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Abstract. Let G be a nonabelian p group of order p3 (i.e., extraspecial
p-group), and BG its classifying space. Then CH*(BG) = H?*(BG) where
CH*(—) is the Chow ring over the field k = C. We also compute mod(2)
motivic cohomology and motivic cobordism of BQg and BDsg.

1. Introduction.

For a smooth algebraic variety over k = C, let CH*(X) be the Chow ring
(over C) and BP*(X) the Brown-Peterson theory. Then Totaro [Tol] defined the
modified cycle map

c: CH*(X)(p — BP*(X) ®@pp+ Zy)

such that the composition with the Thom map p : BP*(X) — H*(X)(,), is the
usual cycle map.

Let G be an algebraic group over C and BG the classifying space. Totaro
conjectured that the map clis an isomorphism for X = BG. This conjecture is cor-
rect for connected groups O(n), SO(n), G2, Spiny, Sping, PGL,, ([To2], [Mo-Vi],
[In-Ya], [Gul], [Mo], [Ka-Ya], [Vi]), and finite abelian groups [Tol].

We will show it holds for each nonabelian p-group of order p3.

THEOREM 1.1.  If G is an extraspecial p-group of order p® (i.e., pr or ptt?

for an odd prime, and Qs or Dg for p=2). Then

CH*(BG) () = BP*(BG) @pp- Z(y) = H*(BG) ).
Its proof is given in Section 3 for G = p}~_+2 and in Section 4 for other cases.
This is the first example for nonabelian p-group (p > 2) which satisfies
Totaro’s conjecture. Note that the cycle map cl : CH*(BG) — H**(BG) is not
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surjective for G = (Z/p)?, and not injective for the central product Dg - Dg x Z /2
(see [Tol]).

It is known [Te-Ya], that for each of the above groups, the Brown-Peterson
cohomology is given

BP*(BG) = BP*[[y1,Y2,¢1, - - -, ¢p]/ (relations)

where y1, yo are the first Chern classes of linear representations of G, and ¢; is the
i-th Chern class of some p-dimensional representation of G. Moreover we know

BP*(BG) ®pp+ Z(p) = H*(BG)(p).

It is shown in [Yal] that if CH*(BG) is generated as a ring by y1, e,
c1,...,Cp, then Totaro’s conjecture holds. In this paper, we will prove this fact
and hence Totaro’s conjecture for the above extraspecial p-groups.

Let MU*(X) be the complex cobordism theory so that MU*(X)q) =
MU, @pp+ BP*(X). Let MGL** (X) and MGL** (X; Z/p) be the motivic
cobordism defined by Voevodsky [Vol] and its mod(p) theory [Ya3].

From the above theorem and Proposition 9.4 in [Ya3], we have,

COROLLARY 1.2.  For an extraspecial p-group G of order p>, we have the
isomorphism MGL**(BG) () = MU?*(BG) ).

When p = 2, we get the rather strong results. Let H** (X;Z/2) be the
mod(2) motivic cohomology and 0 # 7 € H%!(Spec(C); Z/2). Then we prove;

THEOREM 1.3. Let G = Qg or Dg. Then there is a filtration of H*(BG;
Z/2) such that

H**(BG; Z/2) = Z/2[r] ® gr* H*(BG; Z/2).

This theorem comes back as Theorem 6.1, 6.3. Using this theorem, we prove;

THEOREM 1.4. Let G = Qgor Dg. Then we have the isomorphism
MGL** (BG; Z/2) = Z/2[7| ® MU?**(BGQ).

This theorem comes back as Theorem 7.1 in the last section.
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2. Extraspecial p-groups.

Throughout this paper, let G' be a non abelian p-group of order p®. Then the
group is called an extraspecial p-group so that there is the central extension

0-C—-G-LV -0

where C = Z/p is the center and V = Z/p ® Z/p. We can take a,b,c € G such
that [a,b] = ¢ here ¢ generates C' and the g-images of a,b generate V. (See [Le],
[Ly], [Gr-Ly], [Te-Ya] for details.)

These groups have two types for each prime p. For an odd prime p, they are
written as p*+2, p}r“ where a? = ¢ for the first type but a? = b? = 1 for the other
type. When p = 2, the groups are the quaternion group g and the dihedral group
Ds, where a? = b? = ¢ for Qg but a® = ¢, b> =1 for Dg.

Define the linear representation a* by a* : G —— V —— C* where a is the
dual of ¢(a), i.e., a(¢g(a)) = ¢ and a(q(b)) = 1 for a primitive p-th root ¢ of unity.
Similarly we define b* : G — V — C*. Let ¢* : (¢,a) — C* (resp. a : {(a) — C¥)
be the linear representation which is the dual of ¢ (resp. a) for the case G = pljz
(resp. other cases). Define the representation ¢ of G by

Ind%@ (¢*) for G =pi™

™
I
—~
o
—
~—

Indgn (a’)  otherwise.
For example when G = p}ﬁQ, we can take as

é(c) = diag(¢,...,¢), &(a) = diag(1,¢,...,¢P7Y) (2.2)

are diagonal matrices, and

00 . 1
10...-0

cb)y=101... -0 (2.3)
00...10

is the permutation matrix in GL,(C).

