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Abstract. The concept of behavior spaces introduced by Shiba plays an
important role of systematic investigation of abelian differentials on an open
Riemann surface. A Shiba behavior space consists of harmonic differentials
which satisfy a certain period condition and boundary behavior. In this paper,
for any open Riemann surface of infinite genus we construct Shiba behavior
spaces with arbitrarily prescribed period condition and with specific boundary
behavior.

1. Introduction.

Let R be an open Riemann surface of genus g, 0 < g < oo. Let A be the usual
real Hilbert space of all square integrable complex differentials on R equipped with inner

product
(w,o) = %(// w/\*a) for w,o € A,
R

where R(2) is the real part of z € C, 7 is the complex conjugate differential of ¢ and *&
is the conjugate differential of . By A, we denote a subspace of A, where ‘x’ designates
the property of the subspace. For example we set

Ap = {X € A| X is harmonic},

where ‘h’ stands for ‘harmonic’. If A, is a subspace of Aj,, we denote by A the orthogonal
complement of A, in Aj,. For z € C we set zA; = {zw | w € Ay}. Observe that
(zA,)F = 2AL. Let *A, = {*w | w € A, }. We use the following subspaces:

Apse = {/\ € Ay | A is semiexact, i.e., / A = 0 for every dividing cycle 7},
¥

Ape = {)\ € Ap | A is exact, i.e., /)\ = 0 for every cycle 7},
8!
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Ag = {X\ € Ay | X is analytic},
Ag={NeEA, | XeE A}

Moreover, let Apg = *Aj and Ay, = *Ai,,. We also use the following real subspaces:

'y ={X € Ap | \is real},
Fhse = Fh N Ahse7 Fhe = Fh N Ah67

*1 L s« L
Ino = "Thes Thm = Tise,

where I';-, and T';-,_ are the orthogonal complements taken in I'j, of T'j. and Iy, respec-
tively. Note that the superscript ‘1’ is used for two different orthogonal complements;
one is taken in A and the other in I';,. We shall write explicitly the space in which
orthogonal complement is taken, unless it can be clearly understood from the context.

Let {R}p—1 be a canonical exhaustion of R and let {A;, B;}7_; be a canonical
homology basis associated with {R, }oo_,, i.e.,

i) the restriction {Aj,Bj}é?(:n;) of {Aj, Bj}{_, to Ry, is a canonical homology basis of
R,, mod OR,, (cf. [1]), where p(m) is the genus of R,

ii) for each j, B; crosses A; from left to right.

DEFINITION 1.1 (Shiba behavior space). Let £ = {L;}J_; be a family of lines
L; = L(0;) = {re%i | r € R} passing through the origin in C, where #; € R. A subspace
Ay = Ay (L) of Apse is said to be a Shiba behavior space associated with L if the following
structure condition and period condition are satisfied:

1) (structure condition) A, = i*A,
2) (period condition) both [, X and [, Alie on L; for every j =1,...,g and A € A,.
J J

Shiba behavior spaces play a central role in the formulation of Riemann-Roch’s
and Abel’s theorems for certain classes of abelian differentials with prescribed boundary
behavior.

It is easy to see that if [, is a subspace such that I'y,, C 'y C I'pe, then I'y, + i*Fi
is a Shiba behavior space associated with £ = {L; = L(m/2)}{_,. Historically, Kusunoki
[3] gave the theory of abelian integrals on an open Riemann surface by using canonical
semiexact differentials and applied it to the vertical slit mappings (generalization of
Koebe’s uniformization). The canonical semiexact differentials are represented by use
of the space 'y + i0pse. The I'pe + iy, is also typical behavior space which is used
to construct horizontal slit mappings of a planar domain. Yoshida [7] extended these
typical cases by use of so called I'y-behavior. Shiba [6] introduced the concept of behavior
spaces and showed that the result of Yoshida reduced to the special case of T, + i*T';
(Thm C Ty C The). As an example of showing the significance of his extension, he
gave a conformal mapping of a compact bordered Riemann surface onto a region on C
with slits whose directions are arbitrarily prescribed. This result can not be represented
by Yoshida’s method. Further he gave an example of a behavior space associated with
L ={L; =L(0) or L(7r/2)}§7:1.
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Although our assertions are undoubtedly true for Riemann surfaces of finite genus,
let the genus g be infinite for the simplicity of representations. Our main subject is to
construct a Shiba behavior space associated with an arbitrary family of lines passing
through the origin. More precisely we prove the following.

