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Abstract. Differential operators on Siegel modular forms which behave
well under the restriction of the domain are essentially intertwining operators
of the tensor product of holomorphic discrete series to its irreducible compo-
nents. These are characterized by polynomials in the tensor of pluriharmonic
polynomials with some invariance properties. We give a concrete study of such
polynomials in the case of the restriction from Siegel upper half space of degree
2n to the product of degree n. These generalize the Gegenbauer polynomials
which appear for n = 1. We also describe their radial parts parametrization
and differential equations which they satisfy, and show that these differential
equations give holonomic systems of rank 2n.

1. Introduction.

Differential operators acting on holomorphic Siegel modular forms on the
Siegel upper half space Hn of degree n which preserves automorphy under the
restriction to a natural subdomain Hn1 × · · · ×Hnr of Hn are important objects.
They are often applied to the concrete or theoretical calculation of special values of
L functions. But apart from their importance in the applications to number the-
ory, they are interesting objects as themselves since they are sources of interesting
special functions. For example, the classical Gegenbauer polynomials are included
in this category as we can see in [7]. A certain characterization of such holomor-
phic linear differential operators with constant coefficients are given in [13]. These
operators are naturally regarded as polynomials of partial derivations of indepen-
dent variables of the domain and polynomials appearing here are characterized by
certain pluriharmonic polynomials with some invariance property. Böcherer also
studied this kind of operators in slightly different context in [3]. See also [14],
[15].
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In this paper, we treat the case when domains are Hn × Hn ⊂ H2n. After
reviewing our motivation for Siegel modular forms in Section 2, we will study the
above mentioned invariant pluriharmonic polynomials. These polynomials have
essentially two properties. One is a certain invariance by GL(n) × GL(n) and
O(d) and the other is pluriharmonicity. In Section 3, we study generators of poly-
nomials which satisfy the above invariance (cf. Proposition 3.1) and in Section 4,
we study concrete conditions for pluriharmonicity described by certain differential
equations (cf. Proposition 4.3). We also give an explicit way to construct such
polynomials, and review some generating functions for small n. The usual Gegen-
bauer polynomials appear in this context when n = 1 as radial parts of the above
polynomials, so we study the radial parts parametrization for general n in Section
5 and construct explicit families of holonomic systems of rank 2n which have the
radial parts of our polynomials as one of the solutions (cf. Theorem 5.3). This is
a generalization of the usual Gegenbauer differential equations to general n. Nat-
ural inner products for our polynomials are given in Section 6. By some change
of variables, our differential equations turn out to be equivalent to the known sys-
tem in Muirhead [21]. Moreover, we show that our polynomial solutions become
generalized hypergeometric polynomials of several variables. These are explained
in Section 7 (cf. Theorem 7.5). In Appendix A, we see the connection between
our polynomials and spherical functions in L2 space on Grassmann manifolds. In
Appendix B, we review some criterions for systems to be holonomic and complete
the proof of the fact that our systems are holonomic.

Acknowledgements. Many parts of our paper are related with the con-
tents of [14], [15], which have been done before but is still in preparation. Some
parts of our results were influenced implicitly by the arguments in those papers. So
the first named author would like to thank Don Zagier for long lasting collaboration
there. We would also like to thank C. Bachoc for suggestion that our polynomials
have something to do with polynomials in [1] and [17]. This suggestion leads us
to write Appendix A.

2. Review on motivation: Siegel modular forms.

Although our motivation on Siegel modular forms has logically no relation to
the content of this paper, we shortly review the theory since it would make the
picture clearer. We denote by Hn the Siegel upper half space.

Hn =
{
Z = X + iY ∈ Mn(C); X = tX, Y = tY ∈ Mn(R), Y > 0

}

where Y > 0 means that Y is positive definite. We put Jn =
(

0 −1n
1n 0

)
. The
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symplectic group is defined as usual by

Sp(n, R) =
{
g ∈ M2n(R); gJn

tg = Jn

}
.

Then Sp(n, R) acts on Hn by gZ = (AZ + B)(CZ + D)−1 for g =
(

A B
C D

) ∈
Sp(n, R). Now we fix natural numbers d and ν. We assume that d is even for
a while for the sake of simplicity, but this assumption is not essential. For any
g ∈ Sp(n, R) and any holomorphic functions F (Z) of Hn, we put

(F |d/2[g])(Z) = det(CZ + D)−d/2F (gZ).

In the same way, for any holomorphic functions F (Z1, Z2) of Hn ×Hn and gi =(
Ai Bi

Ci Di

) ∈ Sp(n, R) (i = 1, 2), we put

(F |d/2+ν [(g1, g2)])(Z1, Z2)

= det(C1Z1 + D1)−d/2−ν det(C2Z2 + D2)−d/2−νF (g1Z1, g2Z2).

Now we put ∆ = Hn×Hn and embed ∆ diagonally to H2n. We embed Sp(n, R)×
Sp(n, R) into Sp(2n, R) by

g =




A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2




for gi ∈ Sp(n, R) as above and denote this element by g = ι(g1, g2). We consider
holomorphic homogenous differential operators D with constant coefficients acting
on holomorphic functions F (Z) on H2n such that the relation

Res∆
(
D(F |d/2[ι(g1, g2)])

)
= (Res∆(DF ))|d/2+ν [(g1, g2)] (1)

holds for any holomorphic functions F , where Res∆ is the restriction map to ∆.
For Z = (zij) ∈ H2n, we put ∂Z =

(
((1 + δij)/2)(∂/∂zij)

)
1≤i,j≤2n

, where δij

is Kronecker’s delta. So for D, there exists a polynomial PD in components of
2n×2n symmetric matrix such that D = PD(∂Z). So we would like to characterize
PD.

We consider a polynomial P ∗(X, Y ) in components of two n × d matrices X

and Y which satisfies the following three conditions.
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( i ) P ∗(AX, BY ) = det(AB)νP ∗(X, Y ) for any A, B ∈ GL(n, C).
( ii ) P ∗(Xh, Y h) = P ∗(X, Y ) for any h ∈ O(d).
(iii) P ∗(X, Y ) are pluriharmonic for each X and Y :

∆ij(X)P ∗ = ∆ij(Y )P ∗ = 0, (i, j = 1, . . . , n),

where we put ∆ij(X) =
∑d

µ=1(∂
2/∂xiµ∂xjµ) and ∆ij(Y ) =

∑d
µ=1(∂

2/∂yiµ∂yjµ)
for X = (xij), Y = (yij). Under the condition (i), the condition (iii) is equivalent
to say that P ∗(X, Y ) are harmonic for each X and Y . We assume that d ≥ n.
Then by the classical invariant theory, for each P ∗ which satisfies (ii), we have the
unique polynomial P in components of 2n× 2n symmetric matrix such that

P ∗(X, Y ) = P

(
XtX XtY

Y tX Y tY

)
.

If we write P as P = P (T ) where T is a 2n× 2n symmetric matrix, then by (i) we
have P

((
A 0
0 B

)
T

( tA 0
0 tB

))
= det(AB)νP (T ) for any A, B ∈ GL(n, C). We denote

by Pn,ν the set of all such polynomials P and we call ν an index of the polynomials
P ∈ Pn,ν . The total degree of P as a polynomial is nν. The following theorem is
a part of the main theorem of [13].

Theorem 2.1 ([13]). We fix natural numbers n. For each d ≥ n and ν, a
differential operator P (∂Z) satisfies the condition (1) if and only if P ∈ Pn,ν and
P

(
XtX XtY
Y tX Y tY

)
is pluriharmonic for each X ∈ Mn,d or Y ∈ Mn,d. Besides, for each

d ≥ n and ν, such a differential operator exists uniquely up to constant.

Here note that the space Pn,ν does not depend on d but the harmonicity
condition depends on d. We denote by Hn,ν,d the one-dimensional subspace of
Pn,ν which satisfies the pluriharmonicity defined above.

3. Invariant polynomials of GL(n) × GL(n).

In this section, we give generators of Pn,ν . We denote by Symn(R) the set of
n×n symmetric matrices with coefficients in R. We can regard Pn,ν as the set of
polynomials P (R, S, W ) in the components of (R, S, W ) ∈ Symn(R)×Symn(R)×
Mn(R) such that the following relation is satisfied for any A, B ∈ GL(n, R).

P (AR tA,BS tB,AW tB) = det(AB)νP (R, S, W ). (2)

Here in the (X, Y ) coordinates in the last section, we have R = X tX, S = Y tY
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and W = X tY . The direct sum Pn =
⊕∞

ν=0 Pn,ν becomes a graded ring by
the natural multiplication. We also define the graded subring of even indices by
Pn,even =

⊕∞
ν=0 Pn,2ν . In order to give generators of these graded rings, we

introduce the following notation. For each 0 ≤ α ≤ n, we define polynomials Pα

in (R, S, W ) ∈ Symn(R)× Symn(R)×Mn(R) by

det
(

xR W
tW S

)
=

n∑
α=0

Pα(R, S, W )xα,

where x is an indeterminate. For example, P0(R, S, W ) = (−1)n det(W )2 and
Pn(R, S, W ) = det(RS).

