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Abstract. Let f and g, of weights k′ > k ≥ 2, be normalised newforms
for Γ0(N), for square-free N > 1, such that, for each Atkin-Lehner involution,
the eigenvalues of f and g are equal. Let λ | ` be a large prime divisor of
the algebraic part of the near-central critical value L(f ⊗ g, (k + k′ − 2)/2).
Under certain hypotheses, we prove that λ is the modulus of a congruence be-
tween the Hecke eigenvalues of a genus-two Yoshida lift of (Jacquet-Langlands
correspondents of) f and g (vector-valued in general), and a non-endoscopic
genus-two cusp form. In pursuit of this we also give a precise pullback formula
for a genus-four Eisenstein series, and a general formula for the Petersson norm
of a Yoshida lift.

Given such a congruence, using the 4-dimensional λ-adic Galois repre-
sentation attached to a genus-two cusp form, we produce, in an appropriate
Selmer group, an element of order λ, as required by the Bloch-Kato conjecture
on values of L-functions.

1. Introduction.

This paper is about congruences between modular forms, modulo large prime
divisors of normalised critical values of L-functions. The first instance of this
might be considered to be Ramanujan’s congruence modulo 691 between the Hecke
eigenvalues of the cusp form ∆ and an Eisenstein series of weight 12 for SL2(Z),
the prime 691 occurring in the critical value ζ(12). Congruences modulo p between
Eisenstein series and cusp forms (now of weight 2 and level p) were used by Ribet
[R1] to prove his converse to Herbrand’s theorem. Interpreting the congruence
as a reducibility modulo p of the 2-dimensional Galois representation attached
to the cusp form, he used the non-trivial extension of 1-dimensional factors to
construct elements of order p in the class group of Q(ζp). Mazur and Wiles [MW]
developed this idea further in their proof of Iwasawa’s main conjecture. When
Bloch and Kato [BK] proved most of their conjecture in the case of the Riemann
zeta function, the Mazur-Wiles theorem was the main ingredient.

Let f and g, of weights k′ > k ≥ 2, be normalised newforms for Γ0(N), for
square-free N > 1, such that, for each Atkin-Lehner involution, the eigenvalues
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1354 S. Böcherer, N. Dummigan and R. Schulze-Pillot

of f and g are equal. Let λ | ` be a large prime divisor of the algebraic part
of the near-central critical value L(f ⊗ g, (k + k′ − 2)/2) (or equivalently of its
partner L(f ⊗ g, (k + k′)/2)). In this paper, we seek a congruence modulo λ

between the Hecke eigenvalues of a Yoshida lift F = Ff,g, and some other genus-
2 Hecke eigenform G, of the same weight Symj ⊗detκ, where j = k − 2 and
κ = 2 + (k′ − k)/2, and level Γ(2)

0 (N). (See Section 1.1 and later sections for
definitions and notation.) Proposition 9.1 (and Corollary 9.2) is what we are able
to prove. If p is any prime p - `N (where λ | `) and µG(p) is the eigenvalue of the
Hecke operator T (p) acting on G, then the congruence is

µG(p) ≡ ap(f) + p(k′−k)/2ap(g) (mod λ).

Our proof is modelled on Katsurada’s approach to proving congruences be-
tween Saito-Kurokawa lifts and non-lifts [Ka], modulo divisors of the near-central
critical values of Hecke L-functions of genus-1 cuspidal eigenforms of level 1. Thus
we consider a “pullback formula” for the restriction to H2×H2 of a genus-4, Eisen-
stein series (of weight 4) to which a certain differential operator has been applied.
The coefficient of F ⊗F is some constant times a value of the standard L-function
of F , divided by the Petersson norm of F .

Section 6 contains a proof of the required pullback formula (17) (derived,
using also (15), from the more general (9)), using differential operators from [B1]
and [BSY], and taking care to determine the precise constants occurring. Section
8 contains the proof of a formula for the Petersson norm of the Yoshida lift F ,
generalising [BS1], which dealt with the analogous case where k′ = k = 2 and F

is scalar-valued of weight κ = 2. This proof uses another, more subtle pullback
formula (16), involving an Eisenstein series of genus 4 and weight 2, also provided
by Section 6. The value L(f ⊗ g, (k + k′)/2) thereby appears as a factor in the
formula for the Petersson norm of the Yoshida lift, thus introducing λ into a
denominator in the pullback formula referred to in the previous paragraph. The
congruence is then proved by some application of Hecke operators to both sides.

For this we need to know the integrality at λ of the left-hand-side (dealt with in
Section 7), and, more problematically, that some Fourier coefficient of a canonical
scaling of the Yoshida lift F is not divisible by λ. (At this point Katsurada was
able to use an explicit formula for the Fourier coefficients of a Saito-Kurokawa
lift.) What we need on Fourier coefficients of Yoshida lifts can be reduced to a
weak condition on non-divisibility by λ of certain normalised L-values, in the case
that N is prime, Atkin-Lehner eigenvalue εN = −1 and k/2, k′/2 are odd, using
an averaging formula from [BS5]. This condition may be checked explicitly using
a formula of Gross and Zagier. In his thesis [Ji], Johnson Jia has worked out a
different approach to the problem of Fourier coefficients of Yoshida lifts mod λ, in
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the scalar-valued case.
Brown [Br] used the Galois interpretation of congruences (of Hecke eigen-

values) between Saito-Kurokawa lifts and non-lifts, to confirm a prediction of the
Bloch-Kato conjecture. Likewise, in the earlier sections of this paper we use con-
gruences between Yoshida lifts and non-lifts to produce non-zero elements of λ-
torsion in the appropriate Bloch-Kato Selmer group. (See Proposition 5.1.) The
required cohomology classes come from non-trivial extensions inside the mod λ

reduction of Weissauer’s 4-dimensional Galois representation attached to G. This
mod λ representation is reducible thanks to the congruence.

The work of Brown is easily extended to other (not necessarily near-central)
critical values of Lf (s) if one assumes a conjecture of Harder [Ha], [vdG] on the
existence of congruences involving vector-valued genus-2 cusp forms. It is not
possible likewise to extend the present work to other critical values of the tensor-
product L-function using genus-2 Siegel modular forms. The problem is that we
have two fixed parameters k′ and k, not allowing any freedom to vary j and κ.
This is explained in more detail at the end of [Du2].

M. Agarwal and K. Klosin, independently of us, at the suggestion of C. Skin-
ner, worked on using congruences between Yoshida lifts and non-lifts to construct
elements in Selmer groups, to support the Bloch-Kato conjecture for tensor prod-
uct L-functions at the near central point [AK]. Their approach to proving such
congruences is different, resulting in different conditions, and covers the scalar-
valued case (k = 2). They use a Siegel-Eisenstein series with a character, as in
[Br], and take pains to avoid our assumption (in Lemma 4.1 and Proposition 5.1)
that λ is not a congruence prime for f or g, at the cost of restricting k′ to be 10
or 14.

Acknowledgements. We thank M. Agarwal, T. Berger, J. Bergström,
J. Jia, H. Katsurada, K. Klosin, C. Poor and D. Yuen for helpful communications.
We thank also M. Chida for pointing out that [We4] allows us to eliminate an
unnecessary hypothesis.

1.1. Definitions and notation.
Let Hn be the Siegel upper half plane of n by n complex symmetric matrices

with positive-definite imaginary part. Let Γ(n) := Sp(n, Z) = Sp2n(Z) = {M ∈
GL2n(Z) : tMJM = J}, where J =

(
0n In

−In 0n

)
. For M =

[
A B
C D

] ∈ Γ(n) and

Z ∈ Hn, let M(Z) := (AZ +B)(CZ +D)−1 and J(M, Z) := CZ +D. Let Γ(n)
0 (N)

be the subgroup of Γ(n) defined by the condition N | C. Let V be the space
of a finite-dimensional representation ρ of GL(n, C). A holomorphic function
f : Hn → V is said to belong to the space Mρ(Γ

(n)
0 (N)) of Siegel modular forms

of genus n and weight ρ, for Γ(n)
0 (N), if
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f(M(Z)) = ρ(J(M, Z))f(Z) ∀M ∈ Γ(n)
0 (N), Z ∈ Hn.

In other words, f |M = f for all M ∈ Γ(n)
0 (N), where (f |M)(Z) :=

ρ(J(M, Z))−1f(M(Z)) for M ∈ Sp2n(Z). Such an f has a Fourier expansion

f(Z) =
∑

S≥0

a(S)e(Tr(SZ)) =
∑

S≥0

a(S, f)e(Tr(SZ)),

where the sum is over all positive semi-definite half-integral matrices, and e(z) :=
e2πiz.

Denote by Sρ(Γ
(n)
0 (N)), the subspace of cusp forms, those that vanish at

the boundary. They are also characterised by the condition that, for all M ∈
Sp2n(Z), a(S, f |M) = 0 unless S is positive-definite. When ρ is of the special
form detk ⊗Symj(Cn) (where Cn is the standard representation of GLn(C)), the
Petersson inner product will be as in Section 2 of [Koz], and when also n = 2,
the Hecke operators T (m), for (m,N) = 1, will be defined as in Section 2 of [Ar],
replacing Sp4(Z) by Γ(2)

0 (N). When j = 0, we are dealing with the usual scalar-
valued Siegel cusp forms of weight k. For a Hecke eigenform F , the incomplete
spinor and standard L-functions L(N)(F, s, spin) and L(N)(F, s,St) may be defined
in terms of Satake parameters as in [An], see also Section 20 of [vdG].

2. Critical values of the tensor product L-function.

Let f ∈ Sk′(Γ0(N)), g ∈ Sk(Γ0(N)) be normalised newforms (with k′ >

k ≥ 2), K some number field containing all the Hecke eigenvalues of f and g.
Attached to f is a “premotivic structure” Mf over Q with coefficients in K. Thus
there are 2-dimensional K-vector spaces Mf,B and Mf,dR (the Betti and de Rham
realisations) and, for each finite prime λ of OK , a 2-dimensional Kλ-vector space
Mf,λ, the λ-adic realisation. These come with various structures and comparison
isomorphisms, such as Mf,B ⊗K Kλ ' Mf,λ. See 1.1.1 of [DFG] for the precise
definition of a premotivic structure, and 1.6.2 of [DFG] for the construction of Mf ,
which uses the cohomology, with, in general, non-constant coefficients, of modular
curves, and pieces cut out using Hecke correspondences.

On Mf,B there is an action of Gal(C/R), and the eigenspaces M±
f,B are 1-

dimensional. On Mf,dR there is a decreasing filtration, with F j a 1-dimensional
space precisely for 1 ≤ j ≤ k′ − 1. The de Rham isomorphism Mf,B ⊗K C '
Mf,dR⊗K C induces isomorphisms between M±

f,B⊗C and (Mf,dR/F )⊗C, where
F := F 1 = · · · = F k′−1. Define ω± to be the determinants of these isomorphisms.
These depend on the choice of K-bases for M±

f,B and Mf,dR/F , so should be
viewed as elements of C×/K×. In exactly the same way there is also a premotivic
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structure Mg, but since k′ > k, it turns out that it is the periods of f that
will show up in the formula for the periods of the rank-4 premotivic structure
Mf⊗g := Mf ⊗Mg.

From the above properties of Mf and Mg, one easily obtains the following
properties of Mf⊗g. The eigenspaces M±

f⊗g,B are 2-dimensional. On Mf⊗g,dR

there is a decreasing filtration, with F t a 2-dimensional space precisely for k ≤
t ≤ k′ − 1. The de Rham isomorphism Mf⊗g,B ⊗K C ' Mf⊗g,dR ⊗K C induces
an isomorphism between M±

f⊗g,B ⊗C and (Mf⊗g,dR/F ′)⊗C, where F ′ := F k =
· · · = F k′−1. Define Ω± ∈ C×/K× to be the determinants of these isomorphisms.

For use in the next section, we shall choose an OK-submodule Mf,B , gener-
ating Mf,B over K, but not necessarily free, and likewise an OK [1/S]-submodule
Mf,dR, generating Mf,dR over K, where S is the set of primes dividing N(k′!).
We take these as in 1.6.2 of [DFG]. They are part of the “S-integral premotivic
structure” associated to f , and are defined using integral models and integral coef-
ficients. Actually, it will be convenient to enlarge S so that OK [1/S] is a principal
ideal domain, then replace Mf,B and Mf,dR by their tensor products with the new
OK [1/S]. These will now be free, as will be any submodules, and the quotients
we consider. Choosing bases, and using these to calculate the above determinants,
we pin down the values of ω± (up to S-units). Setting Mf⊗g,B := Mf,B ⊗Mg,B

and Mf⊗g,dR := Mf,dR ⊗Mg,dR, similarly we pin down Ω± (up to S-units). We
just have to imagine not including in S any prime we care about.

For each prime λ of OK (say λ | `), the λ-adic realisation Mf,λ comes
with a continuous linear action of Gal(Q/Q). For each prime number p 6= `,
the restriction to Gal(Qp/Qp) may be used to define a local L-factor [det(I −
Frob−1

p p−s|M Ip

f,λ)]−1 (which turns out to be independent of λ), and the Euler prod-
uct is precisely Lf (s). (Here Ip is an inertia subgroup at p, and Frobp is a Frobenius
element reducing to the generating pth-power automorphism in Gal(F p/Fp).) In
exactly the same way we may use the Galois representation Mf⊗g,λ = Mf,λ⊗Mg,λ

to define the tensor product L-function Lf⊗g(s). According to Deligne’s conjecture
[De], for each integer t in the critical range k ≤ t ≤ k′ − 1,

Lf⊗g(t)/Ω(t) ∈ K,

where Ω(t) = (2πi)2tΩ(−1)t

is the Deligne period for the Tate twist Mf⊗g(t).
It is more convenient to use 〈f, f〉 than Ω±, so we consider the relation between

the two. Calculating as in (5.18) of [Hi1], using Lemma 5.1.6 of [De] and the latter
part of 1.5.1 of [DFG], one recovers the well-known fact that, up to S-units,

〈f, f〉 = ik
′−1ω+ω−c(f), (1)
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where c(f), the “cohomology congruence ideal”, is, as the cup-product of basis
elements for Mf,B , an integral ideal. Moreover, calculating as in Lemma 5.1 of
[Du1], we find that

Ω+ = Ω− = 2(2πi)1−kω+ω−.

Hence Deligne’s conjecture is equivalent to

Lf⊗g(t)
π2t−(k−1)〈f, f〉 ∈ K

(for each integer k ≤ t ≤ k′ − 1). This is known to be true, using Shimura’s
Rankin-Selberg integral for Lf⊗g(s) [Sh4]. In the next section we consider the
integral refinement of Deligne’s conjecture.

3. The Bloch-Kato conjecture.

We shall need the elements Mf,λ of the S-integral premotivic structure, for
each prime λ of OK . These are as in 1.6.2 of [DFG]. For each λ, Mf,λ is a
Gal(Q/Q)-stable Oλ-lattice in Mf,λ. Similarly we have Mg,λ, and Mf⊗g,λ :=
Mf,λ ⊗Mg,λ.

Let Aλ := Mf⊗g,λ/Mf⊗g,λ, and A[λ] := Aλ[λ] the λ-torsion subgroup. Let
Ǎλ := M̌f⊗g,λ/M̌f⊗g,λ, where M̌f⊗g,λ and M̌f⊗g,λ are the vector space and
Oλ-lattice dual to Mf⊗g,λ and Mf⊗g,λ respectively, with the natural Gal(Q/Q)-
action. Let A := ⊕λAλ, etc.

Following [BK] (Section 3), for p 6= ` (where λ | `, including p = ∞) let

H1
f (Qp,Mf⊗g,λ(t)) = ker

(
H1(Dp,Mf⊗g,λ(t)) → H1(Ip,Mf⊗g,λ(t))

)
.

