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Abstract. In this paper, by clarifying the concept of relative K-stability
in [28], we shall solve the stability part of an extremal Kahler version of
Donaldson-Tian-Yau’s Conjecture. This extends the results in [15] and [27].
‘We then propose a program to solve the existence part of the conjecture.

1. Introduction.

In this paper, we shall study the relative K-stability in Székelyhidi [28] and the
asymptotic relative Chow-stability in [17] (see also [11]) from the viewpoints of the
existence problem of extremal Kéhler metrics on a polarized algebraic manifold (M, L).
In clarifying these concepts of relative stability, we are led to study piecewise bilinear
forms associated to toric subvarieties of the Hilbert schemes (cf. Section 3, Theorem B).
For a maximal compact connected subgroup K of the group Aut(M) of all holomorphic
automorphisms of M, we here consider the extremal Kéhler vector field V € £ := Lie K
for the class ¢1(L)g. Let

T € Tex (M, L),

i.e., T is an algebraic torus in Aut(M) such that the maximal compact subgroup of
T sits in K and that T contains the one-dimensional algebraic torus generated by V.
Then in terms of these concepts of relative stability, we propose in the last section a
program to solve the following extremal Kéhler version (cf. [28]) of Donaldson-Tian-
Yau’s Conjecture:

CONJECTURE A. A polarized algebraic manifold (M, L) admits an extremal Kdhler
metric in the class c1(L)r if and only if (M, L) is K-stable relative to T above.

The “only if” part of this conjecture will be proved affirmatively in Section 6, Theo-
rem C, extending the results in [15] and [27]. In particular, our result solves the stability
part of the original Donaldson-Tian-Yau’s Conjecture, since by assuming the existence
of constant scalar curvature Kahler metrics in ¢;(L)gr, we obtain T' = {1} € 7o (M, L).
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2. Background materials.

Here a polarized algebraic manifold (M, L) means a pair of a connected projective
algebraic manifold M, defined over C, and a very ample holomorphic line bundle L over
M. Put n := dim¢ M. For a maximal connected linear algebraic subgroup G of Aut(M),
the Chevalley decomposition allows us to write G as a semidirect product

GZRchU

of a reductive algebraic group R¢ and the unipotent radical U of G. Let g := Lie G and
v := Lie R¢ be the Lie algebras of G and R, respectively. Then we may assume that v is
a complexification of ¢ in the introduction. As in [5], consider the Lie algebra characters

Fpig—C, p=12,...,n,

defined as obstructions to asymptotic Chow semistability of (M, L), where Fy is the
classical Futaki character of M. For the center 3 of t, define a subspace a of 3 consisting
of all A € 3 such that

Fp(A) =0, forallp=1,2,...,n.

By setting 37 := {X € 3;exp(2mv/—1X) = idps}, we have an integral structure of 3.
Then by the nondegenerate symmetric bilinear form ( , ), on g as in [6], we define a
complex Lie algebra

bo = ClJ'O

to be the orthogonal complement, defined over QQ, of a in 3 consisting of all B € 3 such
that (A, B), = 0 for all A € a. Since Ker F; is perpendicular to tex := CV by (, )4, we
see that

tex - bO- (21)

Let Tox(M, L) be the set of all algebraic tori T in G such that the maximal compact
subgroup of T sits in K and that t := Lie T satisfies

tex C t.

Now the infinitesimal action of the Lie algebra g on M lifts to an infinitesimal bundle
action of g on L. Then by setting

Vi = H(M,O(L™)), m=1,2,...,

we view g as a Lie subalgebra of s[(V,,,) by considering the traceless part. We now define

a symmetric bilinear form (, ),, on s[(V,,) by
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(X,Y),, = Tr(XY)/m"*2, X,Y €5l(V,,),

whose asymptotic limit as m — oo plays an important role (cf. [28]) as in Theorem B in
Section 3. Since (, },, restricted to the Lie subalgebra 3 of sl(V,,,) is nondegenerate for
each positive integer m, we can define a complex Lie algebra

m

as the orthogonal complement, defined over @Q, of a in 3 consisting of all B € 3 such that
(A, B),, =0 for all A € a. Let t,,;, denote the complex Lie subalgebra, defined over Q,
of 3 generated by all

in the center 3. For instance, if the obstruction Obstr(M, L) in [5] and [10] vanishes,
then we have ty,i, = {0}. Let Tpin(M, L) denote the nonempty set of all algebraic tori T
in G such that the maximal compact subgroup of T sits in K and that t := Lie T satisfies

tmin - t7

where we need 7pin(M, L) only in the last section. For a maximal element Ty, of
Tmin (M, L), we see that Tiax is a maximal algebraic torus in G satisfying tmin C tmax 1=
Lie Tinax. Let Toy be the one-dimensional algebraic torus in G generated by V, so that
Lie Tex = tex. By (2.1), we have tox C tyin. Hence

Tonin (M, L) C Tex (M, L).

For each T' € Tex(M, L), let T, denote the associated algebraic torus in SL(V,,) such
that t,,, := LieT,, is the Lie subalgebra of s[(V},) infinitesimally induced by t = LieT.
Then by the T),-action on V,,,

@ Xm k
k=1

where V(xmk) == {v € Viu;g - v = X,(g)v for all g € Ty} with mutually distinct
multiplicative characters x,,, , € Hom(T,,,C*), k =1,2,...,v,,. Consider the algebraic
subgroup S, of SL(V,,) defined by

HSL ka

where each SL(V (Xm;k)) acts on Vy, fixing V (xm.i) if @ # k. The centralizer Hy, of S,, in
SL(V,,) consists of all diagonal matrices in SL(V;,) acting on each V(xm,k) by constant
scalar multiplication. Hence the centralizer Z(T,,) of T, in SL(V,;,) is H,, - Sy, with Lie
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algebra
Z(tm) = hm + S,

where s, := LieS,, and b,, := Lie H,,. In general, for a complex Lie subalgebra ¢ of
sl(V,,,), we denote by 1z the kernel of the map

3 X —exp (2rvV-1X) € SL(Vy),

and if ¢ is abelian, we regard g := 7 ®7z R as a real Lie subalgebra of r. In particular, for
t = b, we view (h,,)r := (hm)z ®z R as a real Lie subalgebra of §,,. For the orthogonal
complement t} of t,, (= t) in b, by the nondegenerate bilinear form ( , ),,
T denote the corresponding algebraic torus sitting in H,,. We now define an algebraic
subgroup G, of Z(T,,) by

above, let

G =T+ S,,.

m

3. Piecewise bilinear forms on (5,,)r-

In this section, let T' € Tox (M, L), and by fixing a positive integer m arbitrarily, we
set Ng := (h,)r/9°® and Ng := (h,,)r/t®, where g* := gN(hy)r and t* := tg = tN(hy ).
We now consider the fan A in N associated to the toric variety H obtained as the closure
of Hy, -7y in the Hilbert scheme Hilb P*(V,,,). Here vy, denotes the point in Hilb P*(V},,)
associated to the polarized subvariety (M, L™) of (P*(V;,), Op-(v;,)(1)) in terms of the
Kodaira embedding

b, M — P*(V,,)

by the complete linear system |L™|. Note that the Lie algebra of the isotropy subgroup
of H,, at yas is just the complexification in b,, of the real Lie algebra g®. Let

7: (hm)r — Nr, 7 :(hpn)r — Ng, pr:Ng — Ng

be the natural projections. Then A is a collection of strongly convex rational polyhedral
cones C; (cf. [21]), 7 =1,2,...,r, in Ng such that

T1
Ne =],

j=1
where {C4,Cs, ..., C,, } denotes the set of all C;’s in A such that dim C; = dim Ng. For
each j =1,2,...,7, by setting

Y =71C;) and Cj:=pr (C;),
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we consider the open face E? of ¥;. Let 6 be a collection of continuous maps 6; :
Y, x%¥; =R, j=1,2,...,7, which are symmetric, i.e., §;(X,Y) = 0;(Y, X) for all
(X,Y) S Ej X Ej. Put Eij = El n Ej.