Proposition 3.1. The graded ring Pn,even is generated by the polynomials
Pα (0 ≤ α ≤ n) and Pn = Pn,even ⊕ det(W )Pn,even. The n + 1 polynomials
det(W ), P1, . . . , Pn are algebraically independent.

Proof. We take P ∈ Pn,ν . If P (R, S, W ) ∈ Pn,ν , then the polynomial
P is determined by its values at R = S = 1n and W= diagonal matrices. In-
deed, this polynomial is determined by its values on any non-empty open subset
e.g. the open set consisting of (R, S, W ) such that R > 0, S > 0 (positive definite
symmetric matrices) and W ∈ GL(n, R). For these R, S, W , we can take A,
B ∈ GL(n, R) so that AR tA = BS tB = 1n. Now put W0 = AW tB. Since
we assumed that det(W ) 6= 0, there exist orthogonal matrices h1, h2 such that
h1W0h2 = D where D is the diagonal matrix with diagonal elements di (1 ≤ i ≤ n)
with di 6= 0. So by (2) we have P (1n, 1n, D) = det(h1h2)νP (1n, 1n,W0) =
det(h1h2AB)νP (R, S, W ) and this shows that P is determined by P (1n, 1n, D).
Now, since P (1n, 1n, V −1DV ) = P (1n, 1n, D) for any permutation matrix V , the
polynomial P (1n, 1n, D) is a polynomial in elementary symmetric polynomials
of d1, . . . , dn. For each i with 1 ≤ i ≤ n, take a diagonal matrix εi such that
(i, i)-component is −1 and that the other diagonal components are 1. Then we
see P (1n, 1n, εiD) = (−1)νP (1n, 1n, D). So, if ν is even, then P (1n, 1n, D) is a
polynomial in elementary symmetric polynomials of d2

1, . . . , d
2
n. If ν is odd, then

P changes sign if we change di into −di for i. This means that P (1n, 1n, D) is
divisible by d1 · · · dn and P (1n, 1n, D)/(d1 · · · dn) is a symmetric polynomial of
d2
1, . . . , d

2
n.

Put det(x1n −W0
tW0) =

∑n
α=0 xαP ′α(W0). By the relation

det
(
x1n −W0

tW0

)
= det(x1n −D2),

we see that P (1n, 1n,W0) is a polynomial in P ′α(W0) when ν is even. When
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ν is odd, we have P (1n, 1n, D)/ det(D) = P (1n, 1n,W0) det(h1h2)ν/ det(D) =
P (1n, 1n,W0)/ det(W0), so we see also that P (1n, 1n,W0) is det(W0) times a poly-
nomial of P ′α. Since we have det(x1n −W0

tW0) = det(x1n − B tWR−1W tB) =
det(x1n − S−1 tWR−1W ) = det(x1n −R−1WS−1 tW ), and

∣∣∣∣
R−1 0

0 S−1

∣∣∣∣
∣∣∣∣
xR W
tW S

∣∣∣∣
∣∣∣∣

1n 0
−S−1 tW 1n

∣∣∣∣ =
∣∣∣∣
x1n −R−1WS−1 tW R−1W

0 1n

∣∣∣∣ ,

we get

det(RS) det
(
x1n −W0

tW0

)
=

∣∣∣∣
xR W
tW S

∣∣∣∣ .

Hence, we get Pα(R, S, W ) = P ′α(W0) det(RS).
First, we assume that ν is even. Since

det(RS)ν/2P (1n, 1n,W0) = det(AB)−νP (1n, 1n,W0) = P (R, S, W ),

we see that P (R, S, W ) is a linear combination of the following functions

det(RS)ν/2
n−1∏
α=0

P ′α(AW tB)eα =
n−1∏
α=0

Pα(R, S, W )eα det(RS)ν/2−Pn−1
α=0 eα .

We will show that ν/2−∑n−1
α=0 eα is non-negative. Now we consider the degree of

this polynomial P . We write R = (rij), S = (sij), W = (wij) and put

P (R, S, W ) =
∑

1≤i1≤i2≤n
1≤i3≤i4≤n
1≤i5,i6≤n

ci1i2i3i4i5i6r
li1i2
i1i2

s
mi3i4
i3i4

w
ni5i6
i5i6

.

For simplicity, we put lij = lji and mij = mji. Taking diagonal matrices
A = diag(a1, . . . , an), B = diag(b1, . . . , bn), we get P (ARtA,BStB,AW tB) =
(
∏n

i=1 aibi)νP (R, S, W ). This means that for a fixed i or j, we have 2lii +∑
i2 6=i li,i2 +

∑n
i6=1 ni,i6 = ν, or 2mjj +

∑
i1 6=j mi1,j +

∑n
i5=1 ni5,j = ν. Hence

if we denote by N11 the degree of P (R, S, W ) with respect to w11, then N11 ≤ ν.
If we assume that ν is even, then we may write P (1n, 1n, D) = P (1n, 1n,W0) =∑

c(e0, . . . , en−1)
∏n−1

α=0 P ′α(W0)eα . Here P ′α(W0) is the elementary symmetric
polynomial of d2

i . By Lemma 3.2 we shall see below, we see that the de-
gree of P (1n, 1n,W0) with respect to d1 is the maximum of 2

∑n−1
α=0 eα for
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c(e0, . . . , en−1) 6= 0. On the other hand, the degree of P (1n, 1n, D) = P (1n, 1n,W0)
with respect to d1 is at most N11 ≤ ν. So we have 2

∑n−1
α=0 eα ≤ ν.

Next, we assume that ν is odd. Then, we have

P (1n, 1n,W0) = det(W0)p
(
P ′0(W0), . . . , P ′n−1(W0)

)
,

where p is a polynomial of n variables. Since det(W0) = det(AB) det(W ), we get

P (R, S, W ) = det(W ) det(AB)−ν+1p
(
P ′0(W0), . . . , P ′n−1(W0)

)

= det(W ) det(RS)(ν−1)/2p
(
P ′0(W0), . . . , P ′n−1(W0)

)
.

This last polynomial is a linear combination of monomials

det(W ) det(RS)(ν−1)/2−Pn−1
α=0 eα

n−1∏
α=0

Pα(R, S, W )eα .

Hence by the same argument as in the case of even ν, we have (ν−1)/2 ≥ ∑n−1
α=0 eα.

Finally, the restriction of P0, . . . , Pn−1 to (R, S, W ) = (1n, 1n, D) is alge-
braically independent, and since P0, . . . , Pn are homogeneous polynomials of the
same degree, this also implies that P0, . . . , Pn are algebraically independent. ¤

Now we show the lemma we used above. Let F (z1, . . . , zn) be a polynomial.
We write F (z1, . . . , zn) =

∑
β cβzβ where β runs over β = (β1, . . . , βn) ∈ (Z≥0)n

and zβ = zβ1
1 · · · zβn

n . We put |β| = β1 + · · ·+ βn. For i with 1 ≤ i ≤ n, we denote
by si the elementary symmetric polynomial of independent variables d1, . . . , dn of
degree i.

Lemma 3.2. Notation being as above, assume that F (s1, . . . , sn) is of degree
a with respect to d1. Then the total degree of F (z1, . . . , zn) is a.

Proof. Denote by b the maximum of |β| such that cβ 6= 0. We write all
such indices by β(1), . . . , β(r). We show that b = a. For i with 1 ≤ i ≤ n − 1, we
denote by σi the elementary symmetric polynomial of d2, . . . , dn of degree i. For
simplicity, we put σ0 = 1. Then we have si = d1σi−1 + σi. So the highest degree

term with respect to d1 in s
β

(i)
1

1 s
β

(i)
2

2 · · · sβ(i)
n

n is given by db
1σ

β
(i)
2

1 σ
β

(i)
3

2 · · ·σβ(i)
n

n−1. If
β

(i)
l = β

(j)
l for all l = 2, . . . , n, then since |β(i)| = |β(j)| = b, we have β

(i)
1 = β

(j)
1

and so β(i) = β(j). So for different i, the coefficient of db
1 is different. Since

σ1, . . . , σn−1 are algebraically independent, the coefficient of db
1 in F (s1, . . . , sn)

does not vanish. So we have a = b. ¤
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Remark 3.3. For any P (R, S, W ) ∈ Pn, we have P (S,R, tW ) =
P (R, S, W ). By virtue of Proposition 3.1, this is proved by seeing that Pα and
det(W ) satisfy the same property. As for det(W ), this is trivial. As for Pα, we
have

(
xR W
tW S

)
=

(
0 x1n

1n 0

)(
xS tW
W R

)(
0 x−11n

1n 0

)
,

so by definition we have the result. We also have a direct proof without using
Proposition 3.1 from the relation (2) but omit the details.

