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Abstract. We prove that a log del Pezzo surface of Picard number one
contains at most 3 singular points if its smooth locus is simply connected. This
establishes the algebraic Montgomery-Yang problem for log del Pezzo surfaces.

1. Introduction.

The present paper is a continuation of two papers [HK2] and [HK3] on the conjec-
ture called algebraic Montgomery-Yang problem.

CoNJECTURE 1.1 ([K]). (Algebraic Montgomery-Yang Problem). Let S be a Q-
homology projective plane with quotient singularities, i.e., a normal projective surface
with quotient singularities such that by(S) = 1. Assume that S° := S\Sing(S) is simply
connected. Then S contains at most 3 singular points.

In previous papers [HK2] and [HK3|, we have confirmed the conjecture when S
contains at least one non-cyclic singularity or S is not rational.

In this paper we confirm the conjecture when —Kg is ample, or equivalently when
S is a log del Pezzo surface. By [HK2], we may assume that S has cyclic singularities
only.

THEOREM 1.2. Let S be a log del Pezzo surface of Picard number one with cyclic
singularities only. If Hy(S°,Z) = 0, then S contains at most 3 singular points.

The condition H;(S% Z) = 0 is weaker than the condition m1(S°) = 1. In fact, there
are log del Pezzo surfaces S of Picard number one with H;(S% Z) = 0 but m1(S°) # 1.
Such surfaces have been classified in [HK2], under the assumption that the number of
singularities is at least 4 and at least one of the singularities is non-cyclic.

The main ingredient of the proof is the classification theory of log del Pezzo surfaces
of Picard number one developed by Zhang [Z], Gurjar and Zhang [GZ], Belousov [Be]
together with the formulas developed in [HK3] for the intersection numbers of divisors
on the minimal resolution.

Conjecture 1.1 is now reduced to the case where S is a rational surface with cyclic
singularities such that Kg is ample. We do not know any example of a rational surface
with 4 cyclic singularities such that Kg is ample. However, there are infinitely many
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examples with smaller number of singularities ([KM], [K] and [HK4]).
Throughout this paper, we work over the field C of complex numbers.

2. Algebraic surfaces with cyclic singularities.

2.1.

A singularity p of a normal surface S is called a cyclic singularity if the germ is
locally analytically isomorphic to (C2?/G,O) for some nontrivial finite cyclic subgroup
G of GLy(C) without quasi-reflections. Such subgroups are completely classified by
Brieskorn ([Br]).

For a cyclic singularity of type é(l, q1), one can associate a Hirzebruch-Jung con-
tinued fraction

1 q
[Py, n2,...,ny] =ng — —T =
No — q1
1
ny
Let H be the set of all Hirzebruch-Jung continued fractions [n1, na, ..., ny],

H= U{[nl,ng, ...,ny] | all nj are integers > 2}.
1>1

We will use the following notation in this paper.

NoTATION 2.1.  Fix w = [n1,n2,...,n;] € H and an integer 0 < s <[+ 1.

(1) The length of w, denoted by I(w), is the number of entries of w. We will write simply
[ for I(w) if there is no confusion.
(2) Let g be the order of the cyclic singularity corresponding to w, i.e.,

q = |w|=|[n1,n2,...,n]| :=|det(M(—ny,...,—n))|
where
—nq 1 0 0
1 —MNg 1 0
0 1 —n3 0
M(—?’Ll,...7—7’ll): .
0 0 0 —ny—1 1
0 0 0o - 1 -
is the intersection matrix corresponding to the singularity [ni, ne,...,n].

(3) us :=|[n1,n2,...,ns-1)] (2<s<1+1), up=0, ug =1.
(4) vs:=|[nst1,Ms12,---,n)] (0<s<1—=1), v =1, vy41 =0.
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Now let S be a normal projective surface with cyclic singularities and
f:8—=S

be a minimal resolution of S. Since cyclic singularities are log-terminal singularities, one
can write

where D, = Y (a;4;) is an effective Q-divisor with 0 < a; < 1 supported on f~!(p) =
UA; for each singular point p. Intersecting the formula with D, we get

Ki=K% -> D)=Ki+> DyKs.
p

When p is a cyclic singularity of order ¢, the coefficients of D, can be expressed in
terms of v; and u; (see Notation 2.1) as follows.