DEFINITION 3.1. 6 is said to be a piecewise bilinear form if each 6; extends to a
symmetric bilinear form, denoted by the same 6; by abuse of terminology, on (§,,)r such
that

ei‘ziszij :Gj‘ziszij, i,j € {1,2,...,’[‘1}. (32)

In view of the inclusion H C HilbP*(V,,), the universal family over the Hilbert
scheme Hilb P*(V},,) restricts to a family

p:Z—-H

over H such that, via the H,,-actions on H and also on P*(V,,), the subscheme Z of
H x P*(V,,,) is preserved by the H,,-action with fibers

Z, C {s} x P*(Vy)) = P*(Vi),  s€H, (3.3)

regarded as the corresponding subschemes of P*(V},,). Here for each s € H, we denote
by Z, := p~1(s) the scheme-theoretic fiber of p over the point s. For simplicity, we put
L := p50p- (v, (1), where py : Z — P*(V,,,) is the restriction to Z of the projection of
H x P*(V,,) to the second factor P*(V,,,). For each X € 3(t,,)z, by setting

ox (t) == exp{(logt) X}, teCr, (3.4)

we have an algebraic group homomorphism ¢ : C* — Z(T,,). Hereafter until the end
of this section, we assume that X € (h,,)z. We now observe that (h,,)r is a disjoint
union of all E?, j=1,2,...,r, where for each such j, as long as X € E? N (bm)z, the
limit
v = lmox (f) -y

depends only on j, and is independent of the choice of X in E? N (hm)z. In (3.3), by
setting s = ~;, we have the fiber Z; := Z, of Z over ;. For each j = 1,2,...,7,
we put L; := Lz, and let G; be the algebraic torus in H,, generated by Z? N (bm)z.

Then the Gj-action on (Z, L) preserves the polarized subvariety (Z;, £;), where (M, L™)
degenerates to (Z;, L;) as t — 0 for the action of the one-parameter group

pox : C" — Hy, t— px(t),

provided that X € X9 N (hy)z. On the other hand, the real subspace gjp of (hm)r
generated by Z? N (hm)z is expressible as
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gir = (hm)r, 1< <r. (3.5)
For positive integers ¢, we consider the direct image sheaves E; := p, £ over H. In this
paper, locally free sheaves and holomorphic vector bundles are used interchangeably. If
¢> 1, then Ey is a vector bundle over Z and the fiber (E),, over v; is identified with
HO(Zj,ﬁﬁ). Put

dg = dim(Eg)%. = dim ng.

For each X,Y € g;p, consider endomorphisms Xy;,Ys; € End(Ey),, induced by X,

Y, respectively. For each 1 < 7 < r and £ > 1, we have a symmetric bilinear forms
9§£) {gjg X §ip — R, defined over Q, by

00 (X.Y) i= Te(X, Vi) (6m)"™+2, (3.6)
where X@;j, Y’g;j € sl (Ey),, are traceless parts of Xy,;, Yy,; defined by

X Tr(Xey) . - Tr(Yy.;
Koy = Xej = % id(my),,» Yo =Ye; — ey)

idp,)., -

For C;, C} € A, suppose that Cy is a face of Cj. Then by choosing an element X of
29N (bm)z, we see that (Zy, L)) degenerates to (Z;,L;) as t — 0 for the action of the
one-parameter group ¢x(t), t € C*, in H,,. Since E, can be Gj-equivariantly trivialized
for degeneration along the one-parameter group, we hence obtain

00X, Y) =0 (X,Y), XY €gr (3.7)

Then by (3.5) and (3.7), §1) = {Hj(-z);j =1,2,...,r1} is a piecewise symmetric bilinear
form, since for i, j € {1,2,...,r1} with X;; # 0,

00X, Y)=6(X,Y)=0"(X,Y), XY exy,
where k € {1,2,...,r} is such that C, = C; N C;. Now for £ =1, it is easy to check that

the piecewise bilinear form (1) = {9;1)} coincides with ( , ),, on (h,,)r. On the other
hand, for ¢ — oo, we obtain

THEOREM B. The limit @ ={0;;j =1,2,...,7m1} given by
6;(X.Y) = lim 0(X,Y), X, Yex,,

is a well-defined piecewise bilinear form such that each 8; extends to a positive semidefi-
nite bilinear form, defined over Q, on (h,,)r.
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PROOF. It suffices to show that, for each j € {1,2,...,r1}, the bilinear form QJ(-Z)
on (h,)r converges as ¢ — oo and also that the limit 6; is a positive semidefinite bilinear
form defined over Q. Let us now define a quadratic form @, on b,, by

Qu(X) =07 (X, X), X € (hm)r (= gjm)-

By the identity 2950 (X,Y) = Qu(X+Y)—Qe(X)—Qe(Y), the proof of the convergence of
9;8) as £ — oo is reduced to showing the convergence of the sequence {Q,(X); ¢ =1,2,...}

for each fixed X € (h,,)r. In view of [28] (see also [4]) and the definition (3.6) of 9](-2), the
function £"*2Q,(X) in £ > 1 is a polynomial of degree n + 2 with a leading coefficient «
independent of the choice of £ > 1, so that we can write

Qu(X)=a+0(h),

where a = [, hZwi for some real Hamiltonian function hx on Z; < P*(V},) associated
J
to X. Hence Q¢(X) converges to «a as £ — oco. Thus

0,(X,X)=a>0.

Moreover if X € (B,,)z, then £772Q,(X) is a polynomial in £ > 1 with rational co-
efficients, so that its leading coefficient « sits in Q. Hence the limit 6; on (h,,)r is a
well-defined positive semidefinite bilinear form defined over Q, as required. O

Since g* C 3;; C ¥ forall4,j € {1,2,...,7}, it follows from (3.2) that there exists
a continuous map u : g* X (h,,)r — R such that

Ugors, =0;  =1,2,...,m,

and that the restriction of u to g® x g® is the positive definite symmetric bilinear form
(', Yo as in [6] (see the remark in [28]). In view of t* C g°, the positive definiteness allows
us to write (h,,)r as a direct sum

(hn)r = t* @t (3.8)

where t*7 is the orthogonal complement of t* in (h,,)r by the symmetric bilinear form
0;. In (3.8), let pr; : (hm)r — t°*7 be the projection to the second factor. On the other
hand, by viewing the vector space (b, )r as a (not necessarily unique) direct sum Ng @®t®,
we see that

sitting in (h,,)r is a piecewise linear (and hence continuous) graph over Ng. Thus the
restriction of 7 : (h,,)r — Nr to t’ is bijective, so that its inverse defines a continuous



542 T. MABUCHI

cross-section ¢ : Ng — (B,n)r to #. Now by setting (65/), := 5/ N (hn)z, we define a
subset (g.,); of 3(tm)z by

(0)z = (6.))z + (5m)z = {(X'+ X" X" e ()2, X" € (Em)Z}v

where (s,,,)z denotes the set of all semisimple elements X" in s, such that the equality
exp(2my/—1 X") = idy,, holds.