The space Pn is not invariant by ∆ij(X) or ∆ij(Y ), and in order to describe
the action of Laplacians ∆ij(X) or ∆ij(Y ), we must study the structure of the
images of these operators. For any m×m matrix V and integers i, j with 1 ≤ i, j ≤
m, we denote by Vi,j the (i, j)-cofactor of V , i.e., (−1)i+j times the determinant of
the matrix which is obtained by removing the i-th row and the j-th column from
V . For each integer 0 ≤ β ≤ n− 1, we define polynomials P̂β(R, S, W ) by

(
xR W
tW S

)

1,1

=
n−1∑

β=0

P̂β(R, S, W )xβ .

Lemma 3.4. The 2n+1 polynomials Pα (0 ≤ α ≤ n) and P̂β (0 ≤ β ≤ n−1)
are algebraically independent. A fortiori, the polynomials P̂β (0 ≤ β ≤ n− 1) are
linearly independent over the ring Pn.

Proof. We prove this by induction on n. Let F (X0, . . . , Xn, Y0, . . . , Yn−1)
be a non-zero polynomial of the smallest total degree such that F (P0, . . . , Pn,

P̂0, . . . , P̂n−1) = 0. We shall show that F = 0 by induction. When n = 1, if we
put R = (r), S = (s) and W = (w), we have P0 = −w2, P1 = rs, P̂0 = s, which
are algebraically independent. Hence we have F = 0.

Now we assume that n > 1 and that the claim is true up to n − 1. We can
write F as

F (X0, . . . , Xn, Y0, . . . , Yn−1) = F1(X0, . . . , Xn−1, Y0, . . . , Yn−2)

+ XnF2(X0, . . . , Xn−1, Xn, Y0, . . . , Yn−2)

+ Yn−1F3(X0, . . . , Xn−1, Xn, Y0, . . . , Yn−1).

First, we put rin = sin = 0 for all 1 ≤ i ≤ n and win = wni = 0 for i 6= n, wnn = 1.
Then we get P̂n−1 = Pn = 0 and −Pα (0 ≤ α ≤ n− 1) and −P̂β (0 ≤ β ≤ n− 2)
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becomes the corresponding polynomials for n − 1 of the first (n − 1) × (n − 1)
matrices of R, S, W . Hence, by induction hypothesis, we get F1 = 0. Now, let
us go back to the original polynomials F . Put rni = 0 for all i 6= 1. Then we
get P̂n−1 = 0 and Pn = −r2

n1R1,n;1,n det(S), where R1,n;1,n means a minor of R

where the first and the n-th rows and the first and the n-th columns are removed.
Since this is not zero, we see that F2(P0, . . . , Pn−1, P̂0, . . . , P̂n−2) = 0 if rni =
0 for (at least) all i 6= 1. Now write F2 = F4(X0, . . . , Xn−1, Y0, . . . , Yn−2) +
XnF5(X0, . . . , Xn, Y0, . . . , Yn−2). If we put here rni = 0, sni = 0 for all 1 ≤ i ≤ n

and win = wni = 0 (i 6= n), wnn = 1 in F2, then Pn = 0 and by the same
argument for F1, we see that F4 is identically zero and F2 is a multiple of Xn.
Repeating the same procedure several times, we see that F2 is divisible by X l

n

for l which exceeds the degree of F2, so we have F2 = 0. Hence finally we get
F3(P0, . . . , Pn, P̂0, . . . , P̂n−1) = 0, but since F3 is a polynomial of smaller degree
than F , we get a contradiction. ¤

4. Invariant pluriharmonic polynomials.

4.1. Pluriharmonicity for R, S, W .
To get the one-dimensional subspace Hn,ν,d of Pn,ν , we must investigate the

action of ∆ij(X) and ∆ij(Y ) on Pn,ν . But, for any P (R, S, W ) ∈ Pn,ν , we have
P ∈ Hn,ν,d if and only if ∆11(X)P (XtX, Y tY, XtY ) = 0. This is proved by
Remark 3.3 in the last section and the fact that P becomes (sgn(σ) sgn(τ))νP

under the permutation of indices of R = (rij), S = (sij), W = (wij) as rij →
rσ(i)σ(j), sij → sτ(i)τ(j), wij → wσ(i)τ(j) for any element σ, τ in the symmetric
group Sn of n letters. For the sake of simplicity, we write ∆11 = ∆11(X) in the
rest of this paper. It is a routine calculation to rewrite the operator ∆11 by the
coordinate of R, S, W . If we denote by ∂ij = (1 + δij)(∂/∂tij) for T =

(
R W

tW S

)
=

(tij), the result is given by

∆11 = d∂11 +
2n∑

i,j=1

tij∂1i∂1j .

(cf. [14].) As we explained, the coordinates of X, Y and those of R, S, W corre-
spond bijectively under our assumption d ≥ n. So we often use (X, Y ) coordinates
instead of (R, S, W ) in our calculation. For functions F (X, Y ) and G(X, Y ), we
define (F, G) by

∆11(FG) = (∆11F )G + (F, G) + F (∆11G).

In the (X, Y ) coordinates, we have
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(F, G) = 2
d∑

j=1

∂F

∂x1j

∂G

∂x1j
. (3)

Of course we have (Pα, Pβ) = (Pβ , Pα).

Proposition 4.1.

(1) For 0 ≤ α ≤ n, we have

∆11Pα = 2(d− 2n + α + 1)P̂α−1 − 2(α + 1)P̂α.

(2) For 0 ≤ α ≤ β ≤ n, we have

(Pα, Pβ) = 8PαP̂β−1 − 8
α−1∑

i=0

(−Pα−i−1P̂β+i + Pβ+i+1P̂α−i−2

)

+ 8
α∑

i=0

(−Pα−iP̂β+i + Pβ+i+1P̂α−i−1

)
.

Here we understand that Pα = 0 for α < 0 or n < α and that P̂α = 0 for
α < 0 or n ≤ α.

We prove this by using (X, Y ) coordinates. We prepare the following notation
and Lemma. We put

T (x) =
(

xXtX XtY
tY X Y tY

)
=

(
xR W
tW S

)

and denote the components of R, S, W by the same notation as before. We denote
by T (x)ij the (i, j) cofactor of T (x), that is, (−1)i+j times the determinant of the
(2n − 1) × (2n − 1) matrix obtained by removing i-th row and j-th column. For
any j and α with 1 ≤ j ≤ 2n and 0 ≤ α ≤ n− 1, we define P̂

(j)
α = P̂

(j)
α (X, Y ) by

T (x)1j =
n−1∑
α=0

P̂ (j)
α xα.

In particular, we have P̂α = P̂
(1)
α .

Lemma 4.2. For all 1 ≤ i ≤ n, 0 ≤ α ≤ n, and 1 ≤ k ≤ d, we have
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n∑

j=1

(
rijP̂

(j)
α−1 + wijP̂

(j+n)
α

)
= δ1iPα, (4)

n∑

j=1

(
wjiP̂

(j)
α + sijP̂

(j+n)
α

)
= 0, (5)

2
n∑

j=1

(
xjkP̂

(j)
α−1 + yjkP̂ (n+j)

α

)
=

∂Pα

∂x1k
. (6)

Proof. Expanding det(T (x)) at the i-th row for 1 ≤ i ≤ n, we have

det(T (x)) =
n∑

j=1

(
xr1jT (x)1j + w1jT (x)1,j+n

)
,

so we obtain (4) for i = 1 by taking the coefficient of xα. If i 6= 1, then the
left-hand side of (4) is the coefficient of the determinant of the matrix obtained
by replacing the first row of T (x) by the i-th row, so the determinant is zero. The
assertion (5) is obtained similarly by replacing the first row of T (x) by (i + n)-th
row. We show (6). The variable x1k appears only in the first row and column of
T (x), so by differentiating each row, we have

∂ det(T (x))
∂x1k

= x

n∑

j=1

(1 + δ1j)xjkT (x)1j +
n∑

j=1

yjkT (x)1,n+j

+ x

n∑

j=2

xjkT (x)j1 +
n∑

j=1

yjkT (x)n+j,1

= 2
(

x
n∑

j=1

xjkT (x)1j +
n∑

j=1

yjkT (x)1,n+j

)
, (7)

since T (x) is symmetric and T (x)i1 = T (x)1i for any i. Taking the coefficient of
xα, we have (6). ¤

We give a remark on a formula of the general determinant. Let m and n be
natural numbers such that m < n. V = (vij) be an n×n matrix with components
vij . For any j with 1 ≤ j ≤ n, denote by V (j) the matrix obtained by replacing
vij by 0 for m + 1 ≤ i ≤ n. Then we have the formula
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m det(V ) =
n∑

j=1

det(V (j)). (8)

We can prove this by induction on m. If m = 1, the assertion is true by the
expansion of det(V ) at the first row. Now we may assume that the assertion is
true for m − 1. Now take the expansion of detV (j) at the first row. Then the
part which contains v1k is from det V (k) given by v1k× Ṽ1k where Ṽij is the (i, j)-
cofactor of V and given by v1k×(m−1)Ṽ1k from

∑
j 6=k det(V (k)) by the inductive

assumption. So we prove the formula (8).