LEMMA 2.2 ([HK3, Lemma 3.1)). Let p be a cyclic singular point of S. Assume

that f=1(p) has | components Ai,..., A; with A> = —n; forming a string of smooth
rational curves o' — 6  —...— o'. Then
l vj + U
(1) DKy =-D2 =Y <1 _ aa) (n; —2),
Jj=1 q
G +q+2 2
=2]— n; +2—
8 > :
—92)2
In particular, if | =1, then Df] = —M.
ni

2.2.
The torsion-free part of the second cohomology group,

H*(S',Z) free := H*(S',Z)/ (torsion)
has a lattice structure which is unimodular. For a cyclic singular point p € .S, let
R, C H*(S',Z) free

be the sublattice of H?(S’,7Z) free Spanned by the numerical classes of the components
of f~1(p). Then it is a negative definite lattice. Let

R= @ R, CH Y. Z)free
peSing(S)
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be the sublattice of H?(S’,Z)free spanned by the numerical classes of the exceptional
curves of f : S — 5. Here, the order |G,| of the local fundamental group is equal to the
absolute value | det(R,)| of the determinant of the intersection matrix of R,.

The following will be also useful in our proof.

LEMMA 2.3 ([HK2, Lemma 2.5]). Let S be a log del Pezzo surface of Picard
number one with cyclic singularities such that Hy1(S°,Z) = 0. Let f : S' — S be a
manimal resolution. Then

(1) H*(S',Z) is torsion free, i.e., H*(S',Z) = H*(S",Z) free.

(2) R is a primitive sublattice of the unimodular lattice H?*(S',7Z),

(3) the orders |G,| = |det(Ry)| of the local fundamental groups are pairwise relatively
prime,

(4) D :=|det(R+ (Kg/))| = |det(R)|K2 and is a nonzero square number.

The intersection numbers EK g and E? can be expressed in terms of the intersection
numbers EA; , of E and the exceptional curves A; ,. See ([HK3, Section 4]) for a more
general description.

ProproSITION 2.4 ([HK3, Proposition 4.2]). Let S" be a minimal resolution of a
log del Pezzo surface of Picard number one with cyclic singularities, and E be a divisor
on it. Then, for some positive integer m depending on E, the following hold true.

(1) BEKg = — ZZ( ”JP+UJP>EAJ-,F.

p j=1
(2) If EAj, =0 for j # sp,t, for some s, and t, with 1 < s, <t, <1,, then
2vtpusp

2
B =""g2 <U“ EA,,)? + 220 (A,
K=Y . (BA,)* + . (BAy)? + .

(BA,)(EA,)).

p

THEOREM 2.5 ([HK1, Theorem 1.1], [Be, Theorem 1.2]). Let S be a Q-homology
projective plane with quotient singularities. If S is rational, then it contains at most 4
singular points.

PRrROOF. This is the result of Belousov ([Be, Theorem 1.2]) if —Kg is ample, and
is one of our previous results ([HK1, Theorem 1.1]) if Kg is nef. O

3. Log del Pezzo surfaces of Picard number one.

Throughout this section, S denotes a log del Pezzo surface of Picard number one.
Let

f:8 =S
be its minimal resolution. We denote by

Fi= £ (Sing(S))
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the reduced exceptional divisor of f.

We review the work of Zhang [Z], Gurjar and Zhang [GZ] and Belousov [Be] on log
del Pezzo surfaces of Picard number one. Assume that S does not contain any non-cyclic
singularities, even though most of the results in this section hold for general case.

LEMMA 3.1. B2 > —1 for any irreducible curve B C S’ not contracted by f : S’ —

PROOF. This is well-known (cf. [HK2, Lemma 2.1]). O

The following lemma is given in Lemma 4.1 in [Z], and can also be easily derived
from the inequality of Proposition 2.4 (1).

LEMMA 3.2 ([Z, Lemma 4.1]). Let E be a (—1)-curve on S’. Let A, ..., A, ezhaust
all irreducible components of F such that EA; > 0. Suppose that A3 > A3 > ... > A2.
Then the r-tuple (—A32, ..., —A2) is one of the following:

(2,....2,n),n>2, (2,...,2,3,3), (2,...,2,3,4), (2,...,2,3,5).

An irreducible curve C on S’ is called a minimal curve if C.(—f*Kg) attains the
minimal positive value.

LEMMA 3.3 ([Be, Lemma 3.2, Lemma 4.1)). A minimal curve C is a smooth
rational curve.

