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Abstract. In this paper we calculate the Lagrangian Floer homology
HF (L0, L1 : Z2) of a pair of real forms (L0, L1) in a monotone Hermitian
symmetric space M of compact type in the case where L0 is not necessarily
congruent to L1. In particular, we have a generalization of the Arnold-Givental
inequality in the case where M is irreducible. As its application, we prove that
the totally geodesic Lagrangian sphere in the complex hyperquadric is globally
volume minimizing under Hamiltonian deformations.

1. Introduction and main results.

Let (M, ω) be a symplectic manifold, i.e., M is a smooth manifold with a
closed nondegenerate 2-form ω. Let L be a Lagrangian submanifold in M , i.e.,
dimR L = (1/2) dimRM and ω vanishes on L. For a pair of closed Lagrangian
submanifolds (L0, L1) in M , we can define Lagrangian Floer homology HF (L0, L1 :
Z2) with coefficient Z2 under some appropriate topological conditions.

In 1988, Floer [7] defined the homology when π2(M, Li) = 0, i = 0, 1, and
proved that it is isomorphic to the singular homology group H∗(L0,Z2) of L0 in the
case where L0 is Hamiltonian isotopic to L1. As a result, he solved affirmatively
the so called Arnold conjecture for Lagrangian intersections in that case (see [3]
and [7]). A symplectic diffeomorphism φ of (M, ω) is called Hamiltonian if φ is
represented by the time-1 map of the flow {φt} of a time dependent Hamiltonian
vector field on M , i.e., (d/dt)φt(x) = XHt

(φt(x)), φ0(x) = x, where XHt
is defined

by the equation ω(XHt
, ·) = dHt for a smooth function H : [0, 1] ×M → R. We

denote by Ham(M, ω) the set of all Hamiltonian diffeomorphisms of M .
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After that, Givental [11] and Chang-Jiang [5] proved the conjecture for L =
RPn ⊂ M = CPn independently. (See also [18]). In the same paper, Givental
posed the following conjecture which generalizes the above results by Floer and
himself.

Conjecture 1 (Arnold-Givental). Let (M, ω) be a symplectic manifold and
τ : M → M be an anti-symplectic involution of M . Assume that the fixed point set
L = Fix(τ) is not empty and compact. Then for any φ ∈ Ham(M, ω) such that the
Lagrangian submanifold L and its image φL intersect transversally, the inequality

#(L ∩ φL) ≥ SB(L,Z2)

holds, where SB(L,Z2) denotes the sum of Z2-Betti numbers of L.

Note that the assumption of Conjecture 1 admits many explicit examples.
For instance, any real form L of Hermitian symmetric spaces of compact type is
included.

The first substantial progress towards Conjecture 1 was made by Y.-G. Oh
[19]. He solved the Arnold-Givental conjecture affirmatively for monotone real
forms of Hermitian symmetric spaces of compact type (see Corollary 6 below). To
prove it, he improved Floer’s construction so as to apply the Lagrangian Floer
homology theory to the case of monotone Lagrangian submanifolds (see [17] and
Section 2 in this paper). After that, Frauenfelder [10] proved the Arnold-Givental
conjecture for some class of Lagrangian submanifolds in Marsden-Weinstein quo-
tients, which are fixed point sets of some anti-symplectic involution. Recently,
Fukaya, Oh, Ohta and Ono [8] proved Conjecture 1 in a considerably more gen-
eral setting, but the general case is still an open problem.

For a pair of Lagrangian submanifolds (L0, L1), where L0 is not Hamiltonian
isotopic to L1 in a symplectic manifold (M, ω), there are relatively few examples
where it is known how to calculate HF (L0, L1 : Z2). Recently, explicit calculations
of the Floer homology of Lagrangian submanifolds in toric Fano manifolds have
been intensively studied (see [1], [2] and [9]).

In this paper, we shall focus on real forms L0, L1 of a Hermitian symmetric
space of compact type and calculate the Lagrangian Floer homology HF (L0, L1 :
Z2) in a unified method. Let (M, J0, ω) be a Hermitian symmetric space of compact
type. A submanifold L of M is called a real form if there exists an anti-holomorphic
involutive isometry σ of M satisfying

L = {x ∈ M | σ(x) = x}.