Here Dp is a decomposition subgroup at a prime above p, Ip is the inertia subgroup,
and Mf⊗g,λ(t) is a Tate twist of Mf⊗g,λ, etc. The cohomology is for continuous
cocycles and coboundaries. For p = ` let

H1
f (Q`,Mf⊗g,λ(t)) = ker

(
H1(D`,Mf⊗g,λ(t)) → H1(D`,Mf⊗g,λ(t)⊗Q`

Bcrys)
)
.

(See Section 1 of [BK] or Section 2 of [Fo1] for the definition of Fontaine’s
ring Bcrys.) Let H1

f (Q,Mf⊗g,λ(t)) be the subspace of those elements of
H1(Q,Mf⊗g,λ(t)) that, for all primes p, have local restriction lying in
H1

f (Qp,Mf⊗g,λ(t)). There is a natural exact sequence
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0 // Mf⊗g,λ(t) // Mf⊗g,λ(t) π // Aλ(t) // 0.

Let H1
f (Qp, Aλ(t)) = π∗H1

f (Qp,Mf⊗g,λ(t)). Define the λ-Selmer group
H1

f (Q, Aλ(t)) to be the subgroup of elements of H1(Q, Aλ(t)) whose local re-
strictions lie in H1

f (Qp, Aλ(t)) for all primes p. Note that the condition at p = ∞
is superfluous unless ` = 2. Define the Shafarevich-Tate group

ΠΠ

(t) =
⊕

λ

H1
f (Q, Aλ(t))

π∗H1
f (Q,Mf⊗g,λ(t))

.

Tamagawa factors cp(t) may be defined as in 11.3 of [Fo2] (where the notation
is Tam0 . . .). The λ part (for ` 6= p) is trivial if A

Ip

λ is divisible (for example if
p - N). The following is equivalent to the relevant cases of the Fontaine-Perrin-
Riou extension of the Bloch-Kato conjecture to arbitrary weights (i.e. not just
points right of the centre) and not-necessarily-rational coefficients. (This follows
from 11.4 of [Fo2].) Note that by “#” we really mean the Fitting ideal.

Conjecture 3.1. Suppose that k ≤ t ≤ k′− 1. Then we have the following
equality of fractional ideals of OK [1/S]:

Lf⊗g(t)
Ω(t)

=

∏
p≤∞ cp(t) #

ΠΠ

(t)

#H0(Q, A(t))#H0(Q, Ǎ(1− t))
. (2)

In other words,

Lf⊗g(t)
π2t−(k−1)〈f, f〉 =

∏
p≤∞ cp(t) #

ΠΠ

(t)

#H0(Q, A(t))#H0(Q, Ǎ(1− t))c(f)
. (3)

Let f =
∑

an(f)qn. Let ρf : Gal(Q/Q) → Aut(Mf,λ) be the 2-dimensional
λ-adic Galois representation attached to f . Let ρf be its reduction (mod λ),
which is unambiguously defined if it is irreducible. Likewise for ρg and ρg.

Lemma 3.2. (1) Suppose that ρf and ρg are irreducible, that ` > k′ and
` - N . Suppose (for some p || N) that there is no normalised newform h

of level dividing N/p and trivial character, of weight k′ with aq(h) ≡ aq(f)
(mod λ) for all primes q - `N , or of weight k with aq(h) ≡ aq(g) (mod λ) for
all primes q - `N . Then the λ part of cp(t) is trivial (for any t).

(2) If λ | ` with ` - N and ` > k′+ k− 1 then the λ part of c`(t) is trivial (for any
t).
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Proof. (1) Applying a level-lowering theorem (Theorem 1.1 of [Di], see
also [R2], [R3]), ρf and ρg are both ramified at p. However, since p || N ,
the action of Ip on each of Mf,λ and Mg,λ is unipotent, by Theorem 7.5 of
[La], as recalled in Theorem 4.2.7 (3) (b) of [Hi2], for a convenient reference.
It follows that both ρf ⊗ ρg and ρf ⊗ ρg have Ip-fixed subspace of dimension
precisely 2, hence that A

Ip

λ is divisible. As noted above, this implies that the
λ-part of cp(t) is trivial.

(2) It follows from Lemma 5.7 of [DFG] (whose proof relies on an applica-
tion, at the end of Section 2.2, of the results of [Fa]) that Mf⊗g,λ is the
Oλ[Gal(Q`/Q`)]-module associated to the filtered φ-module Mf⊗g,dR ⊗ Oλ

(identified with the crystalline realisation) by the functor they call V . (This
property is part of the definition of an S-integral premotivic structure given in
Section 1.2 of [DFG].) Given this, the lemma follows from Theorem 4.1 (iii)
of [BK]. (That V is the same as the functor used in Theorem 4.1 of [BK]
follows from the first paragraph of 2(h) of [Fa].) ¤

Corollary 3.3. Suppose that N is square-free. Assume the conditions of
Lemma 3.2(1), for all primes p | N , and of Lemma 3.2(2), and also that (for some
k ≤ t ≤ k′ − 1)

ordλ

(
Lf⊗g(t)

π2t−(k−1)〈f, f〉
)

> 0.

Then the Bloch-Kato conjecture predicts that ordλ(#

ΠΠ

(t)) > 0, so predicts that
the Selmer group H1

f (Q, Aλ(t)) is non-trivial.

The goal of this paper is to construct (under further hypotheses) a non-zero
element of H1

f (Q, Aλ(t)), in the case that t is the near-central point t = (k′ + k −
2)/2.

Lemma 3.4. If ` - N , ` > k′ − 1 and k < t < k′ − 1 then the λ-parts of
#H0(Q, A(t)) and #H0(Q, Ǎ(1− t)) are trivial.

Proof. If not, then either A[λ](t) or Ǎ[λ](1−t) would have a trivial compo-
sition factor. The composition factors of ρf |I`

are either χ0, χ1−k (in the ordinary
case, with χ the cyclotomic character) or ψ1−k, ψ`(1−k) (in the non-ordinary case,
with ψ a fundamental character of level 2). This follows from theorems of Deligne
and Fontaine, which are Theorems 2.5 and 2.6 of [Ed]. Noting that ψ has order
`2 − 1, with ψ`+1 = χ, the composition factors of (ρf ⊗ ρg)|I`

are of the form
ψa, ψb, ψc, ψd, with 1− `2 < a, b, c, d ≤ 0 and each of a, b, c, d congruent to either
0, 1 − k, 1 − k′ or 2 − k − k′ (mod `). Twisting by t is the same as multiplying
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by ψ(`+1)t. This exponent is congruent to t (mod `), and k < t < k′ − 1. Adding
to this the possible values for a, b, c, d (mod `) can never produce 0 or 1. Hence
neither A[λ](t) nor Â[λ](1 − t) can have a trivial composition factor (even when
restricted to I`). ¤

4. A 4-dimensional Galois representation.

Let f, g be as in Sections 2, 3, both of exact level N > 1. Let λ | ` be a
divisor of (Lf⊗g(t))/(π2t−(k−1)〈f, f〉), with ` - N(k′)! and t = (k′+ k− 2)/2. Now
suppose that f and g have the same Atkin-Lehner eigenvalues for each p | N , and
let Ff,g be some genus-2 Yoshida lift associated with a factorisation N = N1N2, as
in Section 8 below. (It is of type Symj ⊗detκ, with j = k− 2, κ = 2 + (k′ − k)/2.
Note that j + 2κ− 3 = k′ − 1.)

Suppose that there is a cusp form G for Γ(2)
0 (N), an eigenvector for all the

local Hecke algebras at p - N , not itself a Yoshida lift of the same f and g, such
that there is a congruence (mod λ) of all Hecke eigenvalues (for p - N) between
G and Ff,g. In particular, if µG(p) is the eigenvalue for T (p) on G (defined as in
Section 2.1 of [Ar], replacing Sp4(Z) by Γ(2)

0 (N)), then

µG(p) ≡ ap(f) + p(k′−k)/2ap(g) (mod λ), for all p - N. (4)

Under certain additional hypotheses, we prove in Section 9 below, the existence of
such a G. (We enlarge K if necessary, to contain the Hecke eigenvalues of G.)

Let ΠG be an automorphic representation of GSp4(A) associated to G as in
3.2 of [Sc] and 3.5 of [AS]. (This ΠG is not necessarily uniquely determined by
G, but its local components at p - N are.) By Theorem I of [We2], there is an
associated continuous, linear representation

ρG : Gal(Q/Q) → GL4(Q`).

By enlarging K if necessary, we may assume that it takes values in GL4(Kλ).

Lemma 4.1. Suppose that there exists a G as above. Suppose also that λ is
not a congruence prime for f in Sk′(Γ0(N)) or g in Sk(Γ0(N)), that ` > k′, and
that ρf and ρg are irreducible representations of Gal(Q/Q).

(1) ΠG is not a weak endoscopic lift.
(2) ΠG is not CAP.

By λ not being a congruence prime for f in Sk′(Γ0(N)), we mean that there
does not exist a different Hecke eigenform h ∈ Sk′(Γ0(N)), and a prime λ′ dividing
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λ in a sufficiently large extension, such that ap(h) ≡ ap(f) (mod λ′) for all primes
p - `N .

Proof. (1) If ΠG were a weak endoscopic lift then there would have to
exist newforms f ′ ∈ Sk′(Γ0(N)), h ∈ Sk(Γ0(N)) such that µG(p) = ap(f ′) +
p(k′−k)/2ap(h) for almost all primes p. (See the introduction of [We2] for a
precise definition of weak endoscopic lift, and (3) of Hypothesis A of [We2]
for this consequence.) We have then

ap(f ′) + p(k′−k)/2ap(h) ≡ ap(f) + p(k′−k)/2ap(g) (mod λ),

for almost all primes p. Consequently, using ` > 4 and the Brauer-Nesbitt
theorem,

ρf ⊕ ρg((k − k′)/2) ' ρf ′ ⊕ ρh((k − k′)/2).

Now ρf ′ could not be isomorphic to ρg((k − k′)/2), since the restrictions to
I` give different characters (using ` > k′). The only way to reconcile the
two sides of the above isomorphism is for ρf ' ρf ′ . Given that λ is not a
congruence prime for f in Sk′(Γ0(N)), we must have f ′ = f , and similarly
h = g. It follows from (4) and (6) of Hypothesis A of [We2] that ΠG must
be associated to some Yoshida lift F ′f,g of f and g. (Those p | N for which
the local component is Π+

v rather than Π−v are the divisors of N1.) By (6)
of Hypothesis A of [We2], the multiplicity of ΠG in the discrete spectrum
is one. By Lemmas 1.2.8 and 1.2.10 of [SU], the local representation Πp of
GSp(4,Qp), for p | N , is that labelled VIa in [Sc]. By Table 3 of [Sc], the
spaces of Γ(2)

0 (Zp)-fixed vectors in Πp are 1-dimensional. It follows that (up
to scaling), G = F ′f,g, contrary to hypothesis.

(2) By Corollary 4.5 of [PS], ΠG could only be CAP for a Siegel parabolic sub-
group, but then, as on p. 74 of [We2], we would have k = 2 and

µG(p) = ap(f ′) + χ(p)pk′/2 + χ(p)p(k′/2)−1,

for some newform f ′ ∈ Sk′(Γ0(N)) and χ a quadratic or trivial character.
This is incompatible with µG(p) ≡ ap(f) + p(k′−k)/2ap(g) (mod λ) and the
irreducibility of ρf and ρg. ¤

Note that the proof of Hypothesis A (on which Theorem I also depends) is
not in [We2], but has now appeared in [We3].
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Lemma 4.2. Let G be as in Lemma 4.1. Then the representation ρG is
irreducible.

Proof. Suppose that ρG is reducible. It cannot have any 1-dimensional
composition factor, since ρG has 2-dimensional irreducible composition factors ρf

and ρg((k − k′)/2). (The factors are well-defined, even though ρG isn’t.) Looking
at the list, in 3.2.6 of [SU], of possibilities for the composition factors of ρG, we
must be in Cas B, (iv) or (v). But as in 3.2.6 of [SU], ΠG would be CAP in
one case, a weak endoscopic lift in the other, and both of these are ruled out by
Lemma 4.1. ¤

Let V , a 4-dimensional vector space over Kλ, be the space of the representa-
tion ρG. Choose a Gal(Q/Q)-invariant Oλ-lattice T in V , and let W := V/T . Let
ρG be the representation of Gal(Q/Q) on W [λ] ' T/λT . This depends on the
choice of T , but we may choose T in such a way that ρG has ρg((k − k′)/2) as a
submodule and ρf as a quotient. Assume that this has been done.

Lemma 4.3. T may be chosen in such a way that furthermore ρf is not a
submodule of ρG, i.e. so that the extension of ρf by ρg((k − k′)/2) is not split.

Proof. We argue as in the proof of Proposition 2.1 of [R1]. Choose an
Oλ-basis for T , so that ρG(Gal(Q/Q)) ⊂ GL4(Oλ). Assuming the lemma is false,
we prove by induction that for all i ≥ 1 there exists Mi =

(
I2 Si

02 I2

) ∈ GL4(Oλ)
such that Mi ρG(Gal(Q/Q))M−1

i consists of matrices of the form
(

A λiB
λC D

)
, with

A,B, C, D ∈ M2(Oλ), and with Si ≡ Si−1 (mod λi−1). Then letting S = lim Si

and M =
(

I2 S
02 I2

)
, M ρG(Gal(Q/Q))M−1 consists of matrices of the form

(
A 02

λC D

)
,

contradicting the irreducibility of ρG.
By assumption, ρf is a submodule of ρG (i.e. ρG is semi-simple), so we have

M1. This is the base step. Now suppose that we have Mi. We must try to produce
Mi+1. Let P =

(
I2 02
02 λI2

)
. Then P iMi ρG(Gal(Q/Q))M−1

i P−i consists of matrices
of the form

(
A B

λi+1C D

)
. Now let U be a matrix of the form

(
I2 B′
02 I2

)
such that

UP iMi ρG(Gal(Q/Q))M−1
i P−iU−1 consists of matrices of the form

(
Ã λB̃

λi+1C̃ D̃

)
.

This exists because we are assuming that not only ρG, but any other reduction
with submodule ρg((k − k′)/2), is semi-simple. Now just let Mi+1 = P−iUP iMi.
Note that since P−iUP i =

(
I2 λiB′
02 I2

)
, it is clear that Mi+1 is of the form

( I2 Si+1
02 I2

)
,

with Si+1 ≡ Si (mod λi). ¤

We remark that, though the first T chosen may give semi-simple ρG, the
lemma shows that there will be another choice that gives a non-trivial extension.
Compare with the situation for 5-torsion on elliptic curves in the isogeny class of
conductor 11.
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5. A non-zero element in a Bloch-Kato Selmer group.

Let G be as in the previous section. Then by Lemma 4.3, ρG is a non-trivial
extension of ρf by ρg((k − k′)/2):

0 // ρg((k − k′)/2) // ρG
// ρf

// 0.

Applying HomFλ
(ρf , ) to the exact sequence, and pulling back the inclusion

of the trivial module in HomFλ
(ρf , ρf ), we get a non-trivial extension of the

trivial module by Hom(ρf , ρg((k − k′)/2)). Thus we get a non-zero class in
H1(Q,HomFλ

(ρf , ρg((k − k′)/2))), in the standard way. (Lifting the identity
to a section s ∈ HomFλ

(ρf , ρG), a representing cocycle is g 7→ g.s − s, where
(g.s)(x) = g(s(g−1(x))).)

Now the dual of ρf is ρf (k′ − 1), so

HomFλ

(
ρf , ρg((k−k′)/2)

) ' ρf (k′−1)⊗ρg((k−k′)/2) ' ρf ⊗ρg((k
′+k−2)/2).