LEMMA 3.4. Let C be a minimal curve. Suppose that |C + F + Kg/| # 0. Then
there is a unique decomposition F = F' + F" such that

(1) F’ consists of (—2)-curves not meeting C + F",
(2) C+F'"+ Kg ~0,
(3) F" = f~X(p) for some singular point p unless F" = 0.

Furthermore, if F"' # 0, then CF" = CF = 2 and one of the following holds:

(1) F" consists of one irreducible component, which C meets in a single point with
multiplicity 2 or in two points,

(2) F" consists of two irreducible components, whose intersection point C' passes through,

(3) F" consists of at least two irreducible components, and C' meets the two end compo-
nents of F" .

PROOF. The result can be easily derived from either [GZ, Lemma 3.2, Remark
3.4], or [Be, Lemma 3.1, Lemma 3.2]. O

LEMMA 3.5 ([GZ, Proposition 3.6]). Let C' be a minimal curve. Suppose that
|C + F + Kg/| = 0. Then either C is a (—1)-curve, S = P2, or S is the Hirzebruch
surface with the minimal section contracted.

LEMMA 3.6 ([Be, Lemma 4.1]).  Suppose that S’ contains a minimal curve C with
C? = —1. Suppose that |C +F + Kg:| = 0. Then CF' <1 for any connected component
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F' of F.

LEMMA 3.7 (|Z, Lemma 4.4]).  Suppose that S" contains a minimal curve C with
C? = —1. Suppose that |C + F + Kg:/| = 0, and that C meets ezactly two components
Fy, Fy of F. Then either F2 = —2 or F§ = —2.

The following lemma was proved in ([Z, Proof of Lemma 5.3]).

LEMMA 3.8.  With the same assumption as in Lemma 3.7, assume further that
F? = FZ = 2. If F} is not an end component, then one of the following two cases
holds:

(1) There exists another minimal (—1)-curve C' such that |C' + F + Kg/| # 0.
(2) Fy = f~Y(p;) for some singular point p;.

LEMMA 3.9.  Suppose that S’ contains a minimal curve C with C% = —1. Suppose
that |C + F + Kg/| = 0, and that C meets three components Fy, Fy, F3 of F and possibly
more. Define

G:=2C+Fi+F,+F;+ Kg.

Then either G ~ 0 or G ~ T' for some (—1)-curve T such that CT = F,I' = 0 for
i =1,2,3. Furthermore, the following hold true.

(1) In the first case, there are 3 singular points p1,p2,p3 such that f~1(p;) = F;, and C
meets no component of F — (Fy + Fy + F3).
(2) In the second case,
(a) L=2—(F2+ F}+ F3), where L is the number of irreducible components of F,
(b) each curve in F — Fy — Fy — F3 is a (—2)- or a (—3)-curve and there are at most
two (—3)-curves in F — Fy — F5 — F3,
(c) each connected component of F contains at most one (—n)-curve with n > 3.

PROOF. The main assertion is exactly ([Z, Lemma 2.3]).

(1) Let F; be an irreducible component of f~!(p;). Suppose that f~!(p;) has at least
2 irreducible components. Then there is an irreducible component I of f~!(p;) such that
IF; =1. By Lemma 3.6, IC = 0, hence

0=IG=1.2C+Fi+ K+ F+Kg)=IF,+1Kg=1-1>-2.

Thus I? = —1, a contradiction.
Suppose that C meets a component J of F — (Fy + Fy + F3). Then

0=JG=J2C+F +Fh+F5+Kg)=2+JKg,

so J? = 0, a contradiction.
(2) By (|GZ, Remark 6.4]), we may assume that f~!(p;) has at least 2 irreducible
components for ¢ = 1,2 or 3. Alternatively, by using Proposition 2.4, one can also derive
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a contradiction for the case when f~!(p;) consists of only one irreducible component for
each 7 = 1,2 and 3, but it needs lengthy computation.

Now (2-b) and (2-c¢) directly follows from ([GZ, Lemma 6.6]).

(2-a) We note that

G*=(@2C+F +F+F;+Kg)?=1—L— (F{ + F; + F3)

where L denotes the number of irreducible components of F. Since G2 =T'? = —1, we

have L =2 — (F? + F3 + F3). O
The following lemma was proved in ([Z, Proof of Lemma 5.2]).

LEMMA 3.10.  With the same assumption as in Lemma 3.9, assume further that
20+ F 1+ Fy+F3+Kg ~T for some (—1)-curve T, and that at least two of Fy, Fy, F5 are
(=2)-curves. Then there exists another minimal (—1)-curve C' such that |C'+F +Kg/| #
0.