THEOREM 1.1.  Let L = {L;}]_, be a family of lines L; = {re¥ | r € R} pass-
ing through the origin in the complex plane. Then there exists a Shiba behavior space
associated with L.

In fact, we shall construct Shiba behavior spaces which are regarded, roughly speak-
ing, as the form I', + i*Fi with Ty, C Ty C T'pe in a neighborhood of ideal boundary,
and then realize our aim for Theorem 1.1 as the limit of a convergent sequence of thus
constructed behavior spaces.

Further we will give more general Shiba behavior spaces. Let K > 2 be an integer,
and suppose K distinct unimodular constants e?1,e?2 ... ek are given. We will
construct a Shiba behavior space of the form

K
C’Z(Z:<ei‘9’“I‘k>7 where I'y, C I'jse, (1)
k=1

which has more general boundary behavior than those constructed in the proof of Theo-
rem 1.1. Observe that T'; +4*T'; is represented as above with K = 2, ¢; =0, ¢y = 7/2,
Fl == Fw and Fg = *FIL

THEOREM 1.2. Let K > 2 be an integer and suppose K distinct unimodular con-
stants €1, e'P2 ... €K are given. Let L = {Lj}?zl be a family of lines L; = {re% |
r € R} such that {0;}9_; = {¢1,...,9x}. Then there exists a Shiba behavior space of
the form (1) associated with L.

In Section 5 we will show examples of the form (1). One of them is applicable to
the above mentioned slit mapping with arbitrarily prescribed directions. These examples
illustrate the difference between Theorem 1.1 and Theorem 1.2.

2. Pre-behavior space.

A subspace A, of Ay, is said to be a pre-behavior space if A, =i *A;. For a sequence
of pre-behavior spaces {A(™}2° | we consider the following subspace:

A, = {A € Ay | there exists A, € A such that lim ||\, — || = o}.

We say that A, is the strong limit of {A(™}> . We give a sequence of Shiba behavior
spaces {A(M1° | whose strong limit is a Shiba behavior space associated with an infinite
number of lines £ = {L;}{_,. In order to show the existence of above {A(M}2 | the
following lemmas may be a key. Since the proof of the first lemma is simple, we omit the
proof.
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LEMMA 2.1 (cf. [1]). Let Ay, Ay be closed subspaces of Ap.

(1) If A, is orthogonal to A, then Ay + Ay is a closed subspace of Ay,.
(2) If the dimension of Ay is finite, then Ay + A, is a closed subspace of Ay,.

LEMMA 2.2. (1) Let {U,}52, be an increasing sequence of closed subspaces of Ap,.
Set Uy = Cl(U,—, Uy), where CI(X) denotes the closure of a set X. For each
A€ Ay, let A = w, + op be the orthogonal decomposition of X\, where w,, € U, and
on € UL, Then {w,}2, (resp. {0,}5%) converges to wg € Uy (resp. a¢ € Ug-).

(2) Let {V,,}22, be a decreasing sequence of closed subspaces of Ap,. Set Vo = (), Vn-
For each A € Ay, let A\ = wy, + o, be the orthogonal decomposition of \, where
Wy € Vi, and 0, € V5. Then {w,}52, (resp. {0,}22,) converges to wy € Vi (resp.
og € VOJ‘).

