6. If C is a compact subset of the metric polyhedron |∆(τ)|m, then
C is a strong Z-set in |∆(τ)|m.

Proof. Due to Lemma 6.5, we have a countable subcomplex L of ∆(τ) so that
C ⊂ |L|. Since all simplexes of ∆(τ) are strong Z-sets in |∆(τ)|m by Proposition 6.4, it
follows that C =

⋃
σ∈L(C∩σ) is a strong Zσ-set in |∆(τ)|m. On the other hand, |∆(τ)|m

has the τ -discrete n-cells property for every n ∈ ω by Proposition 6.3. It follows from
Proposition 2.1 that C is a Z-set in |∆(τ)|m. Furthermore, according to Proposition 3.1
of [19], C is a strong Z-set in |∆(τ)|m. ¤

We can prove the next proposition by using the technique of Theorem 4 of [24].

Proposition 6.7. The metric polyhedron |∆(τ)|m is strongly universal for Mf
0 .

Proof. For simplicity, let X stand for |∆(τ)|m. To verify the strong universality
of X, take any space A ∈ Mf

0 , any closed subset B in A, any map f : A → X such that
the restriction f |B is a Z-embedding and an arbitrary open cover U ∈ cov(X). We shall
construct an embedding g̃ : A → X such that g̃ ∼U f and g̃|B = f |B . Then, remark that
g̃ is a Z-embedding because of Proposition 6.6.

We can write A \ B =
⋃

n∈NAn, where A1 ⊂ A2 ⊂ · · · are closed subsets in A.
Applying Theorem 2.4 of [21]6 to a Z-set f(B), we can obtain a homotopy φ : X×I → X

so that φ0 = idX and φ(X × (0, 1]) ⊂ X \ f(B). Let k : A → I be a map such that
k−1(0) = B and for each x ∈ A, there exists U ∈ U ′ such that {f(x)}×[0, k(x)] ⊂ φ−1(U),
where U Â? U ′ ∈ cov(X). We define the map f ′ : A → X by f ′(x) = φ(f(x), k(x)).
Observe that f ′ ∼U ′ f , f ′|B = f |B and f ′(A \ B) ⊂ X \ f(B). We have a Lebesgue
number λ < 1 for U ′ with respect to f ′(A). By the same argument of Lemma 2.5, we
can find an open cover V ∈ cov (X \ f(B)) with meshV < λ so as to satisfy the following

6Remark that a Z-set in an ANR is a closed locally homotopy negligible set.
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condition:

For a map h : (f ′)−1(X \ f(B)) = A \ B → X \ f(B), if h ∼V f ′|A\B , then h

extends to the map h̃ : A → X by h̃|B = f |B .

We take a sequence of open covers V Â? V0 Â? V1 Â? · · · ∈ cov (X \ f(B)) with
meshVn < 2−n for every n ∈ ω. Moreover, since X \ f(B) is an ANR, we can choose
V ′n ∈ cov (X \ f(B)) for each n ∈ ω so that V ′n ≺ Vn and has the following property:

Given a space Y and maps h1, h2 : Y → X \ f(B), if h1 ∼V′n h2, then h1 'Vn
h2.

Now, we shall inductively construct maps gn : A \B → X \ f(B), n ∈ ω, a tower of
finite subsets ∅ = Γ0 ⊂ Γ1 ⊂ · · · ⊂ τ such that

(1) gn|An
is an embedding into RΓn ∩ (X \ f(B)),

(2) gn+1|An
= gn|An

and
(3) gn+1 'Vn gn,

where g0 = f ′ and A0 = ∅. Assume that gj and Γj have been obtained for all j < n. Let
λn < 1 be a Lebesgue number for V ′n with respect to gn−1(An). By the same argument
as the proof of Theorem 4 in [24], since gn−1(An) is compact, we can choose a finite
subset Γ′n ⊂ τ so that Γn−1 ⊂ Γ′n and pΓ′ngn−1|An

is λn/4-close to gn−1|An
. Let Γ′′n

be a finite subset of τ \ Γ′n of cardinality = 2dim (An) + 2. Then ∆n = X ∩ RΓ′′n is a
simplex of ∆(τ) of dimension = card(Γ′′n)−1 = 2 dim (An)+1, so we have an embedding
qn : An → ∆n ⊂ X. Let Γn = Γ′n ∪Γ′′n, so RΓn = RΓ′n ⊕RΓ′′n . Taking a map kn : An → I

with k−1
n (0) = An−1, we can define the map g′n : An → X ∩ RΓn as follows:

g′n(x) =
pΓ′ngn−1(x) + λnkn(x)qn(x)/4

‖pΓ′ngn−1(x) + λnkn(x)qn(x)/4‖1 .

