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Surface links with free abelian groups
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Abstract. It is known that if a classical link group is a free abelian
group, then its rank is at most two. It is also known that a k-component
2-link group (k > 1) is not free abelian. In this paper, we give examples of
T 2-links each of whose link groups is a free abelian group of rank three or four.
Concerning the T 2-links of rank three, we determine the triple point numbers
and we see that their link types are infinitely many.

Introduction.

A classical link is the image of a smooth embedding of a disjoint union of circles into
the Euclidean 3-space R3. The link group is the fundamental group of the link exterior.
It is known [13, Theorem 6.3.1] that if a classical link group is a free abelian group,
then its rank is at most two. A surface link is the image of a smooth embedding of a
closed surface into the Euclidean 4-space R4. A 2-link (resp. T 2-link) is a surface link
whose components are homeomorphic to 2-spheres (resp. tori). It is known [7, Chapter
3, Corollary 2] that a k-component 2-link group for k > 1 is not a free abelian group.
The aim of this paper is to give concrete examples of T 2-links whose link groups are free
abelian.

It is known (see Remark 2.1) that a T 2-link called a “Hopf 2-link” [5] has a free
abelian group of rank two. We give T 2-links with a free abelian group of rank three
(Theorem 2.2). We also give a T 2-link with a free abelian group of rank four (Theorem
2.3). These T 2-links are “torus-covering T 2-links”, which are T 2-links in the form of
unbranched coverings over the standard torus.

Further we study the T 2-links given in Theorem 2.2 i.e. T 2-links each of whose
link groups is a free abelian group of rank three. We determine the triple point number
of each T 2-link (Theorem 3.1), by which we can see that their link types are infinitely
many. The triple point number of each T 2-link is a multiple of four, and it is realized by
a surface diagram in the form of a covering over the torus. For other examples of surface
links (not necessarily orientable) which realize large triple point numbers, see [6], [9],
[12], [16], [17], [19].

The paper is organized as follows. In Section 1, we review the definition of a torus-
covering T 2-link, and we review a formula how to calculate its link group. In Section 2,
we show Theorems 2.2 and 2.3. In Section 3, we show Theorem 3.1.
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1. A torus-covering T 2-link and its link group.

In this section, we give the definition of a torus-covering T 2-link Sm(a, b), which
is determined from a pair of commuting m-braids a and b called basis braids. For the
definition of a torus-covering link whose component might be of genus more than one,
see [15]. We can compute the link group of Sm(a, b) by using Artin’s automorphism
associated with a or b [15].

1.1.
Let T be the standard torus in R4, i.e. the boundary of an unknotted solid torus in

R3 × {0} ⊂ R4. Let N(T ) be a tubular neighborhood of T in R4.

Definition 1.1. A torus-covering T 2-link is a surface link F in R4 such that F is
embedded in N(T ) and p|F : F → T is an unbranched covering map, where p : N(T ) → T

is the natural projection.

Let us consider a torus-covering T 2-link F . Let us fix a point x0 of T , and take a
meridian m and a longitude l of T with the base point x0. A meridian is an oriented
simple closed curve on T which bounds a 2-disk in the solid torus whose boundary is T

and which is not null-homologous in T . A longitude is an oriented simple closed curve
on T which is null-homologous in the complement of the solid torus in the three space
R3 × {0} and which is not null-homologous in T . The intersections F ∩ p−1(m) and
F ∩ p−1(l) are closures of classical braids. Cutting open the solid tori at the 2-disk
p−1(x0), we obtain a pair of classical braids. We call them basis braids [15]. The basis
braids of a torus-covering T 2-link are commutative, and for any commutative braids a

and b, there exists a unique torus-covering T 2-link with basis braids a and b [15, Lemma
2.8]. For commutative m-braids a and b, we denote by Sm(a, b) the torus-covering T 2-link
with basis m-braids a and b.