PrOOF. (1) For m > n, the differential o,,, € U;- belongs to U;-. Note that
On—0m=A—wp)— (AN—wp) =wn —wp,.
Hence w,, — w, is orthogonal to w,. We have

<wnawm> = <wn7wm —Wwp + wn> = HwnHQa
0 < [lwn — wm||2 = HwnHQ — 2(wn, wm) + meuz

= [lwm|* = llwn I < llwm* < [A]%.

Hence {|jwy||}52; is a bounded increasing sequence. It follows that {w, }52; is a Cauchy
sequence and converges to an w € Up. Also {0, }52; converges to a o € (o, Ur = Ug-.
Since A = wg + 09 = wy,, + 0, = w + 0, we have wy = w, 09 = 0.

(2) We can apply (1) to U,, = V,;-. -

THEOREM 2.1.  Let {AU}22 | be a sequence of pre-behavior spaces which satisfy
the following: A™ = U,, + V;,, where {U,}%, (resp. {Vn}22,) is an increasing (resp. a
decreasing) sequence of closed subspaces of Ay. Then the strong limit A, of {A™}2 | is
a pre-behavior space.

PrOOF. Let W, be the orthogonal projection of V,, to Urf. Since A™ = U, +V,, =
U, + W, is a closed subspace of Ay, we obtain that W,, is also a closed subspace of Aj
and {W,}52, is a decreasing sequence in Ay, because {V,,}°2, is decreasing. We can
write each ¢ € A, in the form

© = An +i*\,, where A, € A™),

and further

An = wp + 0y, Where w,, € U, and o, € V,,.
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Take the orthogonal decomposition of o,, = a,, + 3,, where a,, € U, and 3, € UnL. Then
(r, belongs to W,, and w,, + a,, € U, is the orthogonal projection of ¢ to U,. By Lemma
2.2 the sequence {wy, + a, }72 converges to Ag € Uy = Cl(J,—, Uy,) and A\g € A,. By
Lemma 2.2 the sequence {f, }22; also converges to Sy € Wy = (,—; Wy, Since W, is
contained in A, the differential By belongs to A,. Therefore {\, = wy + ay + B},
converges to A\g + By € A, in the sense of Dirichlet norm. We have

w=X+0o+i"(Ao+5o) € As +i"As and A, C As +1i"As.

Similarly, we can show A; C Ag +i*As. We get Ay, = Ay + A C A +i*A,. For
A 1 € Ay, there exist A, pn, € Ay, so that

Jim [[Ay = A =0, lim [, = plf =0
Hence we have
(A, i%py = nli_)r&()\n,i*un) = 0.
It follows that ¢ *Ag is orthogonal to A;. As a result, A, is a pre-behavior space. O

3. Proof of Theorem 1.1.

We give a generalization of the behavior space I',, + i*l"a{ (Thm C Tz CThe). On a
Riemann surface of genus g, let o, € I'y, denote the period reproducing differential for
a cycle v, i.e.,

/w = (w,"0y) for w € T'p,.
v

By our choice of a canonical homology basis {A,, B,}, we note that

/ oa; = (04, 0B) = Ojk, / o, = (0B,, " 0a,) = —0jk,
By

k

/ g4; = <JA]'>*UA;,~> =0, / 9B; = <JBj’*JBk> =0,
Ak Bk

where ¢, is the Kronecker delta.
Let £ be a given family of lines {L; = L(6;)}_, and

L™ ={L; | L; = L(;) for j < p(m) and L; = L(n/2) for j > p(m)}.

Take a closed subspace I', which satisfies I'y,,,, C I’y C I'je, and consider the following
subspaces of Ay:
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p(m)
Sy = { Z(ajaAj —l—bjO'Bj)

j=1

aj and b; are reaul}7

a; and b; are real

g
Sm — CZ({ Z (ajoAj + bjUBj)

j=p(m)+1

and only a finite number of {ag,b;} do not Vanish}>,

p(m)
S (L) = { Z (aje®oa, +bjeop,)

Jj=1

Agcm) = Aa(vm)(‘c) =TIz + Sm([')7

a; and b; are real},

AU = A (L) = AUD(L) +i(TE N7 SE),

where S;- is the orthogonal complement of S, in I'.
We have the following.