It follows from kn(An−1) = 0 that g′n|An−1 = gn−1|An−1 .
Now, we shall show that g′n is an embedding. For the sake of convenience, let

g′′n(x) = pΓ′ngn−1(x) +
λn

4
kn(x)qn(x) ∈ RΓn .

Suppose x, y ∈ An such that g′n(x) = g′n(y), so

λnkn(x)
4‖g′′n(x)‖1 qn(x) = pΓ′′ng′n(x) = pΓ′′ng′n(y) =

λnkn(y)
4‖g′′n(y)‖1 qn(y).

In case kn(x) = 0, we get kn(y) = 0. Hence

gn−1(x) = g′n(x) = g′n(y) = gn−1(y),

which implies x = y. In case kn(x) > 0, we have kn(y) > 0. In addition,
‖qn(x)‖1 = ‖qn(y)‖1 = 1. It follows that λnkn(x)/(4‖g′′n(x)‖1) = λnkn(y)/(4‖g′′n(y)‖1),
hence qn(x) = qn(y), which means that x = y because qn is an embedding into ∆n.
Consequently, g′n is an embedding.
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Next, we show that g′n 'Vn
gn−1|An. Given any x ∈ An,

‖gn−1(x)− g′′n(x)‖1 ≤ ‖gn−1(x)− pΓ′ngn−1(x)‖1 +
λn

4
kn(x)‖qn(x)‖1

<
λn

4
+

λn

4
=

λn

2
and

1− λn

2
≤ ‖gn−1(x)‖1 −

∥∥gn−1(x)− g′′n(x)
∥∥

1
≤ ∥∥g′′n(x)

∥∥
1

≤ ‖gn−1(x)‖1 +
∥∥gn−1(x)− g′′n(x)

∥∥
1
≤ 1 +

λn

2
.

Observe that

∥∥g′′n−1(x)− g′n(x)
∥∥

1
=

∣∣∣∣1−
1

‖g′′n(x)‖1

∣∣∣∣
∥∥g′′n(x)

∥∥
1

=
∣∣‖g′′n(x)‖1 − 1

∣∣ ≤ λn

2
.

Therefore, we have

∥∥gn−1(x)− g′n(x)
∥∥

1
≤ ∥∥gn−1(x)− g′′n(x)

∥∥
1

+
∥∥g′′n(x)− g′n(x)

∥∥
1

<
λn

2
+

λn

2
= λn.

As λn is a Lebesgue number for V ′n with respect to gn−1(An), we have g′n ∼V′n gn−1|An,
so it follows from the definition of V ′n that g′n 'Vn

gn−1|An. Note that g′n ∼V f ′|An
, so

g′(An) ⊂ st(f ′(An),V) ⊂ X \f(B). The Homotopy Extension Theorem allows us to find
the desired map gn : A \B → X \ f(B) so that

(1) gn|An
= g′n is an embedding into RΓn ∩ (X \ f(B)),

(2) gn|An−1 = g′n|An−1 = gn−1|An−1 and
(3) gn 'Vn gn−1.

This completes the inductive step.
After completing the inductive construction, due to (2), (3) and meshVn < 2−n for

all n ∈ ω the sequence {gn}n∈ω converges to the map g : A \ B → X \ f(B). It follows
that g|An = gn|An for all n ∈ ω, so g ∼V f ′|A\B . The definition of V extends g to
the desired map g̃ : A → X by g̃|B = f |B . Indeed, the restriction g|An = gn|An is an
embedding into X \ f(B) by (1), hence g̃ is also an embedding. It is easy to see that
g̃ ∼U f . In conclusion, g̃ is the desired embedding. ¤

We have seen that the metric polyhedron |∆(τ)|m satisfies the conditions of Main
Theorem. The combination of Main Theorem and Theorem 6 of [13] implies Theorem
A.