The first reduction results shown in [HK3] can be reformulated, in the case of log
del Pezzo surfaces, as follows:

LEMMA 3.11 ([HK3, Lemma 5.2, Lemma 5.3, Lemma 5.4, Lemma 5.6]). Let S be
a log del Pezzo surface of Picard number one containing exactly 4 cyclic singular points
D1, D2, P3, Pa of orders (q1,q2,93,q4). Let E be a (—1)-curve on S’. Then E.F > 2, and
one of the following cases occurs.

(1) The orders are (2,3,5,q) where ¢ > 7 and ged(q,30) = 1. Moreover, the order 3
singularity must be of type +(1,1). In this case, E.F =2 if and only if E.f~*(p;) = 0
fori=1,2,3 and E.f~*(ps) = 2.

(2) The orders are either (2,3,7,q) where 11 < g < 41 or (2,3,11,13). Moreover, the
singularity type of S is precisely one of the 24 cases in Table 1. In this case, if
E.F =2, then E does not meet an end component of f~1(p;) for any i =1,2,3,4.

4. Proof of Theorem 1.2.

Throughout this section, S denotes a log del Pezzo surface of Picard number one
such that H1(S° Z) = 0. Then S contains at most 4 singular points by Theorem 2.5.
Suppose that S contains 4 cyclic singular points p1, p2, p3, p4. By Lemma 3.11, it remains
to consider the following cases:

o A+ 3(L1)+3(1,1) + 2(L,q1), > 7, ged(g,30) = 1;
o Av+ 3L+ 2(1,2) + (1, q1), ¢ > 7, ged(g,30) = 1;
o A + %(1, 1)+ As+ %(1,q1), q > 17, ged(q, 30) = 1;

e the 24 cases in Table 1.

Let

F = [~H(Sing(9))
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Table 1.
No. Type of R orders K%
1 | Ay + Ay +[7] +[13] (2,3,7,13) | 1538
2 A+ A+ [71+[3,2,2,2,2,2,2,2,2] | (2,3,7,19) | &
3 | At A+ [7+[5,4] (2,3,7,19) | 457
4 | A1+ A+ (743,42 (2,3,7,19) | 5
5 | A+ As +[4,2] + [2,2,4,272,2] (2,3,7,31) | %
6 | AL+ Ay +[4,2]4[6,2,2,2,2,2] (2,3,7,31) | 286
7 | A4 [3]+13,2,2] +[4,2,2,2,3] (2,3,7,29) | 2%
8 | Ar+ Ay +[3,2,2] +17,2,2,2] (2,3,7,25) | %
9 | Ai+ A+ [7]+[2,2,3,2,2,2,2,2,2] | (2,3,7,3]) | 2%
10 | Ay +[3]+ [4,2] + [3,3,2,2,3] (2,3,7,41) | 288
11| A+ Ax +[3,2,2] +[7,2,2,2,2,2] | (2,3,7,37) | &
12 | Ay + As + [4,2] +[11,2,2] (2,3,7,31) | 3%
13 | Ay +[3] + 46 + [2,6,2,2] (2,3,7,29) | ¢
14 | Ay 4 [3] +13,2,2] + [4, 3] (2,3,7,11) | 1938
15 | Ay + 3]+ [3,2,2] + [32222] (2,3,7,11) | 2%
16 | Ar+[3]+[3,2,2] + [4,2,2,3] (2,3,7,23) | ‘2%
17 | Ay +[3]+[3,2,2] +[6,5] (2,3,7,29) | 2000
18 | A1 + Az +[3,2,2] + [3,5, 2] (2,3,7,25) | &
19 | Ay + Ay +[3,2,2] + [13,2] (2,3,7,25) | 4t
20 | Ay + Ay +[4,2] + [4,2,2,2] (2,3,7,13) | ¢
21 | Ay + Ay +[4,2] + [5,2,2] (2,3,7,13) | 3
22 | Ap + Ay +[4,2] +[4,2,2,2,2,2] (2,3,7,19) | 2%
23 | A1+ 3]+ [3,2,2,2,2] + [4,2,2,2] (2,3,11,13) | 55
24 | Ay + 3]+ [3,2,2,2,2] + [5,2,2] (2,3,11,13) | 5%

be the reduced exceptional divisor of the minimal resolution f : S’ — S, and L be the
number of irreducible components of F. Let C be a (fixed) minimal curve on S’

4.1. Stepl. |C+F+ Kg | =0.

PROOF. Suppose that |C'+ F + Kg/| # (). By Lemma 3.4 (1) and (3), we see that
S contains at least 3 rational double points.