In the notation of Section 3, this is A[λ]((k′ + k − 2)/2). So we have a non-zero
class c ∈ H1(Q, A[λ]((k′ + k − 2)/2)). By Lemma 3.4, H0(Q, Aλ((k′ + k − 2)/2))
is trivial, so we get a non-zero class d ∈ H1(Q, Aλ((k′ + k − 2)/2)), the image of
c under the map induced by inclusion.

Proposition 5.1. Let f ∈ Sk′(Γ0(N)), g ∈ Sk(Γ0(N)) be normalised new-
forms of square-free level N > 1, with k′ > k ≥ 2. Suppose that at each prime
p | N , f and g share the eigenvalue of the Atkin-Lehner involution. Let λ | ` be a
divisor of (Lf⊗g((k′+k−2)/2))/(πk′−1〈f, f〉), with ` - N and ` > (3k′+k−2)/2.
Suppose also that λ is not a congruence prime for f in Sk′(Γ0(N)) or g in
Sk(Γ0(N)), and that ρf and ρg are irreducible representations of Gal(Q/Q). As-
sume, for each p | N , the conditions of Lemma 3.2(1). Finally, suppose that
there exists G ∈ Sρ(Γ

(2)
0 (N)) as in the second paragraph of Section 4. Then the

Bloch-Kato Selmer group H1
f (Q, Aλ((k′ + k − 2)/2)) is non-zero.

Remark 5.2. Note that Corollary 9.2 gives sufficient conditions for the
existence of G.

Proof. We will show that the non-zero element d ∈ H1(Q, Aλ((k′ + k −
2)/2)) satisfies resp(d) ∈ H1

f (Qp, Aλ((k′ + k − 2)/2)) for each prime p.

(1) If p - `N then ρG|Ip is trivial, so certainly

0 // ρg((k − k′)/2)|Ip
// ρG|Ip

// ρf |Ip
// 0
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splits, showing that resp(c) ∈ ker(H1(Qp, A[λ]((k′ + k − 2)/2)) →
H1(Ip, A[λ]((k′ + k − 2)/2))), hence that resp(d) ∈ ker(H1(Qp, Aλ((k′ + k −
2)/2)) → H1(Ip, Aλ((k′ + k − 2)/2))). Since A

Ip

λ is divisible (in this case the
whole of Aλ), this shows that resp(d) ∈ H1

f (Qp, Aλ((k′ + k − 2)/2)), as in
Lemma 7.4 of [Br].

(2) If p = ` then we may prove resp(d) ∈ H1
f (Qp, Aλ((k′ + k − 2)/2)) just as in

Lemma 7.2 of [Du1]. Since ` - N , ρG|D`
is crystalline; see Theorem 3.2(ii)

of [U1], which refers to [Fa] and [CF]. It is for this case that we need the
condition ` > (3k′ + k − 2)/2. This (3k′ + k − 2)/2 arises as the span of the
“weights” {1− k′, 0} of ρ∗f and {(k′ − k)/2, (k′ + k − 2)/2} of ρg((k − k′)/2).
See the proof of Lemma 7.2 of [Du1] for comparison.

(3) Now consider the case that p | N . As in the proof of Lemma 3.2(1), the action
of Ip on Mf,λ/λMf,λ and Mg,λ/λMg,λ is non-trivial and unipotent. Hence
we may choose a basis for W [λ] (notation as in the previous section) such that
for any σ ∈ Ip, ρG(σ) is represented by exp(t`(σ)Ñ), with t` : Ip → Z`(1) the
standard tamely ramified character and Ñ of the form Ñ =

(
A B
02 A

)
, with A =(

0 1
0 0

)
. (Note that A plays the rôle of Ñ for the 2-dimensional representations

ρf |Ip and ρg|Ip .) By Theorem 2.2.5(1) of [GT], Ñ2 = 0. To see that the
conditions of that theorem are satisfied here, firstly ρG is irreducible by Lemma
4.2, secondly ρG is symplectic by Theorem 2 of [We4]. Lastly, given that the
local component Πp of ΠG has a non-zero vector fixed by Γ(2)

0 (Zp) but none
fixed by GSp4(Zp), an inspection of Table 3 in [Sc] reveals that it is always
the case that either the subspace of Πp fixed by the Siegel parahoric Γ(2)

0 (Zp),
or that fixed by a Klingen parahoric, is 1-dimensional. (Note that if Πp had
a non-zero vector fixed by GSp4(Zp) then, by Theorem I of [We2], ρG would
be unramified at p, contrary to ρG having ρf as a quotient.)
Since Ñ2 = 0, B must be of the form B =

(
0 b
0 0

)
. Writing elements of

HomFλ
(ρf , ρg((k − k′)/2)) as 2-by-2 matrices in the obvious way, a short cal-

culation shows that c|Ip is represented by the cocycle σ 7→ (
0 t`(σ)b
0 0

)
, which is

the coboundary σ 7→ σ
((

0 0
0 b

)) − (
0 0
0 b

)
. Since c|Ip = 0, d|Ip = 0. As already

noted in the proof of Lemma 3.2, A
Ip

λ is divisible, so we may deduce as in (1)
that resp(d) ∈ H1

f (Qp, Aλ((k′ + k − 2)/2)). ¤

Remark 5.3. We could have used a different formulation of the Bloch-Kato
conjecture, for the incomplete L-function with Euler factors at p | N missing, as in
(59) of [DFG], similarly using the exact sequence in their Lemma 2.1. This would
have involved a Selmer group with no local restrictions at p | N , and eliminated the
Tamagawa factors at p | N . Hence we could have avoided the related difficulties of
showing triviality of λ-parts of Tamagawa factors (at p | N but not at p = `) and
proving that local conditions at p | N are satisfied. However, we chose to assume
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a little more than necessary (i.e. the conditions of Lemma 3.2(1)), then use it to
prove something a bit stronger.

6. The doubling method with differential operators.

We mainly recall some properties of the doubling method in the setting of
holomorphic Siegel modular forms (with invariant differential operators). As long
as one does not insist on explicit constants and explicit Γ-factors, everything works
more generally for arbitrary polynomial representations as automorphy factors, see
[BS3, Section 2], [I1].

6.1. Construction of holomorphic differential operators.
We construct holomorphic differential operators on H2n with certain equiv-

ariance properties. We combine the constructions from [B1] and [BSY]; a similar
strategy was also used by [Koz].

We decompose Z ∈ H2n as

Z = (zij) =
(

z1 z2

zt
2 z4

)
(z1, z4 ∈ Hn).

We also use the natural embedding Sp(n)× Sp(n) ↪→ Sp(2n), defined by

(M1,M2) 7→ M↑
1 ·M↓

2 :=




A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2


 , Mi =

(
Ai Bi

Ci Di

)
∈ Sp(n).

The differential operator matrix ∂ = (∂ij) with ∂ij = (1 + δij)/2 · ∂/(∂zij) will
then be decomposed in block matrices of size n, denoted by

∂ =
(

∂1 ∂2

∂t
2 ∂4

)
.

We realize the symmetric tensor representation σν := Symν of GL(n, C) in the
usual way on the space Vν := C[X1, . . . Xn]ν (of homogeneous polynomials of
degree ν). For Vν-valued functions f on Hn, α, β ∈ C and M ∈ Sp(n, R) we
define the slash-operator by

(f |α,β,σν
M)(z) := det(cz + d)−α det(cz̄ + d)−βσν(cz + d)−1f(M〈z〉).
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We may ignore the ambiguity of the powers α, β ∈ C most of the time. If β = 0
or ν = 0 we just omit them from the slash operator.

Proposition 6.1. For nonnegative integers µ, ν there is a (nonzero) holo-
morphic differential operator Dα(µ, ν) mapping scalar-valued C∞ functions F on
H2n to Vν ⊗ Vν-valued functions on Hn × Hn, satisfying

Dα(µ, ν)
(
F |α,β (M↑

1 M↓
2 )

)
= (Dα(µ, ν)(F )) |z1

α+µ,β,σν
M1 |z4

α+µ,β,σν
M2 (5)

for all M1,M2 ∈ Sp(n, R); the upper index at the slash operator indicates, for
which variables Mi is applied.

More precisely, there is a Vν ⊗ Vν-valued nonzero polynomial Q(α,T) =
Q

(µ,ν)
α (T) in the variables α and T (where T is a symmetric 2n × 2n matrix

of variables), with rational coefficients, such that

Dα(µ, ν) = Q(µ,ν)
α (∂ij) |z2=0 .

The differential operator Dα(µ, ν) has the additional symmetry property

Dα(µ, ν)(F | V ) = Dα(µ, ν)(F )?,

where V is the operator defined on functions on H2n by

F 7−→ (F | V )
((

z1 z2

zt
2 z4

))
= F

((
z4 zt

2

z2 z1

))

and for a function g on Hn × Hn we put g?(z, w) := g(w, z).

Remark 6.2. We allow arbitrary “complex weights” α here; note that there
is no ambiguity in this as long as we use the same branch of log det(CZ + D) to
define the det(CZ + D)s on both sides of (5).

Note also that the differential operators do not depend at all on β.

Proof. We recall from [B1, Satz 2] the existence of an explicitly given
differential operator

Dα = (−1)nCn

(
α− n +

1
2

)
det(∂2) + · · ·+ det(z2) · det(∂ij)

with
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Cn(s) := s

(
s +

1
2

)
· · ·

(
s +

n− 1
2

)
=

Γn(s + (n + 1)/2)
Γn(s + (n− 1)/2)

(
Γn(s) = π(n(n−1))/4

n−1∏

j=0

Γ
(

s− j

2

))
. (6)

This operator is compatible with the action of Sp(n, R)×Sp(n, R) ↪→ Sp(2n, R),
increasing the weight α by one (without restriction!), i.e.

Dα

(
F |α,β M↑

1 ·M↓
2

)
= (DαF ) |α+1,β M↑

1 ·M↓
2 , (Mi ∈ Sp(n, R)).

We put

Dµ
α := Dα+µ−1 ◦ · · · ◦Dα.

Remark 6.3. The combinatorics of this operator is not known explicitly for
general µ.

The second type of differential operators maps scalar-valued functions on H2n

to C[X1, . . . , Xn]ν ⊗ C[Y1, . . . , Yn]ν-valued functions on Hn × Hn, changing the
automorphy factor from detα on GL(2n, C) to (detα⊗Symν) £ (detα⊗Symν) on
GL(n, C)×GL(n, C). This operator was introduced in [BSY, Section 2]; it is a
special feature that we know the combinatorics in this case quite explicitly:

Lν
α :=

1
(2πi)να[ν]

( ∑

0≤2j≤ν

1
j!(ν − 2j)!(2− α− ν)[j]

× (D↑D↓)j(D −D↑ −D↓)ν−2j

)

z2=0

; (7)

here we use the same notation as in [BSY]:

α[j] = α(α + 1) · · · (α + j − 1) =
Γ(α + j)

Γ(α)

D = ∂[(X1, . . . , Xn;Y1, . . . , Yn)t]

D↑ = ∂[(X1, . . . , Xn; 0, . . . , 0)t]

D↓ = ∂[(0, . . . , 0;Y1, . . . , Yn)t],

where A[x] := xt Ax; we remark that
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D −D↑ −D↓ = (X1, . . . Xn; 0, . . . 0) · ∂2 · (0, . . . , 0;Y1, . . . Yn)t.

In [BSY] the weight was a natural number k, but everything works also for arbi-
trary complex α instead. (Due to the normalization of [BSY], we have to omit
certain finitely many α.)

We put

Dα(µ, ν) := Lν
α+µ ◦Dµ

α .

This operator has all the requested properties, except for the fact that the coeffi-
cients are not polynomials in α but rational functions. ¤

6.2. Some combinatorics.
Then we consider the function hα,β defined on H2n by

hα,β(Z) := det(z1 + z2 + zt
2 + z4)−αdet(z1 + z2 + zt

2 + z4)
−β

and we note that (following [BCG, (1.25)])

Dµ
αhα,β = Aα,µ · hα+µ,β

with

Aα,µ =
Γn(α + µ)

Γn(α)
Γn(α + µ− n/2)

Γn(α− n/2)

and also

Lν
αhα,β = Bα,νσν(z1 + z4)−1

( ∑
XiYi

)ν

det(z1 + z4)−αdet(z1 + z4)
−β

with

Bα,ν =
1

(−2πi)νν!
Γ(2α− 2 + ν)

Γ(2α− 2)
Γ(α− 1)

Γ(α + ν − 1)
,

following [BSY, Lemma 4.2].
For later purposes we summarize here some additional properties of these

differential operators:
First we note that Dα(µ, ν) is a homogeneous polynomial (of degree nµ + ν)

in the partial derivatives; we decompose it as
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Dα(µ, ν) = M + R,

where the “main term” M denotes the part free of derivatives w.r.t. z1 or z4.

Lemma 6.4. a) All the monomials occurring in the “remainder term” R
have positive degree in the partial derivatives w.r.t. z1 and z4.

b) The “main term” M is of the form

M = Cα(µ, ν)
(
D −D↑ −D↓)ν

det(∂2)µ

with

Cα(µ, ν) =
1

(α + µ)[ν]ν!

µ−1∏

j=0

Cn

(
α− n +

µ + ν′ + j

2

) (
ν′ :=

ν

n

)
,

where Cn(s) is as in equation (6).
c) For the polynomial Qµ,ν

α (T) with the symmetric matrix T =
(

T1 T2

Tt
2 T4

)
of size

2n this means

Qµ,ν
α (T) = Cα(µ, ν)

(
2(X1, . . . , Xn)T2(Y1, . . . , Yn)t

)ν det(T2)µ + (∗), (8)

where (∗) contains only contributions with positive degree in T1 and T4.

Proof. a) The formula (12) in [B1] shows that in Dα an entry of ∂1 always
appears together with an entry of ∂4. The same is then true for Dµ. Furthermore,
the explicit formula (7) for Lν

α+µ shows that only the contribution of j = 0 is free
of partial derivatives w.r.t. z1; it is at the same time the only contribution free of
derivatives w.r.t. z4.

b) We define an element M = M(X1, . . . , Xn;Y1, . . . , Yn) of Vν ⊗ Vν by

M := Dα(µ, ν)(exptr(z2)) = M (exptr(z2)).

The transformation properties of Dα(µ, ν), applied for

(
At 0
0 A−1

)↑
,

(
A 0
0 A−t

)↓
(A ∈ GL(n, R))

yield
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M((X1, . . . , Xn) ·A;Y1, . . . , Yn)

= M(X1, . . . , Xn; (Y1, . . . , Yn)At) (A ∈ GL(n, C)).

Such a vector in Vν⊗Vν is unique up to constants and is therefore a scalar multiple
of (

∑
XiYi)ν , i.e. M = c · (2 ∑

i XiYi)ν for an appropriate constant c = Cα(µ, ν).
To understand M we study its action on those functions on H2n, which

depend only on z2; it is enough to look at functions of type fT (z2) := exptr(Tz2)
with T ∈ R(n,n), det(T ) 6= 0. Then

Dα(µ, ν)fT = det(T )−αDα(µ, ν)(f1n
) |α

(
T 0
0 T−t

)

= det(T )−α(Dα(µ, ν)f1n) |z1
α+µ,ν

(
T 0
0 T−t

)

= det(T )µc ·
(

2
∑

i

XiT
tYi

)ν

= c(D −D↑ −D↓)ν det(∂2)µfT .

It remains to determine the coefficient Cα(µ, ν); we compute Ds(µ, ν) det(z2)s

in two ways, using the standard formulas (see e.g. [BCG, Section 1])

det(∂2) det(z2)s = Cn

(
s

2

)
det(z2)s−1

Dα det(z2)s = (−1)nCn

(
s

2

)
Cn

(
α− n +

s

2

)
det(z2)s−1.