7. A Proof of Theorem B.

This section is devoted to proving Theorem B. We use an admissible metric d on
J(τ)N as follows:
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d(x, y) =
∑

i∈N
2−i‖x(i)− y(i)‖1 for every x, y ∈ J(τ)N.

Let pri : J(τ)N → J(τ) be the projection onto the ith coordinate. Moreover, for x, y ∈
`1(τ), the line segment between x and y is denoted by 〈x, y〉, that is,

〈x, y〉 = {(1− t)x + ty | t ∈ I}.

First, we shall show that J(τ)Nf satisfies the condition (1) of Main Theorem.

Proposition 7.1. The space J(τ)Nf is an AR of weight = τ and a countable union
of closed subsets which are discrete unions of f.d. compact metrizable spaces.

Proof. First, we verify that J(τ)Nf is an AR of weight = τ . It is clear that
w(J(τ)Nf ) = τ . The hedgehog J(τ) is an AR, so is J(τ)N. The space J(τ)Nf is homotopy
dense in J(τ)N. Indeed, we can take a contraction φ : J(τ) × I → J(τ) such that
φ0 = idJ(τ) and φ1(J(τ)) = {0}. Then, the homotopy h : J(τ)N × I → J(τ)N is defined
as follows: h(x, 0) = x and

h(x, t) =
(
pr1(x), . . . ,pri−1(x), φ(pri(x), 2it− 1),0,0, . . .

)
,

for each x ∈ J(τ)N and 2−i ≤ t ≤ 2−i+1.

It follows that h0 = idJ(τ) and h((0, 1]) ⊂ J(τ)Nf , hence J(τ)Nf is homotopy dense in
J(τ)N. As is well known, a homotopy dense subset of an AR is also an AR. Therefore
J(τ)Nf is an AR.

Next, we shall show that J(τ)Nf is a countable union of closed subsets which are
discrete unions of f.d. compact metrizable spaces. Let Fin(N) be the all non-empty finite
subsets of N. For each M ∈ Fin(N), n ∈ ω and each function ψM : M → τ , we define
the f.d. compact subset of J(τ)Nf as follows:

AψM

(M,n) =
{

x ∈ J(τ)N
∣∣∣∣
x(i) ∈ 〈2−neψM (i), eψM (i)〉, i ∈ M, and

x(i) = 0, otherwise

}
,

which is homeomorphic to the cube Icard(M). Let

A(M,n) =
{
AψM

(M,n) | ψM : M → τ
}

for each M ∈ Fin(N) and n ∈ ω.

Fix a point x ∈ J(τ)Nf \ {0}, so we have

M = {i ∈ N | x(i) 6= 0} ∈ Fin(N).

Define the function ψM : M → τ as follows:

ψM (i) = γ ∈ τ if x(i)(γ) > 0 for each i ∈ M.
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Taking n ∈ ω so that 2−n ≤ mini∈M ‖x(i)‖1, we can easily see that x ∈ AψM

(M,n). It follows
that

J(τ)Nf = {0} ∪
( ⋃

M∈Fin(N),n∈ω

( ⋃
A(M,n)

))
.

Moreover, A(M,n) is discrete in J(τ)Nf for each M ∈ Fin(N) and n ∈ ω. Indeed, let
x ∈ J(τ)Nf . When x(i) = 0 for some i ∈ M , we have Bd(x, 2−n) ∩ AψM

(M,n) = ∅ for
every ψM : M → τ . When x(i) 6= 0 for all i ∈ M , as is observed, we can take the
unique function ψM : M → E such that x(i) ∈ 〈0, eψM (i)〉 \ {0}. Then, define δ =

mini∈M ‖x(i)‖1, so Bd(x, δ) ∩ A
ψ′M
(M,n) = ∅ for every ψ′M : M → τ with ψ′M 6= ψM . Thus,

the proof is complete. ¤

The condition (2) of Main Theorem holds with respect to J(τ)Nf .

Proposition 7.2. For all n ∈ ω, the space J(τ)Nf has the τ -discrete n-cells prop-
erty.