In the case of (2,3, 5, ¢), by Lemma 3.11 (1) we see that S contains at least 3 rational
double points, only if the singularities are of type A; + [3] + A4 + A,—1. In this case, by
Lemma 2.2,

1
L=g+5 and Kg:Q—(q+5)+§<0,
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a contradiction.
We also see that each of the 24 cases from Table 1 contains at most 2 rational double
points. O

4.2. Step 2.
(1) Cis a (—1)-curve.
(2) CF =3, and C meets three distinct components Fy, Fy, F3 of F.

Proor. (1) It immediately follows from Lemma 3.5 since .S contains 4 singularities.

(2) By Lemma 3.6, CF < 4. Since C? = —1 < 0 and the lattice R is negative
definite, CF > 1.

Assume that CF = 1. Blowing up the intersection point, then contracting the
proper transform of C' and the proper transforms of all irreducible components of F, we
obtain a Q-homology projective plane with 5 quotient singularities, which may not be a
log del Pezzo surface, i.e., whose canonical class may be nef. Even this case contradicts
Theorem 2.5.

Assume that CF = 4. By Lemma 3.6, C' meets four components F}, Fy, F3, Fy of
F, where F; C f~!(p;). Then G ~ I' by Lemma 3.9 (1). By Lemma 3.2, at least two
of Fy, Fy, F3, F, have self-intersection —2. Thus, by Lemma 3.10, there exists another
minimal (—1)-curve C’ such that |C’ + F + Kg/| # (0. This is impossible by Step 1.

Assume that CF = 2.

(a) Suppose that the case (2,3,5,q) occurs for some ¢ > 7 with ged(q,30) = 1. By

Lemma 3.11 (1), C.f~*(p4) = 2. But, by Lemma 3.6, C.f~!(p4) < 1, a contradiction.
(b) Now suppose that one of the 24 cases of Table 1 occurs. By Lemma 3.6, there are two

components F} and Fy of F with CF; = CF; = 1. By Lemma 3.7, we may assume

that F2 = —2. Moreover, by Lemma 3.11 (2), C does not meet an end component

of f=Y(p;) for any i, i.e., both F; and Fy are middle components. Thus F§ # —2

by Lemma 3.8 and Step 1. After contracting the (—1)-curve C, by contracting the

proper transforms of all irreducible components of F — Fj, we obtain a Q-homology

projective plane with 5 quotient singularities, again contradicting Theorem 2.5. O

4.3. Step 3.
2C + Fy + Fy + F3 + Kg ~ T for some (—1)-curve I

PROOF. Suppose that

20+ P+ B+ Fs+ Ko ~0.

Then, by Lemma 3.9 (1), each F; is equal to the inverse image of a singular point of S.
By Table 1 and Lemma 3.11, only the following cases satisfy this condition:

Ay + Ag + [7] + [13] (Case 1, Table 1),
Al + [3] + [27 23 27 2] + [q]v
Ay + 3]+ [3,2] + [q],

m+m+m+é@m)
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Thus,

(= F7,—F3,—F3) = (2,7,13),(2.3,0), (2,5,0), (3,5,0), (2,3,5).
Then Lemma 3.2 rules out the first four possibilities, since ¢ > 7.

In the last case (—FZ,—F3,—F%) = (2,3,5), F; = f~1(p;) for i = 1,2,3. In this
case we consider the sublattice

(C,Fy, Fy, F3) C H*(S',Z)

generated by C, Fy, F5, F3. It is of rank 4 and has

-1 1 1 1
1 -2 0 0
1 0 -3 0
1 0 O )

as its intersection matrix. It has determinant —1, hence the orthogonal complement of
(C, Fy, Fy, F3) in H?(S’,Z) is unimodular. The orthogonal complement is an over-lattice
of the lattice R,, generated by the components of f~1(ps). Since R,, is a primitive
sublattice of H2(S’,Z), it must be unimodular, hence ¢ = 1, a contradiction. O

4.4. Step 4.
If one of the cases (2,3,5,q), ¢ > 7, ged(q, 30) = 1, occurs, then C.f~1(py) = 1.

PROOF. Suppose that the case (2, 3,5, ) occurs for some ¢ > 7 with ged(g, 30) = 1.
By Lemma 3.11 (1), ps is of type [3].