Note that a real form of a Hermitian symmetric space is a totally geodesic La-
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grangian submanifold. We denote by I0(M) the identity component of the holo-
morphic isometry group of M . For two subsets A,B of M , we say that A is
congruent to B if there exists g ∈ I0(M) such that B = gA. Let L = Fix(σ) be
a real form and g a holomorphic isometry of M . Then gL = Fix(gσg−1) is also a
real form of M .

The following is the main result.

Theorem 2. Let (M, J0, ω) be a Hermitian symmetric space of compact type
which is monotone as a symplectic manifold. Let L0, L1 be real forms of M such
that L0 intersects L1 transversally. Assume that the minimal Maslov numbers of
L0 and L1 are greater than or equal to 3. Then we have

HF (L0, L1 : Z2) ∼=
⊕

p∈L0∩L1

Z2[p].

That is, the intersection L0 ∩ L1 itself becomes a basis of the Floer homology
HF (L0, L1 : Z2).

If M is irreducible, then the assumptions for M , L0 and L1 are satisfied auto-
matically except for only one case (see Section 3). Moreover, using the structure
of the transverse intersection L0 ∩ L1 which was examined by Tanaka and Tasaki
[23, Section 5], Theorem 2 yields

Theorem 3. Let M be an irreducible Hermitian symmetric space of com-
pact type and L0, L1 be real forms of M which intersect transversally. Then the
following results hold.

(1) If M = GC2m(C4m) (m ≥ 2), L0 is congruent to GHm(H2m) and L1 is congruent
to U(2m), then we have

HF (L0, L1 : Z2) ∼= (Z2)2
m

,

where 2m <
(
2m
m

)
= #2L0 < 22m = #2L1. Here #2L denotes the 2-number

of L.
(2) Otherwise, we have

HF (L0, L1 : Z2) ∼= (Z2)min{#2L0,#2L1}.

In the case where M is non-irreducible, although we must determine the rank
of HF (L0, L1 : Z2) case by case (see Section 5), at least we can state in general
the following fact by combining Theorem 2 with Lemma 3.1 in [24].
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Corollary 4. Let M be a monotone Hermitian symmetric space of compact
type and L0, L1 be real forms of M whose minimal Maslov numbers are greater than
or equal to 3. Then for any φ ∈ Ham(M, ω) we have

L0 ∩ φL1 6= ∅.

Theorems 2 and 3 can be regarded as a solution for a problem proposed by
Y.-G. Oh in [17, Section 6]. Here we review the definition of 2-number introduced
by Chen and Nagano [6]. A subset S in a Riemannian symmetric space M is called
an antipodal set, if the geodesic symmetry sx fixes every point of S for any point
x of S. The 2-number #2M of M is defined as the supremum of the cardinalities
of antipodal sets in M , which is known to be finite. An antipodal set in M is
said to be great if its cardinality attains #2M . Takeuchi [22] proved that if L is
a symmetric R-space, then

#2L = SB(L,Z2)

holds. Note that any real form of Hermitian symmetric spaces of compact type is
a symmetric R-space, which is shown in [21]. These facts and the invariance of
HF (L0, L1 : Z2) under Hamiltonian isotopies of M imply

Corollary 5. Let M be an irreducible Hermitian symmetric space of com-
pact type and (L0, L1) be a pair of real forms of M . Then for any φ ∈ Ham(M, ω)
such that L0 and φL1 intersect transversally, the following inequalities hold.

(1) If M = GC2m(C4m) (m ≥ 2), L0 is congruent to GHm(H2m) and L1 is congruent
to U(2m), then we have

#(L0 ∩ φL1) ≥ 2m.

(2) Otherwise, we obtain

#(L0 ∩ φL1) ≥ min{SB(L0,Z2), SB(L1,Z2)}. (1.1)

As the case (1) above shows, in general, we cannot estimate #(L0 ∩ φL1) by
the sum of Z2-Betti numbers of L0 or L1. The estimate in the case (1) is sharp.
Note that we can construct many examples which do not satisfy inequality (1.1)
for the reducible case (see Section 5). We call inequality (1.1) the generalized
Arnold-Givental inequality. Indeed, (1.1) yields

Corollary 6 (Oh [19] and [17, Theorem 1.3]). Let (M, J0, ω) be an irre-
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ducible Hermitian symmetric space of compact type and σ be an anti-holomorphic
involutive isometry of M . Then Conjecture 1 is true for the real form L = Fix(σ)
of M .