Proof. For simplicity, let X be J(τ)Nf . Due to Lemma 4.2, it suffices to show
that X has τ -LFAP(In) for each n ∈ ω. Suppose that f : D =

⊕
γ∈τ Dγ → X is a

map, where Dγ = In for all γ ∈ τ . We shall construct a map g : D → X for each
α : X → (0, 1) such that d(g(x), f(x)) < αf(x) for every x ∈ D and {g(Dγ) | γ ∈ τ} is
locally finite in X. Let

Γi =
{

γ ∈ τ | 2−i < min
x∈Dγ

αf(x) ≤ 2−i+1
}

for each i ∈ N.

Then τ =
⊕

i∈N Γi. Now, we define the desired map g : D → X as follows:

g(x) = (pr1 f(x), . . . ,pri f(x), eγ ,0,0, . . . ) for each x ∈ Dγ , γ ∈ Γi and i ∈ N.

It follows that if x ∈ Dγ , γ ∈ Γi and i ∈ N, then

d(g(x), f(x)) ≤ 2−i < min
x′∈Dγ

αf(x′) ≤ αf(x),

that is, d(g(x), f(x)) < αf(x) for every x ∈ D. Moreover, {g(Dγ) | γ ∈ Γi} is discrete in
X for each i ∈ N.

To verify the local finiteness of {g(Dγ) | γ ∈ τ}, fix a point x ∈ X arbitrarily. In
case x(i) /∈ {eγ | γ ∈ τ} for all i ∈ N, we see

(Bd(x, δ) ∩X) ∩ g(D) = ∅ for some δ > 0.

Indeed, ‖x(i)‖1 < 1 for all i ∈ N and there is j0 ∈ N such that x(j) = 0 for every
j > j0 because x ∈ X. Then, we can define δ = 1 − maxi≤j0 ‖x(i)‖1 > 0. In case
x(i0) ∈ {eγ | γ ∈ τ} for some i0 ∈ N, there exists j0 > i0 such that x(j) = 0 for all
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j ≥ j0. Then, we have

(Bd(x, 1) ∩X) ∩ g(Dγ) = ∅ for each γ ∈ Γj , j ≥ j0 − 1.

On the other hand, since {g(Dγ) | γ ∈ Γi} is discrete in X for each i < j0 − 1, we can
find an open neighborhood Ui of x in X so that

card{γ ∈ Γi | Ui ∩ g(Dγ) 6= ∅} ≤ 1.

Taking an open neighborhood U =
( ⋂

i<j0−1 Ui

) ∩Bd(x, 1) of x in X, we have

card{γ ∈ τ | U ∩ g(Dγ) 6= ∅} < j0 − 1 < ∞,

that is, {g(Dγ) | γ ∈ τ} is locally finite in X. Thus, the proof is complete. ¤

The following proposition implies the condition (4) of Main Theorem.

Proposition 7.3. Every compact subset of J(τ)Nf is a strong Z-set.

Proof. For the sake of convenience, J(τ)Nf is denoted by X. Let C be a compact
subset of X and α : X → (0, 1) be a map. Due to Proposition 2.3, it is sufficient to
show that there exists a map g : X → X such that d(g(x), x) ≤ α(x) for all x ∈ X

and cl g(X) ⊂ X \ C. Since τ is infinite and C is compact, there is an element γ(i) ∈ τ

for each i ∈ N such that pri(C) ∩ 〈eγ(i)/2, eγ(i)〉 = ∅. Then, we can take a contraction
φi : J(τ)× I → J(τ) for each i ∈ N such that (φi)0 = idJ(τ) and (φi)1(J(τ)) = {eγ(i)}.

Now, we define the map g : X → X as follows:

g(x) =
(
pr1(x), . . . ,pri+1(x),

φi+2(pri+2(x), 2iα(x)− 1), eγ(i+3), (2− 2iα(x))eγ(i+4),0,0, . . .
)

if 2−i ≤ α(x) ≤ 2−i+1.

Then, we have

d(g(x), x) ≤
∑

j≥i+2

2−j+1 = 2−i ≤ α(x).

Taking any point x ∈ ⋃
y∈C Bd(y, 1/4), we have x(i) 6= eγ(i) for each i ∈ N. Indeed, we

can choose y ∈ C so that d(x, y) < 1/4. Then, we get

∥∥x(i)− eγ(i)

∥∥
1
≥

∥∥y(i)− eγ(i)

∥∥
1
− ‖x(i)− y(i)‖1 >

1
2
− 1

4
=

1
4

> 0,

hence x(i) 6= eγ(i). Therefore x ∈ X \ g(X). It follows that
⋃

y∈C Bd(y, 1/4) ⊂ X \ g(X),
so
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cl g(X) ⊂ X \
⋃

y∈C

Bd(y, 1/4) ⊂ X \ C.