1.2.
We can compute the link group of a torus-covering T 2-link Sm(a, b) [15]. As prelimi-

naries, we will give the definition of Artin’s automorphism (see [11]). Let c be an m-braid
in a cylinder D2×[0, 1], and let Qm be the starting point set of c. Let {hu}u∈[0,1] be an iso-
topy of D2 rel ∂D2 such that ∪u∈[0,1]hu(Qm)×{u} = c. Let Ac : (D2, Qm) → (D2, Qm)
be the terminal map h1, and consider the induced mapAc

∗ : π1(D2−Qm) → π1(D2−Qm).
It is known [1] that Ac

∗ is uniquely determined from c. We call Ac
∗ Artin’s automorphism

associated with c. Note that π1(D2 −Qm) is naturally isomorphic to the free group Fm

generated by the standard generators x1, x2, . . . , xm of π1(D2 −Qm). By Ac
∗, the braid

group Bm acts on π1(D2 −Qm). It is presented by

Aσi∗ (xj) =





xjxj+1x
−1
j if j = i

xj−1 if j = i + 1

xj otherwise



Surface links with free abelian groups 249

and Aσ−1
i∗ (xj) =





xj+1 if j = i

x−1
j xj−1xj if j = i + 1

xj otherwise

where i = 1, 2, . . . , m− 1 and j = 1, 2, . . . , m.
It is known [15, Proposition 3.1] that the link group of Sm(a, b) is presented by

π1(R4 − Sm(a, b)) = 〈x1, . . . , xm | xj = Aa
∗(xj) = Ab

∗(xj), for j = 1, 2, . . . , m〉.

2. T 2-links whose link groups are free abelian.

In this section we show Theorems 2.2 and 2.3: There are torus-covering T 2-links
with a free abelian group of rank three (Theorem 2.2) or four (Theorem 2.3).

Remark 2.1. A Hopf 2-link [5] is a T 2-link which is the product of a classical
Hopf link in B3 with S1, embedded into R4 via an embedding of B3×S1 into R4, where
B3 is a 3-ball and S1 is a circle. There are two link types according to the embedding of
B3 × S1, called a standard Hopf 2-link and a twisted Hopf 2-link [5]. A standard (resp.
twisted) Hopf 2-link is the spun T 2-link (resp. the turned spun T 2-link) of a classical
Hopf link [14], [2], [3]. It is known [14], [2], [3] that the link group of the spun T 2-link
or the turned spun T 2-link of a classical link L is isomorphic to the classical link group
of L. Thus we can see that a Hopf 2-link has a free abelian link group of rank two.

Let σ1, σ2, . . . , σm−1 be the standard generators of Bm.

Theorem 2.2. The link group of S3(σ2
1σ2n

2 ,∆) is a free abelian group of rank three,
where n is an integer and ∆ is a full twist of a bundle of three parallel strings.

Proof. Put Sn = S3(σ2
1σ2n

2 ,∆). Let us compute the link group Gn = π1(R4−Sn)
by applying [15, Proposition 3.1]. Let x1, x2 and x3 be the generators. Then the relations
concerning the basis braid σ2

1σ2n
2 are

x1x2 = x2x1, (2.1)

(x2x3)|n| = (x3x2)|n|. (2.2)

The other relations concerning the other basis braid ∆ are

x1 = (x1x2x3)x1(x1x2x3)−1,

x2 = (x1x2x3)x2(x1x2x3)−1,

x3 = (x1x2x3)x3(x1x2x3)−1,

which are
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x1x2x3 = x2x3x1, (2.3)

x2(x1x2x3) = (x1x2x3)x2, (2.4)

x3x1x2 = x1x2x3. (2.5)

By (2.1), (2.3) is deformed to x2x1x3 = x2x3x1; hence

x1x3 = x3x1. (2.6)

Similarly, by (2.4) and (2.1),

x2x3 = x3x2. (2.7)

We can see that all the relations are generated by the three relations (2.1), (2.6) and
(2.7). Thus we have

Gn = 〈x1, x2, x3 | x1x2 = x2x1, x2x3 = x3x2, x3x1 = x1x3〉,

which is a free abelian group of rank three. ¤

Theorem 2.3. The link group of S4(σ2
1σ2

2σ2
3 ,∆) is a free abelian group of rank

four, where ∆ is a full twist of a bundle of 4 parallel strings.