Remark 7. Real forms of Hermitian symmetric spaces of compact type M

are classified by Leung [14] and Takeuchi [21]. If M is irreducible, then real forms
L0 and L1 of M , which are not congruent each other, are given in the list below.
Hence we can apply Theorem 3 and Corollary 5 to the following.

M L0 L1 #(L0 ∩ L1)
GC2q(C2m+2q) GHq (Hm+q) GR2q(R2m+2q)

(
m+q

q

)

GCn(C2n) U(n) GRn(R2n) 2n

GC2m(C4m) GHm(H2m) U(2m) 2m

SO(4m)/U(2m) U(2m)/Sp(m) SO(2m) 2m

Sp(2m)/U(2m) Sp(m) U(2m)/O(2m) 2m

Qn(C) Sk,n−k Sl,n−l 2k + 2 (if k ≤ l)
E6/T · Spin(10) F4/Spin(9) GH2 (H4)/Z2 3

E7/T · E6 T · (E6/F4) (SU(8)/Sp(4))/Z2 8

Here, GKr (Kn+r) denotes the Grassmann manifold of r-planes in Kn+r over the
field K = R, C or H. We denote the n-dimensional complex hyperquadric and a
real form of it by Qn(C) and Sk,n−k = (Sk × Sn−k)/Z2, respectively (see [24]).

This paper is organized as follows. The calculation of HF (L0, L1 : Z2) is based
on the Floer homology theory for monotone Lagrangian submanifolds as developed
in [17]. Section 2 contains an overview of the Lagrangian Floer theory. In Section
3, we give a criterion for a Hermitian symmetric space of compact type M to be
monotone (see Proposition 10). Using it, we can also calculate some examples in
the case where M is non-irreducible. They are exhibited in Section 5. In Section 4,
we shall prove Theorem 2. There, we see that a geodesic symmetry of a Hermitian
symmetric space M induces a free Z2-action on the space of J0-holomorphic strips.
In the last section, as an application of inequality (1.1), we prove that a real form
S0,n of Qn(C) is globally volume minimizing under Hamiltonian deformations.

2. Lagrangian Floer homology.

In this section, we briefly review the Lagrangian Floer theory as developed
in [17] (see also [1]). Let (M, ω) be a closed symplectic manifold, L0 and L1 two
closed Lagrangian submanifolds which intersect transversally. We choose a time-
dependent family J = {Jt}0≤t≤1 of almost complex structures on M compatible
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with the symplectic form ω. The Floer chain complex CF (L0, L1) is the vector
space over Z2 generated by the finitely many elements of L0∩L1. A J-holomorphic
strip is a map u : R× [0, 1] → M which satisfies the equation

∂̄Ju :=
∂u

∂s
+ Jt(u)

∂u

∂t
= 0 (2.2)

with the following boundary conditions:

u(·, 0) ∈ L0, u(·, 1) ∈ L1, (2.3)

u(−∞, ·), u(+∞, ·) ∈ L0 ∩ L1, (2.4)

where R × [0, 1] is regarded as a subset of C with coordinates s +
√−1t. A

solution of the equation (2.2) with Lagrangian boundary condition (2.3) satisfies
the asymptotic condition (2.4) if and only if the energy of u

E(u) =
1
2

∫

R×[0,1]

(∣∣∣∣
∂u

∂s

∣∣∣∣
2

+
∣∣∣∣
∂u

∂t

∣∣∣∣
2)

is finite. The space of all J-holomorphic strips that connect p ∈ L0 ∩ L1 to
q ∈ L0 ∩ L1 is denoted by M̃J(L0, L1 : p, q). We set

M̃J(L0, L1) :=
⋃

p,q∈L0∩L1

M̃J(L0, L1 : p, q).