Consequently, g is the desired map. ¤

The following proposition, which is proved by the same argument as Proposition
6.7, is no other than the condition (3) on J(τ)Nf .

Proposition 7.4. The space J(τ)Nf is strongly universal for Mf
0 .

Proof. For the sake of convenience, let X be J(τ)Nf and

Xm = {x ∈ X | x(i) = 0 for all i > m} ⊂ X for each m ∈ N.

Suppose that A ∈ Mf
0 , B is a closed subset of A, f : A → X such that f |B is a

Z-embedding and U ∈ cov(X). Due to Proposition 7.3, it is sufficient to construct an
embedding g̃ : A → X such that g̃ ∼U f and g̃|B = f |B . We have A\B =

⋃
n∈NAn, where

A1 ⊂ A2 ⊂ · · · are closed subsets of A, and U Â? U ′ ∈ cov(X). By the same argument
of Proposition 6.7, we can find a map f ′ : A → X such that f ′ ∼U ′ f , f ′|B = f |B and
f ′(A \ B) ⊂ X \ f(B). Let λ > 1 be a Lebesgue number for U ′ with respect to f ′(A).
Moreover, we can take open covers

V Â? V0 Â? V1 Â? · · · ∈ cov (X \ f(B)) and Vn Â V ′n ∈ cov (X \ f(B)), n ∈ ω,

with meshV < λ and meshVn < 2−n for every n ∈ ω so as to satisfy the following
conditions:

(∗) For a map h : (f ′)−1(X \f(B)) = A\B → X \f(B), if h ∼V f ′|A\B , then h extends
to the map h̃ : A → X by h̃|B = f |B .

(∗∗) Given a space Y and maps h1, h2 : Y → X \ f(B), if h1 ∼V′n h2, then h1 'Vn
h2.

By induction, we shall construct maps gn : A\B → X \f(B), n ∈ ω, and a sequence
of natural numbers 1 = m(0) < m(1) < · · · such that

(1) gn|An
is an embedding into Xm(n) \ f(B),

(2) gn+1|An
= gn|An

and
(3) gn+1 'Vn

gn,

where g0 = idA and A0 = ∅. Similar to Proposition 6.7, the sequence {gn}n∈ω converges
to the map g : A\B → X \f(B) such that g|An

= gn|An
and g is extended to the desired

embedding g̃ : A → X by g̃|B = f |B . Therefore, it remains to complete the induction.
Assume that gj and m(j) have been obtained for all j < n. Let λn < 1 be a Lebesgue

number for V ′n with respect to gn−1(An). Then, there is a number m(n)′ ≥ m(n−1) such
that

∑
i>m(n)′ 2

−i+1 < λn. Let m(n) = m(n)′ + 2 dim(A) + 2. Fix an unit vector e of
`1(τ). Remark that the segment 〈e/2, e〉 is contained in J(τ). By the finite dimensionality
of An, there exists an embedding qn : An → 〈e/2, e〉2 dim(A)+1. Taking a map kn : An → I

with k−1
n (0) = An−1, we can define the map g′n : An → Xm(n) \ f(B) as follows:
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pri g′n(x) =





pri gn−1(x) if i ≤ m(n)′,

kn(x)pi−m′
(n)

qn(x) if m(n)′ < i < m(n),

kn(x)e if i = m(n),

0 if m(n) < i,

where pj : 〈e/2, e〉2 dim(A)+1 → 〈e/2, e〉 is the projection onto the jth coordinate, j =
1, . . . , 2 dim(A)+1. Then g′n is an embedding. Indeed, take two distinct points x, y ∈ An

arbitrarily. In case x, y ∈ An−1, we have kn(x) = kn(y) = 0, so

g′n(x) = gn−1(x) 6= gn−1(y) = g′n(y)

since gn−1|An−1 is an embedding. In case x ∈ An \ An−1 and y ∈ An−1, we get kn(x) >