LEMMA 3.1.  The subspace A§Z") is a Shiba behavior space associated with L.
PROOF. First, we prove the period condition. Note that

Lhse D T DTho D Spn.

By using period reproducing differentials, we see that

/sz,/ w:Oforevelryj§p(m)}7
Aj B;

J J

TLN*Sh c*Sk = {w ery,

and each differential w € S, (L) satisfies

/ w:/ w =0 for j > p(m).

Hence for A € A;’”),
/ A€ L(§;) and / A € L(6;) for j < p(m),
Aj B;

/ A€ L(r/2) and / A€ L(n/2) for j > p(m).
A .

Second, we prove Ag(cm)l ) i*A&m). Since the dimension of S,,(£) is finite, by
Lemma 2.1, AS,}") (L) =Ty + Sn(L) is a closed subspace. Let w € Ty, 0 € S,,,(£) and
A €TLiNSEt We have (w+ o,\) = 0, because the real part of o belongs to S,,. It
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follows that AU™ is orthogonal to I't N SL. The subspace I'y (C T'he) is orthogonal to
1*I'y and *S,,(£). By using period reproducing differentials we have

_%(iei(ﬂrm))w%? *oa,)

i0; - 10) *
<e Toa;,1e" O’Ak> 0,

<ei9f03j,iei0’“ *O'Ak> f%(iei(efe’“)ﬂagﬂ “oa,) =0,

—?R(iei(‘gf_g"))(agj, *op,) = 0.

<ei9]' JBj , ieiek *O,Bk>

Hence S,,(£) is orthogonal to i*S,,(L£). It follows that Aim) is orthogonal to i*A;m).
The space i(*T' N *S;L) is clearly orthogonal to I'; N S;L. Thus AY™ is orthogonal to
i*AY™ e, AUE S A,

Finally, we show Ag(cm)J' C i*A;(Cm). Suppose A € Ay is orthogonal to i*Ag(cm). Then
for 1 < j < p(m)

0= </\,z'ei91 *aAj> = §R< — je 0 / )\),
Aj

0= ()i *op,) = 3%( — e~ / >\>.
B;

Hence there exist real numbers a;, b; which satisfy

/ A= ajewj and / A= bjemf.
Aj B;

Set

p(m)
Ao = Z ( — ajewfagj + bjeiajO'Aj).

j=1
Then, by the property of reproducing differentials, we have
/ (A—Ao):/ (A= o) = 0 for j < p(m).
Aj Bj

We see that A — A\ is orthogonal to *S,, and i *S,,. By assumption, A is orthogonal to
i*T', and so is A\g € S,,(£). Hence A\ — ) is orthogonal to i *T',. By S™ C *I't N *S:-
we have i *AY™ 5 TN Sk 5 *S™. It follows that

m

():()\,*JAJ.):S?(/AJ )\), 0=(\"op,) :m(/Bj /\) for j > p(m).

Since



572 K. MAtsul and F. MAITANI

0= (\o,"04,) :§R</Aj A0>, 0= (Mo, 0m,) :§R</B‘/\0> for j > p(m),

J

we get R(A — N\g) = 0 € T'e. The real part of \g belongs to Sy,. Since A is orthogonal
to T+ N St = (T + Sy)t, the real part of A belongs to CI(Ty, + S,,,). The subspace
S is of finite dimension and, by Lemma 2.1, T, + 5, is a closed subspace. It follows
that o € (I'y + S;) NThe = Tp. Let 1 be the imaginary part of A — Ag. Since A — Ao
and o are orthogonal to i*(S,, + I';), so is in. We see n € *T't N *S:-. Therefore
A=0+X+in € Tp+Sm(L)+i(*TrN*St) = AS™ . This shows that (¢ *Agm))l‘ c A,
ie., A&m)l C i*Aém). Thus we have AEJ”’ = i*A;m)l. O

Theorem 1.1 is represented as the following Theorem.