Then

Dα(µ, ν) det(z2)s

= Cα(µ, ν)
( µ−1∏

j=0

Cn

(
s− j

2

)){
(D −D↑ −D↓)ν det(z2)s−µ

} |z2=0

and on the other hand
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Dα(µ, ν) det(z2)s = Lν
α+µ

(
Dµ

α det(z2)s
)

=
µ−1∏

j=0

Cn

(
s− j

2

)
Cn

(
α− n +

s + j

2

){
Lν

α+µ det(z2)s−µ
} |z2=0

=
µ−1∏

j=0

Cn

(
s− j

2

)
Cn

(
α− n +

s + j

2

)

× 1
(α + µ)[ν]ν!

{
(D −D↑ −D↓)ν det(z2)s−µ

} |z2=0 .

If ν = nν′ is a multiple of n, then s := µ + ν′ gives nonzero contributions and we
get

Cα(µ, ν) =
1

(α + µ)[ν]ν!

µ−1∏

j=0

Cn

(
α− n +

µ + ν′ + j

2

)
.

Actually, this formula makes sense (and is also valid) for arbitrary ν. ¤

For the special case n = 2 considerations similar to the above appear in [DIK,
Lemma 7.5, Corollary 7.6].

6.3. Doubling method with the differential operators Dα(µ, ν).
The inner product (

∑
aiXi,

∑
biXi) =

∑
aibi on V1 := C[X1, . . . Xn]1 in-

duces a “produit scalaire adapté” (see [Go]) on the ν-fold symmetric tensor prod-
uct Vν = Symν(V1) = C[X1, . . . Xn]ν by

{α1 · · · · · αν , β1 · · · · · βν} =
1
ν!

∑
τ

ν∏

j=1

(ατ(j), βj) (αi, βj ∈ V1),

where τ runs over the symmetric group of order ν. This inner product is invariant
under the action of unitary matrices via Symν .

Note that for all v ∈ C[X1, . . . , Xn]ν we have

{
v,

( ∑
XiYi

)ν}
= ṽ,

where ṽ denotes the same polynomial as v, but with the variables Yi instead of
the Xi.

We describe here the general pullback formula for level N Eisenstein series
(N square free).
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We put

G
(2n)
k (Z, s) =

∑

M∈Γ
(2n)
0 (N)∞\Γ(2n)

0 (N)

det(CZ + D)−k−s det(CZ + D)−s.

For a cusp form F ∈ Sρ(Γ
(n)
0 (N)) with ρ = detk+µ⊗σν and z = x + iy, w =

u + iv ∈ Hn we get

∫

Γ
(n)
0 (N)\Hn

{
ρ(
√

y)F (z), ρ(
√

y)Ds+k(µ, ν)G(2n)
k

((
z 0
0 −w̄

)
, s̄

)
det(y)s det(v)s

}
dωn

= γn(k, µ, ν, s)
∑

M

F (w) | TN (M) det(M)−k−2s. (9)

Here dωn = det(y)−n−1dxdy, M runs over all (integral) elementary divisor ma-
trices of size n with M ≡ 0 mod N , and TN (M) denotes the Hecke operator
associated to the double coset Γ(n)

0 (N)
(

0 −M−1

M 0

)
Γ(n)

0 (N).
To compute the Archimedean factor γ one should keep in mind that the un-

folding of the integral leads to an integration over Hn involving Dk+s(µ, ν)hk+s,s.
Then γ is naturally a product of (essentially) three factors

γn(k, µ, ν, s) = ink+nµ+ν2n(n−k−µ−2s−ν+1)Ak+s,µBk+µ+s,νI(s + k + µ− n− 1, ν)

with a Hua type integral

I(α, ν) =
π(n(n+1))/2

α + n + ν

n−1∏

j=1

(2α + 2j + 1)(n + j + 2α)[ν]

(α + j)Γ(ν + n + j + 2α + 1)
.

We refer to [BSY, Section 3], see also [B3, 2.2] for details.

6.4. Doubling method with the differential operators Dk(µ, ν).
There are two ways to obtain holomorphic Siegel Eisenstein series of degree n

and low weight after analytic continuation (sometimes called “Hecke summation”):
One is by evaluating at s = 0, the other by considering s1 = (n + 1)/2 − k; both
are connected by a complicated functional equation involving all Siegel Eisenstein
series. We need the case of weight 2 and degree 4, where only the Hecke summation
for s1 is available.
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We first consider the general case: In (9) the differential operator Dk+s(µ, ν)
was applied directly to the Eisenstein series of “weight” k + s. If we use the Hecke
summation not in s = 0 but in s1 := (2n+1)/2−k for an Eisenstein series of degree
2n, we should better use a differential operator acting on the weight k Eisenstein
series E

(2n)
k := G

(2n)
k · (det Im Z)s to get holomorphic modular forms (in particular

theta series) after evaluating in s = s1. One might try to use the calculations
of Takayanagi [Tak]. Note however that the results of [Tak] are applicable only
for the case µ = 0; to incorporate the differential operator Dµ

k there is quite
complicated, see also [Koz]. We avoid this difficulty by observing that the two
types of differential operators are actually not that different:

By

F 7−→ Dk,s(µ, ν)(F ) := det(y)s det(v)sDk+s(µ, ν)(det(Y )−s × F )

we can define a new (nonholomorphic) differential operator mapping functions F

on H2n to C[X1, . . . , Xn]ν ⊗ C[Y1, . . . , Yn]ν valued functions on Hn × Hn; this
operator has exactly the same transformation properties as Dk(µ, ν).

Starting from the observation that Dk,s(µ, ν) maps holomorphic functions on
H2n to nearly holomorphic functions on Hn×Hn we get from the theory of Shimura
[Sh2], [Sh3] in the same way as in [BCG, Section 1] an operator identity

Dk,s(µ, ν) =
∑
ρi,ρj

δ(z1)
ρj

⊗ δ(z4)
ρj

◦Ds(ρi, ρj). (10)

Here the ρi, ρj run over finitely many polynomial representations of GL(n, C)
and Ds(ρi, ρj) denotes a Vρi

⊗ Vρj
-valued holomorphic differential operator (a

polynomial in the ∂i,j , evaluated at z2 = 0; it changes the automorphy factor detk

on GL(2n, C) to (detk ⊗ρ1)£ (detk ⊗ρ2) on GL(n, C)×GL(n, C)). As is usual in
the theory of nearly holomorphic functions, we have to avoid finitely many weights
k here. Furthermore the δρi

, δρj
are non-holomorphic differential operators on Hn,

changing automorphy factors from detk ⊗ρ to detk+µ⊗Symν . In the simplest case
(i.e. ρ = detµ, ν = 2), the operator δρ has the explicit form

δρ = (X1, . . . , Xn) · ((∂ij)− 2i(k + µ) Im(Z)−1
) ·




X1

...
Xn


 .

Furthermore we mention that, by invariant theory, holomorphic differential oper-
ators Ds(ρi, ρj) with the transformation properties described above only exist in
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the case ρi = ρj see [I1].
If δ

(z1)
ρ ⊗ δ

(z4)
ρ is the identity, then ρ = detk+µ⊗Symν and (at least for k ≥ n)

Ds(ρ, ρ) is a scalar multiple of Dk(µ, ν), because the space of such differential
operators is one-dimensional. The decomposition (10) can then be rewritten as

ps(k)Dk,s(µ, ν) = ds(k)Dk(µ, ν) + K (11)

where ps(k) and ds(k) are polynomials in k and K is a nonholomorphic differen-
tial operator with the same transformation properties as Dk(µ, ν) and with the
additional property that K (F ) is orthogonal to all holomorphic cusp forms in the
variables z1 or z4 (for any C∞ automorphic form on H2n with suitable growth
properties). Note that (11) holds now for all weights k, if we request the finitely
many exceptions from (10) to be among the zeroes of ps(k). We also observe that
Dk,s(µ, ν) is a homogeneous polynomial of degree nµ+ν in the variables (∂ij)|z2=0

and the entries of y−1
1 and y−1

4 and K consists only of monomials whose joint de-
gree in ∂1 and y−1

1 as well as in ∂4 and y−1
4 are both positive, in particular, K

cannot contribute monomials that only involve entries of ∂2.
Therefore (as in [BCG, (1.31)]) we may compare the coefficients of

det(∂2)µ(
∑

i,j(∂/∂i,n+j)XiYj)ν on both sides: We get

ps(k)Ck+s(µ, ν) = ds(k)Ck(µ, ν).

From this we obtain a version of the pullback formula (9)

∫

Γ
(n)
0 (N)\Hn

{
ρ(
√

y)F (z), ρ(
√

y)Dk(µ, ν)E(2n)
k

((
z 0
0 −w̄

)
, s̄

)}
dωn

=
ps(k)
ds(k)

· γn(k, µ, ν, s)
∑

M

F | TN (M) det(M)−k−2s. (12)

We need the result above for the pullback formula applied for a degree 4, weight
2 Eisenstein series at s1 = 1/2: we consider the holomorphic modular form

E
(4)
2 := Res

s=s1
E

(4)
2 (Z, s).

Then we get for a cusp form F ∈ Sρ(Γ
(2)
0 (N)), with ρ = det2+µ⊗Symν ,
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〈
F, D2(µ, ν)E (4)

2 (∗,−w̄)
〉

= Res
s=s1

〈
F, D2(µ, ν)E(4)

2 (∗,−w̄)
〉

= Res
s=s1

ps(2)
ds(2)

〈
F, D2+s(µ, ν)G(4)

2 det(y)s det(v)s
〉

= c · Res
s=s1

( ∑

M

F (w) | TN (M) det(M)−2−2s

)
. (13)

The relevant constant is then

c =
C2(µ, ν)

C2+1/2(µ, ν)
γ2

(
2, µ, ν,

1
2

)
. (14)

6.5. Standard-L-functions at s = 1 and s = 2, in particular for
Yoshida lifts of degree 2.

6.5.1. An Euler product.
If F ∈ Sρ(Γ

(n)
0 (N)) is an eigenform of all the Hecke operators TN (M) with

eigenvalues λN (M), then the Dirichlet series of these eigenvalues can be written
in terms of the (good part of) the standard L-function D

(N)
F (s):

∑
λN (M) det(M)−s

=
( ∑

det(M)|N∞
det(M)−s

)
× 1

ζ(N)(s)
∏n

i=1 ζ(N)(2s− 2i)
D

(N)
F (s− n).

The integral representations studied above allow us to investigate (for degree
2) the behavior of such a standard L-function at s = 1 and s = 2; we remark
that s = 1 is not a critical value for the standard L-function! Note that in the
formula above, we get DF (1) for degree n = 2 for s = 3. In the formula (13) this
corresponds to s = s1 = 1/2 due to several shifts (2s1 + 2− 2 = 1 for this s1).

If F is actually a Yoshida lift of level N associated to two elliptic cuspidal
newforms f ∈ Sk′(Γ0(N)), g ∈ Sk(Γ0(N)), with k′ ≥ k, then F ∈ Sρ(Γ

(2)
0 (N))

with ρ = det2+(k′−k)/2⊗Symk−2 is indeed an eigenform of all the Hecke operators
TN (M):

∑

M

F | TN (M) det(M)−s

=
λ

Nns
ζ(N)(s− 2)L(N)

(
f ⊗ g, s +

k′ + k

2
− 3

)
ΛN (s− 2) · F (15)
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where λ = ±Nn(n−1)/2 = ±N (with the sign depending only on N),

ΛN (s) =
∏

p|N

2∏

j=1

(1− p−s−2+j)−1

and

L(N)(f1 ⊗ f2, s) :=
∏

p-N

(
1− αpβpp

−s
)(

1− αpβ
′
pp
−s

)(
1− α′pβpp

−s
)(

1− α′pβ
′
pp
−s

)
.

Moreover F |ρ
(

02 −12
N ·12 02

)
is also an eigenfunction of all the TN (M) with the same

eigenvalues as F ; for details on the facts mentioned above we refer to [BS1], [BS3].

6.5.2. A version of the pullback formula for the Eisenstein series
attached to the cusp zero.

We can consider the same doubling method using the Eisenstein series

F
(2n)
k (Z, s) :=

∑

C,D

det(CZ + D)−k−s det(CZ̄ + D)−s,

F
(2n)
k (Z, s) := F

(2n)
k (Z, s)× det(Y )s,

where (C,D) runs over non-associated coprime symmetric pairs with the additional
condition “det(C) coprime to N” (this is the Eisenstein series “attached to the
cusp zero”). The reason for using both versions is that in our previous papers
[BS1], [BS3] we mainly worked with E

(2n)
k , whereas the Fourier expansion is

more easily accessible for the Eisenstein series F
(2n)
k .

The two doubling integrals are linked to each other by the elementary relation

E
(2n)
k (Z, s) |k

(
02n −12n

N · 12n 02n

)
= N−kn−2nsF

(2n)
k (Z, s).

Due to this relation, substituting F for E in the doubling method just means (for
Yoshida-lifts) a modification by a power of N (the factor N−ns in (15) goes away).
For the case of arbitrary cusp forms we refer to [BCG], [BKS].

We write down the relevant cases explicitly for the Yoshida lift F from above:
The residue of the standard L-function at s = 1 corresponds to a near center

value for L(f1 ⊗ f2, s):
The equation (13) then becomes (with F

(4)
2 := Ress=1/2 F

(4)
2 )
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〈
F, D2

(
k′ − k

2
, k − 2

)
F

(4)
2 (∗,−w̄)

〉

= cλ
∏

p|N
(1− p−1)ΛN (1)

1
ζ(N)(3)ζ(N)(4)ζ(N)(2)

L(N)

(
f ⊗ g,

k′ + k

2

)
· F (w)

(16)

with

c =
C2((k′ − k)/2, k − 2)

C2+1/2((k′ − k)/2, k − 2)
· γ2

(
k′ − k

2
, k − 2,

1
2

)
.

To treat the critical value of the standard L-function at s = 2, we can directly
use the formula (9), taking tacitly into account that F

(4)
4 (Z) := F

(4)
4 (Z, s) |s=0

defines a holomorphic modular form (see [Sh1, Proposition 10.1]) by Hecke sum-
mation.

This yields

〈
F, D4

(
k′ − k

2
− 2, k − 2

)
F

(4)
4 (∗,−w)

〉

= γ2

(
4,

k′ − k

2
− 2, k − 2, 0

)

× (±N)ΛN (2)
ζ(N)(2)

ζ(N)(4)ζ(N)(6)ζ(N)(4)
L(N)

(
f ⊗ g,

k′ + k

2
+ 1

)
· F (w). (17)

In the case of a general cusp form F ∈ Sρ(Γ
(2)
0 (N)), which we assume to be an

eigenfunction of the Hecke operators “away from N”, we can write

〈
F, D4

(
k′ − k

2
− 2

)
F

(4)
4 (∗,−w)

〉

= γ2

(
4,

k′ − k

2
− 2, k − 2, 0

)
× D

(N)
f (2)

ζ(N)(4)ζ(N)(6)ζ(N)(4)
T (F )(w)

where T is an (infinite) sum of Hecke operators at the bad places.

7. Integrality properties.

The known results about integrality of Fourier coefficients of Eisenstein series
are not sufficient for our purposes because they deal only with level one and large
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weights. We do not aim at the most general case, but just describe how to adapt
the reasoning in [B4, Section 5] to the cases necessary for our purposes.

7.1. The Eisenstein series.
We collect some facts about the Fourier coefficients of Eisenstein series

Fm
k (Z) := F m

k (Z, s)|s=0

for even m = 2n with k ≥ (m + 4)/2.
This function is known to define a holomorphic modular form with Fourier

expansion

Fm
k (Z) =

∑

T≥0

am
k (T,N) exp(2πi tr(TZ)).