A family of almost complex structures J is said to be regular if the lineariza-
tion Du∂̄J of ∂̄J is surjective for all u ∈ M̃J(L0, L1). For a regular J , each
M̃J(L0, L1 : p, q) is a finite-dimensional smooth manifold, with connected com-
ponents of different dimensions. We denote by J reg the set of all regular almost
complex structures on M . The set J reg is a set of the second category in the set
of families of almost complex structures on M . From now on we assume J ∈ J reg.
If u ∈ M̃J(L0, L1 : p, q), then

dim(TuM̃J(L0, L1 : p, q)) = Index(Du∂̄J).

The right hand side is the index of Du∂̄J . It is the spectral flow of ∂̄J along u and
is equal to the Maslov index µ(u) of u.

The moduli space M̃J(L0, L1) has a natural action of R by translation in the
first variable. Hence, we define
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MJ(L0, L1 : p, q) := M̃J(L0, L1 : p, q)/R,

MJ(L0, L1) := M̃J(L0, L1)/R.

An isolated trajectory is a trajectory u in M̃J(L0, L1) such that the equivalence
class [u] is a 0-dimensional component of MJ(L0, L1). The boundary operator
∂ : CF (L0, L1) → CF (L0, L1) is defined by

∂(p) =
∑

q∈L0∩L1

n(p, q) · q,

where n(p, q) is the mod-2 number of isolated trajectories in M̃J(L0, L1 : p, q).
To define the Floer homology group with coefficients in Z2

HF (L0, L1 : Z2) :=
Ker(∂)
Im(∂)

,

we must assume some topological conditions on M, L0 and L1. For a closed La-
grangian submanifold L in a symplectic manifold (M, ω), two homomorphisms

Iµ,L : π2(M, L) → Z, Iω : π2(M, L) → R

are defined as follows. For a smooth map w : (D2, ∂D2) → (M, L), Iµ,L(w) is
defined to be the Maslov number of the bundle pair (w∗TM, (w|∂D2)∗TL) and Iω

is defined by Iω(w) =
∫

D2 w∗ω. Then L is said to be monotone if there exists a
constant α > 0 such that Iω = αIµ,L. The minimal Maslov number ΣL of L is
defined to be the positive generator of Im(Iµ,L) ⊂ Z. Oh proved the following

Theorem 8 ([17, Theorems 4.4, 5.1]). Let (L0, L1) be a pair of monotone
Lagrangian submanifolds which intersect transversally. Suppose that ΣLi

≥ 3 for
i = 0, 1 and Im(π1(Li)) ⊂ π1(M) is a torsion subgroup for at least one of i = 0, 1.
Then there exists a dense subset J ′ ⊂ J reg such that if J ∈ J ′, then we have

(1) ∂ is well-defined,
(2) ∂ ◦ ∂ = 0,
(3) HF (L0, L1 : Z2) is independent of J and Hamiltonian isotopies.

Let M be a Hermitian symmetric space of compact type. Since M is sim-
ply connected, the condition that Im(π1(Li)) ⊂ π1(M) is automatically satisfied.
Therefore, to apply Theorem 8 to real forms L0, L1 of M , it suffices to assume
that L0 and L1 are monotone and ΣLi ≥ 3 for i = 0, 1. Moreover, we can specify
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the case where a real form L does not satisfy the condition that ΣL ≥ 3 from
arguments in Section 3. If M is irreducible, the only exceptional case is L = RP 1

in M = CP 1, where ΣL = 2. Hence, a real form L of a Hermitian symmetric space
M of compact type does not satisfy the condition that ΣL ≥ 3 if and only if M

has CP 1 as an irreducible factor and RP 1 ⊂ CP 1 is an irreducible factor of the
real form L.

Remark 9. If the assumption that ΣLi ≥ 3 is not satisfied, then we have
to analyze the structure of disc bubbles to prove that ∂ ◦ ∂ = 0. It requires the
classification of holomorphic discs with Maslov index 2 (see [1]).

3. Monotonicity and minimal Maslov number of a real form.

In this section, let (M, J, ω) be a compact Kähler manifold with complex
structure J and Kähler form ω. The first Chern class of (M, J, ω) is denoted by
c1(M) := c1(TM, J). Then two homomorphisms

Ic : π2(M) → Z, Iω : π2(M) → R

are defined as follows. For a smooth map u : S2 → M which represents an element
A ∈ π2(M), Ic(A) is defined to be the Chern number c1(A) := 〈c1(M), [u]〉 and Iω

is defined by Iω(A) =
∫

S2 u∗ω as in the case of Lagrangian submanifolds. Then
(M, J, ω) is said to be monotone if there exists a positive constant α > 0 such
that Iω = αIc. The minimal Chern number Γc1 of M is defined to be the positive
generator of the subgroup Ic(π2(M)) of Z.