By Lemma 3.6, C.f~1(p;) <1 fori=1,2,3,4.

Suppose on the contrary that C.f~1(ps) = 0.

Then,

C.f 7 p)=C.f  p2) =C.f ' (ps) = 1.

Let F; C f~*(p;) be the component with CF; = 1 for i = 1,2, 3.

Assume that p3 is of type [5]. Then (—F2, —F%,—F2) = (2,3,5) and the sublattice
(C,Fy, Fy, F3) C H?(S',Z) has determinant —1, leading to the same contradiction as
above, since the orthogonal complement of (C, Fy, F», F3) in H*(S',Z) is R,,.

Assume that p3 is of type [2,3]. Then (—F?, —F%,—F2) = (2,3,2) or (2,3,3). Let
fYp3) = F3 + F5. If F§ = —2, then

| det(C, Fy, Fy, Fs, F3)| = 13,

and by Lemma 3.9 (2-a) L =2+2+4+3+4+2 =09, so ! =5. The orthogonal complement of
(C,F1, Fy, F3,F}) in H%(S',Z) is R,,, hence

| det(R,,)| = ¢ = 13.
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This leads to a contradiction since there is no continued fraction of length 5 with ¢ = 13.
If F§ = —3, then

| det(C, Fy, Fy, Fs, F3)| =7,

hence |det(Ry,)| =¢="7. By Lemma 3.9 (2), L=2+4+2+43+43 =10, s0 ! = 6. Thus p4
is of type Ag. But, then

1 2
K§:97L7D§27Df,3:71+§+5<0,

a contradiction.
Assume that p3 is of type A4 = [2,2,2,2]. Then (—F?, —F2,—F2) = (2,3,2). Let
f~Y(p3) = Hy + Hy + H3 + Hy. If F3 is an end component of f~1(p3), say Hj, then

|det<c7 F17F25H17H27H37H4>‘ = 197

and by Lemma 3.9 (2-a) L=2+42+3+2=9,s0! =3. Thus |det(R,,)| = ¢ =19
and rank(R,,) = 3. Among all Hirzebruch-Jung continued fractions of order 19, only
two, [7,2,2] and [3,4,2], have length 3. In each of these two cases, f~!(p4) contains an
irreducible component with self-intersection < —4. Since f~1(ps) C F — Fy — F — F3,
we have a contradiction by Lemma 3.9 (2-b). If F3 is a middle component of f~!(p3),
say Hs, then

|d6t<cv FlaFQ;HlaHQaH3aH4>‘ - 317

and by Lemma 3.9 (2-a) L=2+2+4+3+4+2=09,s0!=3. Thus ¢ = 31 and p4 is of type
[11,2,2],[3,6,2], or [5,2,4]. In each of these three cases, f~!(p4) contains an irreducible
component with self-intersection < —4, a contradiction by Lemma 3.9 (2-b). This proves
that C.f~1(ps) = 1. O

4.5. Step 5.
None of the cases (2,3,5,q), ¢ > 7, ged(g,30) = 1, occurs.

PROOF. Suppose that the case (2, 3,5, ¢) occurs for some ¢ > 7 with ged(q, 30) = 1.
By Lemma 3.11 (1), p is of type [3].

By Step 2, CF = 3 and C meets the three components Fy, Fp, F3 of F.

By Step 3,

204+ Fi+ Fo+ Fs+ Kgr ~T

for some (—1)-curve I.
By Step 4, we may assume that F3 C f~1(p4).
Let
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and F3 = Dj; for some 1 < j < [. Note first that by Lemma 3.9 (2-b), ngp < 3 for all
k#3j.

Assume that p3 is of type [5]. By Lemma 3.9 (2-b), C' must meet f~!(p3), so we
may assume that Fy = f~!(p3). Since Fy = f~1(p1) or F} = f~1(p2), by Lemma 3.2,

(- Ff,—F3,—F3) = (2,5,2),(3,5,2),(2,5,3).
By Lemma 3.9 (2-a), we have
(L,n;) = (11,2),(12,2), (12, 3),
hence
(I,n;) = (8,2),(9,2), (9, 3).
By Lemma 3.9 (2-b) and (2-¢),

1, ..om] = [3,2,2,2,2,2,2,2],[2,2,2,2,2,2,2,2];
3,2,2,2,2,2,2,2,2],[2,2,2,2,2,2,2,2,2]

up to permutation of ny,...,n;. As you can see in Table 2, none of these 11 cases satisfies
the following three conditions:

e (#1) ged(q,30) =1,

o (#2) K% >0,
e (#3) D = |det(R)|K?% is a positive square integer.