REMARK 3.9. The piecewise bilinear form 6 above in Theorem B is essentially the
same as the bilinear pairing by Székelyhidi [28] for C*-actions on a test configuration.

4. Relative K-stability.

In this section, we use test configurations introduced by Donaldson [3] (see also
[29]). For a complex affine space Al := {s € C} = C, the algebraic torus C* acts on Al
by multiplication of complex numbers,

C* x A' — Al (t,2z) ¥ tz.

Fix an element T of 7o (M, L), and let X € 3(t,,)z. Then C* acts on V,,, and also on
P*(V,,,) via the algebraic group homomorphism

pox :C* = Z(T),)

as in (3.4). Here for a positive integer «, if X is replaced by aX, then by the base
change, the algebraic torus C* is replaced by its unramified cover of order a. The
DeContini Procesi family (cf. [23]) associated to X is the test configuration (M, £X)
of (M, L™) endowed with the C*-equivariant projective morphism of algebraic varieties,

x : MX = AL

where MX is the subvariety of A! x P*(V,,) obtained as the closure of the union
U.cc- M of the fibers

M =731 (2) = {2} x {ox(2) - P (M)}

Furthermore, we put £X := P5(Op«(v,,)(1)) for the restriction py to MX of the projection
of At x P*(V,,,) to the second factor P*(V,,). For the open subset C* of Al, we see that
the holomorphic map h : C* — Hilb P*(V,,,) sending each z € C* to h(z) := po(MX) €
Hilb P*(V,,,) extends to a holomorphic map

h:A' — HilbP*(V,,),

and hence, we can view MX as the pullback, by h, of the universal family over
Hilb P*(V,,,). For each positive integer ¢, we have
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X X ~
(ME (L) = (M, L),  zeCr,

and hence (MX, (£X)?) is a test configuration of (M, L™) of exponent ¢. We first let
¢ =1. Since A x Op«(y,,)(—1) is viewed as the blow-up of A' x V,,, along A' x {0}, and
since Mz is an algebraic subvariety of A x P*(V,,), we have a C*-action on (MX, LX)
induced by

C % (A x Vi) = Al X Vi, (,(2,0)) = (t2, 0x (D))

Since T also acts on Al x V;,, by operating only on the second factor, the induced T-action
on Al x P*(V,,,) preserves the subvariety MX, so that we have a natural T-action on
(MX, LX) commuting with the C*-action on (MX, £X). For the scheme-theoretic fiber
M of mx over the origin 0 € Al, let £ denote the restriction of £X to M. Let EX
be the vector bundle over A! associated to the direct image sheaf (7x),{(£LX)¢}. Then
the fiber (E;¥) of E;* over the origin is

(B )o = HO (Mg, (L5)"),
for all integer £ > 1. Note that d; = dim V;,,, = dim(E;*),. Consider the endomorphism

X, € End(E;X)o of (Ef)p induced by X. Let w, be the weight of the C*-action on
(E{)q. Then for all £>> 1,

dp = anl™ + an_ 10"+ -+ a1l + ao,
(4.1)

wy = Tr(X¢) = b1 0T 4+ b0 + -+ + byl + by,

where rational numbers a;, b; € Q are independent of the choice of £. Note here that
an = m"cy(L)"[M]/n! > 0. Then for all ¢ as above,

we/ldy = Fo+ Pyl + Fol ™2 4. (4.2)
with coefficients F; = F;(MX, LX) € Q independent of the choice of £. In particular

anbn - an—lbn+l
az,

Fy = F (MY %) =

is called the Donaldson-Futaki invariant (cf. [3]) for the test configuration (M, LX) of

(M, L™).

Let v : MX — M be the normalization of MX, and we consider the pullback
LX = v*LX. Recall that (MX, LX) is trivial if there exists a C*-equivariant isomor-
phism

(MX, LX) = (AY x M, At x L™),

where on the right-hand side, the group C* acts on the second factors M and L™ trivially.
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Now, the relative K-stability in [28] (see also [8], [26]) is formulated as follows:

DEFINITION 4.3. (1) (M, L) is called K-semistable relative to T if Fy(MX, LX) <0
for all X € (g/,,), and all positive integers m.

(2) Let (M, L) be K-semistable relative to T'. Then (M, L) is called K-stable relative
to T, if Fy(MX, LX) <0 forall X € (g),); \ g, m=1,2,..., as long as (M¥,L¥) is
nontrivial.

5. Asymptotic relative Chow-stability.

In this section, let T € Tox (M, L), and consider the T-equivariant Kodaira embed-
ding ®,, : M — P*(V,,) associated to the complete linear system |L™| on M. Let 6(m)
be the degree of the image ®,,(M) in P*(V,;,). Take the §(m)-th symmetric tensor prod-
uct S (V,,,) of V,,. For the dual W7 of W, := S°(™)(V,,)®"+1 we have the Chow
form

M,, € W,

for the irreducible reduced algebraic cycle ®,,,(M) on P*(V,,), so that the corresponding

element [M,,] in P*(W,,) is the Chow point for the cycle ®,,(M). Consider the natural
action of SL(V,,) on W} induced by the action of SL(V,,) on V,.

DEFINITION 5.1. (1) (M,L™) is said to be Chow-stable relative to T if the orbit
G, - M, is closed in wWr.

(2) (M, L) is said to be asymptotically Chow-stable relative to T if (M, L™) is Chow-
stable relative to T for all integers m > 1.

6. Extremal Kahler metrics.

For the “only if” part of Conjecture A, the algebraic torus 7' should be chosen as
small as possible. For instance, the result of Stoppa and Székelyhidi [27] solves the case
T = Thax, which does not cover the stability part of the original Donaldson-Tian-Yau’s
Conjecture unless Aut(M) is discrete. In this section, by improving the arguments in [15],
we shall prove the following theorem by showing relative stability for all T' € 7o« (M, L) on
a polarized algebraic manifold (M, L) with an extremal K&hler metric w. Since we may
assume that the compact group K in the introduction acts isometrically on w (cf. [1]),
the associated extremal Kéhler vector field ¥V belongs to &.

THEOREM C. A polarized algebraic manifold (M, L) with an extremal Kdhler met-
ric in c1(L)r is K-stable relative to every T € Tox(M, L).

Proor. Fix an element X in (g,), and let w be an extremal Kéhler metric in the
class ¢1(L)gr. Choose a Hermitian metric h for L such that w = ¢y (L; h). It then suffices
to show the following:

i) Fi(MX, LY) <05 o
i) If Fy(MX, LX) =0, then X € g as long as (MX, £X) is nontrivial.
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Hence by replacing the line bundle L™ by L, we may assume that m = 1 without loss of
generality.