The Ricci form ρ of (M, J, ω) is a closed (1, 1)-form on M and ρ/2π represents
the first Chern class c1(M) ∈ H2(M,Z). (M, J, ω) is called Kähler-Einstein if
there exists a constant c such that ρ = cω. It is straightforward to check that a
Kähler-Einstein manifold (M, J, ω) with a positive Ricci constant c is monotone. In
particular, an irreducible Hermitian symmetric space of compact type is monotone.

Now we shall give a useful criterion for a Hermitian symmetric space of
compact type to be monotone. A Hermitian symmetric space of compact type
(M, J0, ω) can be decomposed as

(M, J0, ω) ∼= (M1, J1, ω1)× (M2, J2, ω2)× · · · × (Mk, Jk, ωk),

where each (Mi, Ji, ωi) is an irreducible one. Then the Kähler form ω and the Ricci
form ρ of M are represented as ω = ω1⊕ω2⊕ · · · ⊕ωk and ρ = ρ1⊕ ρ2⊕ · · · ⊕ ρk,
respectively.

Proposition 10. Let (M, J0, ω) be a Hermitian symmetric space of compact
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type. Then (M, ω) is monotone as a symplectic manifold if and only if (M, J0, ω)
is a Kähler-Einstein manifold with a positive Ricci constant.

Proof. Since each irreducible component Mi of M is Kähler-Einstein, there
exist constants ci > 0 such that ρi = ciωi for i = 1, 2, . . . , k. Then we have

[ω] = [ω1] + [ω2] + · · ·+ [ωk] =
2π

c1
c1(M1) +

2π

c2
c1(M2) + · · ·+ 2π

ck
c1(Mk).

If M is Kähler-Einstein, i.e., c1 = · · · = ck =: c, then [ω] = (2π/c)c1(M) holds. It
shows that M is monotone.

Conversely, if M is monotone, then there exists a constant α > 0 such that

2π

c1
c1(M1) +

2π

c2
c1(M2) + · · ·+ 2π

ck
c1(Mk) = α(c1(M1) + c1(M2) + · · ·+ c1(Mk)).

It yields that 2π/ci = α for i = 1, 2, . . . , k, and hence M is a Kähler-Einstein
manifold with positive Ricci constant 2π/α. ¤

The following formula is necessary for us to ensure the monotonicity for a real
form L and to estimate its minimal Maslov number ΣL (see [17, Lemma 2.1]).

Lemma 11 (Viterbo). Let (M, J, ω) be a compact Kähler manifold and L a
closed Lagrangian submanifold. Let w, w′ : (D2, ∂D2) → (M, L) be smooth maps
of pairs satisfying w|∂D2 = w′|∂D2 . If we define a map u from S2 = D2 ∪D2 to
M as

u(z) =

{
w(z), z ∈ D2,

w′(z), z ∈ D2,

then we have

Iµ,L(w)− Iµ,L(w′) = 2c1([u]).

Corollary 12. Let (M, J, ω) be a monotone compact Kähler manifold.
Then the fixed point set L = Fix(σ) of an involutive anti-holomorphic isometry σ

is monotone.

Proof. For any A ∈ π2(M, L), we take a smooth map w : (D2, ∂D2) →
(M, L) as a representative of A. Then we can define another smooth map w′ =
σ ◦ w : (D2, ∂D2) → (M, L). By Lemma 11, we have
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Iµ,L(w) = c1([u]). (3.5)

Since M is monotone, there exists a constant α > 0 such that
∫

S2 u∗ω = αc1([u]),
and hence

∫
S2 u∗ω = αIµ,L(w). The left hand side of this equation is equal to

2Iω(A). Therefore, Iω(A) = (α/2)Iµ,L(w). That is, L is a monotone Lagrangian
submanifold with the monotone constant α/2. ¤

The definitions of minimal Maslov and Chern numbers and equality (3.5)
immediately imply

Corollary 13. For a compact Kähler manifold (M, J, ω), the minimal
Chern number Γc1 of M and the minimal Maslov number ΣL of a real form L

of M satisfy

ΣL ≥ Γc1 .