Proof of Proposition 4.1. We calculate ∆11Pα by using (8). Differen-
tiating both sides of (7), for each k with 1 ≤ k ≤ d, we have

∂2 det(T (x))
∂x2

1k

= 2
(

xT (x)11 + x
n∑

i=2

xik
∂T (x)1i

∂x1k
+

n∑

i=1

yik
∂T (x)1,n+i

∂x1k

)
. (9)

The variable x1k is only in the first column of T (x)1i and the derivatives of the first
column is calculated by ∂rj1/∂x1k = xjk, ∂w1j/∂x1k = yjk. Since

∑d
k=1 xikxjk =

rij and
∑d

k=1 xikyjk = wij , the sum
∑d

k=1 xik(∂T (x)1i/∂x1k) is obtained by re-
placing the first column of T (x)1i by t(r2i, r3i, . . . , rni, wi1, wi2, . . . , win), so this is
−T (x)11 for each i (including the signature). So the sum of the first two terms
in the parenthesis of (9) over k = 1 to d is x(d − n + 1)T (x)11. Now the third
term is similar but slightly different. The reason is that if we sum up over k = 1
to d for each i, then by the same calculation as before, we have a matrix simi-
lar to −T (x)11, but this time the (i + n) column is replaced by t(xw̃i, s̃i) where
w̃ = (w2i, w2i, . . . , wni) and s̃ = (s1i, s2i, . . . , sni), and not by t(w̃i, s̃i). So if we
divide this column into two parts as (x − 1)t(w̃i, 0, . . . , 0) + t(w̃i, s̃i), then the
latter vector gives −T (x)11. On the other hand, if we take x(∂T (x)11/∂x), then
this is the sum of the determinant obtained by replacing i-th column of T (x)11 by
xt(r2i, r3i, . . . , rni, 0, . . . , 0). So by the formula (8), the sum over i = 1 to n of the
part coming from t(w̃i, 0, . . . , 0) is given by

−(n− 1)T (x)11 + x
∂T (x)11

∂x
.

Hence we have

n∑

i=1

d∑

k=1

yik
∂T (x)1,n+i

∂x1k
= −nT (x)11 + (x− 1)

(
− (n− 1)T (x)11 + x

∂T (x)11
∂x

)
.
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So ∆11 det(T (x)) is

2(d− n + 1)xT (x)11 − 2nT (x)11 − 2(x− 1)(n− 1)T (x)11 + 2(x− 1)x
∂T (x)11

∂x

= 2
n−1∑
α=0

(d− 2n + α + 2)xα+1P̂α − 2
n−1∑
α=0

(α + 1)xαP̂α.

So we have (1) of Proposition 4.1.
Now we show (2) of Proposition 4.1. By Lemma 4.2, assuming that α ≤ β,

we have

d∑

k=1

∂Pα

∂x1k

∂Pβ

∂x1k

= 4
d∑

k=1

( n∑

i=1

(
xikP̂

(i)
α−1 + yikP̂ (n+i)

α

))( n∑

j=1

(
xjkP̂

(j)
β−1 + yjkP̂

(n+j)
β

))

= 4
n∑

i,j=1

(
rijP̂

(i)
α−1P̂

(j)
β−1 + wijP̂

(i)
α−1P̂

(n+j)
β + wjiP̂

(n+i)
α P̂

(j)
β−1 + sijP̂

(n+i)
α P̂

(n+j)
β

)

= 4PαP̂β−1 + 4
n∑

i,j=1

wijP
(i)
α−1P

(n+j)
β + 4

n∑

i,j=1

sijP
(n+i)
α P

(n+j)
β

= 4PαP̂β−1 − 4
n∑

i,j=1

sijP̂
(n+i)
α−1 P̂

(n+j)
β + 4

n∑

i,j=1

sijP̂
(n+i)
α P̂

(n+j)
β .

Now using Lemma 4.2 repeatedly, we have

n∑

i,j=1

sijP̂
(n+i)
α P̂

(n+j)
β = −

n∑

i,j=1

wjiP̂
(n+i)
α P̂

(j)
β

= −PαP̂β +
n∑

i,j=1

rjiP̂
(i)
α−1P̂

(j)
β

= −PαP̂β + Pβ+1P̂α−1 −
n∑

i,j=1

wjiP̂
(n+j)
α−1 P̂

(n+i)
β+1

= −PαP̂β + Pβ+1P̂α−1 +
n∑

i,j=1

sijP̂
(n+i)
α−1 P̂

(n+j)
β+1 .
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Using this repeatedly, we have (2) of Proposition 4.1. ¤

Now we study the pluriharmonicity of the polynomial P (R, S, W ) ∈ Pn,ν . We
can rewrite the formula (2) of Proposition 4.1 for (Pα, Pβ) as

(Pα, Pβ) = 8
α−2∑
γ=0

(Pα+β−γ − Pα+β−γ−1)P̂γ + 8Pβ+1P̂α−1

+ 8PαP̂β−1 + 8
α+β∑

γ=β

(Pα+β−γ−1 − Pα+β−γ)P̂γ . (10)

For b = (b0, . . . , bn) ∈ Zn+1
≥0 , we write P b =

∏n
α=0 P bα

α . Now by easy induction
with respect to b using the definition (3), we have

∆11(P b) =
n∑

α=0

∆11(Pα)bαP bP−1
α +

1
2

n∑
α=0

(Pα, Pα)bα(bα − 1)P bP−2
α

+
∑

0≤α<β≤n

(Pα, Pβ)bαbβP bP−1
α P−1

β . (11)

By (11) together with Lemma 3.4, we see that the image of the action of ∆11 on
C[P0, . . . , Pn] is in the free module over C[P0, . . . , Pn] spanned by P̂0, . . . , P̂n−1.
So denoting Pα by xα, there exist differential operators Lγ (0 ≤ γ ≤ n − 1) in
x0, . . . , xn with C[x0, . . . , xn] coefficients such that

∆11f(x0, . . . , xn) =
n−1∑
γ=0

(Lγf(x0, . . . , xn))P̂γ .

Now we write down Lγ explicitly. The formula (11) reads

∆11(P b) =
n∑

α=0

∆11(Pα)
∂P b

∂xα
+

1
2

n∑
α=0

(Pα, Pα)
∂2P b

∂x2
α

+
∑

0≤α<β≤n

(Pα, Pβ)
∂2P b

∂xα∂xβ
. (12)

By (1) of Proposition 4.1, the first term of (12) is given by
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n∑
γ=0

(
− 2(γ + 1)

∂P b

∂xγ
+ 2(d− 2n + γ + 2)

∂P b

∂xγ+1

)
P̂γ .

Now we rewrite the third term of (12). We fix γ and see the coefficient of P̂γ by
using (10). Corresponding to the terms in (10), we must consider the coefficients
of ∂2/∂xα∂xβ in the following four cases (i) γ ≤ α−2, (ii) γ = α−1, (iii) γ = β−1,
and (iv) β ≤ γ ≤ α + β. For each case, the contribution to Lγ is given by

(i) 8
∑

γ+2≤α<β

(xα+β−γ − xα+β−γ−1)
∂2P b

∂xα∂xβ
,

(ii) 8
∑

γ+2≤β

xβ+1
∂2P b

∂xγ+1∂xβ
,

(iii) 8
γ∑

α=0

xα
∂2P b

∂xα∂xγ+1
,

(iv) 8
∑

β≤γ≤α+β

(xα+β−γ−1 − xα+β−γ)
∂2P b

∂xα∂xβ
,

where the sums are always taken over α or β or over both.
The second term of (12) is obtained similarly and we have

4
n∑

i=γ+2

(
x2i−γ − x2i−γ−1

)∂2P b

∂x2
i

+ 4
(
xγ+1 + xγ+2

) ∂2P b

∂x2
γ+1

+ 4
∑

j≤γ

(
x2j−γ−1 − x2j−γ

)∂2P b

∂x2
j

.

As a whole, for 0 ≤ γ ≤ n− 1, we have

Lγ = −2(γ + 1)
∂

∂xγ
+ 2(d− 2n + γ + 2)

∂

∂xγ+1

+ 4
∑

γ+1≤i,j

xi+j−γ
∂2

∂xi∂xj
− 4

∑

γ+2≤i,j

xi+j−γ−1
∂2

∂xi∂xj

+ 4
∑

i,j≤γ+1

xi+j−γ−1
∂2

∂xi∂xj
− 4

∑

i,j≤γ

xi+j−γ
∂2

∂xi∂xj
.
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Rewriting this we have

Proposition 4.3. For 0 ≤ γ ≤ n− 1, we have

Lγ = −2(γ + 1)
∂

∂xγ
+ 2(d− 2n + γ + 2)

∂

∂xγ+1

+ 4
n∑

k=γ+2

xk

k−1∑

β=γ+1

∂2

∂xk+γ−β∂xβ
− 4

γ∑

k=0

xk

γ∑

β=k

∂2

∂xk+γ−β∂xβ

− 4
n∑

k=γ+3

xk

k−1∑

β=γ+2

∂2

∂xk+γ+1−β∂xβ
+ 4

γ+1∑

k=0

xk

γ+1∑

β=k

∂2

∂xk+γ+1−β∂xβ
.