We first treat T of maximal rank. We denote by d(T ) := (−1)n det(2T ) the
discriminant of T and by χT the corresponding quadratic character, defined by
χT (.) := (d(T )/.).

Then am
k (T,N) = 0 unless T > 0, see e.g. [BCG, Proposition 5.2].

If T > 0 then the Fourier coefficient is of type

am
k (T ) = Am

k det(T )k−(m+1)/2
∏

p-N
αp(T, k)

where αp(T, k) denotes the usual local singular series and

Am
k = (−1)mk/2 2m

Γm(k)
πmk.

We can express the non-Archimedean part by a normalizing factor and poly-
nomials in p−k:

∏

p-N
αp(T, k) =

1
ζ(N)(k)

∏n
j=1 ζ(N)(2k − 2j)

×
∑

G

det(G)−2k+m−1L(N)(k − n, χT [G−1])
∏

p-N
βp(T [G−1], k).

Here G runs over
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GL(n, Z)\{M ∈ Z(n,n) | det(M) coprime to N}

and the βp(T ) denote the “normalized primitive local densities”. In general they
are polynomials in p−k with integer coefficients and they are equal to one for all p

coprime to d(T ), see e.g. [B4, Section 2].
Let fT be the conductor of the quadratic character χT and ηT the correspond-

ing primitive character. Then

L(N)(k − n, χT ) =
∏

p|N
(1− χT (p)p−k+n)L(k − n, χT )

=
∏

p|N
(1− χT (p)p−k+n)

∏

p|d(T )

(1− η(p)pn−k)L(k − n, ηT ).

We quote from [B4] that

(
d(T )
fT

)k−m/2 ∏

p-N
(1− ηT (p)pn−k)βp(T, k) ∈ Z.

We may therefore just ignore this factor. Then as in [B4] we use the functional
equation of the Riemann zeta function and the Dirichlet L-functions attached to
quadratic characters.

We get (for 4 | k) that

am
k (T, N) ∈

∏

p|N

(
(1− p−k)

n∏

j=1

(1− p−2k+2j)
)

2n k

Bk

1
N ∗

2k−m

n∏

j=1

k − j

B2k−2j
· 1
Nk−n

·Z.

Here the factor Nk−n takes care of the possible denominator arising from
∏

p|N (1−
χT (p)p−k+n) and

N ∗
2k−m :=

∏

p|N2k−m

p1+νp(k−n),

where N2k−m is the denominator of the Bernoulli number B2k−m.
If k ≡ 2 mod 4 there is a similar formula, see [B4].

We have to assure that nonzero Fourier coefficients of lower rank do not
occur. This is a classical fact in the range of absolute convergence (i.e. k > m+1),
see e.g. the calculations in [Ma, Section 18]. It is also true for small weight
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k ≥ (m + 4)/2 and level one, as shown by Haruki [Har, Theorem 4.14]; his result
relies on calculations by Shimura [Sh1] and Mizumoto [Miz]. The basic ingredient
for Haruki is an expression [Har, (1.1)] for Fourier coefficients T of rank r < m

as finite sums of products of Γ-factors, singular series, confluent hypergeometric
functions and Eisenstein series for Gl(n) evaluated at s = 0. Haruki’s procedure
remains valid for level N > 1 as long as it is based on individual vanishing of the
products mentioned above (the modification for level N > 1 means to omit the
local singular series for primes dividing N , i.e. for all p | N one has to multiply the
level one expression by a polynomial in p−s−2k, evaluated at s = 0). Indeed, as
shown in the proof of Theorem 4.14 [Har], such individual vanishing occurs for all
T of rank r < m and all k ≥ (m + 4)/2 except possibly for the case k = (m + 4)/2
and r = m− 4 > 0; in this exceptional case the vanishing for level one depends on
cancellations for some T .

In summary, the Fourier coefficients am
k (T,N) all vanish for rank(T ) < m

and k > (m + 4)/2 and also for m = k = 4.

Remark 7.1. The Fourier coefficients of F 4
4 (N) are in

∏

p|N

(
(1− p−4)2(1− p−6)

) 9
2N2

·Z ⊆ 9
N16

·Z
[
1
2

]
.

7.2. The differential operators.
By definition, the coefficients of the differential operator Dµ

k are in Z[1/2];
here we view Dµ

k as a polynomial in the variables z2 and ∂ij .
Concerning the integrality properties of Lν

k, we just remark that because of

(2− k − ν)[j] = (−1)j(k + ν − j − 1)[j] = (−1)j (k + ν − 2)!
(k + ν − j − 1)!

it is sufficient to look at

(k + ν − j − 1)!
k[ν]j!(ν − 2j)!(k + ν − 2)!

(
0 ≤ j ≤

[
ν

2

])
.

Taking into account that ν!/(j!(ν − 2j)!) ∈ Z and

(k + ν − j − 1)!
(k + ν − 2)!

∈ 1
(k + ν − [ν/2]) · · · (k + ν − 2)

·Z

we see that the coefficients of Lν
k are in
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1
k[ν]ν!(k + ν − 2) · · · (k + ν − [ν/2])

·Z.

Putting things together, we see that Dk(µ, ν) has coefficients in

1
(k + µ)[ν]ν!(k + µ + ν − 2) · · · (k + µ + ν − [ν/2])

·Z
[
1
2

]
.

Remark 7.2. The Fourier coefficients of D4(µ, ν)F 4
4 are in

1
(4 + µ)[ν]ν!(4 + µ + ν − 2) · · · (4 + µ + ν − [ν/2])

× 9
N16

Z

[
1
2

]
.

This remark does not claim, that the denominator given there is the best
possible one, there may be additional cancellations of denominators coming from
the restriction.

8. The Petersson norm of the Yoshida lift.

Take f =
∑

anqn, g =
∑

bnqn as in the introduction, of weights k′ and k

respectively and assume that for all primes p dividing the common (square-free)
level N of f, g both functions have the same Atkin-Lehner eigenvalue εp. Let
k′ = 2ν1 + 2, k = 2ν2 + 2. Choose a factorization N = N1N2, where N1 is
the product of an odd number of prime factors, and let D = D(N1, N2) be the
definite quaternion algebra over Q, ramified at ∞ and the primes dividing N1. Let
R = R(N1, N2) be an Eichler order of level N = N1N2 in D(N1, N2) with (left)
ideal class number h.

We recall (and slightly modify) some notation from Section 1 of [BS3]: For
ν ∈ N let U

(0)
ν be the space of homogeneous harmonic polynomials of degree ν

on R3 and view P ∈ U
(0)
ν as a polynomial on D

(0)
∞ = {x ∈ D∞ | tr(x) = 0} by

putting P (
∑3

i=1 xiei) = P (x1, x2, x3) for an orthonormal basis {ei} of D
(0)
∞ with

respect to the norm form n on D. The representations τν of D×
∞/R× of highest

weight (ν) on U
(0)
ν given by (τν(y))(P )(x) = P (y−1xy) for ν ∈ N give all the

isomorphism classes of irreducible rational representations of D×
∞/R×.

For an irreducible rational representation (Vτ , τ) (with τ = τν as above)
of D×

∞/R× we denote by A (D×
A, R×A, τ) the space of functions φ : D×

A → Vτ

satisfying φ(γxu) = τ(u−1
∞ )φ(x) for γ ∈ D×

Q and u = u∞uf ∈ R×A, where R×A =
D×
∞×

∏
p R×p is the adelic group of units of R. Let D×

A =
⋃r

i=1 D×yiR
×
A be a double

coset decomposition with yi,∞ = 1 and n(yi) = 1. A function in A (D×
A, R×A, τ) is

then determined by its values at the yi. We put Iij = yiRy−1
j , Ri = Iii and let ei
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be the number of units of the order Ri. On the space A (D×
A, R×A, τ) we have for

p - N Hecke operators T̃ (p) defined by T̃ (p)φ(x) =
∫

D×p
φ(xy−1)χp(y)dy where χp

is the characteristic function of {y ∈ Rp | n(y) ∈ pZ×
p }. They commute with the

involutions w̃p and are given explicitly by T̃ (p)φ(yi) =
∑r

j=1 Bν
ij(p)φ(yj), where

the Brandt matrix entry Bν
ij(p) is given as

Bij(p) = B
(ν)
ij (p) =

1
ej

∑

x∈yjRy
−1
i

n(x)=p

τ(x),

hence is itself an endomorphism of the representation space U
(0)
ν of τ .

From [Ei], [H-S], [Shz], [J-L] we know then that the essential part
Aess(D×

A, R×A, τ) consisting of functions φ that are orthogonal (under the natu-
ral inner product) to all ψ ∈ A (D×

A, (R′A)×, τ) for orders R′ strictly containing R

is invariant under the T̃ (p) for p - N and the w̃p for p-N and hence has a basis
of common eigenfunctions of all the T̃ (p) for p - N . Moreover in Aess(D×

A, R×A, τ)
strong multiplicity one holds, i.e., each system of eigenvalues of the T̃ (p) for p - N
occurs at most once, and the eigenfunctions are in one to one correspondence with
the newforms in the space S2+2ν(N) of elliptic cusp forms of weight 2 + 2ν for
the group Γ0(N) that are eigenfunctions of all Hecke operators (if τ is the trivial
representation and R is a maximal order one has to restrict here to functions or-
thogonal to the constant function 1 on the quaternion side in order to obtain cusp
forms on the modular forms side).

Let φ1 = φ
(N1,N2)
1 : D×

A → U
(0)
ν1 and φ2 = φ

(N1,N2)
2 : D×

A → U
(0)
ν2 correspond

to f and g respectively with respect to the choice of N1, N2 and hence of D =
D(N1, N2). Let F = Ff,g = Fφ1,φ2 (which of course also depends on the choice of
N1, N2) be the Yoshida lift; it takes values in the space Wρ of the symmetric tensor
representation ρ = detκ⊗Symj(C2), j = k− 2, κ = 2 + (k′ − k)/2 and is a Siegel
cusp form F ∈ Sρ(Γ

(2)
0 (N)). To describe it explicitly we notice that the group

of proper similitudes of the quadratic form q(x) = n(x) on D (with associated
symmetric bilinear form B(x, y) = tr(xȳ), where tr denotes the reduced trace on
D) is isomorphic to (D××D×)/Z(D×) (as algebraic group) via (y, y′) 7→ σy,y′ with
σy,y′(x) = yx(y′)−1, the special orthogonal group is then the image of {(y, y′) ∈
D× ×D× | n(y) = n(y′)}.

We denote by H the orthogonal group of (D, n), by H+ the special orthogonal
group and by K (resp. K+) the group of isometries (resp. isometries of determinant
1) of the lattice R in D. It is well known that the H+(R)-space U

(0)
ν1 ⊗ U

(0)
ν2 is

isomorphic to the H+(R)-space Uν1,ν2 of C[X1, X2]-valued harmonic forms on
D2
∞ transforming according to the representation of GL2(R) of highest weight
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(ν1 + ν2, ν1 − ν2); an intertwining map Ψ has been given in [BS5, Section 3].
It is also well known [KV] that the representation λν1,ν2 of H+(R) on Uν1,ν2 is
irreducible of highest weight (ν1 + ν2, ν1 − ν2). If ν1 > ν2 it can be extended in
a unique way to an irreducible representation of H(R) on the space Uν1,ν2,s :=
(U (0)

ν1 ⊗U
(0)
ν2 )⊕(U (0)

ν2 ⊗U
(0)
ν1 ) =: Uλ which we denote by (τ1⊗τ2) =: λ for simplicity,

on this space σy,y′ ∈ H+(R) acts via τ1(y)⊗ τ2(y′) on the summand U
(0)
ν1 ⊗ U

(0)
ν2

and via τ2(y) ⊗ τ1(y′) on the summand U
(0)
ν2 ⊗ U

(0)
ν1 . For ν1 = ν2 there are two

possible extensions to representations (τ1 ⊗ τ2)± on Uν1,ν2 ; we denote this space
with the representation (τ1 ⊗ τ2)+ =: λ on it by Uλ again (and don’t consider the
minus variant in the sequel).

We recall then from [KV], [We1], [BS3] that the space Hq(ρ) consisting of all
q-pluriharmonic polynomials P : M4,2(C) → Wρ such that P (xg) = (ρ(gt))P (x)
for all g ∈ GL2(C) is isomorphic to (Uλ, λ) as a representation space of H(R). The
space Hq(ρ) carries an essentially unique H(R)-invariant scalar product 〈 , 〉Hq(ρ),
and in the usual way we can find a reproducing H(R) invariant kernel PGeg ∈
Hq(ρ)⊗Hq(ρ) (generalized Gegenbauer polynomial), i.e., PGeg is a polynomial on
D2
∞ ⊕D2

∞ taking values in Wρ ⊗Wρ which as function of each of the variables

i) is a q-pluriharmonic polynomial in Hq(ρ),
ii) is symmetric in both variables
iii) satisfies PGeg(hx, hx̃) = PGeg(x, x̃) for h ∈ H(R)
iv) satisfies 〈PGeg(x, ·), P (·)〉Hq(ρ) = P (x) for all P ∈ Hq(ρ).

In fact, since such a polynomial is characterized by the first three properties up
to scalar multiples we can construct it (in a more general situation) with the help
of the differential operator Dα(µ, ν) and the polynomial Qµ,ν

α from 6.1:
For k ∈ N and nonnegative integers µ, ν we define a polynomial map

P̃Geg

(k,µ,ν)
: C2k,n ×C2k,n −→ Vν ⊗ Vν

by

P̃Geg

(k,µ,ν)
(Y1,Y2) := Q

(µ,ν)
k

((
Yt

1Y1 Yt
1Y2

Yt
2Y1 Yt

2Y2

))
.

Then P̃Geg

(k,µ,ν)
is symmetric and pluriharmonic in Y1 and Y2, see [I1]; moreover,

for A,B ∈ GL(n, C) we have

P̃Geg

(k,µ,ν)
(Y1 ·A,Y2 ·B) = det(A)µ det(B)µσν(A)⊗σν(B)

(
P̃Geg

(k,µ,ν)
(Y1,Y2)

)
.
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For g ∈ O(2k,C) we get

P̃Geg

(k,µ,ν)
(gY1,Y2) = P̃Geg

(k,µ,ν)
(Y1, g

−1Y2).

If we consider a 2k-dimensional positive definite real quadratic space with
positive definite quadratic form q and associated bilinear form B (so that B(x, x) =
2q(x)) we write q(x1, . . . , x2n) = (B(xi, xj)/2)i,j for (half) the 2n × 2n Gram
matrix associated to the 2n-tuple of vectors (x1, . . . , x2n) and put in a similar way
as above for (y,y′) ∈ V 2n

P
(k,µ,ν)
Geg (y,y′) = Qµ,ν

k (q(y,y′)),

this gives a nonzero polynomial with values in Vν ⊗ Vν which is symmetric in
the variables y,y′, is q-pluriharmonic in each of the variables with the proper
transformation under the right action of GLn and is invariant under the diagonal
action of the orthogonal group of q; it is hence a scalar multiple of the Vν ⊗ Vν-
valued Gegenbauer polynomial on this space.