Therefore, to apply Theorem 8 to a pair of real forms (L0, L1) of a Hermitian
symmetric space M of compact type, it suffices to assume that M is monotone (it
is equivalent that M is Kähler-Einstein) and each Li (it is automatically monotone
Lagrangian submanifold) satisfies ΣLi

≥ 3.
The minimal Chern numbers of irreducible Hermitian symmetric spaces M of

compact type are calculated as follows (see [4, p. 521]).

M Γc1

U(m + n)/(U(m)× U(n)) m + n

SO(2n)/U(n) 2n− 2
Sp(n)/U(n) n + 1

SO(n + 2)/(SO(2)× SO(n)) n

E6/T · Spin(10) 12
E7/T · E6 18

Therefore, any real form L of M satisfies that ΣL ≥ 3 except for L = RP 1

in M = CP 1 = U(2)/(U(1) × U(1)). This case is treated in [18, Section 5]
independently.

4. Calculation of the Floer homology.

In this section, we consider a monotone Hermitian symmetric space (M, J0, ω)
of compact type with the standard complex structure J0 and the standard Kähler
form ω. Let L0 and L1 be real forms of M which intersect transversally and satisfy
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that ΣLi
≥ 3 for i = 0, 1. We take J0 = Jt for all t ∈ [0, 1]. The following result

ensures that J0 can be used to calculate the Floer homology HF (L0, L1 : Z2) [20,
Main Theorem].

Theorem 14 (Regularity [20]). Let (M, J0, ω) be a Kähler manifold with
non-negative holomorphic bisectional curvature. Let L0 and L1 be closed totally
geodesic Lagrangian submanifolds in M which intersect transversally. Then the
complex structure J0 is regular, i.e., the linearization Du∂̄J0 of ∂̄J0 is surjective
for all u ∈ M̃J0(L0, L1).

We apply the above theorem to the case where (M, J0, ω) is a Hermitian
symmetric space of compact type. By the same argument as [19, Proposition 4.5]
for the case where (L0, L1) = (L, φ(L)), Theorem 14 yields

Proposition 15 (Compactness). Let (M, J0, ω) be a monotone Hermitian
symmetric space of compact type. Let L0 and L1 be real forms of M which
intersect transversally. In addition, assume that ΣLi

≥ 3 for i = 0, 1. Then
the 0-dimensional part of MJ0(L0, L1) is compact and the 1-dimensional part of
MJ0(L0, L1) is compact up to the splitting of two isolated trajectories. Therefore,
∂2

J0
= 0.

The following Theorem by Tanaka and Tasaki is essential for calculation.

Theorem 16 (Theorem 1.1 in [23]). Let M be a Hermitian symmetric space
of compact type and L0 and L1 real forms which intersect transversally. Then the
intersection L0 ∩ L1 is an antipodal set of L0 and L1.

The geodesic symmetry sp at any point p of a Hermitian symmetric space is a
holomorphic isometry. In Theorem 16 the intersection L0∩L1 is also an antipodal
set in M , because L0 and L1 are totally geodesic, which yields the following:

Lemma 17. Under the assumption of Theorem 16, for any p ∈ L0∩L1, where
L0 ∩ L1 is not empty by Lemma 3.1 in [24], the geodesic symmetry sp satisfies

sp(L0) = L0, sp(L1) = L1, sp(q) = q (q ∈ L0 ∩ L1).

Proof. Since a real form of M is totally geodesic, we have Li = Expp(TpLi)
for i = 0, 1. Remark that s2

p = idM . Since the differential map of sp satisfies
(dsp)p = −1, we obtain

sp(Li) = Expp((dsp)pTpLi) = Expp(TpLi) = Li.
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By Theorem 16, the intersection L0 ∩L1 is an antipodal set of L0 and L1. Hence,
by definition, sxy = y holds for any x, y ∈ L0∩L1. In particular, we have sp(q) = q

for q ∈ L0 ∩ L1. ¤

Now we shall calculate HF (L0, L1 : Z2). By assumption, the intersection
L0 ∩ L1 consists of finite points. We choose any two points p, q ∈ L0 ∩ L1. By
Lemma 17, we see that p, q are fixed points of the action of sp. Let u be a J0-
holomorphic strip in M̃J0(L0, L1 : p, q). It satisfies the boundary conditions

u(s, 0) ∈ L0, u(s, 1) ∈ L1, u(−∞, t) = p, u(+∞, t) = q.