Here we recall the definition of classifying space. Let V,, be a G-vector space
such that G acts freely on U,, = V;, — S, for some closed set .S,, with codimy;, S,, >
n. Then the classifying space is defined as BG = colim,,—, U, /G and for G-space
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X, the Borel cohomology (equivariant Chow ring) is defined
CHH(X)=CH* (U, xg X) for * <n,

which does not depend on the choice of U,, (when * < n) [Tol], [To2], [Vo3].
For an integer N > 1, representations Né, Na* and Nb* give the G-action on

UN — CpN* % CN* % CN*,

where CPV* = CPN — {0} and CV* = CV — {0}. Namely, given g € G and
(z,y,2) € Un, we define the G-action by

9(z,y,2) = (Né(g)x, Na*(g)y, Nb*(g)z).

Here G acts freely on Uy = CN@+2) — Hy with codim(Hy) > N. Hence
given G-variety X, the Borel cohomology (equivariant Chow ring) can be defined
by

CHE(X)=CH*(Uny xg X) when * < N.

Of course CH{(pt.) = CHE = CH*(BG) the Chow ring of the classifying space
BG.

Let us write by y1,y2 € CH*(BG) the first Chern classes of a* and b* respec-
tively. Let ¢; be the i-th Chern class of &. We consider CH(Un) when N = 1. We
use the stratified methods by Molina-Vistoli [Mo-Vi] which was used to compute
the Chow rings of BG for classical groups G.

LEMMA 2.1.
CHG(CP x C" x C*) = CH"(BG)/(y1, 42, ¢p)-
PrROOF. We first consider the localized exact sequence ([Tol], [To2])
CHE({0} x C x C) 5 CHLP(CP x C x C) — CHSP(CP* x C x C) — 0.
Here i, is the multiplying c,. So we have
CHE(CP* x C x C) = CHE/(cp).

Next consider
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CHE(CP* x {0} x C) ~= CHP(CP* x C x C) — CHLP(CP* x C* x C) — 0.
Since ¢1(a*) = y1 and i, = y;, we see
CHE(CP* x C* x C) =2 CHE/(¢p,11)-
Similarly, using ¢1 (b*) = y2, we have the lemma. O

COROLLARY 2.2. The Chow ring CH*(BG) is generated as a ring by ele-
ments of degree < p+ 2.

PROOF. First note that the G-action on CP* x C* x C* is free. Hence
CHE(CP* x C* x C*) 2 CH*((CP* x C* x C")/@G).

Since (CP* x C* x C*)/G is a smooth variety of (complex) dimension p + 2, we
see CHY/(y1,y2, ¢p) is generated by elements of degree < p + 2. O

Recall that the Brown-Peterson theory also has Chern classes. It is known
[Te-Ya], that for each of the above groups, the Brown-Peterson cohomology is
given

BP*(BG) = BP*[[y1,¥2,c¢1, - .-, ¢p]/(relations).

Moreover we know BP**(BG) ®pp+ Z(,) = H**(BG). Hence H**(BG) is gener-
ated as a ring by Chern classes of degree < 2p.

COROLLARY 2.3.  If the cycle map cl : CH*(BG) — H?**(BG) is injective
for x < 2p —2 (for x < p+2 when p < 3), then CH*(BG) = H**(BG) for all
x> 0.

PROOF. Since H?*(BG) is generated as a ring by yi,y2,c;, we see from
Corollary 2.2 that CH*(BGQG) is generated by the same elements y1,y2,¢;. It is
known that all relations between the above ring generators are in cohomological
degree < 4p—4 (for the explicit relations of the ordinary cohomology, see Theorem
2.4-2.7 below). Hence we get the corollary. O

Of course the usual cohomology of BG is explicitly known as follows.
THEOREM 2.4 (Lewis [Le], see also [Ly], [Te-Ya]).

Hev™ (Bp™?) = (Z[y1, yo) / (v1¥h — viy2. pyi)
@ Z/plca,. .. cp1}) @ Zlcy]/(PPcp),
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Hodd (Bp}r+2) ~ even(Bper)/(p){e} |6| = 3.

, 1, p—1
Here ciyj = cick, = 0 fori <p—1, but yje, 1 =y}, o1 =y yh .

In fact, the degree of relations in the above cohomology are given
-1, p—1
s — e =20+ 2, pyil =2, ..., |l — YTy =4p— 4.
They are all deg < 4p — 4. Similar facts happen for cohomology of other types.

THEOREM 2.5 (Lewis [Le], [Ly]).

He " (Bp'™*?) = (Z[yal /(py2) © Z/p{ys = c1,02, .. cp1}) @ Zey]/(Pcp),
HY(Bp!*?) = Z /plys, c,){e}  with |e| = 2p + 1.

Here c;y; = cicp, =0 fori <p—1.

THEOREM 2.6 (Evens [Ev]).

H"(BDg) = Z[y1,y2, c2]/ (Y192, 2yi, 4c2),
H°¥(BDg) = H*"(BDg)/(2){e} with |e| = 3.

THEOREM 2.7 (Atiyah [At]).