Here we regard that ∂/∂xα = 0 and xα = 0 if α < 0 or n < α.

To consider the case when ν is odd, we need det(W ), so we put y0 = det(W ).
So we have x0 = (−1)ny2

0 . It is easy to rewrite the operators Lγ as a differential
operator with respect to y0, x1, . . . , xn. The terms containing x0 in Lγ is only of
the following shape.

2
∂

∂x0
+ 4x0

∂2

∂x2
0

,

8x0
∂2

∂xα∂x0
α 6= 0.

The former appears only in L0 and the latter appears in all Lγ . Anyway, the new
operator is obtained by replacing the former by (−1)n(∂2/∂y2

0) and the latter by
4y0(∂2/∂y0∂xα). We write this new operator by Lγ,y0 when we emphasize the
expression depending on y0. As for odd ν, by Proposition 3.1, we must consider
a polynomial solution y0F (x0, . . . , xn). To calculate the action of the Laplacian
to this in the coordinate y0, x1, . . . , xn, we need the following formulas which are
easily proved.

∆11(y0) = 0,

(y0, xα) = 4y0

(
P̂α−1 − P̂α

)
(α 6= 0),

(y0, y0) = −2(−1)nP̂0,

(y0, x0) = −4y0P̂0.
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Since we have

∆11(y0F ) = ∆11(y0)F + (y0, F ) + y0∆11(F ),

∆11(F ) =
n−1∑
γ=0

(LγF )P̂γ ,

(y0, F ) =
n∑

α=0

(y0, xα)
∂F

∂xα
,

we have

∆11(y0F ) = y0

n−1∑
γ=0

(
L̃γF

)
P̂γ ,

where

L̃γ = Lγ + 4
(

∂

∂xγ+1
− ∂

∂xγ

)
.

From this, we can show that

∆11(y0F ) =
n−1∑
γ=0

Lγ,y0(y0F )P̂γ ,

where Lγ,y0 is the same operator as in the case of even ν. So there is essentially
no difference between even ν and odd ν. Hence we will often explain only the case
of even ν, since the case of odd ν is treated similarly.

4.2. Generating our solutions.
4.2.1. Construction.
For small ν, it is not difficult to give an explicit polynomial in Hn,ν,d. For

example, for ν = 1 or 2, it is given by

P = y0, or

P =
n∑

γ=0

(
n

γ

)−1(
d− n + 1

n− γ

)
xγ ,

respectively. But for general ν, there is no such simple formula. In this sec-
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tion, we give some easy constructive method to obtain non-zero polynomial so-
lutions P ∈ Hn,ν,d. First we consider the case when ν is even. We assume that
F (x0, x1, . . . , xn) is a homogeneous polynomial of degree m in x0, . . . , xn and that
LγF = 0 for all 0 ≤ γ ≤ n− 1. For each γ with 0 ≤ γ ≤ n, we put

F (γ)(xγ , xγ+1, . . . , xn) = F (0, . . . , 0, xγ , . . . , xn).

In particular, F (0) = F . We also write F (γ) as a polynomial of xγ as follows.

F (γ)(xγ , xγ+1, . . . , xn) =
m∑

α=0

F (γ+1)
α (xγ+1, . . . , xn)xα

γ .

So we have

F
(γ)
0 (xγ , . . . , xn) = F (γ)(xγ , . . . , xn) = F (0, . . . , 0, xγ , . . . , xn).

Since F (n) = F
(n)
0 is a homogeneous polynomial in xn of degree m, this is a con-

stant multiple of xm
n . Now we show how we can recover whole F from F (n) = xm

n .
Since it is necessary that (LγF )(0, . . . , 0, xγ , . . . , xn) = 0, we study this condition
first. For this, we can ignore the part of Lγ which contains the multiplication of
xk by k < γ. So in the fourth term in the expression of Lγ in Proposition 4.3,
only the term k = β = γ remains. This part is given by

−4xγ
∂2

∂x2
γ

.

In the sixth term of Lγ , only the terms (k, β) = (γ, γ), (γ, γ + 1), (γ + 1, γ + 1)
remain. This part is given by

8xγ
∂2

∂xγ∂xγ+1
+ 4xγ+1

∂2

∂x2
γ+1

.

The other terms of Lγ contain only xµ or derivatives at xµ with µ ≥ γ, so we
cannot omit. So we have

(LγF )(0, . . . , 0, xγ , . . . , xn)

=
(
− 2(γ + 1)

∂

∂xγ
+ 2(d− 2n + γ + 2)

∂

∂xγ+1
− 4xγ

∂2

∂x2
γ
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+ 8xγ
∂2

∂xγ∂xγ+1
+ 4xγ+1

∂2

∂x2
γ+1

+ 4
n∑

k=γ+2

xk

k−1∑

β=γ+1

∂2

∂xk+γ−β∂xβ

− 4
n∑

k=γ+3

xk

k−1∑

β=γ+2

∂2

∂xk+γ+1−β∂xβ

)
F (γ)(xγ , . . . , xn),

and this should be zero. This condition gives relations between F
(γ+1)
α and F

(γ+1)
α+1 .

To describe this, we introduce the following differential operators for each pair of
γ and α with 0 ≤ γ ≤ n− 1 and 0 ≤ α ≤ m− 1.

N (γ+1)(α) = 2(d− 2n + γ + 4α + 2)
∂

∂xγ+1
+ 4xγ+1

∂2

∂x2
γ+1

+ 4
n∑

k=γ+2

xk

k−1∑

β=γ+1

∂2

∂xk+γ−β∂xβ
− 4

n∑

k=γ+3

xk

k−1∑

β=γ+2

∂2

∂xk+γ+1−β∂xβ
.

Since we have

(
− 2(γ + 1)

∂

∂xγ
− 4xγ

∂2

∂x2
γ

)
xα

γ F (γ+1)
α = −2α(γ + 2α− 1)xα−1

γ F (γ+1)
α

and

8xγ
∂2

∂xγ∂xγ+1

(
xα

γ F (γ+1)
α

)
= 8αxα

γ

∂F
(γ+1)
α

∂xγ+1
,

we have

(LγF )(0, . . . , 0, xγ , . . . , xn)

= −
m∑

α=1

2α(γ + 2α− 1)xα−1
γ F (γ+1)

α +
m∑

α=0

xα
γ N (γ+1)(α)F (γ+1)

α .

For α with 0 ≤ α ≤ m, we write

Nγ+1(α) =
1

2α(γ + 2α− 1)
N (γ+1)(α− 1)

and we put Nγ+1(0) = 1, i.e., the identity operator. Since (LγF )(0, . . . , 0,

xγ , . . . , xn) = 0, for each α with 1 ≤ α ≤ m, we have
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F (γ+1)
α = Nγ+1(α)F (γ+1)

α−1 .

So it is necessary that

F (γ)(xγ , . . . , xn) =
m∑

α=0

xα
γ Nγ+1(α)Nγ+1(α− 1) · · ·Nγ+1(1)Nγ+1(0)F (γ+1)

0 .

We again introduce a notation. We write

Nγ+1 =
m∑

α=0

xα
γ Nγ+1(α) · · ·Nγ+1(0).

Then we have F (γ) = Nγ+1F
(γ+1), so

F (x0, . . . , xn) = (N1N2 · · ·Nn)
(
F

(n)
0

)
= (N1N2 · · ·Nn)

(
cxm

n

)
,

where c is a constant. Since the right-hand side contains cxm
n as a monomial, F is

not identically zero unless c = 0. This is a formula for F in general.
Now we apply the same method for the solutions of the variable y0, x1, . . . , xn.

If we just change L0 to L0,y0 and consider the system L0,y0F = 0, LγF = 0 with
1 ≤ γ ≤ n − 1, then we have one problem. When ν is odd, then the solution
is in y0C[x0, . . . , xn] and no monomial is independent of y0, so the same method
cannot apply. So instead of Lγ , we use L̃γ with 1 ≤ γ ≤ n− 1 defined in the last
section. Then the solution for ν = 2m + 1 is given by

y0Ñ1 · · · Ñn

(
cxm

n

)
,

where we put

Ñγ+1 =
m∑

α=0

xα
γ Ñγ+1(α) · · · Ñγ+1(0),

Ñγ+1(µ) =
1

2µ(γ + 2µ + 1)

(
2(d− 2n + γ + 4µ)

∂

∂xγ+1
+ 4xγ+1

∂2

∂x2
γ+1

+ 4
n∑

k=γ+2

xk

k−1∑

β=γ+1

∂2

∂xk+γ−β∂xβ
− 4

n∑

k=γ+3

xk

k−1∑

β=γ+2

∂2

∂xk+γ+1−β∂xβ

)
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for µ ≥ 1, and Ñγ+1(0) = 1.
The following lemma is obvious by the above consideration. This will be used

later in Section 6.