Using the holomorphic isometry sp, let us define another holomorphic map
ū(s, t) := sp(u(s, t)) from R × [0, 1] to M . By Lemma 17, real forms L0 and
L1 are invariant under the action of sp. Hence, the holomorphic map ū satisfies
that

ū(s, 0) = sp(u(s, 0)) ∈ L0, ū(s, 1) = sp(u(s, 1)) ∈ L1

and ū(−∞, t) = sp(u(−∞, t)) = sp(p) = p, ū(+∞, t) = sp(u(+∞, t)) = sp(q) = q.
It says that the holomorphic map ū also belongs to M̃J0(L0, L1 : p, q). Moreover,
sp ◦ ū = u and we see that [ū] 6= [u] ∈ MJ0(L0, L1 : p, q) from the definition
of the map sp, and hence the moduli space MJ0(L0, L1 : p, q) possesses a free
Z2-action induced from sp. Since the 0-dimensional part of the moduli space
MJ0(L0, L1 : p, q) is compact by Proposition 15, it contains an even number of
elements. Therefore, we obtain

Proposition 18 (Vanishing). Under the same assumptions as in Proposi-
tion 15, the number of 0-dimensional components of MJ0(L0, L1 : p, q) are even
and so the boundary operator ∂ : CF (L0, L1) → CF (L0, L1) vanishes.

Thus we complete the proof of Theorem 2.

Remark 19. If real forms L0 and L1 are congruent, then the above calcu-
lation provides us with an alternative proof of the known fact that

HF (L0, L0 : Z2) ∼= (Z2)#2L0 = (Z2)SB(L0,Z2),

because the intersection L0 ∩ L1 is a great antipodal set of L0 (and L1), which is
proved in [23, Theorem 1.3].
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5. Some examples for the reducible case.

Let (M, J0, ω) be an irreducible Hermitian symmetric space of compact type
and σ : M → M an involutive anti-holomorphic isometry. Since the product
M ×M of M is a Kähler-Einstein manifold with positive Ricci constant, we can
apply Theorem 2 to real forms of M × M . Since (x, y) 7→ (σ(y), σ(x)) is an
involutive anti-holomorphic isometry of M ×M , whose fixed point set

Dσ(M) = {(x, σ(x)) | x ∈ M}

is a real form of M ×M . On the other hand, for real forms L0 and L1 of M , we
see that L0 × L1 is a real form of M ×M . Then

(L0 × L1) ∩Dσ(M) = {(x, σ(x)) | x ∈ L0 ∩ σ−1(L1)}.

The condition that two real forms L0×L1 and Dσ(M) of M×M intersect transver-
sally is equivalent to the condition that two real forms L0 and σ−1(L1) of M

intersect transversally. In this situation, we obtain

#{(L0 × L1) ∩Dσ(M)} = #{L0 ∩ σ−1(L1)}.

Moreover, σ−1(L1) is congruent to L1.

Example 20. Let M be the complex projective space CPn. Real forms L0

and L1 of M are congruent to RPn. Then #{(L0 × L1) ∩ Dσ(M)} = #{L0 ∩
σ−1(L1)} = n + 1. By Lemma 1.1 in [6], we have

#2(L0 × L1) = #2(L0)#2(L1) = (n + 1)2, #2(Dσ(M)) = #2M = n + 1,

and hence the intersection number of the two real forms is equal to smaller 2-
number n + 1. Moreover, we can easily check that Iµ,Dσ(M) = 2(n + 1) and
Iµ,L0×L1 ≥ 3 for n ≥ 2. By Theorem 2, we have