H"(BQs) = Zy1, Y2, c2]/ (Y7, 2yi, 4c2 = y192),

H®"(BQs)

1%

0.

The following lemma is used in the proof of Lemma 3.3 in Section 3.

LEMMA 2.8. If Hz*(X)(p) is generated as a ring by Chern classes for all
*x < p, then we have the isomorphisms for x < p,

CH*(X)(p) = BP*(X) ®pp Zp) = H* (X))

Moreover, if Hl(X)(p) =0 or pH2p(X)(p) = 0, then the isomorphisms hold also
for x =p.

PROOF. Recall that the usual K-theory K*(X)(,) localized at p can be
decomposed to the integral Morava K-theory K (1)*(X) with the coefficient ring
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K1) = Z(p)[v1, v7 '], [v1] = —2p + 2. We consider the Atiyah-Hirzebruch spectral
sequence ([Te-Yal, [Ya3])

E(K)y* = H*(X)® K(1)* = K(1)*(X).
The first nonzero differential is known
dap—1(x) = v1 @ P (x) (=1 ® Q1(x) mod(p)).

Since H**(X),) is generated by Chern classes, each element is a permanent cycle
because |3P!| = 2p — 1. In fact

E(K)i.f’*/ = HQ*(X) ® K(l)*/ for * < p.

This implies from the definition of gr’,, K°(X) (|[Th], [To2])

geo

(1) grleo KO(X)(p = H* (X)) fori<p.

geo

Next consider the Atiyah-Hirzebruch spectral sequence for BP*(X)
E(BP)y* =~ H*(X)® BP* = BP*(X).

Similarly we have F(BP)

is the same as the case

2ex" o BP* @ H**(X) for * < p. (The differential dy,_;
(1)*(—).) Hence we have

(2) (BP*(X)®pp~ Zp)* =2 H* (X))
On the other hand, there is the natural map

CH'(X) — gri ., K°(X) =5 CH'(X),
which is the multiplication by (—1)i~*(i—1)! by Riemann-Roch with denominators.
(See the proof of Corollary 3.2 in [To2].) Moreover the first map is epic. Hence
CH (X)) = gri., K°(X)(p for i < p. Thus we have the desired result from (1)
and (2).

Next suppose that H'(X)(,) = 0 or pH*(X),) = 0. Then each nonzero
element in H??(X) ®I~((1)* is not the target of the differential dap_1 in the spectral
sequence E(K)** . Indeed, P*H'(X) =0 mod(p) and
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E(K)2* =~ H*(X)® K(1)*  for + < p.

Hence all isomorphism above hold also for x = p. g

COROLLARY 2.9 (Lemma 6.1 in [Yal]). We have the isomorphism
CH*(BG)(p) = 2*(BG)(Z,) for x < p.

3. The group E = p}'_+2.

Throughout this section, we assume p > 3 and G = E = pf'Q. Recall that
E is generated by a,b,c such that [a,b] = ¢, a? = b = ¢? = 1. Recall also the
p-dimensional representation ¢ = Ind<Ga70> (¢*) so that

é(c) = diag(¢,...,¢), é&(a) = diag(1,¢,...,¢P7h),

and é(b) is the permutation matrix (2.3) in Section 2.

The group E does not act freely on CP*. We consider fixed points for small
subgroups. Let W = CP*. Since ¢(a) = diag(1,¢,...,¢P~1), the fixed points of
the subgroup (a) is given by

W = {(,0,...,0) |z € C*} = C*{e} e=(1,0,...,0).
Since b~tab? = ac’ in E, we see
ac'b e = b lab’b"'e = b 'ae = b 'e.
This means W) = C*{b~e}. Let us write
Hy = C*{e,be,...,bP e} = C*{(1,0,...,0),...,(0,...,0,1)}.

(It is the disjoint union of p-th (complex) lines in CP* generated by (0,...,1,
...,0).) Then the group F acts on Hy, namely, Hy is a smooth E-variety.

In GL,(C), the elements ¢(ab’), ¢(b) have the trace zero and are p-th roots of
the identity. Hence there is a g; € GL,(C) for 0 < j < p such that gj_lagj = ab/
for j < p and gglagp = 0. Then we see abjgj*le = g;le as above arguments, and
so C* {g;le} = W{@") Hence we can define E-equivariant set H; = g;lHo. Here
note H; N H;y = () for j # j', in fact the stabilizer group of each point in H; is
{ablc’) and they are not equal for j # j'. Let us write the disjoint union
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H=H [[&]] - ]]H

(It is a disjoint union of p(p + 1) (complex) lines in CP*.)
LEMMA 3.1.  The group E acts freely on (CP* — H).

PROOF. The stabilizer of any points, if it were nontrivial, would contain
a subgroup of E isomorphic to Z/p. All subgroups of E isomorphic to Z/p are
written as (ab/c'), (bc') or {c). But c is not a stabilizer of any element in C*.
Hence all points which have nontrivial stabilizer groups are contained in H. Thus
we have the lemma. O

Let ¢ : H C CP*. Let us write i*(y;) € Hj,(H) by the same letter y;.