THEOREM 3.1. Let L= {L; }§=1 be an arbitrarily given family of lines. The strong

limit Ays of {A;(cm)};’,le is a Shiba behavior space associated with L.

PROOF. We note that the sequence {A{™}2°_, is clearly an increasing sequence of
closed subspaces of Aj. Let W, be the orthogonal projection of i(*I't N*S:L) to AI™L,
Then AE{") = A(zm) + W,,. Thus we see that W,, is a closed subspace of A, and that
{W,,} is decreasing. By Theorem 2.1 we have the strong limit A5 of {Agcm)};’le is a
pre-behavior space. For A € A, it is clear that

/ )\ELJ‘, / )\ELJ
A B,

J J

Therefore A, is a Shiba behavior space associated with L. O

4. Proof of Theorem 1.2.

On a Riemann surface of infinite genus, we already know that the period condition
gives an influence to the boundary behavior of concerned differentials. In the case that
the period condition contains at least three lines in a neighborhood of the ideal boundary,
the Shiba behavior space has not been given except [4]. The boundary behavior of Al
is, roughly speaking, stipulated by T';.

In this section we construct Shiba behavior spaces under a suitable condition different
from those in Section 3. For this purpose, we rearrange the period condition of a Shiba
behavior space. We divide the set of numbers J = {1,2,...,¢} to K divisions J =
{(J}E (K < o00), ie, J = Uiy Jiy, SN Je = 0 for k # €. Let £(J) = {Li}, be
a family of lines passing through the origin in C. We call a subspace A, = A, (L(])) of
Apse a Shiba behavior space associated with L£(J) if the following structure condition and
period condition are satisfied:

1) (structure condition) A, =i*AL,

2) (period condition) / A€ Ly, / A€ Ly, for j € Ji, A€ A,.
Aj Bj
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For K =1 we can easily construct a Shiba behavior space. Take a closed subspace
', which satisfies T C Ty C The, and set A(1) = T, +i*T';. Then i *A(1)+ = A(1).
By T'hm C Ty, we have T'pge D *T' and A(1) C Apge. From Iy C T, every A € A(1)
is able to have only imaginary period for an arbitrary cycle. Hence A(1) is a Shiba
behavior space associated with £(J) = {L; = L(n/2)}. This case corresponds to the
result of Yoshida [7].

For a finite K, we construct a pre-behavior space. Let £(J) = {Lr = L(0x)}5_,,
where L; N Ly, = {0} if j # k. Take a set of closed subspaces {I'®) C T',}X_ | and set
AE) =5 et ®),

PROPOSITION 4.1.  Suppose T'9) is orthogonal to *T'®) (k # j) and *TML =
Zszz I'®). Then CI(A(K)) is a pre-behavior space.

PrROOF. When A, is a pre-behavior space, e?’A, is a pre-behavior space. By a
simple argument we may assume that 6; = 0.

First, we show that A(K)‘ D i*A(K).

For ¢ = Zszl e g, € A(K) and w = 25:1 ew, € A(K), where o, € T*),
we € TW we have

K K
) = (3 i (3o ) ) = = 33 R0 =0

k=1+¢=1

This shows A(K) is orthogonal to i*A(K) and CI(A(K)) is also orthogonal to
i *Cl(A(K)).
By Lemma 2.1, CI(A(K)) + i *CIl(A(K)) is closed. It follows that

CUA(K)) + i *CUA(K)) = CLA(K) + i *A(K)).

Next, we show that (A(K) +i*A(K))* N A, = {0}.