Step 1: In this step, following [12, Section 2], we study the asymptotic weighted Bergman
kernel for the extremal Kihler polarized algebraic manifolds (M, L¢) as ¢ — +oo. Since
the maximal compact subgroup of T sits in K, the corresponding Lie algebra t satisfies
V/—1tg C &. We now define a Hermitian pairing ( , >L2(h) for V; by

@)y = [ 00", o€V (6.1)

where (0,0"),, is the pointwise Hermitian inner product of o, ¢’ by the f-multiple of h.
Then by this Hermitian pairing (, ). (n)» We have

V(X@;i) 1 V(Xf;j)? { 7é ja

where V(x,;) is as in Section 2. Put n,, := dimc V(x,,;). Let P be the set of all
pairs (i,a) of integers such that 1 <i <y, and 1 < a < Mgy For the pairing (6.1), we
say that an orthonormal basis {0} ; (i,«) € P} for V4 is admissible, if 0,4 € V(xe:4)
for all (i,) € Pp. Fix an admissible orthonormal basis {0 «; (i,«) € Py} for Vp with
- >L2(h). By setting 3, := exp{qu(X“)*(\/le)} — 1, we define the asymptotic
weighted Bergman kernel Zy(w), £ > 1, by

Vo My
Zy(w) =nlg" Y Y (14 Bpy) loiali, (6.2)
i=1 a=1
where we put ¢ := ¢~ and |o]} = (0,0), for all 0 € V,. We write the sections

Gia = (1+ ﬁg;i)1/20'1‘7a as Gj(;,o) Dy introducing the notation

i—1
j(ia a) =a+t Zné;ia
k=1

so that the basis {7;; (i,a) € P} for V; is written as S = {67 =1,2,...,d¢}, and
the Kodaira embedding ®, : M — P*(V}) is given by

M = PU"H(C), pr @lp) = (1(p) : G2(p) : -+ : 54, (p)),
where P*(V;) and P4~ 1(C) = {(¢; : ¢ : -+~ : (g,)} are identified by the basis &. For
later purposes, rewrite the homogeneous coordinates (;, 1 < j < dg, as (i, 1 <7 < vy,

1<a< Ty i by setting

Giya 1= Cj(i,a)o



546 T. MABUCHI

Put 7o := {2¢1 (L)"[M]}~Hney (L) tey (M)[M] + /=1 [, = (Vh)w"}. Then by The-
orem B (see also p.579) in [11], the asymptotic weighted Bergman kernel Zy(w), £ > 1,
for the extremal Kéhler metric w satisfies

Zy(w) — (14 199) = O(¢°). (6.3)

Here (6.3) means that |L.H.S.| < C1¢? for some positive constant C; independent of .
For the Fubini-Study form

de
WFS = (\/—1/27‘1‘)8510g (Z |CJ|2)
j=1
on P*(V;) (= P%“~1(C)), the pullback ®jwrs is (v/—1/27)d01og Zy(w), and hence by
(6.3), we obtain
Opwps — lw = O(%). (6.4)
Put bei == —q(x,;)«(vV—1V) € R. Note also that, as in [14, Lemma 2.6], there exists

a positive constant Cy independent of the choice of ¢ > 1 and ¢ such that |be,;| < Co.
Hence

|Be.i| = be.iq + O(¢*) = O(q) for all £ > 1 and i. (6.5)

Step 2: Let X € (g})z, so that we consider the test configuration (M, £X) for (M, L)
of exponent 1. Recall that the vector bundle E;( over Al associated to the direct image
sheaf (mx).{(£X)"} admits a C*-equivariant trivialization (cf. [4, Lemma 2])

EX = A x (E{),. (6.6)

For each z € Al, let (E;X), denote the fiber of the vector bundle EX over z. Then by
(6.6), we may assume that the Hermitian metric py := (, )2, on Ve = (E;), induces

a Hermitian metric py on the central fiber (EX), which is preserved by the action of
S c C*. Now,
Wi i= SUO(EX)) o1 = SOV (67
admits the Chow norm (cf. [32, 1.5]; see also Section 4 in [11])
Wi 5w [[wllor(p) € Rxo.
In view of the definition in Section 5, let M, € W denote the Chow form for the

irreducible reduced algebraic cycle v := ®p(M) on P*(V;), where P*(V}) is viewed as
P*((E{),) by the identification
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X\ o~ X
Vo= (B )y = (B¢ )o

induced by the trivialization (6.6). Since the C*-action on E;* preserves (E;*),, we have
a natural representation

Yo : C* — GL((EY)) (= GL(dy;C))

induced by the C*-action on EX. By the complete linear systems |(£X).|, z € A, we

have the relative Kodaira embedding

MX — PH(E)X)

over A, where by (6.6) the projective bundle over A! is regarded as the product bundle
Al x P*((EX)o). Then each fiber P*((E;),) over z € Al is naturally identified with
P*((E{)), so that all MX, z € Al are regarded as subschemes of P*((E;¥),). Namely,

MY =(t)- MY, teCr,

where on the right-hand side, the element ,(t) in GL((E; ),) acts naturally on
P*((E{),) as the corresponding projective linear transformation. Note that M7 is noth-
ing but 7 as an algebraic cycle, and that M{ is preserved by the C*-action on P*((E;X),).
Consider the dy-fold covering T := {f € C*} of the algebraic torus T := {t € C*} by
setting

t=1t%,

for the coordinates ¢ and , where dy = dim V. Then the mapping 5% : T — SL((EX),)
(= SL(dy; C)) defined by

SL(£) . ’(/J

4

i t ;-
S 1 RS VIO P

det(ve(t))  det(ee(t))
is also an algebraic group homomorphism. In view of (6.7), the group SL((EX),) acts
naturally on W;. We then consider the function

fels) = log [0 (exp(8)) - Mellcu(py), s €R,

by setting & := s/dy. Note that X = X'+ X", where X’ € (t{-')z and X" € (s1)z. Let X},
X/, Vi € sl(E)X), be the endomorphisms of (E)X)o induced by X', X", V, respectively.
Then for a suitable choice of an admissible orthonormal basis {o; o; (¢, ) € P} for Vg,
we obtain

A~

Xé(ai,a) = _elé;igi,m Xél(ai,a) = —eéﬁi,agi,m qv—1 f)Z(Uz}c'z) = —by;i0i.a
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for some positive integers eé and eé .o Satisfying DI Wil 62 , = 0and DI e;’l w=0
for all i. We now give an estimate of the first derivative f,,,(0) at s = 0. In view of [32]

(see also [11]),

Z elza|02a|
o) = (s | 22 Znu e (6.8)

where ep; o := €., + €. . Again by [14, Lemma 2.6], we obtain |e)..| = O(f) and
3t lii lii, o g £ii

lef.;.ol = O(£), i-e., there exist positive constants C3, Cy independent of £, 4, a such that

|€e, | < (3l and |ej,; .| < Cyl. Now,

vy Mg

ZZ éza li Zn€z€[ zb/z =q'Tr (FVZXZ) (gn)’ (69)

i=1 a=1

where the last equality follows from the fact that X’ € (t)z, since by 8(v/ =1V, X’) = 0,
we have (cf. [28])

Tr (VX)) = 0(V=1V, X)) T2 o("+h) = O(£n+).