LEMMA 3.2.  We have the isomorphism Hj(H;) = Hy,(Hy) and

Hy,(Ho; Z/p) = Z /p|y1] @ A1, 2),  with |z1] = |z] = 1,
Hy(Ho) = Z[y1]/(py1){1, 2}.

ProOOF. We consider the group extension
0— (bc) > E—{a) =0
and the induced Hochschild-Serre spectral sequence
By" = H*(B(a); H},, ., (Ho; Z/p)) = Hy(Ho; Z/p)-

Here we have

Hy, o (Ho; Z/p) = Hyp, o ((b) x C*; Z/p) = H{,, (C"; Z [p) = A(2).
Of course (a) & Z /p acts on A(z) trivially. Hence the E3™* is isomorphic to

H*(B(a); A(2)) = Z /plyr] © AMx1) © A(2) = Z/p[y1 {1, 21, 2, 212}
In particular, we note

(1) dim(H*(B{a); A(z))) =2 for each * > 0.

We will see that d2(z) = 0 and this spectral sequence collapses from the
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dimensional reason.
Consider the localized exact sequence for the cohomology

HEJerfl(Cp* . H) N HE+Q(H) N HE+2p(Cp*) N HE+2P(CP* . H) ..
Since F acts on CP* — H freely, we see
Hyt*(CP* — H) = H*"*P((C** — H)/E),

which is zero if * > 0 since (C?* — H)/E is a 2p-dimensional (p-dimensional
complex) manifold. Thus for * > 0, we have the isomorphism

(2) Hy(H)= Hy™(C™).
On the other hand, we recall from Theorem 2.4

H""(BE) = (Z[yy, y2l /(195 — ¥1y2,p9i) © Z/plea, ., cp1}) @ Zlepl/(P7cy),

H*"(BE) = H""(BG)/(p){c} le| = 3.

We consider the long exact sequence

— Hp({0}) 22258, gt (or) — HyHP(C7) — -

However, this sequence becomes a short exact sequence because xc,|H*(BE) is
an injection for * > 0 from the above isomorphisms. Hence

(3) Hp(CP*)= H*(BE)/(cp,) for x> 0.
In particular, we have for * > 0

* *\ ~U % ~ 2%+42
Hy 2P (CP*) = H>* " (BE)/(c,) = (Z/plyr, vl /W2 — 119)) "
= Z/p{ys P e,y T T )

and Ha 243 (0v+) = H2X P27 (CP*){e}. Hence from (2), we have for ' < p

dim H¥'*?(H) = dim HZ' T3 (H) = p+ 1.
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Here we recall the universal coefficient theorem such as
dim H*(X; Z /p) = dim(H*(X)/p) + dim(p-torsion( H*™*(X)).
Since all elements in H**?(BE)/(c,) are p-torsion for x > 0, we see
dim H¥'*2(H; Z /p) = 2dim HZ *2(H) = 2(p + 1).

For each 0 < j < p, since Hy = H; as E-varicties, we sece Hy(H;;Z/p) =
Hi(Ho; Z/p). Hence dim Hy,(Ho; Z/p) = 2.

From (1), the above fact means Fy™* = EX%* (in fact if da(z) # 0, then
dim H},(Ho; Z /p) < 2). Hence we get the result for Z/p coefficient.

The integral coeflicient case follows from the universal coefficient theorem (as
stated above), e.g., dim(H*(Hy)/p) = 1 for * > 0. Indeed, S(x1) = y1, and we see
that y; is p-torsion element in H*(Hy) but 21 ¢ H'(Hy), and so z € H'(Hy). O

LEMMA 3.3.  The cycle map cl : CHy(CP*) — H% (CP*) is an isomorphism
for x <2p—1.

PROOF. Since Hj(CP*) = Hf/(cp) is generated by Chern classes (and
Hi(CP*) = 0), we see the above cycle map cl is an isomorphism for * < p from
Lemma 2.8.

Let * > 0. Consider the diagram

CHE (H) —S2 s CHEP(OPY) ——= CHLP(CP* — H) = 0

cly l cla \L cls i

0 — HE2(H) —> HE?P(CPr*) —— HE?P(CP* — H) = 0.
Here note that
Hy(CP*—H)=H"((C** —H)/E)=0 for x> 2p
since (C?* — H)/E is a 2p-dimensional manifold. So Hiﬂ*”p*l(Cp* —H)=0and
we see iy, is an isomorphism. From the preceding lemma, H%* (H ;) generated by
Chern classes (e.g., yi for Hp). Hence the cycle map ¢y is isomorphic for * < p—1

from Lemma 2.8. Therefore

clo - icHs =ty - cly
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is an isomorphism and so is clp for * < p — 1. 0

LEMMA 3.4.  The cycle map cl : CH*(BE) — H**(BE) is an isomorphism
for x <2p—1.

Proor. Let 0 < * < p— 1. Consider the diagram

ICH+=XCp

CH%({0}) CHL™(CP) —— CHP(CP*) — 0

Clll ClQ\L Clgl

0 — HZ({0}) —==2 . 242 (Cr) —= HZ P (CP*) — 0.