0 = kn(y), hence

prm(n) g′n(x) = kn(x)e 6= 0 = prm(n) g′n(y),

that is, g′n(x) 6= g′n(y). In case x, y ∈ An \ An−1, we have kn(x), kn(y) > 0. When
kn(x) 6= kn(y), we see

prm(n) g′n(x) = kn(x)e 6= kn(y)e = prm(n) g′n(y),

so g′n(x) 6= g′n(y). When kn(x) = kn(y), there is m(n)′ < i < m(n) such that

pri g′n(x) = kn(x) pri qn(x) 6= kn(y) pri qn(y) = pri g′n(y)

because qn is an embedding. Therefore g′n(x) 6= g′n(y). Moreover, g′n|An−1 = gn−1|An−1

because gn−1(An−1) ⊂ Xm(n−1) and kn(An−1) = 0. For every x ∈ An, we have

d(g′n(x), gn−1(x)) =
∑

i∈N
2−i

∥∥pri g′n(x)− pri gn−1(x)
∥∥

1

≤
∑

i≤m(n)′
2−i

∥∥pri g′n(x)− pri gn−1(x)
∥∥

1
+

∑

i>m(n)′
2−i+1

=
∑

i>m(n)′
2−i+1 < λn,

hence g′n ∼V′n gn−1|An . By (∗∗), g′n 'Vn gn−1|An . Applying the Homotopy Extension
Theorem to g′n, we can obtain an extension gn : A \ B → X \ f(B), which is desired, of
g′n such that gn 'Vn

gn−1. ¤

Combining Main Theorem with Theorem 6 of [13] establishes Theorem B.
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8. A Proof of Theorem C.

In this section, we shall prove Theorem C. Let C be a topological and closed hered-
itary class of spaces. We denote the collection of closed subspaces in a space X which
belong to C by C(X). A subspace Y of X is said to be weakly C(X)-absorptive7 if for
each A ∈ C(X), each closed subset B of A contained in Y and each U ∈ cov(X), there
exists an embedding f : A → Y such that f ∼U idA and f |B = idB . A space Y has a
C-complex structure {An}n∈ω if each An is a subcollection of C(Y ) with the following
properties:

(1) Y =
⋃

n∈ω(
⋃An),

(2) An =
⋃n

i=0(
⋃Ai) is closed in Y for each n ∈ ω and

(3) for each n ∈ ω, there exists a pairwise disjoint open cover Un of An \An−1 in Y such
that U ∩An \An−1 ∈ {A \An−1 | A ∈ An} for each U ∈ Un, where A−1 = ∅.

J. E. West established the following characterization of (`2(τ), `f
2 (τ))-manifold pairs in

1970, see Theorem 6 of [24].

Theorem 8.1. Let τ be an infinite cardinal. For spaces Y ⊂ X, the pair (X, Y )
is an (`2(τ), `f

2 (τ))-manifold pair if and only if X is an `2(τ)-manifold, Y is weakly
Mf

0 (X)-absorptive and has an Mf
0 -complex structure.

Due to Theorem 6 of [13] and Theorem 1 of [24], we can classify (`2(τ), `f
2 (τ))-

manifold pairs according to homotopy type.

Theorem 8.2. Let τ be an infinite cardinal. Suppose that (X, Y ) and (X ′, Y ′) are
(`2(τ), `f

2 (τ))-manifold pairs. If X and X ′ (or Y and Y ′) have the same homotopy type,
then (X, Y ) and (X ′, Y ′) are homeomorphic.

Remark 5. While it is not mentioned in [24], the similar characterization of
(`2(τ)×Q, `f

2 (τ)×Q)-manifold pairs can be established as follows:

The pair (X, Y ) is an (`2(τ)×Q, `f
2 (τ)×Q)-manifold pair if and only if X is an

`2(τ)-manifold,8 Y is weakly M0(X)-absorptive and has an M0-complex structure.

In addition, Theorem 8.2 is valid for (`2(τ)×Q, `f
2 (τ)×Q)-manifold pairs.

Although the complex structure is defined by imitating the simplicial complex struc-
ture, it is complicated. The following proposition is useful to verify that for a topological
and closed hereditary class C a metrizable space X has a C-complex structure.

Proposition 8.3. For a topological and closed hereditary class C, a metrizable
space X is a countable union of closed sets which are discrete unions of members of C if
and only if X has a C-complex structure.