Proof. Similarly to the proof of Theorem 2.2, by [15, Proposition 3.1], for gen-
erators x1, x2, x3 and x4, we have the following relations:

xixi+1 = xi+1xi, (2.8)

where i = 1, 2, 3, and

xi = (x1x2x3x4)xi(x1x2x3x4)−1, (2.9)

where i = 1, 2, 3, 4. Using x1x2 = x2x1 and x3x4 = x4x3 of (2.8), the latter four relations
(2.9) are deformed as follows:

x1x3x4 = x3x4x1, (2.10)

x2x3x4 = x3x4x2, (2.11)

x3x1x2 = x1x2x3, (2.12)

x4x1x2 = x1x2x4. (2.13)

By x2x3 = x3x2 of (2.8), (2.11) is deformed to x3x2x4 = x3x4x2; hence

x2x4 = x4x2. (2.14)
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Similarly, by x2x3 = x3x2 of (2.8) and (2.12),

x3x1 = x1x3, (2.15)

and by (2.14) and (2.13),

x4x1 = x1x4. (2.16)

We can see that all the relations are generated by the relations (2.8), (2.14), (2.15) and
(2.16). Thus the link group is a free abelian group of rank four. ¤

3. The triple point numbers of the T 2-links with a free abelian group of
rank three.

The triple point number of a surface link F is the minimal number of triple points
among all the surface diagrams of F . In this section we study the T 2-links given in
Theorem 2.2 i.e. T 2-links each of whose link group is a free abelian group of rank three.

Theorem 3.1. The triple point number of Sn = S3(σ2
1σ2n

2 ,∆) given in Theorem
2.2 is 4n for n > 0 and 4(1 − n) for n ≤ 0. Further it is realized by a surface diagram
in the form of a covering over T , in other words, by a 3-chart on T which presents Sn.
Thus T 2-links with a free abelian group of rank three are infinitely many.

Here, a 3-chart [11] is a finite graph with certain additional data, which we review in
Section 3.1.

This section is organized as follows. In Section 3.1, we review a surface diagram and
an m-chart on T which presents a torus-covering T 2-link (see [15], [11]). In Section 3.2,
we review the result of [16] which gives lower bounds of triple point numbers. In Section
3.3, we prove Theorem 3.1.

3.1. Surface diagrams and m-charts presenting torus-covering T 2-links.
The notion of an m-chart on a 2-disk was introduced by Kamada [8] (see also [11]) to

present a surface braid i.e. a 2-dimensional braid in a bi-disk (see [18], [11]). An m-chart
on a disk is obtained from the singularity set of a surface diagram of a surface braid. By
a minor modification, we can define an m-chart on T presenting a torus-covering link
[15].

For a torus-covering T 2-link F , we consider a surface diagram in the form of a
covering over the torus, as in Section 3.1.1.. Given F , we obtain such a surface diagram
D, and from D we obtain a graph called an m-chart on T (without black vertices).
Conversely, an m-chart on T without black vertices presents such a surface diagram and
hence a torus-covering T 2-link.

3.1.1. Surface diagrams.
We review a surface diagram of a surface link F (see [4]). For a projection π :

R4 → R3, the closure of the self-intersection set of π(F ) is called the singularity set. Let
π be a generic projection, i.e. the singularity set of the image π(F ) consists of double
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Figure 3.1. The singularity of a surface diagram.

points, isolated triple points, and isolated branch points; see Figure 3.1. The closure of
the singularity set forms a union of immersed arcs and loops, which we call double point
curves. Triple points (resp. branch points) form the intersection points (resp. the end
points) of the double point curves. A surface diagram of F is the image π(F ) equipped
with over/under information along each double point curve with respect to the projection
direction.

Throughout this paper, we consider the surface diagram of a torus-covering T 2-link
F by the projection which projects N(T ) = I × I × T to I × T for an interval I, where
we identify N(T ) with I× I×T in such a way as follows. Since T is the boundary of the
standard solid torus in R3 ×{0}, the normal bundle of T in R3 ×{0} is a trivial bundle.
We identify it with I × T . Then we identify N(T ) with I × I × T , where the second I is
an interval in the fourth axis of R4. Perturbing F if necessary, we can assume that this
projection is generic. We call this surface diagram the surface diagram of F in the form
of a covering over the torus.