For ¢ € (A(K)+i*A(K))*NA, = A(K)TNi*A(K)* N A,, we denote by w the real
part of . Since ¢ is orthogonal to T')), w is also orthogonal to I'Y). By assumption, we
have a representation

w="* <§:ak> € *<§:F(k)>, where ay € T,
k=2 k=2
Since ¢ is orthogonal to e I') we have
e ip = cos Ojw + sin 0; *w + i(—sin f;w + cos 0 *w)
and cos 0w + sin 0, *w is orthogonal to '), Hence

K K
p; =cosfjw +sinf; *w = cos b, *<Zak> — sin0j<z ak> c WL
k=2

k=2
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We get

0= {uj, ;) = <<3059j*(§:0lk> —Sinej(iak)»%‘>v

k=2 k=2
K
0=cosb;("a;,c;) — sin9j< Z ak,aj> =siné,; ("w, oj).
k=2
Since sinf; # 0 for j # 1, we have (*w, ;) = 0 and
K K
("w, "w) = <*w, - Zaj> =- Z(*w,oq) =0.
j=2 j=2

It follows that w = 0 = ¢ and A(K)* Ni*A(K)* N A, = {0}.
Analogously we can show that A(K)+ Ni*A(K)* N Ag = {0}. It follows that

AK)T ni*A(K)* N Ay, = {0}
and
Ap = CIUA(K) +i*A(K)) = CI(A(K)) + i *CI(A(K)).

Therefore CI(A(K)) is a pre-behavior space. O

REMARK 4.1. The subspace A(2) is always a closed subspace so that A(2) =
i*A(2)+. Let {e®w, + €0,}52, be a convergent sequence in A(2), where w, €
'Y and o, € I'® = *TWL Then {w, + €®~)g,}2 | and its imaginary part
{sin(f2 — 01)0,}52; are Cauchy sequences. This shows that {0, }2; is a Cauchy se-
quence converging to o € I'®. Hence {wn 52 is a Cauchy sequence converging to
w € TW. Therefore {1 w, + %20, }52, converges to e'1w + %20 € A(2). We see that
A(2) is closed. Thus, by Proposition 4.1, the subspace A(2) is a pre-behavior space.

We set, for J = {J; }< |
S(Jx) = Cl({ Z (ajoa, +bjop,)|a; and b; are real
J€Jk

and only a finite number of {ay,bs} do not Vanish}> cTy.

In order to prove Theorem 1.2, it is sufficient to show the following Theorem.

THEOREM 4.1.  Suppose T T2 TEK) (K < o0) are closed subspaces of T,
such that
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(1) TO € *T0L (j < k),

) AT+ — Zp(k)

(3) S(Jx) C r<k> Clhse (k=1,...,K).

Set A(K) = 1 ¢ T®) . Then CI(A(K)) is a Shiba behavior space associated with
L(J).

PrROOF. We note that for j < k
®) - *pL c*S(J )

By Proposition 4.1 CI(A(K)) is a pre-behavior space. Since I'¥) is contained in Ty, we
see that A(K) C Apse. For w € I'®) € *S(J;)* (j # k) and £ € J;, we have

/ w={(w,*o4,) =0, and w={w,*op,) =0.
A@ By

For w € I'®) and ¢ € J;,, we have

/w, / w € R, and ek, / e e Ly.
Ap By Ay B,

For A\ = Z]K:l eiw; € A, where w; € TU), we have

f-
Ay

The subspace A(K) satisfies the period condition, so does CI(A(K)). Hence CI(A(K))
is a Shiba behavior space associated with £(J). O

K K

Z/A,ZeijjELk’ and /Bl)\zz

j=1 j=1

/ €i9jw]‘ € Ly, for ¢ € Jy,.
By

COROLLARY 4.1 (cf. [5]).  For closed subspaces T and T, assume that

K
Dpm C Ty CThe and Ty + S(Jy) cTW c*Tin ( ﬂ *S(J]-)L).
j=2

Set \T = *TML TR = TN (m] 5 *S(J;)1), oF = T and T = (mf;jjr) N
(N ir *SW5)4), 40 = TWE k=3, K.