Here the lower short exactness follows from the fact that xc,|H?**(BE) is an
injection for 0 < * (see (3) in the proof of Lemma 3.2). The map cl3 is an
isomorphism for all * < p — 1, from the preceding lemma. We still know that the
map cly is an isomorphism for * < p from Lemma 2.8. Hence we see cls is also an
isomorphism for x < p — 1. 0

From Corollary 2.3, we have the isomorphism CH*(BE) = H**(BE) for all

x > 0. Thus we prove Theorem 1.1 in the introduction when G = p}r”.

4. Other groups M = p**2, Dg and Qs.

We consider the other groups cases in this section. Let M = p'*2 for an odd
prime. In this case a? = ¢ and the representation ¢ is given as

&(a) = diag (¢, &P, ¢, ¢ P)
and é(b) is the permutation matrix (2.3) as in the case E, where ¢ is a p-th

primitive root of the unity, i.e., € = (. So M acts freely on CP* x C*.
The fixed points set on W = CP* of the subgroup (b) is given by

W ={(z,...,2) |z C*} =C*{} €& =(1,...,1).
Since a~'ba’ = bct, we see W) = C*{a~"¢'}. So M acts on
H=C*{,ac,...,aP" '}

Note (a‘bc?)P = ¢ for 1 <i < p—1 (but (ab)? = 1 for G = Dg). Hence for all
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x € CP*, a’bc? (x) # x. Thus we can see that M acts freely on U — H, i.e., Lemma
3.1 holds for G = M.

Next we will see Lemma 3.2 by H = Hy for G = M. We consider the group
extension

0—{a) =M — (b) =0
and induced spectral sequence
By = H*((b); H,y (H; Z/p)) = Hy,(H; Zp).
Since (a) acts freely on H, we see
H/{a) = C*{c,...,a?" '} /(a) = C*/{a?).

Therefore we have H . (H; Z/p) = H*(C*/(a?); Z /p) = A(z) as in the case G =
E. From Theorem 2.5, we know

Hy ™ (Cr) = Z /p{ys "}

This implies dim H?V’;Hp (H) = 1. Therefore the spectral sequence collapses.
Lemma 3.3 holds for G = M and we see CH*(BM) = H?*(BM).

Next, we consider the case G = Dg and p = 2. Then the representation can
be taken as in the case G = M. Take

Hy = C*{,ac’}, Hy=C*{g ' g tac'}

where g € GL2(C) with g~bg = ab (note (ab)? = 1). Let H = Ho[] H;. Then
Dy acts freely on C?* — H. In fact from Theorem 2.6, we know

HEH(C?) = 223172, 5}

Hence arguments work as in the case F or M.
At last we consider the case G = Qg. The representation ¢ is given

&a) = (é OZ), &(b) = (? ‘01>.

We can easily see that Qg acts freely on C?*. Therefore
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CHq,(C*) = CH*(C**/Qs)
which is generated by degree < 2. In fact from Theorem 2.7

H*(BDs)/(c2) = Zly1, y2)/ (v, 241, v12),

which shows H*(BDsg)/(c2) = 0 for x > 3.

5. Motivic cohomology.

We recall the motivic cohomology, in this section. Let X be a smooth (quasi
projective) variety over a field k ¢ C. Let H** (X; Z/p) be the mod(p) motivic
cohomology defined by Voevodsky and Suslin ([Vol], [Vo2], [Vo3], [Vo4]). Recall
that the Beilinson-Lichtenbaum conjecture holds if

H™™(X;Z/p) = HJ (X; p3™) for all m < n.

Recently M. Rost and V. Voevodsky ([Vo5], [Su-Jo]) proved the Bloch-Kato con-
jecture. The Bloch-Kato conjecture implies the Beilinson-Lichtenbaum conjecture.

We assume that k contains a p-th root ¢ of unity. Then there is the isomor-
phism H}(X; u$™) = H}(X; Z /p). Let 7 be a generator of H! (Spec(k); Z /p) =
Z/p = pyp, so that ([Vo2], [Vo3], Lemma 2.4 in [Or-Vi-Vo))

colim; T H** (X; Z /p) = H:(X;Z/p).

We define the weight degree w(x) =2n —m if 0 £z € H™"™(X; Z /p). Then it is
known w(x) > 0 for smooth X.

Let H*(X; H}' /p) be the cohomology of the Zariski sheaf induced from the
presheaf HY.(V; Z /p) for open subsets V of X. This sheaf cohomology is isomor-
phic to the Fs-term

By = H*(X:Hy,) = H(X: Z/p)
of the coniveau spectral sequence by Bloch-Ogus [Bl-Og]. We also note
HO(X:Hy,,) C HY (k(X); Z/p)
for the function field of X.

The relation between this cohomology and the motivic cohomology is given
as follows.
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THEOREM 5.1 ([Or-Vi-Vo|, [Vo5]). We have the long exact sequence
— H™" (X5 Z[p) =5 H™"(X; Z [p)
= H" (X3 Hy ) s H X Z /) S

In particular, we have

COROLLARY 5.2.  The cohomology H™ "(X; Hy ) is (additively) isomor-
phic to

HP"(X; Zp)(r) & Ker(r) H™ "1 (X; Z/p)

where H™"(X; Z/p)/(v) = H™"(X; Z/p) ) (rH™ "\ (X; Z p)).