Since 37701 37050 [Gialh, = (€7/nh) Ze(w), by using 37771 300 €y 0 = 0 and [eg; .| =
O(¥), we see from (6.3), (6.4), (6.5), (6.8) and (6.9) that

nzl i 1 +ﬁ i i 2
O =en = T e Oy O
— Z Enul €£la h .
=(n+1)! " (E"/n!){l+r0q+0(q2)} {tw+ O(q*)}
— (TL+1) Ve T o .
 1470q ;;e&i,abé;iq +o3¢m ) =0("1).

Recall the well-known fact (cf. [32]; see also [11, 4.5]) that f; is a convex function, i.e.,
fe(s) >0 for all s € R. Now by (8.8) in Appendix 1,

im fe(s) = (n+ Dla, Fre™ + 0. (6.10)

Let ¢ — oo. Then in view of f;(0) = O(£"~ 1), the monotonicity of the function f,(s)
implies that

Fy(MX, LX) <0

Step 3: To complete the proof of Theorem C, by assuming that the invariant F; (MX, £X)
vanishes, it suffices to show that X € g unless (MX,£X) is trivial. Then by
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Fy(MX,£X) =0 and (6.10), we obtain

lim fo(s) =0@"™Y), 1. (6.11)

§——00

For a sufficiently small positive real constant Cs independent of £, we put e := Cs(log £)g.
Consider the local one-parameter group

gso =17 (exp(3)), —e<s<0.

In terms of the natural action of SL(d,, C) on P4~1(C), by setting ws ¢ := q(gs,¢0Pr)*wrs,
we see that the family of Kahler manifolds

(M, ws ), —-£<s5<0,¢=1,2,..., (6.12)

has bounded geometry as in Appendix 2. Let us now consider the holomorphic vector
field X induced by (15%).(0/ds) on P%~1(C) which generates the local one-parameter
group ge,s, —€ < s < 0. For each s € [—¢, 0], we consider the holomorphic tangent bundle
TM; of My := gs ¢(®¢(M)). For the Fubini-Study metric, let TM; denote the orthogonal
complement of TM, in TP%*~!(C)y,, where TP%~1(C) is the holomorphic tangent
bundle of P%~1(C). Hence TP%~1(C)y,, is differentiably a direct sum TM, & TM;",
and we can uniquely write
o)

L
2Oy, = X0+ X0 (6.13)

where X%@S and X}?ﬂ are C™ sections of TM; and TM;, respectively. Note that

TMZ is regarded as the normal bundle of M; in P4~1(C). Consider the exact sequence
of holomorphic vector bundles

0 — TM, — TP%"1(C)|p, — TM; — 0

over M. Then the pointwise estimate (cf. [24, (5.16)]) of the second fundamental form
for this exact sequence is valid also in our case (cf. [13, Step 2]), and as in [24, (5.15)],
we obtain the inequality

0 2 .n o e .
/Ms |XTMSJ- |wstFS > 06 /MS |8XTMSJ- ‘wFSwFS7 (614)

where Cg is a positive constant independent of the choice of s and ¢. The space © :=
HO(M,C>®(TM)) of C* sections of TM has the Hermitian L2-pairing

(Vi Ya), o = / (V1. Y2)o &l Vi Y2 €O,
M

where (Y71,Y2)., , denotes the pointwise Hermitian pairing of Y7 and Y by the Kéhler
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metric ws . For the subspace I' := H°(M,O(TM)) of ©, we consider its orthogonal
complement Fj,z in © by the pairing (, )5 ¢. Then X}M in (6.13) is expressible as

XT(‘ZI\)/IQ - Xscié + Xs.,b

where X"e and X:Z belong to (gs,e o ®¢).I" and (gs,¢ 0 Py). 1"é ¢» respectively. Recall that
the second derivative fg( ) is given by

WFS

fuls) :/ e |2 whs >0, (6.15)
M
see for instance [11, Theorem 4.5]. Since f,(0) — f fe(s)ds > 0, we see from
fe(0) = O(¢"=1) and (6.10) that

O(*™") = £(0) = Hm fi(s) > fe(0) = fil(—e)
0

fe(s)ds > fu(so)e, (6.16)

—E€

where sy, £ > 1, are real numbers at which the functions fg(s), —e < 5 <0, attain their
minima, i.e., fr(s¢) = min_.<s<o fe(s). By

fe(se) = 7+ / |01 | (475"
it follows from (6.16) and € = O(qlog¢) that
/ X0 2, (awrs)” = Ola/log ), £ 1. (6.17)

se

Since the left-hand side of (6.13) is holomorphic, by operating the J-operator of the
holomorphic vector bundle T]P’d’f_l((C)‘ M., We obtain

0) 5 1-(C 510
OX, . = —0X[, = —0X2,. (6.18)
Let A7as;s,0 denote the Laplacian on the space of C'° sections of the holomorphic tangent
bundle TM of the Kéhler manifold (M,w,,). Since the family (6.12) has bounded

geometry, the first positive eigenvalue of the operator —Ar,/. . , on A%9(T M) is bounded
from below by some positive constant C7 independent of the choice of s and ¢. Hence

I ve 2 n n
/ f@/’\,’s[,Aqus(qus) > 07/ | Se,€|quS (quwrs)™. (6.19)
M., M,

From (6.14), (6.18) and (6.19), we obtain
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Vi 2 o |2 ke
/ |XC(F1\)/I¢ |qus (qurs)" > C6Cr q/ |XS£’4|qus (qurs)™. (6.20)
Mse Msz
Then from (6.17) and (6.20), it now follows that
L] 2 n
/ |X52,é|qws(quS) =0(1/1og¥), 0> 1. (6.21)

se

Put 7 := (32771 302 erialial®) /(02701 3265 [Gial?) on PY~H(C). Then by setting

c(re) == { [y, (qwrs)"} ' [, 7e(qwrs)™, we define uniformly bounded real-valued C'>
o o

functions 7,, £ > 1, on M by

Mo = {(gsp0 0 Pe) e} 0s — (),  £>1,

which are uniformly bounded on M by |eg; o| = O(¥) (cf. Step 2). Hereafter, replace the
sequence sy, £ >> 1, by its suitable subsequence sy;, j = 1,2,..., if necessary. We write
Ej’ £;17 Séj’ <7 >s£j,éj7 gszj 50 wszj,iy (I)Zﬁ néj as E(J)a Q(j)7 S(j), <7 >(j)7 g(j)v w(j)a (I)(j),
n(J), respectively. Since the family (6.12) has bounded geometry, we may assume that
w(j) converges to the extremal Kahler metric w in C*°, as j — oo (see Appendix 2). For
simplicity, we further put

Xrar(7) = (8G) ) (9() )X,

J

g(])_l)*Xo e]"

S
Zj’

X2(7) = (2(7) " Dulg() XS -

j J

%
—
<
~

Il
—~

A
—
<
~—

L
~—

*
—~

Then the following cases 1 and 2 are possible:

Case 1: I7 = [ [X°()2,w()", j = 1,2,..., are bounded. In this case, since
|XTM(j)\i(j) = |X°(j)|i(j) + |X'(j)|i(j)7 (6.21) together with the boundedness of I?
implies that