If Z;ill W) s closed, then CI(A(K)) is a Shiba behavior space associated with
L(J).

PrROOF. We show that the assumption in Theorem 4.1 is satisfied.

(1) For j < k, we have T®) = *T'(L, Hence ') is orthogonal to *T'(F)
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(2) From T = (J)1 1), we get *IUOL = C(3 7' T0) = Y EI 1),
(3) By the assumption we have for each ¢ (> 2)

K
' c,rccl (rz + Zsm) C Thaes

j=2
and so we get
=1 K
o= Ol(ZF(J) + Z S(Jj)> C Tpse-
j=1 j=t+1
We have also
K
S(1) cTW €Ty CThee, 1T DTa+ Y S(J;).
j=2
It follows that
K k—1
ZS(JJ) C ﬂ oI
j=k (=1

Hence
k-1 K
ré® = ( N jr> N ( N *S(Jj)L> > S(Jx).
J=1 Jj=k+1

By Theorem 4.1 the conclusion follows.

5. Examples of Shiba behavior spaces in Section 4.
We show examples of Shiba behavior space different from those in Section 3.
ExamPLE 1. Let

Jme ={j | (j € Ji) and (j < p(m))},

Jg ={i | € Jx) or (j >p(m) and j ¢ J1)},

Jm — {J17 Jm27 .. .,Jm(K—1)7 J%}?

S( k) = { Z (ajoa, +bjop,)|a; and b; are real},

jeJ'mk
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S(JK) = Cl({ Z (ajoa, +bjop,)|a; and b; are real

jeTy

577

and only a finite number of {ag, by} do not Vanish}),

and {Fhm’k}szz be closed subspaces of I'y,, such that ZkK ohmk = Thm and the
dimension of each Ty i (K =2,...,K — 1) is finite. Set

F( Fhse < ﬂ S mk >O*S(‘]}?)la

T® =Thn +S(me) (k=2,3,..., K —1),
I = CUT i + S(T)).

Then we have the following:

(1) Fork (k=2,...,K—1)

TWL =T NS (k)™ D Thse N *S(i) - DT (5 # k),

and
UL =T N ST D Thse N "SI D TW) (5 # K).
K—-1
(2) T4 cz(rhm+ S(Jmi +S(JK))
k=2
—1
k:2

because the dimension of ZkK:_; (Chim,ke + S(Jmk)) is finite.
(3) Fork (k=2,...,K—1)

S(Jmk) C ]-—‘hm,k + S(Jmk) == Fgf) - Fhsm
S(J}?) - Fhm,K + S(JIT?) - F%() - Fhse;

and

S(Jl) - ngll) C Thse-

Setting A(K)™ = K itk

m , we have by Lemma 2.1,
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K K—-1
CIA(K)™) = CI ( Yot F£’s>) = 3" e r® 4 Ci(e TR + e?x (),
k=1 k=2

and, by the same argument as in Remark 4.1, Cl(ewll"?(%) + eiaKFS,If ) = eiall"g,ll) +

05T Hence CUA(K)™) = A(K)™. By Theorem 4.1, we see that A(K)(™ is a
Shiba behavior space associated with £(J™), where A(K)(™) has the period condition
containing two lines in a neighborhood of the ideal boundary. Further the closed space
Un = Z,I::_zl e'0x Fgf) is increasing and V,,, = ewlf‘%) +etfx FEnK) is decreasing. Therefore,
by Theorem 2.1, the strong limit A, (K) of {A(K)(™} is a Shiba behavior space associated
with £(J), which is different from those given in Section 3.