If we apply the differential operator Dk(µ, ν) to a degree 2n theta series
Θ2n

S (Z) :=
∑

R∈Z2k,2n exp 2πi tr(RtSRZ) written in matrix notation we get

(
Dk(µ, ν)Θ2n

S

)
(z1, z4) =

∑

R1,R2∈Z(2k,n)

(2πi)nµQ
(µ,ν)
k

((
S[R1] Rt

1SR2

Rt
2SR1 S[R2]

))

× exp 2πi tr(S[R1]z1 + S[R2]z4);

writing the theta series in lattice notation as the degree 2n theta series

θ
(2n)
Λ (Z) =

∑

x∈Λ2n

exp(2πi tr(q(x)Z))

of a lattice Λ on V we obtain in the same way

Dk(µ, ν)θ(2n)
Λ (z1, z4)

= (2πi)nµ
∑

(y,y′)∈Λ2n

PGeg(y,y′) exp(2πi tr(q(y)z1 + q(y′)z4))

= (2πi)nµ
∑

(y)∈Λn

θ
(n,ν)
Λ (z4)(y) exp(2πi tr(q(y)z1)), (18)
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where we have written

θ
(n,ν)
Λ (z4)(y) :=

∑

(y′)∈Λn

PGeg(y,y′) exp(2πi tr(q(y′)z4)). (19)

Going through the construction above in our quaternionic situation with Vν =
Wρ we see that we can normalize the scalar product on Hq(ρ) in such a way that
the polynomial PGeg obtained in the way just described is indeed the reproducing
kernel for this space. We choose this normalization in what follows and write

θij,ρ(Z)(x̃) :=
∑

x∈(yiRy−1
j )2

PGeg(x, x̃) exp(2πi tr(q(x̃)Z)) ∈ Wρ ⊗Wρ

(so that θij,ρ(Z) is (for each Z in the Siegel upper half space H2) an element of
Hq(ρ) ⊗ Wρ). For an arbitrary lattice Λ on D the theta series θΛ,ρ is defined
analogously as given in equation (19).

We denote by P the (essentially unique) isomorphism from Uλ to Hq(ρ).
With the help of the map Ψ from [BS5] mentioned above we can fix a normalization
and write P(R1 ⊗R2) for Rj ∈ U

(0)
νj as

P(R1 ⊗R2)(d1, d2)(X1, X2)

=
(
D(n(d1X1 + d2X2)ν2τ2(d1X1 + d2X2)R2)R1

)(
Im(d1d2)

)
, (20)

where we associate as usual to a polynomial R ∈ C[t1, t2, t3]) the differential
operator D(R) = R(∂/∂t1, ∂/∂t2, ∂/∂t3), set Im(d) = d − d̄ and write all vectors
as coordinate vectors with respect to an orthonormal basis.

Definition 8.1. With notation as above we define the Yoshida lift of
(φ1, φ2), or also of (f, g) with respect to (N1, N2), to be given by

F (Z) := Y (2)(φ1, φ2)(Z)

:=
r∑

i,j=1

1
eiej

〈
P(φ1(yi)⊗ φ2(yj)), θij,ρ(Z)

〉
Hq(ρ)

∈ Wρ.

Lemma 8.2. (1) One has θij,ρ(Z)(x) = θji,ρ(Z)(x̄) (where x̄ = (x̄1, x̄2)
denotes the quaternionic conjugate of the pair x = (x1, x2)).
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(2) 2F (Z) = 2Y (2)(φ1, φ2, Z)

=
r∑

i,j=1

1
eiej

∑

x∈(yiRy−1
j )2

P(φ1(yi)⊗ φ2(yj) + φ2(yi)⊗ φ1(yj))(x1, x2)

× exp(2πi tr(q(x)Z)).

(3) Denote by 〈F, θij,ρ〉Pet the Petersson product of the vector valued Siegel mod-
ular forms F and θij,ρ. Then the function ξ : (yi, yj) 7→ 〈F, θij,ρ〉Pet ∈ Hq(ρ)
has the symmetry property ξ(yi, yj)(x) = ξ(yj , yi)(x̄). It induces a unique
function, denoted by ξ̃, on H(A) satisfying ξ̃(σyi,yj

) = ξ(yi, yj) and

ξ̃(γσk) = λ(k−1
∞ )ξ̃(σ) for σ ∈ H(A), γ ∈ H(Q), k = (kv)v ∈ H(RA),

where we denote by H(RA) the group of adelic isometries of the lattice R on
D.

Proof. This is easily seen to be a consequence of the fact that the lattice
Iij = yiRy−1

j is the quaternionic conjugate of the lattice Iji = yjRy−1
i and that

quaternionic conjugation is an element of the (global) orthogonal, but not of the
special orthogonal group of (D, n). ¤

As in [BS1] we need to show that ξ is proportional to the function ξφ1,φ2 :
(yi, yj) 7→ φ1(yi) ⊗ φ2(yj) + φ2(yi) ⊗ φ1(yj) that appears in our formula for the
Yoshida lifting, and to determine the factor of proportionality occurring.

Lemma 8.3. With notations as in the previous lemma one has

〈F, θij,ρ〉Pet = c5P(φ1(yi)⊗ φ2(yj) + φ2(yi)⊗ φ1(yj))

and

〈F, F 〉Pet = c5〈P(φ1 ⊗ φ2),P(φ1 ⊗ φ2)〉,

with some constant c5 6= 0, where the latter inner product is the natural inner
product on Hq(ρ)-valued functions on D×

A × D×
A satisfying the usual invariance

properties under R×A and D×
Q, which is defined by

〈P(φ1 ⊗ φ2),P(φ1 ⊗ φ2)〉

=
r∑

i,j=1

1
eiej

〈
P(φ1(yi)⊗ φ2(yj)),P(φ1(yi)⊗ φ2(yj))

〉
Hq(ρ)

.
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Proof. The proof proceeds in essentially the same way as in [BS1]: We
notice first that the space of all ξ with the symmetry property mentioned (or
equivalently the space of functions ξ̃ on H(A) with the invariance property given)
has a basis consisting of the ξφ1,φ2 = ξφ2,φ1 , where (φ1, φ2) runs through the pairs
of eigenforms in (A (D×

A, (RA)×, τ1)× (A (D×
A, (RA)×, τ2) and where the pairs are

unordered if ν1 = ν2.
The Hecke operators T ′i (p) on the spaces A (D×

A, R×A, τi) (for i = 1, 2) via
Brandt matrices described above induce Hecke operators T̂ (p) on the space of ξ

as above that are given by

ξ | T̂ (p)(yi, yj) =
r∑

k=1

B̃
(right)
jk (p)ξ(yi, yk) +

r∑

l=1

B̃
(left)
il (p)ξ(yl, yj),

where for ν1 > ν2 we let B̃
(right)
jk (p) act on U = U

(0)
ν1 ⊗ U

(0)
ν2 ⊕ U

(0)
ν2 ⊗ U

(0)
ν1 via

id⊗Bν2
jk(p)⊕ id⊗Bν1

jk(p) and B̃
(left)
il (p) as Bν1

jk(p)⊗ id⊕Bν2
jk(p)⊗ id, and where for

ν1 = ν2 the action of B̃(left), B̃(right) on U = U
(0)
ν1 ⊗ U

(0)
ν2 is simply the action of

the Brandt matrix on the respective factor of the tensor product.
In the same way as sketched in [BS1, 10 b)] we obtain then (using the calcu-

lations of Hecke operators from [Y1], [Y2]) first

〈F, θij,ρ|T (p)〉Pet = ξ|T̂ (p)(yi, yj).

Since, again by Yoshida’s computations of Hecke operators (see also [BS3]),
we know that F is an eigenfunction of T (p) with eigenvalue λp(f)+λp(g), this im-
plies that ξ is an eigenfunction with the same eigenvalue for T̂ (p). A computation
that uses the eigenfunction property of φ1, φ2 for the action of the Hecke operators
on the spaces A (D×

A, (RA)×, τ1),A (D×
A, (RA)×, τ2) shows that the same is true

for the function ξφ1,φ2 .
Since φ1, φ2 are in the essential parts of A (D×

A, (RA)×, τ1), A (D×
A, (RA)×,

τ2), their eigenvalue systems occur with strong multiplicity one in these spaces,
and as in Section 10 of [BS1] we can conclude that ξ and ξφ1,φ2 are indeed pro-
portional, i.e., we have

〈F, θij,ρ〉Pet = c5P(φ1(yi)⊗ φ2(yj) + φ2(yi)⊗ φ1(yj))

with some constant c5 6= 0.
From this we see:
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〈F, F 〉Pet =
〈

F,
r∑

i,j=1

1
eiej

〈
P(φ1(yi)⊗ φ2(yj)), θij,ρ

〉
Hq(ρ)

〉

Pet

=
r∑

i,j=1

c5

eiej

〈
P(φ1(yi)⊗ φ2(yj)),

P(φ1(yi)⊗ φ2(yj) + φ2(yi)⊗ φ1(yj))
〉

Hq(ρ)

= c5

〈
P(φ1 ⊗ φ2),P(φ1 ⊗ φ2)

〉
. ¤

In order to compute the constant c5 we will first need the generalization of
Lemma 9.1 of [BS1] to the present situation:

Lemma 8.4. (1) If Λ is a lattice on some quaternion algebra D′ with
n(Λ) ⊆ Z, of level dividing N , and with disc(Λ) 6= N2 the theta series θΛ,ρ is
orthogonal to all Yoshida lifts Y (2)(φ1, φ2) of level N .

(2) If Λ is a lattice on some quaternion algebra D′ 6= D with n(Λ) ∈ Z, of level
N , and with disc(Λ) = N2 the theta series θΛ,ρ is orthogonal to all Yoshida
lifts Y (2)(φ1, φ2) of level N associated to D.

Proof. The proof of Lemma 9.1 of [BS1] unfortunately contains some
misprints: In line 4 on p. 81 the minus sign in front of the whole factor should not
be there and the exponent at p should be n(n + 1)/2 (which is equal to 3 in our
present situation), in line 5 the exponent at p should be n(n − 1)/2 (hence 1 in
our case), in line 9 the factor p in the right hand side of the equation should be
omitted, and in line 14 the exponent at p should be 1 instead of 3.

Apart from these corrections the argument given there carries over to our
situation unchanged. In particular, the results from Section 7 of [BS1] that were
used in the proof of that lemma remain true and their proof carries over if one
uses the reformulation of Evdokimov’s result from [Ev] sketched in Section 4 of
[BS3]. ¤

We recall from [BS1] that we have

E
(4)
2 (Z1, Z2) =

t∑
r=1

αr

∑

{Kr}

1
|O(Kr)|θ

(2)
Kr

(Z1)θ
(2)
Kr

(Z2),

where we denote by L1, . . . , Lt representatives of the genera of lattices of rank 4,
square discriminant and level dividing N = N1N2, the summation over {Kr} runs
over a set of representatives of the isometry classes in the genus of Lr and αr are
some constants that are explicitly determined in [BS1].
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Hence by (19) we obtain

(
D2

(
k′ − k

2
− 2, k − 2

)(
E

(4)
2

))
(Z1, Z2)

= c3

t∑
r=1

αr

∑

{Kr}

1
|O(Kr)|

∑

(x1,x2)∈K2
r×K2

r

PGeg(x1,x2)

× exp(2πi tr(q(x1)Z1 + q(x2)Z2))

with c3 = (2πi)k′−k, and similarly for the Eisenstein series F
(4)
2 attached to the

cusp zero, with the αr replaced by βr as in [BS1].
The reproducing property of PGeg implies then

∑

(x1,x2)∈K2
r×K2

r

PGeg(x1,x2) exp(2πi tr(q(x1)Z1 + q(x2)Z2))

=
〈〈θK,ρ(Z1)(u1)⊗ θK,ρ(Z2)(u2), PGeg(u1,u2)〉Hq(ρ)

〉
Hq(ρ)

.

Using the fact that by Lemma 8.4 the Yoshida lifting F is orthogonal to all θK,ρ

where K is not in the genus of the given Eichler order of level N1N2 we see that the
part of the sum for D(F (4)

2 )(Z1, Z2) which contributes to the Petersson product
with F can be written as

c3β1

∑

i,j

1
eiej

〈〈θij,ρ(Z1)(u1)⊗ θij,ρ(Z2)(u2), PGeg(u1,u2)〉Hq(ρ)

〉
Hq(ρ)

.

We further recall that by (16) we have

〈
F, D(F (4)

2 )(∗,−w̄)
〉
Pet

= c4L
(N)

(
f ⊗ g,

k + k′

2

)
F (w)

with

c4 = λ
∏

p|N
(1− p−1)ΛN (1)

1
ζ(N)(3)ζ(N)(4)ζ(N)(2)

C2((k′ − k)/2, k − 2)
C2+1/2((k′ − k)/2, k − 2)

× γ2

(
k′ − k

2
, k − 2,

1
2

)
. (21)
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Proposition 8.5. With notations as above we have

〈F, F 〉Pet =
c4

2c3β1
L(N)

(
f ⊗ g,

k + k′

2

)〈
P(φ1 ⊗ φ2),P(φ1 ⊗ φ2)

〉
.

Proof. From what we saw above and using Lemma 8.3 we get

〈
F, D(F (4)

2 )(∗,−Z̄)
〉
Pet

= c3β1

∑

i,j

1
eiej

× 〈〈F (∗), θij,ρ(−Z̄)(u1)⊗ 〈θij,ρ(∗)(u2)〉Pet, PGeg(u1,u2)〉Hq(ρ)

〉
Hq(ρ)

= c5c3β1

∑

i,j

1
eiej

× 〈〈θij,ρ(−Z̄)⊗P(φ1(yi)⊗ φ2(yj) + φ2(yi)⊗ φ1(yj)), PGeg〉Hq(ρ)

〉
Hq(ρ)

= c5c3α1

∑

i,j

1
eiej

〈
θij,ρ(Z),P(φ1(yi)⊗ φ2(yj) + φ2(yi)⊗ φ1(yj))

〉
Hq(ρ)

= 2c3c5β1F.

Comparing with

〈
F, D(F (4)

2 )(∗,−Z̄)
〉
Pet

= c4L
(N)

(
f ⊗ g,

k + k′

2

)
F (Z)

we obtain

c5 =
c4L

(N)(f ⊗ g, (k + k′)/2)
2β1c3

,

which together with Lemma 8.3 yields the assertion. ¤

In order to make use of the above proposition in the next section we will
also need to compare 〈P(φ1 ⊗ φ2),P(φ1 ⊗ φ2)〉 with 〈φ1, φ1〉〈φ2, φ2〉, where we
have 〈φµ, φµ〉 =

∑r
i=1(〈φµ(yi), φµ(yi)〉µ)/ei for µ = 1, 2, with 〈 , 〉µ denoting the

(suitably normalized, see below) scalar product on U
(0)
νµ . As always we denote by

B(x, y) = tr(xȳ) the symmetric bilinear form associated to the quaternionic norm
form.
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Lemma 8.6. Write G̃
(ν)
a (x) = (B(a, x))ν for a, x ∈ D

(0)
C := D

(0)
∞ ⊗ C with

n(a) = 0 and let ν1 ≥ ν2. Then

(1)
P

(
G̃

(ν1)
a ⊗ G̃

(ν2)
a

)
(d1, d2)(X1, X2)

=
ν1!
ν2!

(B(a, d1)X1 + B(a, d2)X2)2ν2G̃
(ν1−ν2)
a

(
Im(d1d2)

)
. (22)

(2) For a ∈ D
(0)
C as above there is b ∈ DC := D⊗C with ab = 0, ab̄ = a, n(b) = 0,

and for such a b we have

lim
λ→0

1
λν1−ν2

PGeg((a, a + λb), (d1, d2))(Y1, Y2, X1, X2)

= c6(B(a, d1)X1 + B(a, d2)X2)2ν2G̃
(ν1−ν2)
a

(
Im(d1d2)(Y1 + Y2)2ν2

)
. (23)

with c6 = C2(ν1 − ν2, 2ν2) as in Lemma 6.4.

Proof. (1) From the formula for the map P in equation (20) we get

P
(
G(ν1)

a ⊗G(ν2)
a

)
(d1, d2)(X1, X2)

=
ν1!
ν2!