/ |Xrar () |5w()"s §=1,2,..., are bounded. (6.22)
M

Since w(j) — w in C*, in view of (6.22) and |X7pr(5) i(j) = |5n(j)\3)(j), we see that
fM |on(5)12w™, § = 1,2,..., form a bounded sequence. Hence 7(j), j = 1,2,..., are
bounded in the Sobolev space L'?(M,w"). Then replacing 7(j), j = 1,2,..., by its
subsequence if necessary, we may further assume that, for some real-valued function
Noo € L2(M,w™),

n(j) — Moo strongly in L?(M,w"), as j — oo. (6.23)

Put w(oo) := w. Thenfor j =1,2,..., and also for j = oo, the Lichnerowich operator A; :
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C™®(M)¢ — C*(M)c for the Kéahler manifold (M, w(5)) is an elliptic operator, of order
4, with kernel consisting of all Hamiltonian functions for the holomorphic Hamiltonian
vector fields on (M,w(j)). Let A}# : C®°(M)c — C*°(M)c be the formal adjoint of
the operator A; on the Kéhler manifold (M,w(j)). Now, to each smooth function f €
C*°(M)c, we associate a complex vector field Vy ; of type (1,0) on M such that

i(vaj)w(j):\/jléf7 j:1727"'7

where we can easily check that V, ;) ; coincides with 27X7y(j). Hence for all f €
C*>(M)c, we can write fM(Aff)n(j)w(j)" as

(AT 1000 e at i) = P AT 2 at i) = V03 DVaiina)
= 27T<5Vf7j75{XTM(j)}>(j) = 2m(Vy;, 5{X.(j)}>(j)'

Here the last equality follows from the identities X7as(j) = X°(5) +X*(4) and dX°(j) =
0. Hence, for each fixed f in C*°(M)c, we obtain

' | oG] = 2@,V 00

1/2
<2or / A,V’Ai_wjn} [1?,
{ M‘ iV fdlw(d) (> J

where I3 := { [}, \X'(j)\i(j)(,u(j)”}l/2 and Aj := Agypy oo In (6.24), let j — oo
Since I3 — 0 by (6.21), and since w(j) — w in C*°, by passing to the limit as j — oo,
we see from (6.23) and (6.24) that

M

(6.24)

for all f € C°°(M)c. This shows that 7 = 7. is a weak solution for the elliptic equation

and hence is a strong solution. Thus we have a holomorphic vector field W on M such
that i(27W)w = Onso. Then by Appendix 3, under the assumption that (MX, LX) is
nontrivial, we obtain X € g as required.

Case 2: I7 — +o0 as j — oo. Here we replace I7, j = 1,2,..., by its subsequence if
necessary. In this case, X°(j) := X°(j)/\ /7 satisfies

[ 1E@Ree =1 =12
M

so that in view of the convergence w(j) — w in C*, as j — 0o, we may assume that
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X°(j) — X2 (#0) in g, as j — oo, (6.25)
for some X3 € g. Put 7(j )/ /I and X*(j) = x*(j)//I;. Since n(j), j =
1,2,..., are uniformly bounded on M we see that

7(j) — 0 in C°(M), as j — oo. (6.26)

Let 7°(j) and 7°(j) be the Hamiltonian functions associated to the vector fields X°(5)
and X*(j), respetively, on the Kéhler manifold (M, w(j)), so that

{i<27r22°(j>)w<j> = V=19(°(j)),
i(2nX*(§)w(j) = V=1(7*(j)),

where the functions 7°(j) and 7°*(j) are normalized by the vanishing of the integrals
Ju1°()w(g)™ and [, 7°(j)w(4)™, respectively. Then

1) =1°() +9°()- (6.27)

Now by (6.25), there exists a non-constant C* function p on M such that i(2rXS )w =
v—10p and that

() — pin C(M), as j - oc.
Hence by (6.26) and (6.27), we see that
7(G) — —pin CO(M), as j — oo.

On the other hand, by (6.21), we see that [, |5ﬁ'(j)|i(j)w(j)" — 0 as j — oo, and hence
for each fixed smooth (0, 1)-form 6 on M, we have

/@ﬁmﬁmwww
M

([ oraegeort [ geort o

where for j € Z, U {oo}, we denote by 9(j)* the formal adjoint of the operator d on
functions for the Kéhler manifold (M,w(j)). Then by letting j — oo, we obtain the
vanishing for the Hermitian L?-inner product of functions p and 9(c0)*6,

(153 a(oo)*e)LQ(M,w") = 07

for every smooth (0, 1)-form 6 on M, i.e., 9p = 0 in a weak sense, and hence in a strong
sense. Thus we conclude that p is constant on M in contradiction to X3 # 0. This
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completes the proof of Theorem C. O

7. A program to solve Conjecture A.

As far as the K-stability of (M, L) relative to T € Tex(M, L) is concerned, the
stability condition is weakest in the case T = Ty,.x. Hence by Theorem C, it suffices to
show the existence of an extremal Kéhler metric in ¢;(L)g under the assumption that
(M, L) is K-stable relative to Tiax, or more generally relative to T € Tpin (M, L). Thus
in this section, by assuming T' € Tp,in (M, L), we discuss Conjecture A by dividing it into
the following three parts:

PArRT 1. If (M, L) is K-stable relative to T, then (M, L) is asymptotically Chow-
stable relative to T'.

PART 2 (cf. [17]). If (M, L) is asymptotically Chow-stable relative to T, then for
all m > 1 there exist a series of weighted balanced metrics wy,, m > 1, such that the
m-th asymptotic Bergman kernel By, (wm) is

(m™/nY) + frm" "t + O(m"?), m > 1, (7.1)

for some uniformly bounded real Hamiltonian function f,, on the Kahler manifold
(M, wy,) associated to a holomorphic vector field in t.

PART 3. The Kdhler metric w., in Part 2 converges to a Kdahler metric wo on M
in C°°, as m — 0.

Here Part 1 will be treated in [19], while Part 2 is proved in [17]. Note that Part 3 is
studied by many authors, say, by Chen and Donaldson in the case dim M < 3. For Part
3, we have some idea, though it will be discussed elsewhere (cf. [18]). If these three parts
are done, then by dimt < 400 and also by the uniform boundedness (cf. [17, Theorem
A]) of f,, in (7.1), replacing f,,, m = 1,2,..., by its suitable subsequence if necessary,
we may assume that f,, converges to some real Hamiltonian function f,, on the Kahler
manifold (M,we) associated to a holomorphic vector field in t. Now by a theorem of
Catlin-Lu-Tian-Yau-Zelditch ([2], [9], [30], [31]), we see from (7.1) that

fm = 0o(wm)/2, (7.2)

where for every Kahler metric w in ¢1(L)g, we denote by o(w) the scalar curvature of
w. In (7.2), let m — oco. Then we obtain fo, = 0(ws)/2, and hence wy, is an extremal
Kahler metric in ¢;(L)g, as required.

Since the statement of Conjecture A is supposed to be valid for all T' € 7o (M, L),
it suggests the following;:

CONJECTURE D. A polarized algebraic manifold (M, L) is K-stable relative to Tey
if and only if (M, L) is K-stable relative to Tyax-

Finally we observe that Conjecture A includes, as a special case, Donaldson-Tian-
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Yau’s conjecture on the existence of constant scalar curvature metrics. This is seen from
the fact that, if (M, L) is K-stable, then the classical Futaki invariant (cf. [7]) of (M, L)
vanishes so that any extremal Kéhler metric on (M, L) has constant scalar curvature.