ExaMPLE 2. Let an)@ = Cl(Tpm + S(J1)) and {Thsex H, be closed subspaces of
I',se such that

K
S(Jmk) C Fhse,k: C 1_‘hse N *S(Jl)l n ( ﬂ *Fﬁse,j>

J=2,j#k
and
K
Zrhse,k} =Thse N *S(Jl)l = *F;},zll
k=2
Then

K
(i)t D Tk D Thm + S(J1) + Y. Thaey.
J=2,5#k

By Theorem 4.1 C’l(ewlfﬁl + 2522 €% T} se1) is a Shiba behavior space associated
with £(J). This type of behavior spaces may contain, for the interior of a compact bor-
dered Riemann surface, the behavior spaces which give the slit mapping with arbitrarily
prescribed directions, see [4] and [6].

Now, we give an example of {Fhse,k}fﬁ. Let a Riemann surface R have a regular
partition {8}, of the Kerékjarts-Stoilow ideal boundary A and Uy, be a neighborhood
of B on R* = RU A such that U; N U, = 0 for j # k. Take an Ry whose complement
is contained in UkK:2 Uy. Set

Ji={j|1<j<p(N)}
and for 2 < k< K
J ={j | 45, B; C (R— Rn) N Uy}

Let Tt be a subspace of C! differentials {w} such that w is exact on (R — Ryx) N Uy
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and for an n > N depending on w is 0 on (R — Ry,) NUg. Set I'pser =Tn N *F}fl. For
o € S(Jx) and w € '}, we see that (*o,w) = 0 and S(Ji) C I'pse . Since the closed
subspace CI(T'}) contains Ty, + >z S(Jj), we have

Fhse,k C Fhse N ( m *S(‘]J)l> .

ik

Every differential w € Iy 1, is exact on R — ((R — Ry) N Uy) and is orthogonal to *I'.
The w = df on R— ((R— Ry)NUy) is approximated by df,, which is 0 on a neighborhood
of U, Bj. Hence we see that I'sex C CU(T}) (j # k). Tt follows that

K
1—‘hse,k C Fhse N >lKS(‘]I)L N ( ﬂ *Fﬁse,j> .
J=2.j#k

Since any differential in Tz N *S(J1)+ restricted to (R — Ry) N Uy, is extended to a
differential in I'jse 1 + I'co, it also can be showed that

K
Zrhse,k = Fhse N *S(Jl)J_
k=2

Every differential in the behavior space of this example is, roughly speaking, Lj-
valued along [.

Finally, we decompose a Shiba behavior space. Under a suitable condition we can
reconstruct it from the decomposition by the method in Section 4. Let K < oo, J =
{Jx}< | be a division of numbers {1,2,...,g} and £(J) = {Ly = L(6x)}_,, where
L;N Ly = {0} for j # k. Let A, be an arbitrary Shiba behavior space associated with
L(J). We set

I = {Imaginary part of e % w | w e A}, TH =*(,I')
and

A, = e (k),

] =

b
Il

1

THEOREM 5.1.  If*TML S8 T®)  then CI(A,) = A,.

ProOF. For A € A, and o, e T®)(k =1,2,...,K), we have
(N, ie'% *ap) = (e7 % X\ i o) = (Imaginary part of e\ *g;,) = 0

and
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<)\,i*(§ew’“ak)> =0.

This shows that A, is orthogonal to i*A, ie. ’L*[\% D A, =i*AL. Hence A, C A,. For
o; € I'Y) and o, € T®) (5 # k), differentials % oj and % g}, belong to A,. We have

0= (cg;, i’ *a)) = R(—ie' % =%)) (0, *op).

Since R(—ie'%=0%)) £ 0, it holds (o}, *0)) = 0. Therefore I') is orthogonal to *I'K).
Particularly, T()+ 5 Zszz *I'(*®), By assumption we get *I'D+ = Zszz '®) . Tt follows,
by Proposition 4.1, that CI(A,) is a pre-behavior space and CI(A,) =i *Cl(A,)*" D A,.
Therefore Cl(f\x) =A,. O
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