Lemma 4.4. For any integer ν ≥ 0 and for any non-zero polynomial
F (y0, x1, . . . , xn) ∈ C[y0, x1, . . . , xn], assume that P (R, S, W ) = F (det(W ),
P1, . . . , Pn) ∈ Hn,ν,d. Then F (0, . . . , 0, 1) 6= 0.

Sometimes we need explicit expressions of our polynomials to apply it to
differential operators on Siegel modular forms, e.g. for calculation of special values
of L functions (cf. [20]), and the above kind of concrete calculation would be
useful.

4.2.2. Examples of generating functions.
In the previous section, we gave a concrete method to give solutions for each

fixed degree ν up to constant. It is desirable to gather these for all ν and give a
neat generating functions of the solutions. But here it is a problem how to choose
each constant and the method in the previous section does not seem to work well
for this problem. Generating functions are known for n = 1 and 2. We have no
result for n ≥ 3.

(1) When n = 1, it is the classical generating function of the Gegenbauer polyno-
mials. Define Pν by

1
(1− 2y0u + x1u2)(d−2)/2

=
∞∑

ν=0

Pν(y0, x1)uν .

Then we have 0 6= Pν ∈ H1,ν,d.
(2) When n = 2. This case has been given in [13]. Put

∆0 = 1− 2y0u + x2u
2,

R =
∆0 +

√
∆2

0 − 4(x0 + x1 + x2)u2

2
.

Define Pν by

1
R(d−5)/2

√
∆2

0 − 4(x0 + x1 + x2)u2
=

∞∑
ν=0

Pν(y0, x1, x2)uν .

Then we have 0 6= Pν ∈ H2,ν,d.
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5. The radial parts and system of differential equations.

In this section, we take the radial part of our system {Lγ}. If P ∈ Pn,ν ,
then we have P (R, S, W ) = det(RS)ν/2P (1n, 1n, R−1/2WS−1/2) for det(RS) 6= 0.
Since we have

∣∣∣∣
xR W
tW S

∣∣∣∣ = det(RS) det(x1n −R−1WS−1 tW ),

we define variables ξα (0 ≤ α ≤ n) and λi (1 ≤ i ≤ n) by

det(x1n −R−1WS−1 tW ) =
n∑

α=0

ξαxα =
n∏

i=1

(x− λ2
i ).

Here the variables λ2
α are eigenvalues of R−1/2WS−1 tWR−1/2. We have xα =

Pα = det(RS)ξα = xnξα for each α with 0 ≤ α ≤ n. In particular, we have
ξn = 1. For any homogeneous polynomial F (x0, . . . , xn) ∈ C[x0, . . . , xn] of degree
m = ν/2 for even ν, we can write

F (x0, . . . , xn) = xν/2
n F

(
x0

xn
, . . . ,

xn−1

xn
, 1

)
= xν/2

n F (ξ0, . . . , ξn−1, 1).

If we put G(ξ0, . . . , ξn−1) = F (ξ0, . . . , ξn−1, 1). Then we have

∂F

∂xα
= xν/2−1

n

∂G

∂ξα
for 0 ≤ α ≤ n− 1,

∂F

∂xn
=

ν

2
xν/2−1

n G− xν/2−2
n

n−1∑
α=0

xα
∂G

∂ξα

= xν/2−1
n

(
ν

2
G−

n−1∑
α=0

ξα
∂G

∂ξα

)
.

So for 0 ≤ γ ≤ n − 1, we may write LγF = x
ν/2−1
n MγG for some differential

operator Mγ with respect to ξα. The derivatives with respect to xn appears in
Ln−1, but xn appears only in coefficients for Lγ with γ < n − 1, so by using the
above relations between derivatives of xα and ξα, we can show
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Mγ = −2(γ + 1)
∂

∂ξγ
+ 2(d− 2n + γ + 2)

∂

∂ξγ+1

+ 4
n∑

k=γ+2

ξk

k−1∑

β=γ+1

∂2

∂ξk+γ−β∂ξβ
− 4

γ∑

k=0

ξk

γ∑

β=k

∂2

∂ξk+γ−β∂ξβ

− 4
n∑

k=γ+3

ξk

k−1∑

β=γ+2

∂2

∂ξk+γ+1−β∂ξβ
+ 4

γ+1∑

k=0

ξk

γ+1∑

β=k

∂2

∂ξk+γ+1−β∂ξβ
(13)

for γ < n− 1 and

Mn−1 = ν(d− n + ν − 1)− 2(d− n + 1)
n−1∑
α=0

ξα
∂

∂ξα
− 4

n−1∑

α,β=0

ξαξβ
∂2

∂ξα∂ξβ

− 2n
∂

∂ξn−1
+ 4

n−1∑

α,β=0

ξα+β−n
∂2

∂ξα∂ξβ
− 4

n−1∑

α,β=0

ξα+β−n+1
∂2

∂ξα∂ξβ
.

These are differential operators which characterize the solution in Hn,ν,d for
even ν. But if we use variables λi instead of ξα, then det(W )/

√
det(RS) =∏n

i=1 λi, so for P ∈ Pn,ν , det(RS)−ν/2P (R, S, W ) is written by λ2
i (or ξα) and∏n

i=1 λi, i.e. we may write P (R, S, W ) = det(RS)ν/2Q(λ1, . . . , λn) for some poly-
nomial Q. Here if ν is even, then Q is a symmetric function with respect to
λ2

1, . . . , λ
2
n and if ν is odd, then Q/(λ1 · · ·λn) is so. In each case, put Q1 = Q or

Q1 = Q/(λ1 · · ·λn), respectively. If P ∈ Hn,ν,d and Q 6= 0, then by Lemma 4.4,
we have

Q1(0, . . . , 0) 6= 0. (14)

Now we change variables from ξα to λi and give the expression of differential
operators Mγ by λi. Here we use the same notation Mγ for λi as for ξα, so we
have

∆11P = det(RS)ν/2−1
n−1∑
γ=0

(MγQ)P̂γ .

Proposition 5.1. For any ν ≥ 0 and P ∈ Pn,ν , we have

∆11P (R, S, W ) = det(RS)ν/2−1
n−1∑
γ=0

(MγQ)P̂γ ,
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where

Mγ =
n∑

k=1

(
(1− λ2

k)λ2γ
k∏

i 6=k(λ2
k − λ2

i )

)
∂2

∂λ2
k

+
n∑

k=1

(
γλ2γ−1

k − (d− 2n + γ + 1)λ2γ+1
k∏

i 6=k(λ2
k − λ2

i )

)
∂

∂λk
+ ν(ν + d− n− 1)δγ,n−1.

The proof is obtained by routine calculations but fairly long and the most of
the rest of this section is devoted to the proof of this proposition. We assume that
ν is even for the sake of simplicity in the most part of the following calculation.
The correction for odd ν is similar and easy, and the proof in that case will be
omitted.

First of all, to express ∂/∂ξα by ∂/∂λi, for any j with 1 ≤ j ≤ n, we define
ξ
(j)
α by the following expansion.

∏

i 6=j

(
x− λ2

i

)
= ξ

(j)
n−1x

n−1 + ξ
(j)
n−2x

n−2 + · · ·+ ξ
(j)
1 x + ξ

(j)
0 .

In particular, we have ξ
(j)
n−1 = 1. Since

∂

∂λj

n∏

i=1

(
x− λ2

i

)
= −2λj

∏

i 6=j

(
x− λ2

i

)

for 0 ≤ α ≤ n− 1, we have

∂ξα

∂λj
= −2λjξ

(j)
α

and

∂

∂λj
=

n−1∑
α=0

(− 2λjξ
(j)
α

) ∂

∂ξα
.

Since

n−1∑
α=0

λ2α
l ξ(j)

α =
∏

1≤i≤n,i 6=j

(
λ2

l − λ2
i

)
= δlj

∏

1≤i≤n,i 6=j

(
λ2

j − λ2
i

)
,
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where δlj is Kronecker’s delta, the inverse matrix of n × n matrix
(−2λαξ

(j)
α )0≤α≤n−1,1≤j≤n is easily obtained and we have




∂

∂ξ0
...
∂

∂ξn−1




= A




∂

∂λ1
...
∂

∂λn




,

where A = (aij)1≤i,j≤n is given by

aij = − λ2i−3
j

2
∏

l 6=j

(
λ2

j − λ2
l

) .