COROLLARY 5.3. The map x7 : H™™ Y X;Z/p) — H™™(X;Z/p) is
injective.

By using above theorems, we can do some computations for concrete cases.
Suppose k = C. Then the realization (cycle map)

to=cl: H (X; Z/p) — H(X; Z/p) = H*(X; Z/p)
can be identified with
<7 HY'(X; Z /p) — H**(X; Z/p) = H,(X; Z/p),

from the Beilinson-Lichtenbaum conjecture.
We define the motivic filtration of H*(X; Z/p) by

7

Ff =Tm (t5"7) = ta(H**D(X; Z/p)),
where *(i) = [(* + 4)/2] so that + € F' if # = tc(2') for some 2/ €
H**(X; Z/p) with w(z') < i. Let us write the associated graded ring F* /F* | =
gr H*(X; Z/p). In [Ya2], we define

W (X5 Z[p) = H (X Z/p)/ (Ker(tg™)),

and compute them for some cases of X = BG. It is immediate that
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W (X5 Zp) = @ eI HM (X Z/p) {7}
=0

We will simply write (for ease of notations) the above isomorphism by
W (X Zp) = gr” H(X; Z/p) @ Z/p[7].

LEMMA 5.4. Let X be a smooth variety (over k = C) of dim(X) = 2. Then
we have the isomorphism H** (X; Z [p) = h** (X; Z/p).

PROOF. By the definition of h** (X; Z/p), we see
H (X; Z/p) = b (X; Z [p) & Ker (t57).

We still know Ker(tg*/) = Ker(x7*~*') and we will show this is zero.
It is known ([Vol], [Vo2]) that

H**(X:Z/p) =0 if % —+ > dim(X).

Hence we only need to consider H** (X;Z/p) for x — ' < 2. If x — ' < 1, then
from the Beilinson-Lichtenbaum conjecture and Corollary 5.3, H *’*'(X ; Z/p) has
no 7-torsion elements.

Hence we consider the case * = * — 2. From the exact sequence in Theorem
5.1,

— HO(X; Hyl) -5 (X Z p) 25

we see Ker(7|H**~2(X; Z/p)) = Im(0|H°(X; H}ﬁ)))

Moreover we know HY(X; H};;) C H* Y(k(X); Z/p) where k(X) is the func-
tion field of X. It is well known from Serre (Chapter II 4.2 Proposition 11, Corol-
lary in [Se]) that the Galois group G for a function field F' in two variables over
an algebraically closed field k has the cohomological dimension cd(Gr) = 2. (By
a function field in r variables over k, we mean a finitely generated extension of k
of transcendence degree 7.)

Since dim(X) = 2, the function field k(X) satisfies cd(Gy(x)) = 2 for k = C,
that is, H*(k(X); Z/p) = 0 for * > 3. This implies

HY(X;Hy,) C HH(C(X): Z/p) =0 for x> 4.
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Hence Ker(7|H**~2(X;Z/p)) = 0 for x > 0. (The cases * < 4 follow from
x> 2(x — 2).) O

Here we give an example of a function field. We consider the function field
C(X) of X = (C* — H)/Ds for the action given in Section 4.

Let C?//G = Spec(Clt,s]%) be the geometric quotient by G. Then X =
(C? — H)/G is an open set in C?//G. So C(X) = C(t,s)%; the quotient field of
the invariant ring C[t, s]“. The group G = Dy satisfies Noether’s problem so that
C(X) is purely transcendental over C, i.e. C(X) = C(t,s’). This fact is easily
seen since

Clt,s|Ps = Clts, t* + 5] C C|t, 5],

where the action is given by a : {t - ZS, b: {t s

S — st

6. Motivic cohomology of BDg and BQs.

In this section, we compute the mod(2) motivic cohomology of BDg and BQs.
At first, we consider the case Qs. The mod 2 (usual) cohomology is well known
(see Theorem 2.7)
H*(BQSa Z/2> = Z/2{1ax17y1; T2, ZU%UJ} ® Z/2[02]

where 22 = Bx; = y; and |w| = 3. The graded algebra gr*" H*(BQsg; Z/2) is given
by letting the weight degree by

w(yi) = w(cz) =0, w(z;) = w(w) = 1.
The facts w(y;) = w(cz) = 0 follows from that they are Chern classes. The fact

w(w) = 1 (in fact, we can take w € H3>?(BQg; Z/2)) follows from the proof the
following theorem.

THEOREM 6.1.  We have the bidegree isomorphism
H**'(BQs; Z/2) = h** (BQs; Z/2) = Z/2|7] @ gr* H*(BQs; Z/2).
ProOOF. Let G = Qs. In the usual mod(2) cohomology

H:(C?*Z)2) = H*(BG; Z/2)/(c2) = Z/2{1,x1,y1, T2, y2,w},
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which is isomorphic to H*(C?*/Qg; Z/2). Hence we can use Lemma 5.4
HEY (C*;Z)2) =2 Z)2[7] @ Z/2{1,21,y1, T2, Yo, w}.