8. Appendix 1.

In this Appendix 1, we shall give another interpretation of the invariants Fj, j =
1,2,..., for test configurations by discussing the unpublished result (4.9) in [15]. Let
(M, L) be a test configuration for (M, L) of exponent m in Donaldson’s sense, so that
there exists a C*-equivariant projective morphism of algebraic varieties,

T M— Al

with a relatively very ample line bundle £ on the fiber space M over Al = {s € C} such
that the C*-action on M lifts to a C*-linearization of £ with isomorphisms of polarized
algebraic manifolds,

(M37£s) = (M, Lm), S 7& 0.

Here C* acts on A' by multiplication of complex numbers as in Section 4. Let FEj,
¢ =1,2,..., be the holomorphic vector bundle over A' associated to the direct image
sheaves 7, L. Then as in (6.6), we have a C*-equivariant trivialization

E; = A x (Ey)o (8.1)

such that a Hermitian metric p; for (E;); = Vi, = H°(M, L") induces a Hermitian
metric pg on the central fiber (Ey)q which is preserved by the action of S* C C*. Now
for §(¢) in Section 5, the vector space Wy := {S%)((F;)o)}®"*! admits the Chow norm

Wi 2w [[wllcrgs,) € Rxo,

as in Section 6. Let M, € W be such that the associated element [M;] in P*(W;) is the
Chow point for the reduced effective algebraic cycle

Y1 = @zm(M)

on P*((Ey)o) for the Kodaira embedding Py, : M — P*(Vp,,,) associated to the complete
linear system |L‘™| on M. Here each (E;)s, s # 0, is identified with (FEy)o via the
trivialization (8.1), and by letting s = 1, we regard ®,,, (M) on P*(V;) as the algebraic
cycle y1 on P*((Ey)o). Since the T-action on Fy preserves (Ey)o, we have a representation

Yo : C" — GL((Ee)o) (8.2)

induced by the C*-action on E,. Note that this C*-action on (E;)p naturally induces
a C*-action on P*((Ey)y). By the complete linear systems |£%|, s € A!, we have the
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relative Kodaira embedding
M — P*(E,),

over Al, where by (8.1) the projective bundle P*(E,) over A is viewed as product bundle
Al x P*((E¢)o). Then each fiber P*(E,)s of P*(E,,) over s € Al is naturally identified
with P*((Ey)o), so that all My, s € A, are regarded as subschemes of P*((E;)g). Then

M; = Q/Jg(t) . Ml, t e C*, (83)

where on the right-hand side, the element 14(s) in GL((F¢)o) acts naturally on P*((E¢)o)
as a projective linear transformation. Note that M;j is nothing but 7; as an algebraic
cycle, and that M is preserved by the T-action on P*((Ey)g). Let d; := dim(FEy)o be as
in (4.1), and we consider the dy-fold unramified covering T := {f € C*} of the algebraic
torus T := {t € C*} by setting

t =%
for ¢ and £. Then the mapping 7% : T — SL((Eq)o) defined by

__ he(®)
) det(ve(t)’

51y = ("

ri = det (vl teT, (8.4)

)
t

is also an algebraic group homomorphism. Both 1,(t) and wa(f) induce exactly the
same projective linear transformation on P*((Ey)g). Let ¢ be the algebraic cycle on
P*((E,,)o) obtained as the image of v, by this projective linear transformation. Now
by (8.3), the algebraic cycle v; is nothing but M; viewed just as an algebraic cycle on
P*((E¢)o). Then as t — 0, we have a limit algebraic cycle

"o = lim (8.5)

on P*((Ey¢)o). Here 7 is the T-invariant algebraic cycle on P*((Ey)o) associated to the
subscheme M counted with multiplicities. Then let Me(o) denote the element in Wy
such that []\7[}0)] € P*(W,) is the Chow point for the cycle o on P*((Ey¢)o). Then (8.5)
is interpreted as

tim [ (F) - M) = [M1,")] (8.6)

t—0

in P*(W,). Here by (8.2), the group SL((E¢)o) acts naturally on W/, and hence acts also
on P*(Wy). As in Section 6, we consider the function

fe(s) :=log waL(exp(é)) . MZHCH(po)’ sE€R, (8.7)

by setting § := s/dy. Consider the first derivative fy(s) := (dfs/ds)(s). The purpose
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of this appendix is to show the following (see Phong and Sturm [25, equation 7.29] for
the leading term; see also [4, pp. 464-467)):

THEOREM E. Let a,, and Fj be as in Section 4. Then the function fi(s) has a
limit, as s — —oo, written in the following form for £ > 1 :

. liI_nOO fg(s) =+ Da, (Pl +Fl" P+ Fm 24 ..))

— | ﬂ _ n—+1
(n+D'ay, <€dz Fy |nT. (8.8)

PROOF.  Since v is preserved by the T-action on (Ey)o, the Chow point [M(®)] for
Yo is fixed by the T-action on P*(Wp), i.e.,

SL(d) - a” =, tec,

for some Ay € Z. Since the T-action on W/ is diagonalizable, we can write Mz in the
form

My = 5% _ g, (8.9)
where 0 # u, € W;, a =1,2,...,v, are such that, for an increasing sequence of integers
ry < rg < --- <1y, the equality

S e = ug (8.10)

holds for all o« € {1,2,...,v} and € T. In particular, in view of (8.6), we can find a
complex number ¢ # 0 such that

MéO) = Cuq,

and hence \; coincides with r;. Then we may assume ¢ = 1 without loss of generality.
In view of (8.9) and (8.10), we can write fy(s) as

A A
log = s log |(w + 0D)longy

exp (%) (uy + O(f))

CH(po)

so that by £ = exp(s/dy), letting s — —o0, we obtain

lim f'z(s)( “) _ e (8.11)

i %) a4

Hence it suffices to show that A\;/d, admits the asymptotic expansion as in the right-hand
side of (8.8) above. Consider the graded algebra
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D (Eiea
k=0

where via 5%, the group T acts on (E¢)o and hence on (Ej¢)o. Then by Mumford [20
Proposition 2.11], the weight 7 for the T-action on det(E}ys)o satisfies the following:

Ae
(n+1)!

Th + Entt = O(k™), E>1, (8.12)

i.e., there exists a constant C' > 0 independent of k, possibly depending on ¢, such that
the left-hand side of (8.12) has absolute value bounded by Ck™ for positive integers k.
Let wy be as in (4.1). Then by the expression of 17~ in (8.4), the weight 74, for det(Ej¢)o
induced by the T-action on (Ep)o via 95T is expressible as

TE = dgwkg - k”u}gdkg. (813)

Here the term dywye on the right-hand side of (8.13) is the weight in # for det(Ejs)o
induced from the action of the numerator 1y (t) of (8.4) on (Fy)o, since it is nothing
but the weight in £ for the action of ¥xe(t) on det(Fy)o, while in view of the natural
surjective homomorphism

S*((Ee)o) = (Eke)o, 0>1,

the term kwedy, is just the weight in ¢ induced from the scalar action on (E¢)o by the
denominator of (8.4). Then for k> 1, by (8.13) and (4.2), we obtain

Tr = dewpp — kwedpe = (kg)dédké{ Wke _ W}

(k)dke — Ldy
= (k0) dgdkg{ > F(ke)”

=N J}

3=>0 7>0
—(kO)dpdpe{(FL ™+ Fol ™2 + F3073 + - ) + O(k™ 1)}
= k" Mand{(FLl" + Fol" '+ Fsl" 2 4 )+ O(k™1)},
where the last equality follows from di¢ = (k¢)"{a,+O(1/k)} obtained from (4.1) applied

to k¢ in place of £. Then by comparing this expression of 7, with (8.12), and then by
(4.2), we obtain

A

& =+ D a,(Ff" + Fol"  Fam 24 ..0)

=(n+1)la (M—F>€"+1.
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9. Appendix 2.