3.1.2. From surface diagrams to m-charts on T .
Given a torus-covering T 2-link F , we obtain a graph on T from the surface diagram

in the form of a covering over the torus, as follows. Now we have Sing(π(F )) in I × T .
By the definition of a torus-covering T 2-link, Sing(π(F )) consists of double point curves
and triple points, and no branch points. We can assume that the singular set of the
image of Sing(π(F )) by the projection to T consists of a finite number of double points
such that the preimages belong to double point curves of Sing(π(F )). Thus the image
of Sing(π(F )) by the projection to T forms a finite graph Γ on T such that the degree
of its vertex is either 4 or 6. An edge of Γ corresponds to a double point curve, and a
vertex of degree 6 corresponds to a triple point.

For such a graph Γ obtained from the surface diagram, we give orientations and
labels to the edges of Γ, as follows. Let us consider a path l in T such that l∩Γ is a point
P of an edge e of Γ. Then F ∩ p−1(l) is a classical m-braid with one crossing in p−1(l)
such that P corresponds to the crossing of the m-braid. Let σε

i (i ∈ {1, 2, . . . , m − 1},
ε ∈ {+1,−1}) be the presentation of F ∩ p−1(l). Then label the edge e by i, and
moreover give e an orientation such that the normal vector of l corresponds (resp. does
not correspond) to the orientation of e if ε = +1 (resp. −1). We call such an oriented
and labeled graph an m-chart of F (without black vertices).

In general, we define an m-chart on T as follows.
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Definition 3.2. Let m be a positive integer, and let Γ be a finite graph on T .
Then Γ is called an m-chart on T if it satisfies the following conditions:

( i ) Every edge is oriented and labeled by an element of {1, 2, . . . , m− 1}.
( ii ) Every vertex has degree 1, 4, or 6.
(iii) The adjacent edges around each vertex are oriented and labeled as shown in Figure

3.2, where we depict a vertex of degree 1 (resp. 6) by a black vertex (resp. white
vertex).

Figure 3.2. Vertices in an m-chart.

A black vertex presents a branch point; see [11]. When an m-chart on T without
black vertices is given, we can reconstruct a torus-covering T 2-link [15] (see also [11]).

Two m-charts on T are C-move equivalent [15] (see also [8], [10], [11]) if they are
related by a finite sequence of ambient isotopies of T and CI, CII, CIII-moves. We show
several examples of CI-moves in Figure 3.3; see [11] for the complete set of CI-moves
and CII, CIII-moves. For two m-charts on T , their presenting torus-covering links are
equivalent if the m-charts are C-move equivalent [15] (see also [8], [10], [11]).

Figure 3.3. CI-moves. We give only several examples.

3.2. Triple point numbers.
For a surface link F , we denote by t(F ) the triple point number of F . It is shown

[16] that for a pure m-braid b (m ≥ 3) and an integer n, a lower bound of t(Sm(b, ∆n))
is given by using the linking numbers of b̂, and for a particular b, we can determine the
triple point number. Here b̂ denotes the closure of b.

For a pure 3-braid b, it follows from [16] that we can give a lower bound of t(S3(b, ∆))
as follows. We define the ith component of b̂ by the component constructed by the
ith string of b̂ (i = 1, 2, 3). For positive integers i and j with i 6= j, the linking
number of the ith and jth components of a classical link L, denoted by Lki,j(L), is
the total number of positive crossings minus the total number of negative crossings
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of a diagram of L such that the under-arc (resp. over-arc) is from the ith (resp.
jth) component. Put µ =

∑
i<j |Lki,j(b̂)|, and put ν = ν1,2,3 + ν2,3,1 + ν3,1,2, where

νi,j,k = mini,j,k{|Lki,j(b̂)|, |Lkj,k(b̂)|} if Lki,j(b̂)Lkj,k(b̂) > 0 and otherwise zero. Then,
by [16],

t(S3(b, ∆)) ≥ 4(µ− ν).

In particular, let b be a 3-braid presented by a braid word which is an element of a
monoid generated by σ2

1 and σ−2
2 ; note that b is a pure braid. Then

t(S3(b, ∆)) = 4µ,

and the triple point number is realized by a surface diagram in the form of a covering
over the torus [16].