Here deg(w) = (3,2) by the following reason. The Bockstein exact sequence
also exists in the motivic cohomology

— HY(BG; 2/2) L B (BG; 2) 2% H* (BG; Z) — - -

Since ¢; € H*?(BG) and 4cy = 0, we can take w € H>2?(BG; Z/2) with f(w) =
202.

Using above facts (indeed, gr H*(BG; Z/2) and gr H:,(C?*; Z/2) are com-
puted), we can show the lower sequence in the following diagram is exact

— H*"'"2(BG; 2/2) — = H*"(BG; 2/2) — H5" (C**; 2/2) —

| [

= W (BG; Z/2) — = W (BGs 2/2) —= hT (C*2/2) —

where 1" (X; Z/2) = Z/2[7) @ or*’ H5(X; Z/2).

Since Hg’*,(CQ*;Z/Q) =~ H**(C%*/G; Z/2), the map js is always an iso-
morphism, from Lemma 5.4. When * < 0, we know H*’*I(X;Z/p) = 0 from
H*<%(X;Z/p) = 0 and the Beilinson-Lichtenbaum conjecture. Of course, for
* = 4, the map j; is an isomorphism, namely both are isomorphic to Z/2[r].
Hence we have the isomorphism of js for * < 4. By induction on * > 0 and the
five lemma, we easily see that the vertical maps are isomorphisms. O

Now we consider the case G = Dg. We recall the mod(2) cohomology.

H*(BDs; Z/2) = (Z/2[x1, wo] [ (2122)) @ Z /2[u]
= (EB Z 2lyiyis i, yiu, wiu} @ Z/2{1, u}) ® Z/2[ca).

Here we identify, y; = 27 and ¢» = u?. The cohomology operations on

H*(BDg; Z/2) is well known, e.g., (see [Te-Ya])

Qo(u) = (r1 +x2)u=r¢e, Q1Qo(u) = (y1 +y2)ca.
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LEMMA 6.2.  There exist u},uly € H>?(BDs;Z/2) with Tu, = zu €
H33(BDs; Z/2) (s0 u = 77 x;u).

PROOF. First note that we can take u € H*>?(BG; Z/2) (since it is not in
Chow ring and Qo (u) # 0). Of course y; and ¢y are represented by Chern classes.
Hence

H*2(BG: Z) > Z/2{Qo(w)}, H"(BG: Z) = Z/2{y}. 13} & Z/4{cz}.
By using the universal coefficient theorem such that
dim H** (X; Z/p) = dim (H*’*/(X)/p) + dim (p—torsion(l[f""1’*/(X)))7
(since there is the Bockstein exact sequence also in the motivic theory), we see
dim H3*(BG; Z/2) > 1+ 3 = 4.

From the Beilinson-Lichtenbaum conjecture and Corollary 5.3, we see that
H**(X; Z/p) — H*(X; Z/p) is injective for *+ < 3. On the other hand

H3(BG; Z/2) 2 Z [/2{x1u, z2u, X1Y1, T2Y2 }.

Hence each element in H3(BG;Z/2) must be in H>?(BG;Z/2). (Indeed,
Qo(ziyi) = y7, Qo(u) = u} + uj and B(uj) = 2c2.) U

Therefore we get gr* H*(BDs; Z/2) which is isomorphic to

2
<@ Z ) 2[yil{ yis i, wiug,up } @ Z/2{17U}> ® Z /2[co]
i=1

with w(y;) = w(ez) = 0, w(z;) = wu;) = 1 and w(u) = w(zu;) = 2. (Note
u, x;ul, & CH*(BG)/2, and x;ul = y;u).

THEOREM 6.3. We have the bidegree module isomorphism
H**(BDg; Z/2) = h** (BDs; Z/2) = Z/2[r] © gr* H*(BDs; Z/2).

Before the proof of this theorem, we give a lemma.
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LEMMA 6.4.

Hy? (Ho, Z/2) = 1" (Ho, Z/2) = Z/2[7] ® Z/2[y1] © Ala1, 2)
with deg(z) = (1,1).

PrROOF. Let G = Dg. We consider the exact sequence
— HS 27 {0y Hy; Z/2) 25 HLY (CxHy; Z/2) — HS (C*xHy; Z/2) — - -
where G acts on C' x Hy by

g(z,y) = (b"(9)(x),9(y)) forx € C, ye€ Hy.

Note that G acts freely on C* x Hy (but Hy itself has the stabilizer group
(b)) and
HE™ (C* x Hy; Z/2) = H ((C* x Hy)/G; Z/2)
= H""(C"/{b) x C"/{a®); Z/2)
= 0" (C[(b); Z/2) @zp0r) H (C*/(a®); Z/2)
>~ Z/2[1) ® A(z1, 2)
since H**(C™ /(Z/2); Z/2) holds the Kunneth formula. (See Proposition 6.6
and Lemma 6.7 in [Vo3], and the arguments work, if we take C™*/2 instead of
BZ /2 = colim,, C"*/Z/2.)
The natural map H;" (Ho; Z/2) — Z/2[7] ® H:(Ho; Z/2) induces the dia-

gram for two exact sequences similar to the above exact sequence. We can prove
the lemma by induction on * > 0 and the five lemma. O

PrROOF OF THEOREM 6.3. Let G = Dg. First we consider the exact se-
quence

— HL2(H; Z)2) - HE(C?*; Z)2) — HL(C* — H; Z/2) — - -

We write the map i, explicitly
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HE*(H:Z/2) HE(C* Z)2)

:i !