Now we must express the second order derivatives with respect to {ξα}0≤α≤n−1

also by derivatives with respect to {λi}1≤i≤n. To calculate this, we prepare several
formulas.

Lemma 5.2. For any i with 1 ≤ i ≤ n, we have

n∑

k=0

ξkλ2k
i = 0, (15)

n∑

k=0

kξkλ2k−2
i =

∏

l 6=i

(
λ2

i − λ2
l

)
, (16)

n∑

k=0

k(k − 1)ξkλ2k−4
i = 2

∑

1≤m≤n
m6=i

∏

l 6=i,m

(
λ2

i − λ2
l

)
. (17)

Proof. (15) is trivial by the definition. Since we have

d

dx

n∏

j=1

(
x− λ2

j

)
=

n∑
m=1

∏

j 6=m

(
x− λ2

j

)
=

n∑

k=1

kξkxk−1,

taking x = λ2
i we have (16). The assertion (17) is obtained by differentiating twice

by x and putting x = λ2
i . ¤

Proof of Proposition 5.1. Now for γ < n− 1, we put
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M(γ) = 4
n∑

k=γ+2

ξk

k−1∑

β=γ+1

∂2

∂ξk+γ−β∂ξβ
− 4

γ∑

k=0

ξk

γ∑

β=k

∂2

∂ξk+γ−β∂ξβ
. (18)

Then the terms of the second order derivatives of Mγ in (13) with respect to
variables ξα is M(γ)−M(γ + 1). We calculate M(γ). We have

∂2

∂ξk+γ−β∂ξβ
=

n∑

i,j=1

λ
2(k+γ−β)−1
i λ2β−1

j

4
∏

l 6=i

(
λ2

i − λ2
l

) ∏
l 6=j

(
λ2

j − λ2
l

) ∂2

∂λi∂λj

+
n∑

i=1

λ
2(k+γ−β)−1
i

4
∏

l 6=i

(
λ2

i − λ2
l

) ∂

∂λi

(
λ2β−1

j∏
l 6=j

(
λ2

j − λ2
l

)
)

∂

∂λj
. (19)

First we see the coefficient of ∂2/∂λi∂λj in M(γ) for i 6= j, i.e., the term ob-
tained by summation over the first term of (19) in M(γ). We take the inner sum∑k−1

β=γ+1 and
∑γ

β=k of (18) first. Since only the term depending on β is essentially

λ
2(k+γ−β)
i λ2β

j , we have

k−1∑

β=γ+1

λ
2(k+γ−β)
i λ2β

j =
λ

2(γ+1)
j λ2k

i − λ
2(γ+1)
i λ2k

j

λ2
i − λ2

j

,

γ∑

β=k

λ
2(k+γ−β)
i λ2β

j =
λ

2(γ+1)
i λ2k

j − λ
2(γ+1)
j λ2k

i

λ2
i − λ2

j

.

As for the summation of λ
2(γ+1)
j λ2k

i over k, by (15) we have

γ∑

k=0

ξkλ
2(γ+1)
j λ2k

i +
n∑

k=γ+2

ξkλ
2(γ+1)
j λ2k

i = −ξγ+1(λiλj)2(γ+1).

The summation over λ
2(γ+1)
i λ2k

j is (−1) times the above, so since we assumed
i 6= j, we have 0 as a total. Now let us see the coefficient of ∂2/∂λ2

i . In this case
we have i = j, so λ

2(k+γ−β)−1
i λ2β−1

j = λ
2(k+γ−1)
i . Since this is independent of β,

the summation from β = γ + 1 to k− 1 or from β = k to γ is just a multiplication
of k − γ − 1 or γ − k + 1. (Of course each occurs only when k ≥ γ + 2 or k ≤ γ.)
So we should take the following sum, which is simplified by (15), (16).
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∑

0≤k≤n
k 6=γ+1

(k − γ − 1)ξkλ
2(k+γ−1)
i =

n∑

k=0

(k − γ − 1)ξkλ
2(k+γ−1)
i

=
n∑

k=0

kξkλ2k−2
i λ2γ

i

= λ2γ
i

∏

l 6=i

(
λ2

i − λ2
l

)
.

Taking the corresponding term of M(γ)−M(γ + 1), we have

λ2γ
i

(
1− λ2

i

)
∏

l 6=i

(
λ2

i − λ2
l

)

as a coefficient of ∂2/∂λ2
i . Now we calculate the coefficient of ∂/∂λj in M(γ). If

i 6= j, then the term depending on β in ∂/∂λi(λ
2β−1
j /

∏
l 6=j(λ

2
j − λ2

l )) is essentially
λ2β−1

j . By the same calculation for the coefficient of ∂2/∂λi∂λj for i 6= j, we see
that the summation is zero for this term. So we may assume that j = i. Then we
have

∂

∂λi

(
λ2β−1

i∏
l 6=i

(
λ2

i − λ2
l

)
)

=
(2β − 1)λ2β−2

i∏
l 6=i

(
λ2

i − λ2
l

) −
∑

1≤m≤n
m6=i

2λ2β
i(

λ2
i − λ2

m

) ∏
l 6=i

(
λ2

i − λ2
l

) . (20)

We have (2β − 1)λ2β−2
i λ

2(k+γ−β)−1
i = (2β − 1)λ2(k+γ)−3

i and

k−1∑

β=γ+1

(2β − 1) = (k − 1− γ)(k − 1 + γ) = −
γ∑

β=k

(2β − 1).

This vanishes for k = γ + 1. We have

(k − 1− γ)(k − 1 + γ)λ2(k+γ)−3
i

= k(k − 1)λ2(k−2)
i λ2γ+1

i − kλ
2(k−1)
i λ2γ−1

i + (1− γ2)λ2k
i λ2γ−3

i

and the sum of this over 0 ≤ k ≤ n is calculated by Lemma 5.2. So the contribution
from the first term of (20) to the coefficient of ∂/∂λi in M(γ) is given by
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4

4
∏

l 6=i

(
λ2

i − λ2
l

)2 ×
(

2λ2γ+1
i

∑

1≤m≤n
m6=i

∏

l 6=i,m

(
λ2

i − λ2
l

)− λ2γ−1
i

∏

l 6=i

(
λ2

i − λ2
l

))

=
2λ2γ+1

i∏
l 6=i

(
λ2

i − λ2
l

)
∑

1≤m≤n
m6=i

1
λ2

i − λ2
m

− λ2γ−1
i∏

i 6=l

(
λ2

i − λ2
l

) . (21)

As for the second term of (20), we have λ
2(k+γ−β)−1+2β
i = λ2k+2γ−1

i , and the sum
for β = γ + 1 to k − 1 or β = k to γ is ±(k − γ − 1). This vanishes for k = γ + 1.
So we should take the sum over k = 0 to n. We have

2
n∑

k=0

(k − γ − 1)ξkλ2k+2γ−1
i = 2

n∑

k=0

kξkλ2k−2
i λ2γ+1

i

= 2λ2γ+1
i

∏

l 6=i

(
λ2

i − λ2
l

)
.

So the term coming from this cancels with the first term of (21). Hence the
coefficient of ∂/∂λi in M(γ)−M(γ + 1) is given by

λ2γ+1
i − λ2γ−1

i∏
l 6=i

(
λ2

i − λ2
l

) .

For Mγ , we still have terms coming from the first order derivatives of ξγ and ξγ+1

in (13). The coefficient of ∂/∂λi is given directly by

(γ + 1)λ2γ−1
i − (d− 2n + γ + 2)λ2γ+1

i∏
l 6=i

(
λ2

i − λ2
l

) .

So taking the sum of all the above calculations, we obtained the assertion of
Proposition 5.1 for Mγ with γ < n − 1. The proof for the assertion for Mn−1 is
similarly obtained and omitted here. ¤

Now the term of the second order derivatives of Mγ with respect to λi variables
consists only of second derivation of the same λk and there are no mixed terms,
so it is natural to change Mγ to differential operators so that the second order
term contains only derivation of λk for only one k. For that purpose, we define
an invertible linear transform from Mγ (0 ≤ γ ≤ n − 1) to a new system Dk

(1 ≤ k ≤ n) as follows.
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Dk =
n−1∑
γ=0

ξ(k)
γ Mγ .

We can show that these operators satisfy our demand. For that purpose we need
the following formulas.

n−1∑
γ=0

ξ(k)
γ λ2γ

j = δjk

∏

l 6=k

(
λ2

k − λ2
l

)
,

n−1∑
γ=0

γξ(k)
γ λ2γ−2

j =
∏

l 6=k,j

(
λ2

j − λ2
l

)
if j 6= k,

n−1∑
γ=0

γξ(k)
γ λ2γ−2

k =
∑

m6=k

∏

l 6=k,m

(
λ2

k − λ2
l

)
,

where δjk is Kronecker’s delta. These relations are proved in the same way as in
Lemma 5.2.

