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Abstract. We extend the λ-Aluthge sequence convergence theorem of
Antezana, Pujals and Stojanoff in the context of real noncompact connected
semisimple Lie groups.

1. Introduction.

Given 0 < λ < 1, the λ-Aluthge transform of X ∈ Cn×n [7]:

∆λ(X) := PλUP 1−λ

has been extensively studied, where X = UP is the polar decomposition of X, that is, U

is unitary and P is positive semidefinite. The notion can be extended to Hilbert space
operators [6], [7]; see [9], [10], [16], [18], [19] for some recent research.

Define

∆m
λ (X) := ∆λ(∆m−1

λ (X)), m ∈ N

with ∆1
λ(X) := ∆λ(X) and ∆0

λ(X) := X so that we have the λ-Aluthge sequence
{∆m

λ (X)}m∈N. It is known that {∆m
λ (X)}m∈N converges if n = 2 [8], if the eigenvalues

of X have distinct moduli [12], and if X is diagonalizable [2], [3], [4]. Very recently
Antezana, Pujals and Stojanoff [5] proved the following interesting result using ideas
and techniques from dynamical systems and differential geometry.

Theorem 1 ([5, Theorem 6.1]). Let X ∈ Cn×n and 0 < λ < 1.

1. The sequence {∆m
λ (X)}m∈N converges to a normal matrix ∆∞

λ (X) ∈ Cn×n.
2. The function ∆∞

λ : GLn(C) → GLn(C) defined by X 7→ ∆∞
λ (X) is continuous.

The convergence problem for Cn×n is reduced to GLn(C) [1] and can be further
reduced to SLn(C) since ∆λ(cX) = c∆λ(X), c ∈ C.

Not much is known about the limit ∆∞
λ (X). For X ∈ SL2(C) with equal eigenvalue

moduli [17],
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∆∞
λ (X) =

trX

2
I2 +

√
4− trX2

2
√

tr(XX∗) + 2 detX − trX2
(X −X∗).

Our goal is to extend Theorem 1 to Lie groups with the right properties.

2. Main Results.

Let G be a real noncompact connected semisimple Lie group, and let g be its Lie
algebra, with g = k + p a fixed Cartan decomposition of g. Let K ⊂ G be the connected
subgroup with Lie algebra k. Set P := exp p. The Cartan decomposition [14, p. 362]
asserts that the map

K × p → G, (k, X) 7→ k expX (2.1)

is a diffeomorphism [14, p. 362]. In particular G = KP and every element g ∈ G can
be uniquely written as g = kp, where k ∈ K, p ∈ P . Given 0 < λ < 1, the λ-Aluthge
transform of ∆λ : G → G is defined as

∆λ(g) := pλkp1−λ,

where pλ := exp(λX) ∈ P if p = exp X for some X ∈ p. The map (0, 1)×G → G defined
by (λ, g) 7→ ∆λ(g) is smooth; thus ∆λ : G → G is smooth [13]. We define

∆m
λ (g) := ∆λ(∆m−1

λ (g)),

with ∆1
λ(g) := ∆λ(g) and ∆0

λ(g) := g so that we have the generalized λ-Aluthge sequence
{∆m

λ (g)}m∈N. Clearly ∆λ(g) = pλg(pλ)−1 so that all members of the Aluthge sequence
are in the same conjugacy class.

An element g ∈ G is said to be normal if kp = pk, where g = kp (k ∈ K and p ∈ P )
is the Cartan decomposition of g. It is known that the center Z of G is contained in K

[11, p. 252]. So g ∈ G is normal if and only if zg is normal for all z ∈ Z.
Equip g once and for all with an inner product [14, p. 360] such that the operator

Ad k ∈ GL(g) on g is orthogonal for all k ∈ K, and Ad p ∈ GL(g) is positive definite for all
p ∈ P . Notice that AdG = (Ad K)(AdP ) is the polar decomposition of AdG ⊂ GL(g).

Lemma 2. (1) The element g ∈ G is normal if and only if Ad g ∈ GL(g) is normal.
(2) Let 0 < λ < 1. An element g ∈ G is normal if and only if g is invariant under ∆λ.

Proof. (1) One implication is trivial. For the other implication, consider g = kp

such that Ad g is normal, i.e., Ad(kp) = Ad(pk). Since kerAd = Z ⊂ K [11, p. 130],
kp = pkz where z ∈ Z, i.e., kpk−1 = zp. Now kpk−1 ∈ P because p is invariant under
Ad k for all k ∈ K. By the uniqueness of Cartan decomposition, z = 1 and kpk−1 = p,
i.e., kp = pk.