Proof. First, we show the “only if” part. Let X =
⋃

n∈ω(
⋃An), where An is

a discrete collection of X whose members are in C and the union
⋃An is closed in X

7This notion is introduced in Theorem 6 of [24].
8Remark that `2(τ)×Q is homeomorphic to `2(τ).
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for each n ∈ ω. Note that An ⊂ C(X) for all n ∈ ω. Then An =
⋃n

i=0(
⋃Ai) is closed

in X for every n ∈ ω. Since each An is discrete in X, there exists a pairwise disjoint
collection Un = {U(A) | A ∈ An} of open subsets of X such that A ⊂ U(A) for each
A ∈ An. Observe that U(A) ∩ (An \ An−1) = A \ An−1 for each A ∈ An and n ∈ ω,
where A−1 = ∅. Consequently, the collections {An}n∈ω is a C-complex structure of X.

Next, we prove the “if” part. Let {An}n∈ω be a C-complex structure of X. Then, for
each n ∈ ω there exists a pairwise disjoint collection Un of open subsets of X satisfying
the following condition:

each Un covers An \An−1 so that U ∩An \An−1 ∈ {A \An−1 | A ∈ An} for every
U ∈ Un, where A−1 = ∅.

For every U ∈ Un and n ∈ ω, we can choose A ∈ An so that U ∩An \An−1 = A \An−1,
which is open in A, so an Fσ-set in A. Hence, we can write U∩An\An−1 =

⋃
m∈ω Am

(n,U),
where each Am

(n,U) is closed in A, so closed in X. It is easy to see that A(n,m) = {Am
(n,U) |

U ∈ Un} is discrete in X and the union
⋃A(n,m) is closed in X for all n,m ∈ ω. Moreover,

X =
⋃

n,m∈ω(
⋃A(n,m)). Indeed, for each x ∈ X, choose n ∈ ω such that x ∈ An \An−1.

Since Un covers An \An−1, there is U ∈ Un such that x ∈ U ∩An \An−1 =
⋃

m∈ω Am
(n,U),

which implies that x ∈ Am
(n,U) ⊂

⋃A(n,m) for some m ∈ ω. Thus, X is a countable union
of closed sets which are discrete unions of members of C. ¤

Proposition 8.4. Let C be a topological and closed hereditary subclass of M.
Suppose that a homotopy dense subset Y of a metrizable space X satisfies the following
conditions:

(∗) Y is strongly universal for C.
(∗∗) Every closed subset C ∈ C(Y ) is a Z-set in Y .

Then Y is weakly C(X)-absorptive.

Proof. Fix A ∈ C(X), a closed subset B of A contained in Y and U ∈ cov(X).
Take V ∈ cov(X) so that V ≺? U . Since Y is homotopy dense in X, we can find a
homotopy h : X × I → X such that h0 = idX and h(X × (0, 1]) ⊂ Y . Then, we have
a map k : A → I such that k−1(0) = B and {{x} × [0, k(x)] | x ∈ A} ≺ h−1(V).
Define a map f : A → Y ⊂ X by f(x) = h(x, k(x)) for each x ∈ A, so f ∼V idA and
f |B = h0|B = idB . On the other hand, since C is closed hereditary, it follows from
(∗∗) that B is a Z-set in Y , hence the restriction f |B is a Z-embedding into Y . Then,
applying the strong universality of Y to f , we can obtain a Z-embedding g : A → Y such
that g ∼V|Y f and g|B = f |B = idB . Observe that g ∼U idA. Consequently, Y is weakly
C(X)-absorptive. ¤

A subset A ⊂ X is said to be locally homotopy negligible in a space X if for each
n ∈ ω, x ∈ X and open neighborhood U of x, there exists a neighborhood V of x such
that given a map f : (In,bd In) → (V, V \A), there is a homotopy h : (In,bd In)× I →
(U,U \ A) with h0 = f and h1(In) ⊂ U \ A, where bd In is the boundary of In. It is
easy to see that for every infinite cardinal τ , the subset `2(τ) \ `f

2 (τ) is locally homotopy
negligible in `2(τ). Now, we shall demonstrate Theorem C.
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Proof of Theorem C. First, we prove the “only if” part. Since `2(τ) \ `f
2 (τ) is

locally homotopy negligible in `2(τ), it follows from Remark 2.2 of [21] that U \ `f
2 (τ)

is locally homotopy negligible in U for every open subset U ⊂ `2(τ). This means that
X \Y is locally homotopy negligible in X, recall that (X, Y ) is an (`2(τ), `f

2 (τ))-manifold
pair. Thus, Y is homotopy dense in X by Theorem 2.4 of [21].