HF (L0 × L1, Dσ(M) : Z2) ∼= (Z2)n+1

for n ≥ 2. When n = 1, two real forms L0 × L1 = RP 1 × RP 1 ∼= T 2 and
Dσ(M) ∼= S2 can be regarded as real forms of 2-dimensional complex hyperquadric
Q2(C) ∼= CP 1 × CP 1. Although ΣT 2 = 2, we can also prove that HF (S2, T 2 :
Z2) ∼= Z2 ⊕ Z2 by combining the arguments in Section 4 and in [1]. Hence, the
pair (L0 × L1, Dσ(M)) satisfies the generalized Arnold-Givental inequality (1.1).
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Example 21. Put M = Qn(C). Assume that real forms L0, L1 of M are
congruent to Sk,n−k, Sl,n−l (0 ≤ k ≤ l ≤ [n/2]), respectively. Then by a result in
[24], we have

#{(L0 × L1) ∩Dσ(M)} = #{L0 ∩ σ−1(L1)} = 2(k + 1).

If n ≥ 3, then minimal Maslov numbers Iµ,Dσ(M) and Iµ,L0×L1 are greater than
or equal to 3. By Theorem 2, we obtain

HF (L0 × L1, Dσ(M) : Z2) ∼= (Z2)2(k+1).

Note that #2(L0 × L1) = 4(k + 1)(l + 1) and #2(Dτ (M)) = 2([n/2] + 1).
Hence the intersection number of the two real forms coincides with min{#2(L0 ×
L1),#2(Dσ(M))} only in the case where k = l = [n/2], otherwise the intersection
number is smaller than it.

In this way, we can construct many pairs of real forms which do not satisfy
the generalized Arnold-Givental inequality (1.1).

6. A volume estimate for a real form under Hamiltonian isotopies.

In general, a closed Lagrangian submanifold L in a Kähler manifold (M, J, ω)
is said to be Hamiltonian volume minimizing if it satisfies

vol(φL) ≥ vol(L)

for any Hamiltonian diffeomorphism φ ∈ Ham(M, ω) (see [16]). Non-trivial known
examples of Hamiltonian volume minimizing Lagrangian submanifolds are very
few. It is known that the real form RPn in the complex projective space CPn

and real form S1×S1 in S2×S2 are Hamiltonian volume minimizing Lagrangian
submanifolds (see [16] and [13]). Since S2×S2 is isomorphic to Q2(C), it is worth-
while to verify which real form of the complex hyperquadric Qn(C) is Hamiltonian
volume minimizing. In fact, the Hamiltonian stabilities of real forms of Qn(C)
were determined by Oh [16].

Here, we give a lower bound of the volume of the image φ(Sk,n−k) of a real
form Sk,n−k = (Sk × Sn−k)/Z2 of Qn(C) by any φ ∈ Ham(Qn(C), ω). By the
generalized Arnold-Givental inequality (1.1), we have

#(S0,n ∩ φSk,n−k) ≥ min{SB(S0,n,Z2), SB(Sk,n−k,Z2)} = 2. (6.6)

Moreover, we use the following Crofton type formula.
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Theorem 22 (Le [15]). Let N be an n-dimensional real submanifold in
Qn(C) ∼= G̃n(Rn+2). Then

∫

SO(n+2)

#(gSn ∩N)dµSO(n+2)(g) ≤ 2
vol(SO(n + 2))

vol(Sn)
vol(N) (6.7)

holds.

Proposition 23. For any φ ∈ Ham(Qn(C), ω), we have vol(φSk,n−k) ≥
vol(Sn).

Proof. Put N = φSk,n−k (k = 0, 1, . . . , [n/2]). Then (6.7) and (6.6) yield

vol(φSk,n−k) ≥ vol(Sn)
2vol(SO(n + 2))

∫

SO(n+2)

#(gSn ∩ φSk,n−k)dµSO(n+2)(g)

≥ vol(Sn)
2vol(SO(n + 2))

∫

SO(n+2)

2dµSO(n+2)(g)

= vol(Sn). ¤

Gluck, Morgan and Ziller [12] proved that S0,n = Sn in Qn(C) is volume
minimizing in its homology class when n is even. On the other hand, since the ho-
mology Hk(Qn(C)) vanishes when k is odd, S0,n can not be homologically volume
minimizing in Qn(C) in the case where n is odd. At least, we can conclude from
Proposition 23 the following

Corollary 24. A real form S0,n of the complex hyperquadric Qn(C) is
Hamiltonian volume minimizing.
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