3.3. Proof of Theorem 3.1.
Put b = σ2

1σ2n
2 . We use the notations given in Section 3.2. Since Lki,j(b̂) = 1 (resp.

n) if {i, j} = {1, 2} (resp. {2, 3}) and otherwise zero, we can see that µ = 1 + |n|.
Let us consider the case for n ≤ 0. Since b has the presentation which is an element

of a monoid generated by σ2
1 and σ−2

2 , t(Sn) = 4µ by [16]; thus t(Sn) = 4(1−n) (n ≤ 0),
and the triple point number is realized by a surface diagram in the form of a covering
over the torus by [16].

Let us consider the case for n > 0. Since Lki,j(b̂) = 1 (resp. n) if {i, j} = {1, 2}
(resp. {2, 3}) and otherwise zero, we can see that νi,j,k = 1 if (i, j, k) = (1, 2, 3) and zero
if (i, j, k) = (2, 3, 1) or (3, 1, 2); thus ν = 1, and hence t(Sn) ≥ 4(µ− ν) = 4n by [16].

It remains to show that there is a surface diagram of Sn (n > 0) with 4n triple
points. It suffices to draw a 3-chart Γ on T which presents Sn such that Γ has exactly 4n

white vertices. We draw Γ which presents Sn, and deform it to a 3-chart with 4n white
vertices by C-moves, as follows. First we draw Γ as a 3-chart which consists of 2n + 2
parts as follows, where we assume that a full twist ∆ has the presentation ∆ = (σ1σ2σ1)2.

( i ) The part of Γ with basis braids σ1 and ∆. We have two copies.
( ii ) The part of Γ with basis braids σ2 and ∆. We have 2n copies.

We draw the part (i) as in Figure 3.4 and we denote the white vertices by ti1 and ti2
as in Figure 3.4 for the ith copy (i = 1, 2). We draw the part (ii) as in Figure 3.5
and we denote the white vertices by ti1 and ti2 as in Figure 3.5 for the (i − 2)th copy

Figure 3.4. White vertices ti1 and ti2 (i = 1, 2).
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Figure 3.5. White vertices ti1 and ti2 (i = 3, 4, . . . , 2n + 2), for n > 0.

(i = 3, 4, . . . , 2n + 2). There are 4n + 4 white vertices in Γ. Let us apply a CI-move
as in Figure 3.3 (3) to the pair {t21, t31} of white vertices in Γ, and then to the pair
{t(2n+2)2, t12}; then we can eliminate the four white vertices, and the resulting 3-chart
has 4n white vertices. Hence t(Sn) = 4n (n > 0), and the triple point number is realized
by this 3-chart on T . ¤

Remark 3.3. There is an oriented T 2-link as in Figure 3.6 with a free abelian
group of rank three and with the triple point number zero. It is a ribbon T 2-link (see [4]
for the definition of a ribbon surface link). We briefly show that the link group is free
abelian, as follows. In the surface diagram, there are six broken sheets (see [4]), consisting
of three pairs of a sheet attached with xi and a small disk Di such that each pair forms
the ith component of the T 2-link (i = 1, 2, 3). Let us attach yi to each Di. The link
group has the presentation with generators xi and yi (i = 1, 2, 3) and the relations which
are given around each double point curve (see [4], [11]). The singularity set consists
of double point curves which form six circles. Around each circle in the ith component
which does not bound Di (i = 1, 2, 3), there are three broken sheets such that one is
an over-sheet with xi and the other two are under-sheets with the same generator xi+1,
where x4 = x1; together with the orientation, the relation is xi = xi+1xix

−1
i+1, see [4],

[11]. Around each circle ∂Di (i = 1, 2, 3), there are three broken sheets such that one is
an over-sheet with xi+1 and the other two are under-sheets with xi and yi respectively,
where x4 = x1; together with the orientation, the relation is yi = xi+1xix

−1
i+1, see [4],

[11]. Thus the link group is a free abelian group of rank three.

Acknowledgments. The author would like to thank Professor Shin Satoh for his
helpful comments.

Figure 3.6. A ribbon T 2-link with a free abelian group of rank three.
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