Next, we show the “if” part. Since Y is an `f
2 (τ)-manifold, it follows from (1) of

Main Theorem and Proposition 8.3 that Y has an Mf
0 -complex structure. Moreover, (3)

and (4) of Main Theorem imply the conditions (∗) and (∗∗) in Proposition 8.4 for the
class Mf

0 , respectively. Because Y is homotopy dense in X, we have that Y is weakly
Mf

0 (X)-absorptive by Proposition 8.4. Then, we can apply Proposition 8.1 to the pair
(X, Y ), so (X, Y ) is an (`2(τ), `f

2 (τ))-manifold pair. ¤

Remark 6. Combining Theorem 5.3, Propositions 8.3 and 8.4 with Remark 5, we
can obtain another characterization of (`2(τ)×Q, `f

2 (τ)×Q)-manifold pairs as follows:

For spaces Y ⊂ X, the pair (X, Y ) is an (`2(τ)×Q, `f
2 (τ)×Q)-manifold pair if and

only if X is an `2(τ)-manifold, Y is an (`f
2 (τ) ×Q)-manifold and Y is homotopy

dense in X.

Due to Theorems A, B, C and 8.2, in order to prove Corollaries A and B we may
verify that cl`1(τ) |∆(τ)| (respectively, J(τ)N) is homeomorphic to `2(τ) and |∆(τ)|m
(respectively, J(τ)Nf ) is homotopy dense in cl`1(τ) |∆(τ)| (respectively, J(τ)N).

Proof of Corollary A. The closed convex subset cl`1(τ) |∆(τ)| ⊂ `1(τ) is
homeomorphic to `2(τ) due to Theorem 2 of [3]. Moreover, by Corollary 6.8.5 of [18],
the convex subset |∆(τ)|m ⊂ `1(τ) is a uniform AR. Since the uniform AR |∆(τ)|m is
dense in cl`1(τ) |∆(τ)|, it follows from Theorem 2 of [17] that |∆(τ)|m is homotopy dense
in cl`1(τ) |∆(τ)|. ¤

Proof of Corollary B. The countable product space J(τ)N is homeomorphic
to `2(τ), see Remark of Theorem 5.1 in [22]. Furthermore, as is seen in the proof of
Proposition 7.1, the space J(τ)Nf is homotopy dense in J(τ)N. ¤
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[23] H. Toruńczyk, A correction of two papers concerning Hilbert manifolds, Fund. Math., 125 (1985),

89–93.

[24] J. E. West, The ambient homeomorphy of an incomplete subspace of infinite-dimensional Hilbert

spaces, Pacific J. Math., 34 (1970), 257–267.

Katsuhisa Koshino

Doctoral Program in Mathematics

Graduate School of Pure and Applied Sciences

University of Tsukuba

Tsukuba 305-8571, Japan

E-mail: kakoshino@math.tsukuba.ac.jp

Current address:

Division of Mathematics

Pure and Applied Sciences

University of Tsukuba

Tsukuba 305-8571, Japan

http://dx.doi.org/10.1307/mmj/1029003410
http://dx.doi.org/10.1090/S0002-9904-1970-12490-9
http://dx.doi.org/10.1090/S0002-9904-1970-12490-9
http://dx.doi.org/10.1090/S0002-9947-1971-0283828-7
http://dx.doi.org/10.1090/S0002-9947-1971-0283828-7
http://dx.doi.org/10.1016/0016-660X(71)90097-3
http://dx.doi.org/10.1016/0016-660X(71)90097-3
http://dx.doi.org/10.1016/0166-8641(85)90089-6
http://dx.doi.org/10.1016/0166-8641(81)90001-8
http://dx.doi.org/10.1016/0016-660X(71)90004-3
http://dx.doi.org/10.1090/S0002-9939-1984-0749902-8
http://dx.doi.org/10.1090/S0002-9939-1984-0749902-8
http://dx.doi.org/10.2969/jmsj/05240835
http://dx.doi.org/10.2969/jmsj/05240835
http://dx.doi.org/10.2140/pjm.1970.34.257