Table 2.
Type of py q |ged(q,30) | K* | VD
Ag 9 £1 - -
(3,2,2,2,2,2,2,2] |17 1 22y
2,3,2,2,2,2,2,2] |23 1 236 1 16v2
2,2,3,2,2,2,2,2] |27 £1 - —
2,2,2,3,2,2,2,2] |29 1 3581 2V/179
Ag 10 £1 — —
112
3,2,2,2,2,2,2,2,2] | 19 1 -2 —
[2,3,2,2,2,2,2,2,2] | 26 £1 — —
88
2,2,3,2,2,2,2,2,2] | 31 1 -8 —
2,2,2,3,2,2,2,2,2] | 34 £1 — —
2,2,2,2,3,2,2,2,2] | 35 #1 - -




Algebraic Montgomery-Yang problem 1085
Assume that p3 is of type [2,3]. Then, by Lemma 3.2,
(= F?,—F},—F§) = (2,3,n;), nj <5, or (3,3,2), or(2,2,n;).

The last case can be ruled out by Lemma 3.10 and Step 1. Now, by Lemma 3.9 (2), we
have

(l7nj) = (5’ 2)v (673)’ (75 4)7 (8’ 5)) (67 Q)a

and
[n1,...,m] =1[3,2,2,2,2],[2,2,2,2,2];[3,2,2,2,2,2];
[4,2,2,2,2,2,2];[5,2,2,2,2,2,2,2];[2,2,2,2,2,2],
up to permutation of n1,...,n;. None of the 16 cases satisfies the three conditions

(#1), (#2), (#3). Table 3 summarizes the computation.

Table 3.
Type of py q | ged(q,30) | K* | VD
As 6 #1 — —
[3,2,2,2,2] 11 1 196 | 14v2
2,3,2,2,2] 14 #1 — —
2,2,3,2,2] 15 £1 — —
As 7 1 —14—5 —
3,2,2,2,2,2] 13 1 2B 12v19
2,3,2,2,2,2] 17 1 2 | 2vial
2,2,3,2,2,2] 19 1 31413
[4,2,2,2,2,2,2] |22 £1 — —
2,4,2,2,2,2,2] |32 £1 — —
2,2,4,2,2,2,2] |38 #1 - —
2,2,2,4,2,2,2] |40 £1 — —
5,2,2,2,2,2,2,2] | 33 #1 — —
2,5,2,2,2,2,2,2] | 51 £1 - —
2,2,5,2,2,2,2,2] | 63 £1 - -
2,2,2,5,2,2,2,2] | 69 #1 - —

Assume that ps is of type [2,2,2,2]. Then, by Lemma 3.2,

(— F12, —F227 —Ff) =(2,3,n;), nj <5, or(2,2,n;).
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The last case can be ruled out by Lemma 3.10 and Step 1. Now, by Lemma 3.9 (2), we
have

(l’ nj) = (37 2)’ (4a 3), (5, 4)a (67 5)a
and

[n17 A 7nl} = [3’ 2’ 2]’ [27 2’ 2]; [37 27 27 2}; [47 27 27 2’ 2]; [57 27 27 2’ 2’2]’

up to permutation of ny,...,n;. None of the 11 cases satisfies the three conditions (#1),
(#2), (#3). Table 4 summarizes the computation.

Table 4.
Type of py | q | ged(q,30) | K? | VD
As 4 #1 - —
3,2,2] 7 1 181410
2,3,2] 8 #1 - -
3,2,2,2] 9 #1 - -
4
2,3,2,2] |11 1 -2 -
[4,2,2,2,2] | 16 #1 - -
2,4,2,2,2] |22 #1 - -
2,2,4,2,2] |24 #1 — —
[5,2,2,2,2,2] | 25 #1 - -
26
[2,5,2,2,2,2] | 37 1 -2 -
20
2,2,5,2,2,2] | 43 1 -2 - -

Next, we will show that none of the cases (2,3,7,q), 11 < ¢ < 41, ged(q,42) = 1,
and (2,3,11,13) occurs. To do this, it is enough to consider the 24 cases of Table 1.