(
B(a, (d1X1 + d2X2)a(d1X1 + d2X2))

)ν2
G(ν1−ν2)

a

(
Im(d1d2)

)
.

Using ā = −a, a2 = 0 and xa = ax̄− B(a, x) for x ∈ DC we get B(a, yax̄) =
B(a, x)B(a, y) for x, y ∈ DC . We extend this identity to the polynomial ring,
insert for x, y one of d1X1, d2X2 and obtain B(a, (d1X1 + d2X2)a(d1X1 +
d2X2)) = (B(a, d1)X1 + B(a, d2)X2)2, which yields the assertion.

(2) For simplicity we identify DC with the matrix ring M2(C) and fix a =
(

0 1
0 0

)
,

b =
(

1 0
0 0

)
(we will need this Lemma only for one particular choice of a, b).

Equation (8) in Lemma 6.4 gives us

PGeg((a, a + λb), (d1, d2))(Y1, Y2, X1, X2)

= c6

(
(Y1, Y2)

(
B(a, d1) B(a, d2)

B(a + λb, d1) B(a + λb, d2)

)(
X1

X2

))2ν2

× det
((

B(a, d1) B(a, d2)
B(a + λb, d1) B(a + λb, d2)

))ν1−ν2

.

Dividing by λν1−ν2 and taking the limit for λ → 0 we get
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c6((Y1 + Y2)(B(a, d1)X1 + B(a, d2)X2))2ν2 det
((

B(a, d1) B(a, d2)
B(b, d1) B(b, d2)

))ν1−ν2

.

Computing the determinant for our choice of a, b, writing d1, d2 as matri-
ces

(
x1 x2
x3 x4

)
,

( y1 y2
y3 y4

)
and using that quaternionic conjugation sends a matrix(

x1 x2
x3 x4

)
to its classical adjoint

(
x4 −x2−x3 x1

)
one checks that both det(. . . )ν1−ν2

and G̃
(ν1−ν2)
a (Im(d1d2)) evaluate to (x3y4 − x4y3)ν1−ν2 , which proves the as-

sertion. ¤

Proposition 8.7. Let R1 ∈ U
(0)
ν1 , R2 ∈ U

(0)
ν2 be given and let the scalar

products 〈 , 〉µ on U
(0)
νµ for µ = 1, 2 be normalized such that the Gegenbauer

polynomial

G(νµ)(x, y) =
2νµ

Γ(1/2)

[νµ/2]∑

j=0

(−1)j 1
j
!(νµ−2j)!Γ

(
νµ−j+

1
2

)
(tr(xȳ))νµ−2j(n(x)n(y))j

(see [BS5, p. 47]) is the reproducing kernel for U
(0)
νµ . Then one has

〈P(R1 ⊗R2),P(R1 ⊗R2)〉Hq(ρ) = c7〈R1, R1〉1〈R2, R2〉2

with

c7 = c6
ν1!
ν2!

(
2ν1

ν1

)(
2ν2

ν2

)
= C2(ν1 − ν2, 2ν2)

ν1!
ν2!

(
2ν1

ν1

)(
2ν2

ν2

)
(24)

with C2(ν1 − ν2, 2ν2) explicitly given in Lemma 6.4.

Proof. Since P is an intertwining map between finite dimensional irre-
ducible unitary representations of the compact orthogonal group it is clear that
the right hand side and the left hand side of the asserted equality are proportional.
It suffices therefore to evaluate both sides for a particular choice of R1, R2. We
choose R1 = G

(ν1)
a , R2 = G

(ν2)
a with G

(νµ)
a (y) = G(νµ)(a, y). The reproducing

property of the Gegenbauer polynomial gives

〈
PGeg(a, a + λb),P(G(ν1)

a ⊗G(ν2)
a )

〉
Hq(ρ)

=
(
P(G(ν1)

a ⊗G(ν2)
a )

)c(a, a + λb),

where we denote by the exponent c at (P(G(ν1)
a ⊗G

(ν2)
a )) complex conjugation of
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the coefficients of this polynomial (in order to avoid confusion with quaternionic
conjugation). With the particular choice of a, b form the previous lemma we obtain,
using ab̄ = a and a2 = 0 and writing ac for the vector obtained from a by complex
conjugation of the coordinates with respect to an orthonormal basis of D∞,

1
λν1−ν2

(
P(G(ν1)

a ⊗G(ν2)
a )

)c(a, a + λb)(Y1, Y2)

=
(Y1 + Y2)2ν2

λν1−ν2

(
2ν1

ν1

)(
2ν2

ν2

)
(B(ac, a))2ν2

(
B(ac, Im(a(a + λb)))

)ν1−ν2

=
(

2ν1

ν1

)(
2ν2

ν2

)
(B(ac, a))ν1+ν2(Y1 + Y2)2ν2

=
(
G(ν1)

a

)
(ac)

(
G(ν2)

a

)
(ac)(Y1 + Y2)2ν2

=
〈
G(ν1)

a , G(ν1)
a

〉
1

〈
G(ν2)

a , G(ν2)
a

〉
2
(Y1 + Y2)2ν2 .

Inserting the formulas from Lemma 8.6 proves the assertion. ¤

Corollary 8.8. With notations as in Proposition 8.5 and P normalized
as above one has

〈F, F 〉Pet =
c4c7

2c3β1
L(N)

(
f ⊗ g,

k + k′

2

)
〈φ1, φ1〉1〈φ2, φ2〉2

=
c4c7

2(2πi)k′−kβ1
L(N)

(
f ⊗ g,

k + k′

2

)
〈φ1, φ1〉1〈φ2, φ2〉2,

with c4 as in (21), c7 as in (24), and β1 = β
(4)
1 as in Corollary 3.2 of [BS1] (with

m = 4, rp(1) = 1 for all p | N , and a4(N) as in Proposition 3.2 of [BS1]).

Let F be a Yoshida lift of f and g as above and define Fcan =
F/

√
〈P(φ1 ⊗ φ2),P(φ1 ⊗ φ2)〉. Any rescaling of φ1, φ2 or P affects the numera-

tor and denominator in the same way, so this may be viewed as a canonical choice
of scaling of F . We can now express this canonical choice of F explicitly.

Proposition 8.9. Let φ
(0)
1 , φ

(0)
2 be normalized by 〈φ(0)

1 , φ
(0)
1 〉1 =

〈φ(0)
2 , φ

(0)
2 〉2 = 1 and let P be normalized as above. Then one has

Fcan =
1
c7

Y 2
(
φ

(0)
1 , φ

(0)
2

)

with c7 given explicitly in equation (24).
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Note that the Fourier coefficients of Fcan are algebraic. From the results of
[BS5], [BS4] it is clear that the square of the (scalar valued) average over matrices
T of fixed fundamental discriminant −d of the Fourier coefficients A(F, T ) ∈ Wρ

of the Yoshida lifting Fcan is proportional to the product of the central critical
values of the twists with the quadratic character χ−d of the L-functions of the
elliptic modular forms f and g; notice that the averaging procedure for the Wρ-
valued Fourier coefficients involves a scalar product of A(F, T ) with the vector
ρ(T−1/2)v0, where v0 is an On(R)-invariant vector in Wρ. We can now make this
proportionality as explicit as the result of [BS2] for the scalar valued case.

Proposition 8.10. Assume that ν1, ν2 are even and that both f, g have a
+-sign in the functional equation. Choose N1, N2 such that the (common) Atkin-
Lehner eigenvalue εp of f, g at p is −1 if and only if p | N1. Let −d < 0 be
a fundamental discriminant with (−d/p)εp = 1 for all primes p dividing Nd =
N/ gcd(N, d). We let F = Fcan be the canonical Yoshida lifting of f, g with respect
to N1, N2 and put

a(F, d) =

√
d

2

∑
{T}

discT=−d

1
ε(T )

∫

T [x]≤1

A(F, T )(x1, x2)dx1dx2

where A(F, T ) is the Fourier coefficient at T of F , the summation is over integral
equivalence classes of T , and ε(T ) is the number of automorphy (units) of T , i.e.,
the number of g ∈ GL2(Z) with tgTg = T .

Then one has

(a(F, d))2 = c8
L(1 + ν1, f)L(1 + ν2, g)L(1 + ν1, f ⊗ χ−d)L(1 + ν2, g ⊗ χ−d)

〈f, f〉〈g, g〉
(25)

with c−1
8 = 26(ν2 + 1)2π2+2ν1+2ν2 .

Proof. Corollary 4.3 of [BS5] gives

(
d

4

)(ν1+ν2)/2

σ0(Nd)a(F, d) =
c

2
a(W (φ1), d)a(W (φ2), d),

where the a(W (φµ), d) are the Fourier coefficients of the Waldspurger liftings
W (φµ) =

∑r
j=1(1/ej)

∑
x∈Lj

φ(yj)(x) exp(2πin(x)z) associated to the lattices
Lj = D(0) ∩ (Z1 + 2Rj) and where c = (−1)ν22π/(2ν2 + 2). Inserting the ex-
plicit version of Waldspurger’s theorem from [Koh], [BS4] gives the assertion. ¤



1396 S. Böcherer, N. Dummigan and R. Schulze-Pillot

Remark 8.11. (1) The restrictive conditions on f, g, N1, d in the proposi-
tion are chosen in order to prevent that a(F, d) becomes zero for trivial reasons.

(2) Since
√

d/2
∫

T [x]≤1
xi

1x
j
2dx1dx2 is zero for i or j odd and equal to

∫ π/2

0

cosi(α) sinj(α)dα =
Γ(i1 + 1/2)Γ(j1 + 1/2)

2Γ(i1 + j1 + 1)

for even i = 2i1, j = 2j1, we have:
If for a prime λ not dividing 2ν2! and some j ∈ N one has λj - a(F, d)/π, then
there is some T of discriminant −d such that λj does not divide all coefficients
of the polynomial A(F, T ).

(3) With the help of the above proposition for the case ν1 = ν2 and f = g one
could derive an explicit version of formula (5.7) of [BS5]. Such an explicit
version has been given independently by Luo in [Lu, (8)].

9. A congruence of Hecke eigenvalues.

As above, let f and g be cuspidal Hecke eigenforms for Γ0(N), of weights k′ >

k ≥ 2. For critical k ≤ t < k′, define Lalg(f ⊗ g, t) := L(f ⊗ g, t)/(π2t−(k−1)〈f, f〉).
(Alternatively one could divide by a canonical Deligne period–it makes no differ-
ence to the proposition below.) Let K be a number field containing all the Hecke
eigenvalues of f and g. Let F be a Yoshida lift of f and g, lying in Sρ(Γ

(2)
0 (N))

say, and define as in the previous section Fcan = F/
√
〈P(φ1 ⊗ φ2),P(φ1 ⊗ φ2)〉.

In fact we have such an F and Fcan for each factorisation N = N1N2 with an odd
number of prime factors in N1, and we label these Fi and Fi,can for 1 ≤ i ≤ u,
say. Note that by Lemma 8.4, these different Yoshida lifts of the same f and g

are mutually orthogonal with respect to the Petersson inner product. Let’s say
F = F1 arbitrarily.

As in Section 2.1 of [Ar] the operators T (m), for (m,N) = 1 (generated
over Z by the T (p) and T (p2), see (2.2) of [Ar]) are self-adjoint for the Petersson
inner product, and commute amongst themselves, so Sρ(Γ

(2)
0 (N)) has a basis of

simultaneous eigenvectors for such T (m). Also, these T (m), acting on elements of
Sρ(Γ

(2)
0 (N)), preserve integrality (at any given prime) of Fourier coefficients, by

(2.13) of [Sa]. If G ∈ Sρ(Γ
(2)
0 (N)) is an eigenform (for the T (m), with (m,N) =

1), then the Hecke eigenvalues for G are algebraic integers. This follows from
Theorem I of [We2], which says that the characteristic polynomial of ρG(Frob−1

p )
(c.f. Section 4 above) is 1−µG(p)X+(µG(p)2−µG(p2)−pk′−2)X2−pk′−1µG(p)X3+
p2(k′−1)X4 (c.f. (2.2) of [Ar]), and that the eigenvalues of ρG(Frob−1

p ) are algebraic
integers. Moreover, as p varies for fixed G, the µG(p) and µG(p2) generate a finite
extension of Q.
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Proposition 9.1. Suppose that k′− k ≥ 6. Suppose that λ is a prime of K

such that ordλ(Lalg(f⊗g, (k′+k)/2)) > 0 but ordλ(Lalg(f⊗g, (k′+k)/2+1)) = 0,
and let ` be the rational prime that λ divides. Suppose that ` - N and ` > k′ − 2.
Assume that there exist a half-integral symmetric 2-by-2 matrix A, and an integer
0 ≤ b ≤ k − 2 such that, if for 1 ≤ i ≤ u, ai denotes the coefficient of the
monomial xbyk−2−b in the A-Fourier coefficient in Fi,can, then ordλ(

∑u
i=1 a2

i ) ≤ 0.
Then there is a cusp form G ∈ Sρ(Γ

(2)
0 (N)), an eigenvector for all the T (m), with

(m,N) = 1, not itself a Yoshida lift of the same f and g, such that there is a
congruence of Hecke eigenvalues between G and F :

µG(m) ≡ µF (m) (mod λ), for all (m,N) = 1.

(We make K sufficiently large to contain the Hecke eigenvalues of G.)

Proof. Since k′ − k ≥ 6, (k′ − k)/2 − 2 > 0, so D4((k′ − k)/2 − 2, k −
2)F (4)

4 (Z,W ) is a cusp form. Let {F1, F2, . . . , Fr} be a basis of Sρ(Γ
(2)
0 (N)) con-

sisting of eigenforms for all the local Hecke algebras at p - N , with F1, . . . , Fu the
Yoshida lifts of f and g, as above.

It is easy to show that D4((k′ − k)/2 − 2, k − 2)F (4)
4 (Z,W ) =∑r

i,j=1 ci,jFi(Z)Fj(W ), for some ci,j . By (17), c1,1 is equal to the right hand
side of (17), divided by F (w)〈F, F 〉, and c1,j = 0 for j 6= 1. Similarly for all the
ci,i for 1 ≤ i ≤ u. Using Proposition 8.5, we find

c1,1 = c′
Lalg(f ⊗ g, (k′ + k)/2 + 1)

Lalg(f ⊗ g, (k′ + k)/2)〈P(φ1 ⊗ φ2),P(φ1 ⊗ φ2)〉 , (26)

where

c′ = γ2

(
4,

k′ − k

2
− 2, k − 2, 0

)
(±N)ΛN (2)

× ζ(N)(2)π2

ζ(N)(4)ζ(N)(6)ζ(N)(4)

∏

p|N

(1− p−3)
(1− p−1)

. (27)

(The last term takes into account the fact that we have passed from incomplete
to complete L-functions.)

We now choose A and b as in the statement of the proposition. Imitating
Section 4 of [Ka], let F4,ρ,A(Z) be the coefficient of xb

wyk−2−b
w in the coefficient

of e(Tr(AW )) in D4((k′ − k)/2− 2, k − 2)F (4)
4 (Z, W ). Then
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F4,ρ,A(Z) =
u∑

i=1

eiFi,can(Z) +
∑

i≥u+1

e′iFi(Z), (28)

where, for 1 ≤ i ≤ u, ei = c′(Lalg(f ⊗ g, (k′ + k)/2 + 1)/Lalg(f ⊗ g, (k′ + k)/2))ai.
Careful checking of all the things that go into c′ shows that it is a rational number,
and that it follows from ` > k′−2 that ord`(c′) ≤ 0. The coefficients of F4,ρ,A are
integral at λ, by Remarks 7.1 and 7.2. Given all this, we can apply the method
of Lemma 5.1 of [Ka], to deduce that there is a congruence (mod λ) of Hecke
eigenvalues (for all T (m), with (m,N) = 1) between F and some other Fi = G,
say, with i ≥ u + 1.