In this Appendix 2, we shall show that the family of Kahler manifolds
(M, ws e), —e<s<0,4=1,2,...,

in (6.12) has bounded geometry in the sense that there exists a positive real constant R
satisfying (cf. [24, p. 702])

a) ws¢ — R~ 1w is positive definite on M;
b) [Jwse — wllcrw) < R,

where w is as in the proof of Theorem C. By (6.6), we identify P*(E;X) with Al x
P*((E)o), and let pry : P*(EX) — P*((E;*)o) denote the projection to the second
factor. Then for the relative Kodaira embedding M* «— P*(E/X) as in Section 6, the
pullback

H = pr; Op((gx),)(1)
to P*(E;X) of the the hyperplane bundle Op-((£5),)(1) on P*((E{)o) has the restriction
Hipmx = (L) (9.1)

Recall that the action of T = {t € C*} on M~ lifts to a T-linearization of £, and hence
T acts on EX = Al x (E[X)o by

Tx (A x (BX)o) = A" x (BX)o, (£ (s.€)) = (ts,e(t) - €),

where 1 is as in Section 6. This induces a T-action on P*(E;X). Let £X denote the
complex conjugate of £X. By

T x £X — X, (t,N) = gp(t) - A,

we mean the T-action on £X, and the associated T-action on the real line bundle |£X |? :=

LX @ LX on MX will be denoted by

T x [L** — |£¥?, (t,8) = g122(1) - &
This T-action on |£X |2, covering the T-action on M¥, is independent of the choice of
¢. In view of the definition of gs ¢, both ¥,(exp(s)) and g, induce the same projective
linear transformation on (EX)o. Note also that ¢ = Cs(log ¢)g, £ > 1, and —e < s < 0.
Then by setting 0 := 1 — e~ 309804 e obtain

1—6<exp(s) <1, (9.2)

where 0 < § < 1. As in Section 6, let {0} ; (i,@) € P;} be an admissible orthonormal
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basis for V; (= (E)1), and by the identification
(B )y = (B o,

the corresponding orthonormal basis for (E;X)o will be denoted by {o; ; (i,a) € P;}. In

Yia0

terms of these bases, both P*((E;X)) and P*((E;*)1) (= P*(Vs)) are identified with
PeHC)={(z1:20:: 2a,)}

Then (n!/€")S%_ | |z4|? is regarded as a section for |H|? := H ® H, while by (9.1), we can
write on MX

qWrs = (\/ 71/27‘1’)35 log st,g.
Here Qg ¢ denotes the positive real smooth section of |£X|? obtained as the restriction of
{(1/EM)2% |24 ]2 to MX. Put t := exp(s) for simplicity. In view of (9.1), identifying
M with M7, we easily see that

ws o = (V=1/2m)0810g { g2 (1) Qrs e}, (9:3)

when restricted to M3* — P%~1(C). Here g,»(t)"Qps, is regarded as a positive real
section of [g,(t)*L£X[? on M — P%~1(C). Consider the dual h* of the Hermitian
metric h, where h is such that w = ¢1(L; h) is the original extremal Kéhler metric on M.
Now by a theorem of Catlin-Lu-Tian-Zeldich ([2], [9], [30], [31]), we obtain

QFS,Z — h* in 0007 (94)

as £ — oo. In view of t = exp(s), —¢ < s < 0, and (9.2), when restricted to M5 (=
M) — P%~1(C), the difference between g|£|2(t)*QFs,g and Qs ¢ is small enough in the
sense that its C*°-norm on M is uniformly bounded from above by a constant C(6)
depending only on 6 such that C'(f) — 0 as § — 0. Thus we conclude from (9.3) that
the family of Kéhler manifolds (M, ws () in (6.12) has bounded geometry.

REMARK 9.5. By e = C3(log¥)q and —e < sy < 0, we see that 6 above satisfies
6 — 0 as ¢ — oo, and hence w(j) — w as j — oo in Section 6.

10. Appendix 3.

In the Case 1 of Step 3 of Section 6 in the proof of Theorem C, we assume that
(MX, £X) is nontrivial. Then by using [16], we shall show X € g as follows. Let 1°(5)
and 7°*(j) be the Hamiltonian functions associated to the vector fields X°(j) and X*(j),
respetively, on the Kéahler manifold (M,w(j)). Then
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{i(27rz’\,’°(j))w(j) =V=10(n°(5)),
i(2r X (j))w(j) = V=10(n*(j)),

where the functions 7°(j) and 7®(j) are normalized by the vanishing of the integrals

S (w(G)™ and [y, n*(j)w(j)", respectively. Then n(j) = n°(j) +n°(j), where by
(6.21) and the assumption of Case 1,

I? —0as j — oc; (10.1)
{I;}jzl’z”. is a bounded sequence. (10.2)
In view of (10.2), replacing w(j), j = 1,2,..., by its suitable subsequence if necessary,

we may assume that
Xo<j>_)X§o in g, as j — 0o,

for some X2, € g. Hence there exists a C* function p on M such that i(X2)w = /—10p
and that

n°(j) — p in C(M), as j — oo.
This together with (6.23) implies
n*(j) = nS in LH(M,w"),  asj — oo,

where 12 := oo — p. Let 0 be an arbitrary smooth (0, 1)-form 6 on M. Then from (10.1)
and I3 = [, [0n°(j) 2yw(i)", it follows that

|(0°(3),003)"0) L2 (M,

< |0n° ()12 () (5)" v 1012 ()" UQHO’
U, f{[peoeor)

as j — oo. Then by letting j — oo, we obtain
(7730, 5(00)*9) L2(M,w™) =0,

for every smooth (0, 1)-form 6 on M, i.e., 51730 = 0 in a weak sense, and hence in a strong
sense. Thus 13, is constant on M, so that

0="n% =T — p-

By setting X(j) := (g(j)_l)*/'\,’l(]\?je and Xppu(4) == (g(j)_l)*X:ﬁZ]i[)L , we now have the
J ot
expression
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XG apy = X0) = Xpare (7) + B()X° () + B(7).X° ().

Let j — oo. Then by [16], we conclude from (6.17) and (10.1) that

X=Weg

in the Lie algebra sl(V}), as required.

REMARK 10.3. The essential point of [16] is Appendix in Section 5, in which by

using the normality of M implicitly, we observed that the nontriviality of \IlfLX/ induces
a nontrivial birational C*-action of an n-dimendsional irreducible component of F of
My (see [16, pp. 22—-23]). However, since M is not necessarily normal, it can occur that
the induced birational C*-action on each n-dimendsional irreducible component of F
of My is trivial, in which case the test configuration is trivial up to codimension > 2

subvarieties of M. Now by [26], our argument in [16] is still valid even if the revised
version (cf. Definition 4.3) of K-stability due to [8] is used.
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