4.6. Step 6.
None of the 24 cases of Table 1 occurs.

ProoOF. By Step 2, CF = 3 in each of the 24 cases of Table 1.

Each of Cases (1), (2), (3), (4), (6), (8), (9), (11), (12), (13), (17), and (19), contains
an irreducible component F” with self-intersection < —6. Lemma 3.9 (2-b) implies that
C meets F'. Thus C meets two components of F with self-intersection —2 by Lemma
3.2. Thus we get a contradiction for those cases by Lemma 3.10 and Step 1.

By Lemma 3.9 (2-c), we get a contradiction immediately for Cases (7), (10), (14),
(16), (18), since each of these cases contains a connected component of F with at least
two irreducible components of self-intersection < —3.

By Lemma 3.2 and Lemma 3.9 (2-b), we get a contradiction immediately for Cases
(5), (20), (21), (22), since each of these cases contains at least two irreducible components
with self-intersection < —4.
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We need to rule out the remaining three cases: (15), (23), (24).

Consider Case (24). Note that L = 10 in this case. On the other hand, by Lemma
3.9 (2-b), C must meet the component having self-intersection number —5. Thus, we
may assume that F = —5. Since F? < —2, FZ < —2, Lemma 3.9 (2-a) gives L =
2— (Ff+ Fi+F3)>2+2+2+5=11, a contradiction.

Case (15): Let

-2 -3 -3 -2 -2 -3 -2 -2 -2 =2
[¢] [©] o — o0 — O o — o0 — o0 — 0 —O
A B C Cs C3 Dy Do D3 Dy Ds

be the exceptional curves. In this case, K% = 50/231, VD = 10.

Since L = 10 = 2 — (F? + F% + F%), C meets only two of B, Cy, D;.

If CC, = CDy =1, then CA = 1. Applying Proposition 2.4 (1) to C' and looking
at Table 5, we get

m 3 9
—Ki=1—---—==
N 711 77
thus m = 27/5, not an integer, a contradiction.
Table 5.
2] | B]] [3,2,2] [3,2,2,2,2]
j 1|1 (1(213]1|2]|3]4]|5
I _wtw | gL [23l2|l]5 |43 2]
q 3|7 |7 |7 |10 | 10|11 11|11

If CB=CC; =CA=1, then I only meets Cy and D1, a contradiction to Lemma

3.11 (2).
If CB=CCy =CD; =1 for some j, then Proposition 2.4 (1) gives
m 1 3 vj + uj
ULy e B (1—] J)>0,
N 3 7 q

mo 1 3 2 13

7KS = 1 ————— —_— =,

VD 3 7 11 231
thus m = 13/5, a contradiction. If j = 5, then

m 1 3 1 34

LIy S R R

N 3 7 11 231

thus m = 34/5, a contradiction.
IfCB=CD; =CA=1, then
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1
ﬁKg:l—f—i:l,
VD 3 11 33
thus m = 49/5, a contradiction.
If CB=CD; =CC, =1, then
1 2 1
iKg —1--_Z2_ i — ,77 <0,

VD 37 11 231

a contradiction.
IfCB = CD1 = CCg = ]., then

1 1 5 16
MR =1-- -2 A
v D 7 11 231
thus m = 16/5, a contradiction.
Case (23): Let

-2 -3 -3 -2 -2 -2 -2 —4 -2 -2 -2
[¢] o o — 0 — 0 — 0 — O O — o0 — 0 —O
A B Cl C2 CS C4 C5 D1 D2 DS D4

be the exceptional curves. Since C' meets Dy and L = 11, C' must meet only one of B
and (.

If CB = CA =1, then I' meets exactly two irreducible components C7, Dy with
multiplicity 1, a contradiction to Lemma 3.11 (2).

If CB=CCj =1 for some j > 2, then Table 6 gives

m 1 1 8
K2<1-- - —_2 <
VD °~ 3711 130

a contradiction.
If CCy =1, then CA =1 and Proposition 2.4 (1) together with Table 6 gives

m 5 8
K2 =—1-—0- =2 -
JD s I TIRET I
a contradiction.
Table 6.
2] | [3] [3,2,2,2,2] 4,2,2,2]
j 11112134 |5|1]2|3]4
1 — vty 0 1|5 |41 3|2 |1 8|6 | 4|2
q 3 1|11 |11 |11 | 11|13 | 13|13 | 13 0

This completes the proof of Theorem 1.2.
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