(2) Suppose that g = kp is normal, where k ∈ K, p = exp X ∈ P and X ∈ p, i.e.,
kp = pk. Then kpk−1 = p so that exp(Ad(k)X) = exp X. Since Ad(k)p = p and the map
(2.1) is a diffeomorphism, we have Ad(k)X = X. Thus Ad(k)(tX) = tX for all t ∈ R so
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that kptk−1 = pt, i.e., kpt = ptk. As a result ∆λ(g) = pλkp1−λ = g. Conversely if g = kp

is invariant under ∆λ, then pλkp1−λ = kp, i.e., pλk = kpλ. So exp(Ad(k)λX) = exp(λX)
where exp X = p. Using the diffeomorphism (2.1) Ad(k)λX = λX so that Ad(k)X = X

and thus kp = pk. ¤

Lemma 3. Let G be a noncompact connected semisimple Lie group and g ∈ G, and
let ϕ : G → G be a diffeomorphism such that ϕ(cg) = cϕ(g) for each c ∈ Z, where Z is
the center of G. If {Adϕm(g)}m∈N converges to L so that Ad−1(L) contains some fixed
point ` of ϕ, then {ϕm(g)}m∈N converges to an element ϕ∞(g) ∈ G.

Proof. If {Adϕm(g)}m∈N converges, then the limit L is of the form Ad ` for
some ` ∈ G since Ad G is closed in GL(g) [11, p. 132]. We may assume that ` is a
fixed point of ϕ. Since (G, Ad) is a covering group of AdG [11, p. 272], there is a
(local) homeomorphism, induced by Ad, between neighborhoods U of ` and AdU of
Ad `. Thus there is a sequence {gm}m∈N ⊂ U converging to ` and Ad gm = Ad ϕm(g).
Since kerAd = Z, there is a sequence {zm}m∈N ∈ Z such that gm = zmϕm(g), and

lim
m→∞

zmϕm(g) = `. (2.2)

Apply ϕ on (2.2) to have

lim
m→∞

zmϕm+1(g) = ϕ(`) = `.

Hence

lim
m→∞

zm+1z
−1
m = 1,

where 1 ∈ G denotes the identity element. The converging sequence {zm+1z
−1
m }m∈N is

contained in the center Z which is discrete [11, p. 116]. So zm+1 = zm = z (say) for
sufficiently large m ∈ N. Hence {ϕm(g)}m∈N converges to ϕ∞(g) := `z−1. ¤

Our main result is

Theorem 4. Let G be a real connected noncompact semisimple Lie group, and let
g ∈ G. Let 0 < λ < 1.

(1) The λ-Aluthge sequence {∆m
λ (g)}m∈N converges to a normal ∆∞

λ (g) ∈ G.
(2) The map ∆∞

λ : G → G defined by g 7→ ∆∞
λ (g) is continuous.

Proof. (1) By [13],

Ad(∆m
λ (g)) = ∆m

λ (Ad(g)), m ∈ N, (2.3)

where ∆λ on the left is the Aluthge transform of g ∈ G with respect to the Cartan
decomposition G = KP and that on the right is the matrix Aluthge transform of Ad(g) ∈
AdG ⊂ GL(g) with respect to the polar decomposition. By Theorem 1 {∆m

λ (Ad(g))}m∈N
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converges to a normal Ad ` for some ` ∈ G since Ad G is closed in GL(g) [11, p. 132];
so does {Ad(∆m

λ (g))}m∈N. Since ` is normal by Lemma 2, ` is fixed by ∆λ. Moreover
central elements factor out of ∆λ so that Lemma 3 applies immediately, i.e., {∆m

λ (g)}m∈N
converges to the normal ∆∞

λ (g) := `z−1 ∈ G.
(2) By 2.3,

Ad(∆∞
λ (g)) = Ad

(
lim

m→∞
∆m

λ (g)
)

= lim
m→∞

Ad(∆m
λ (g))

= lim
m→∞

∆m
λ (Ad(g)) = ∆∞

λ (Ad(g)).

So

Ad ◦∆∞
λ = ∆∞

λ ◦Ad . (2.4)

The ∆∞
λ : GL(g) → GL(g) on the right of (2.4) is continuous by Theorem 1(b), thus

Ad ◦∆∞
λ is continuous. Since AdG ∼= G/Z [11, p. 129], Ad : G → AdG on the left of

(2.4) is an open map [11, p. 123], [15, p. 97]. Hence ∆∞
λ : G → G is continuous. ¤
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