D z /201, 2;. 25,052} — <@ Z/Q[yj]{yjarjvu;vxjué}) ® Z/2{1,u}

Jj=1 J=1

where 1;, z; are the generators in H(H;_1;Z/2). Using the fact that 4, is iso-
morphic for * > 4, the map i, is given explicitly

(1) =5, i) =yimg,  ia(z5) =G, da(z25) = ujz;.
(In particular, i, is injective.) Therefore
H*(C** —H)/G;Z)2) = Z/2{1, 21,12, u}.
We still get the weight degree w(x), and we have the exact sequence
0 — gr* HY2(H; Z/)2) 5 gr* HE(C?*; Z/2) — gr* HL(C? — H; Z/2) — 0.

Next we consider the following diagram

— HE 2 Y H 2)2) —— HSY (C* Z)2) — HS" (C* — H, Z/2) — ---

| .

K2

— b TN H; 2/2) — = b (€5 2/2) —= by (CF — H;Z/2) — -

Here the lower sequence is also (split) exact from the above sequence for
gr*’ Hy(—; Z/2). The map ds is an isomorphism from Lemma 5.4 since Hg,(C?* —
H;Z/2) & H*((C** — H)/G;Z/2). The map d; is also an isomorphism from
the preceding lemma. By using the five lemma, we get HZJ*/(CQ*;Z/Q) =
hEt (C?*5Z)2).

Using the exact sequence

— H* ™ 2(BG; Z/2) — = H*" (BG; 2/2) — H" (C*; 2/2) —,

as in the case of G = Qg, we can see H** (BG; Z/2) = h** (BG; Z/2). O
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7. Motivic cobordism of BQg and BDsg.

Let MU*(X) and MU*(X; Z/p) be the usual complex cobordism theory and
its mod p theory. Let MGL*’*/(X) be th motivic cobordism theory defined by
Voevodsky [Vol]. Since t¢|CH*(BG) is injective, from Proposition 9.4 in [Ya3],
we have the isomorphism

MGL***(BG) = MU**(BG)
for each group of order p3.

In this section, we give rather strong results for only Qs and Dg. Let
MGL*v*,(X; Z /p) be the mod p theory defined by the exact sequence

— MGL** (X) 2% MGL* (X) 25 MGL** (X; Z /p) = - --
Then we have the following theorem (which holds also for (Z/2)", O,,, SO,,).
THEOREM 7.1. Let G = Qg or Dg. Then there are isomorphisms
MGL** (BG; Z/2) = MGL**(BG; Z/2) ® Z/2[r],
MGL***(BG; Z/2) 2 MU*(BG; Z/2) = MU?**(BG)/2.
PROOF. Let G = Qg or Dg. Let E(MGL)>**" (resp. E(MU)**") be

the Atiyah-Hirzebruch spectral sequence converging to MGL** (BG; Z/2) (resp.
MU*(BG; Z/2)) (see [Ya3]), namely,

E(MGL)y** =~ H**(BG; Z/2) ® MU*' = MGL** (BG; Z/2),
E(MU)y* = H*(BG; Z/2) ® MU* =MU*(BG;Z/2).
The realization map tc induces the map tg*/’*” : E(MGL)*>**" — B(MU)**"

of spectral sequences.
From Theorem 6.1 and 6.3, we know

H**(BG; Z/2) =~ Z/2|r| ® gr* H*(BG; Z/2).

Let us write gr* E(MU);’*” = gr* H*(BG; Z/2) ® MU*" so that we have the
bidegree module isomorphism
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E(MGL)* " = z/2f] @ gr* BE(MU)S™".
Suppose that for all z € gr*’ E(MU)S*" ¢ E(MGL)5**",
(1) da(z) € gr* E(MU)S™"  (ie., dy(x) # Ty for some Ty # 0).
Then from the naturality of the map t*cl*” of spectral sequences, we have
E(MGL):* " = z /2] @ gr* E(MU)S*"

where gr*’ E(MU);)’*” is the bidegree module made from gr E(MU)z’*” giving the
same second degree. Moreover, if for all z € gr*’ E(MU)**", r > 2

(2) do(2) € g’ BOMU),
then we have the bidegree isomorphism
EMGL) " = Z /2 @ er” E(MU)Z",
and we can prove this theorem.
To see (1), (2), we note that gr*’ H*(BG; Z/2) is generated by elements x
of degree w(z) <1 (resp. w(x) < 2 e.g., w(u) = 2) for G = Qg (resp. G = D).

Hence w(d,(z)) = w(z) — 1 < 1. Since w(7) = 2, all elements =’ of w(z') <1 are
contained in

H**(BG; Z/2) ® H*"*(BG; Z/2) C e H*(BG; Z/2).

Thus we get (1), (2). O
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