In a little more detail, we suppose that no such G exists, so that for each
u + 1 ≤ i ≤ r there exists an mi, with (mi, N) = 1, such that if µFi

(mi) is the
eigenvalue of T (mi) on Fi then µFi

(mi) 6≡ µF (mi) (mod λ). (We may enlarge K

to contain all the Hecke eigenvalues for all the Fi.) Applying
∏r

i=u+1(T (mi) −
µFi(mi)) to both sides of (28), we get something on the left that is integral at
λ. On the right all the Fi terms, for i ≥ u + 1, disappear, while the remaining
terms get multiplied by

∏r
i=u+1(µF (mi)−µFi

(mi)), which is not divisible by λ, so
on the right-hand-side the coefficient of xb

zy
k−2−b
z in the coefficient of e(Tr(AZ)),

namely

c′
r∏

i=u+1

(µF (mi)− µFi(mi))
Lalg(f ⊗ g, (k′ + k)/2 + 1)

Lalg(f ⊗ g, (k′ + k)/2)

( u∑

i=1

a2
i

)
,

is non-integral at λ, which is a contradiction. ¤

In this proposition, L(f ⊗ g, (k′+ k)/2+1) plays the rôle of any critical value
further right than the near-central one except the rightmost. We chose this next-to-
near-central value merely for definiteness. In fact, the further right the evaluation
point, the less laborious is the calculation of the critical value using Theorem 2 of
[Sh4], but we have managed without too much difficulty in Example 9.1(3) below.
Using Proposition 8.10 and Remark 8.11(2), we obtain the following.

Corollary 9.2. Suppose that k′− k ≥ 6, with k/2 and k′/2 odd, that N is
prime, and that the common eigenvalue εN for f and g is −1. Suppose that λ is a
prime of K such that ordλ(Lalg(f ⊗ g, (k′ + k)/2)) > 0 but ordλ(Lalg(f ⊗ g, (k′ +
k)/2 + 1)) = 0, with ` - N and ` > k′ − 2, where ` is the rational prime that λ

divides. Suppose that there is some fundamental discriminant −d < 0 such that
(−d/p) = εp for all primes p dividing Nd = N/ gcd(N, d), such that
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ordλ

(
L(k′/2, f)L(k′/2, f ⊗ χ−d)

πk′〈f, f〉
L(k/2, g)L(k/2, g ⊗ χ−d)

πk〈g, g〉
)
≤ 0.

Then there is a cusp form G ∈ Sρ(Γ
(2)
0 (N)), an eigenvector for all the T (m)

with (m,N) = 1, not a multiple of F , such that there is a congruence of Hecke
eigenvalues between G and F :

µG(m) ≡ µF (m) (mod λ), for all (m,N) = 1.

(We make K sufficiently large to contain the Hecke eigenvalues of G.)

9.1. Examples.
(1) When k = 2 and k′ = 4 (so j = 0 and κ = 3), one may check that, for N =

23, 29, 31, 37 or 43, the dimension of S3(Γ
(2)
0 (N)) (2, 4, 4, 9, 14 respectively,

using Theorem 2.2 in [I2]) is the same as that of the subspace spanned by
Yoshida lifts of f ∈ S4(Γ0(N)) and g ∈ S2(Γ0(N)). This appears to leave
no room for G (recall Lemma 4.1). However, we calculated Lalg(f ⊗ g, 3) in
the case N = 23, using Theorem 2 of [Sh4] and Stein’s tables [St]. (The
two choices for g are conjugate over Q(

√
5).) For the near-central value,

this calculation involves an Eisenstein series of weight 2, to which a non-
holomorphic adjustment must be made. The result was that Lalg(f ⊗ g, 3) =
32/3, so there is in fact no divisor λ, dividing a large prime `, for which a
congruence with some G is required.

(2) The previous paragraph leaves open the possibility that the condition k′−k ≥
6, in Proposition 9.1, is purely technical. However, the following example
shows that it is essential. Let k = 2 and k′ = 6 (so j = 0 and κ = 4)
and N = 11. As is well-known, S2(Γ0(11)) is 1-dimensional, spanned by
g = q − 2q2 − q3 + · · · , for which ε11 = −1. Using [St], dimS6(Γ0(11)) = 4,
with the ε11 = −1 eigenspace 3-dimensional, spanned by the embeddings of a
newform f = q+βq2 + · · · , where β3−90β+188 = 0. The discriminant of this
polynomial is 243319 · 239. Using Theorem 2 of [Sh4] we find that Lalg(f ⊗
g, 4) = −45α/3, with Norm(α) = −17 · 76157/24345211219 · 239. In fact α is
divisible by the prime ideals (17, β +1) and (76157, β +74208). We check that
Lalg(f ⊗ g, 5) = (4511/6)γ, with γ = 1/1648383(784522 − 12341β − 3842β2),
of norm 283 · 52/112 · 19 · 239, in which 17 and 76157 do not appear.

The dimension of S4(Γ
(2)
0 (11)) is 7, from the table in Section 2.4 of [I2].

This fact was also obtained by Poor and Yuen, who gave an explicit basis for
this space using theta series, [PY]. We are indebted to D. Yuen for calculating
for us a Hecke eigenbasis, which included the three Yoshida lifts, a non-lift with
rational eigenvalues, and three conjugate non-lifts with eigenvalues and Fourier
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coefficients in the same cubic field as f and the Yoshida lifts. He looked for
congruences modulo primes dividing 17 or 76157 (or any other large primes),
but found that there were none, though it appears that each Yoshida lift has
Fourier coefficients (not just Hecke eigenvalues) congruent mod 5 to those of
a corresponding non-lift (suitably normalised).

(3) We should expect that any example of f and g we look at, with prime level
N , common εN = −1, weights k′ > k ≥ 2 with k′ − k ≥ 6 and k′/2, k/2
odd, is very likely to satisfy the remaining conditions of Corollary 9.2, for
some λ. Here is an explicit example. Let N = 3, k = 6, k′ = 14. We have
S6(Γ0(3)) spanned by g = q− 6q2 +9q3 + · · · , and S14(Γ0(3)) spanned by f =
q+(−27+6

√
1969)q2+729q3+· · · , f = q+(−27−6

√
1969)q2+729q3+· · · and

h = q−12q2−729q3−8048q4+· · · . For both f and g, ε3 = −1. Using Theorem
2 of [Sh4] we find that Lalg(f⊗g, 10) = (−414/4!9!3)α, with α = −467/35640−
2119

√
1969/140350320, Norm(α) = 7 · 271 · 461 · 653/283752113179. (Note

that 1969 = 11 · 179.) So we may take λ to be an appropriate divisor of
` = 271, 461 or 653. (All three of these primes split in Q(

√
1969).) Also using

Theorem 2 of [Sh4], we find that Lalg(f ⊗g, 11) = (4143!/3 · 10!5!)β, with β =
−25/(3

√
1969), so λ - Lalg(f ⊗ g, 11). Finally, by direct application of Theo-

rem 5.6 of [GZ], we calculate L(k/2, g)L(k/2, g ⊗ χ−4)/πk〈g, g〉 = 2126/4!45/2

and L(k′/2, f)L(k′/2, f ⊗ χ−4)/πk′〈f, f〉 = (2276!/12!413/2)γ, where γ =
13488+256056/

√
1969, with Norm(γ) = 2633527 · 967751/11 · 179. The prod-

uct of these is not divisible by λ (for any of the three choices).
It seems though that finding an example where one can directly observe

the congruence guaranteed by Corollary 9.2 would be difficult. Already for
k = 2, k′ = 10 and N = 11 we have dimS6(Γ

(2)
0 (11)) = 31 (from the table in

7–11 of [Has]).
(4) For us, f and g are of level N > 1, and Yoshida lifts do not exist at level

1. However, Bergström, Faber and van der Geer have found experimentally
what appear to be eleven examples of congruences of exactly the same shape,
but for f and g of level 1 [BFvdG]. For example, it appears that there is a
genus-2 cusp form of level 1 and weight Sym20⊗det5 such that

µG(p) ≡ ap(f) + p3ap(g) (mod λ),

with λ | 227, where f and g are cuspidal Hecke eigenforms of genus 1, level 1
and weights k′ = 28, k = 22 respectively. Bergström et al. have checked this
for p ≤ 17. Using Theorem 2 of [Sh4], we have checked that L(f ⊗ g, 25) =
(427π29/108(24!)) · α(f, f), with Norm(α) = 7 · 17 · 227/2 · 36 · 54 · 131 · 139.
In two more examples, with (k′, k, `) = (28, 18, 223) and (28, 20, 2647), we
have likewise checked that the prime occurring in the modulus of an apparent
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congruence also appears in the near-central tensor-product L-value, in accord
with the Bloch-Kato conjecture.

9.2. Higher powers of λ.
A minor modification of the proof of Proposition 9.1 gives the following.

Proposition 9.3. Suppose that k′− k ≥ 6. Suppose that λ is a prime of K

such that ordλ(Lalg(f ⊗ g, (k′ + k)/2)/Lalg(f ⊗ g, (k′ + k)/2 + 1)) = n > 0, and
let ` be the rational prime that λ divides. Suppose that ` - N and ` > k′ − 2.
Assume that there exist a half-integral symmetric 2-by-2 matrix A, and an integer
0 ≤ b ≤ k−2 such that, if for 1 ≤ i ≤ u, ai denotes the coefficient of the monomial
xbyk−2−b in the A-Fourier coefficient in Fi,can, then ordλ(

∑u
i=1 a2

i ) ≤ 0. Then
there are independent cusp forms G1, . . . , Gr ∈ Sρ(Γ

(2)
0 (N)), eigenvectors for all

the T (m) with (m,N) = 1, not themselves Yoshida lifts of the same f and g, such
that there are congruences of Hecke eigenvalues between the Gi and F :

µGi(m) ≡ µF (m) (mod λs(i)), for all (m,N) = 1,

with
∑r

i=1 s(i) ≥ n. (We make K sufficiently large to contain the Hecke eigenval-
ues of G.)

Modifying the proof of Proposition 5.1, applying the main theorem of [U2],
one may show (under similar conditions) that each Gi contributes an element of
order λs(i) to H1

f (Q, Aλ((k′+ k− 2)/2)), but it does not show that these elements
are independent. However, using Hecke algebras as in [U1], it should be possible
to show that λn divides #H1

f (Q, Aλ((k′ + k − 2)/2)), and this is covered by the
approach in [AK], so we leave it to them.
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302 (2005), 177–290.

[Go] R. Godement, Seminaire Cartan 10 (1957/58) Exp.4–9.

[GZ] B. H. Gross and D. B. Zagier, Heegner points and derivatives of L-series, Invent.

Math., 84 (1986), 225–320.

[Ha] G. Harder, A congruence between a Siegel and an elliptic modular form, In: The

1-2-3 of Modular Forms, (eds. J. H. Bruinier et al.), Universitext, Springer-Verlag,

Berlin, 2008, pp. 247–262.

[Har] A. Haruki, Explicit formulae of Siegel Eisenstein series, Manuscripta Math., 92

(1997), 107–134.

[Has] K. Hashimoto, The dimension of the spaces of cusp forms on Siegel upper half-plane

of degree two. I, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1983), 403–488.

[Hi1] H. Hida, Modular Forms and Galois Cohomology, Cambridge Stud. Adv. Math., 69,

Cambridge University Press, Cambridge, 2000.

[Hi2] H. Hida, Geometric Modular Forms and Elliptic Curves, World Scientific, Singapore,

2000.

[H-S] H. Hijikata and H. Saito, On the representability of modular forms by theta series,

In: Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y.

Akizuki, Kinokuniya, Tokyo, 1973, pp. 13–21.

[I1] T. Ibukiyama, On differential operators on automorphic forms and invariant pluri-

harmonic polynomials, Comment. Math. Univ. St. Paul., 48 (1999), 103–118.

[I2] T. Ibukiyama, Dimension formulas of Siegel modular forms of weight 3 and supersin-

gular abelian varieties, In: Siegel Modular Forms and Abelian Varieties, Proceedings

of the Fourth Spring Conference on Modular Forms and Related Topics, Hamana

Lake, Japan, 2007 (ed. T. Ibukiyama), Ryushido, 2007.

[J-L] H. Jacquet and R. P. Langlands, Automorphic Forms on GL(2), Lecture Notes in

Math., 114, Springer-Verlag, Berlin, 1970.

[Ji] J. X. Jia, Arithmetic of the Yoshida lift, Ph. D. thesis, University of Michigan, 2010.

http://www.math.lsa.umich.edu/research/number theory/theses/johnson jia.pdf

[KV] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic

polynomials, Invent. Math., 44 (1978), 1–47.

[Ka] H. Katsurada, Congruence of Siegel modular forms and special values of their stan-

dard zeta functions, Math. Z., 259 (2008), 97–111.

[Koh] W. Kohnen, Fourier coefficients of modular forms of half-integral weight, Math. Ann.,

271 (1985), 237–268.

http://dx.doi.org/10.1007/BF01474441
http://dx.doi.org/10.1007/BF01388809
http://dx.doi.org/10.1007/BF02678184
http://dx.doi.org/10.1007/BF01389900
http://dx.doi.org/10.1007/s00209-007-0213-5
http://dx.doi.org/10.1007/BF01455989
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[SU] C. Skinner and E. Urban, Sur les déformations p-adiques de certaines représentations

automorphes, J. Inst. Math. Jussieu, 5 (2006), 629–698.

[St] W. Stein, The Modular Forms Database: Tables,

http://modular.fas.harvard.edu/Tables/tables.html

[Tak] H. Takayanagi, Vector-valued Siegel modular forms and their L-functions; application

of a differential operator, Japan J. Math. (N.S.), 19 (1993), 251–297.

[Tay] R. Taylor, On the `-adic cohomology of Siegel threefolds, Invent. Math., 114 (1993),

289–310.

[U1] E. Urban, Selmer groups and the Eisenstein-Klingen ideal, Duke Math. J., 106

(2001), 485–525.

[U2] E. Urban, On residually reducible representations on local rings, J. Algebra, 212

(1999), 738–742.

[vdG] G. van der Geer, Siegel modular forms and their applications, In: The 1-2-3 of

http://dx.doi.org/10.2996/kmj/1138044215
http://dx.doi.org/10.1007/s00209-009-0656-y
http://dx.doi.org/10.1007/BF01388599
http://dx.doi.org/10.1007/BF01459520
http://dx.doi.org/10.1007/BF03173489
http://dx.doi.org/10.1007/BF01403065
http://dx.doi.org/10.1007/BF01231195
http://dx.doi.org/10.1007/BF01457078
http://dx.doi.org/10.2969/jmsj/1160745825
http://dx.doi.org/10.2969/jmsj/02440638
http://dx.doi.org/10.1215/S0012-7094-83-05019-6
http://dx.doi.org/10.2307/1971276
http://dx.doi.org/10.1007/BF01458058
http://dx.doi.org/10.1002/cpa.3160290618
http://dx.doi.org/10.1017/S147474800600003X
http://dx.doi.org/10.1007/BF01232672
http://dx.doi.org/10.1215/S0012-7094-01-10633-9
http://dx.doi.org/10.1006/jabr.1998.7635


Yoshida lifts and Selmer groups 1405

Modular Forms (eds. J. H. Bruinier et al.), Universitext, Springer-Verlag, Berlin,

2008, pp. 181–245.

[We1] R. Weissauer, Vektorwertige Siegelsche Modulformen kleinen Gewichtes, J. Reine

Angew. Math., 343 (1983), 184–202.

[We2] R. Weissauer, Four dimensional Galois representations, Astérisque, 302 (2005), 67–
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