Using these relations and Proposition 5.1, we get the following theorem by an
easy direct calculation.

Theorem 5.3. For each k with 1 ≤ k ≤ n, we have

Dk =
(
1− λ2

k

) ∂2

∂λ2
k

+
(
− (d− 2n + 1)λk +

∑

l 6=k

λk

(
1− λ2

k

)

λ2
k − λ2

l

)
∂

∂λk

+
∑

l 6=k

(
1− λ2

l

)
λl(

λ2
l − λ2

k

) ∂

∂λl
+ ν(ν + d− n− 1).

Our polynomials Q(λ1, . . . , λn) are solutions of the system

DkQ = 0, (1 ≤ k ≤ n).

When n = 1, this is nothing but the usual Gegenbauer differential equation.

6. Inner product.

We define a natural inner product for our spherical polynomials. Originally
it comes from polynomials P (R, S, W ) on the domain Dn where
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Dn =
{(

R W
tW S

)
∈ Sym2n(R); positive definite

}

and now we can regard it as a polynomial f(λ) where λ = (λ1, . . . , λn). We define
integrals for these two expressions. We put

I1(P ) =
∫

Dn

P (R, S, W )
∣∣∣∣

R W
tW S

∣∣∣∣
(d−2n−1)/2

dR dS dW,

I2(f) =
∫

|λn|≤λn−1≤···≤λ1<1

f(λ)

×
∏

1≤j<k≤n

(
λ2

k − λ2
j

) n∏

i=1

(
1− λ2

i

)(d−2n−1)/2
dλ1 · · · dλn,

where dR =
∏

1≤i≤j≤n drij , dS =
∏

1≤i≤j≤n dsij , dW =
∏

1≤i,j≤n dwij for
R = (rij), S = (sij), W = (wij). Now for any polynomial P ∈ Pn,ν , put
fP (λ1, . . . , λn) = P (1n, 1n,Λ) where Λ is the diagonal matrix whose diagonal
entries are λi. Then we see

Theorem 6.1.

(1) For P ∈ Pn,ν , I1(P ) and I2(fP ) are equal up to constant depending only on
n and d.

(2) For natural numbers µ, ν such that µ 6= ν, take Pµ ∈ Hn,µ,d, Pν ∈ Hn,ν,d,
and define fPµ

and fPν
as above. Then we have

I1(PµPν) = I2(fPµfPν ) = 0

where ∗ denotes the complex conjugation.

Proof. We give here only a sketch of the proof. For positive definite R

and S, we have P (R, S, W ) = det(RS)ν/2P (1n, 1n, R−1/2WS−1/2). If we put
U = R−1/2WS−1/2, then det

(
R W

tW S

)
= det(RS) det(1−U tU) and I1(P ) becomes

∫

1n−U tU>0

det(1n − U tU)(d−2n−1)/2P (1n, 1n, U)dU

up to constant. We put U = Ph (P = (pij) is upper triangular with positive
diagonals and h ∈ O(n)) and V = U tU = P tP . We denote by λ2

i the eigenvalues
of V . By the condition that 1n − V > 0, we may assume that 1 > |λ1| ≥ |λ2| ≥
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· · · ≥ |λn|. Since P (1n, 1n, h1Uh2) = P (1n, 1n, U) for any h1, h2 ∈ SO(n), we may
assume besides that

|λn| ≤ λn−1 ≤ · · · ≤ λ1 < 1.

We see easily that

dU =
n∏

i=1

pn−i
ii dPdh,

dV = 2n
n∏

i=1

pn−i+1
ii dP,

dU = 2−n det(V )−1/2dV dh,

dV =
∏

1≤j<k≤n

(
λ2

k − λ2
j

)
dλ2

1 · · · dλ2
n dh,

where dh is a suitable measure of SO(n) and dU , dV , dP are natural Lebesgue
measures. The integral with respect to dh is a constant and does not matter. Since
det(V )−1/2|λ1 · · ·λn| = 1, we see that I1(P ) and I2(fP ) are proportional and we
prove (1). Now we define a measure for any function F (X) of X ∈ Mn,d(R) by

I3(F ) =
∫

Mn,d(R)

e−tr(X tX)F (X)dX.

If F and G are pluriharmonic polynomials each of which belongs to a different
irreducible representation space of O(d), then I3(FG) = 0 (cf. [19]). Our P

in question originally comes from a polynomial P ∗(X, Y ) which is pluriharmonic
with respect to each X or Y , and it is in the tensor product of pluriharmonic
polynomials in the same representation space of O(d). On the other hand, we can
also see that I3(P ∗(X, Y )) = I1(P (R, S, W )) up to constant. So (2) automatically
follows from this. ¤

7. Hypergeometric polynomials of several variables.

7.1. A second order differential operator.
In Theorem 5.3, we have written down the differential operators Di in the

coordinates (λ1, . . . , λn). In this section, we express these operators in the new
coordinates (z1, . . . , zn) in the relation zi = λ2

i (i = 1, . . . , n). They turn out to
be identified with the known differential operators.



304 T. Ibukiyama, T. Kuzumaki and H. Ochiai

Definition 7.1. Let a, b, c be complex parameters. We define linear partial
differential operators in (z1, . . . , zn) by

D′
i(a, b, c) := zi(1− zi)

∂2

∂z2
i

+
(

c− 1
2
(n− 1)−

(
a + b + 1− n− 1

2

)
zi

)
∂

∂zi

+
1
2

∑

j( 6=i)

zi(1− zi)
zi − zj

∂

∂zi
− 1

2

∑

j( 6=i)

zj(1− zj)
zi − zj

∂

∂zj
.

Lemma 7.2. For each i = 1, . . . , n, the differential operator Di is equal to
4(D′

i(a, b, c)−ab) under the change of coordinates z1 = λ2
1, . . . , zn = λ2

n, where the
values of parameters are specified as

a = −1
2
ν, b =

1
2
(ν + d− n− 1), and c =

1
2
n.

In particular, the system of the differential equations D1Q = · · · = DnQ = 0 is
equivalent to the system of differential equations D′

1Q = · · · = D′
nQ = abQ.

Proof. Under the change of variable zi = λ2
i , we have λi(∂/∂λi) =

2zi(∂/∂zi), and ∂2/∂λ2
i = 4z(∂2/∂z2

i ) + 2(∂/∂zi). ¤

7.2. Hypergeometric solutions.
In order to describe the special solution of this system of differential equations,

we introduce, so-called, the hypergeometric functions 2F1 with matrix argument,
introduced by A. G. Constantine [5].

For a ∈ C and k ∈ Z≥0, we denote

(a)k = a(a + 1) · · · (a + k − 1) =
Γ(a + k)

Γ(a)
.

For a partition κ = (k1, . . . , kn) of k into not more than n parts, that is, k1 ≥ k2 ≥
· · · kn ≥ 0 and k = k1 + k2 + · · ·+ kn, we set

(a)κ =
n∏

i=1

(
a− 1

2
(i− 1)

)

ki

.

We denote by Cκ = Cκ(z1, . . . , zn) the zonal polynomial corresponding to the
partition κ (see Section 7.3).

Definition 7.3. We define a series in z = (z1, . . . , zn) by
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2F1(a, b; c; z) =
∑

κ

(a)κ(b)κ

(c)κ

Cκ(z)
(k1 + · · ·+ kn)!

,

where κ = (k1, . . . , kn) runs over the partition into at most n parts.

Note that if a is a negative integer, then the above expression of 2F1(a, b; c; z)
is a finite sum, and is a polynomial since (a)k = 0 for all integers greater than −a.

The following is conjectured by Constantine [5] and is proved by R. J. Muir-
head [21, Theorem 3.1].

Proposition 7.4. The function 2F1(a, b; c; z1, . . . , zn) is the unique solution
f of the system of the differential equations

D′
1f = D′

2f = · · · = D′
nf = abf

with the property

(a) f is a holomorphic function near the origin (z1, . . . , zn) = (0, . . . , 0) and
f(0, . . . , 0) = 1.

(b) f(z1, . . . , zn) is symmetric with respect to the variables z1, . . . , zn.

We know ([10, Section 6], [9, Section 7], [2, Theorem 4.1]) that the above
function 2F1(a, b; c; z) is the hypergeometric function associated with the root sys-
tem BCn and with a degenerate spectral parameter (−a, . . . ,−a).

We identify the polynomial Q defined in Section 5 with the hypergeometric
function with matrix argument.

Theorem 7.5. Let d, n and ν be integers in Section 2.

(1) Suppose ν is even. Then

Q(λ1, . . . , λn) = 2F1

(
− 1

2
ν,

1
2
(ν + d− n− 1);

n

2
;λ2

1, . . . , λ
2
n

)

up to a constant multiple.
(2) Suppose ν is odd. Then

Q(λ1, . . . , λn) = λ1λ2 · · ·λn · 2F1

(
− ν − 1

2
,
1
2
(ν + d− n);

n

2
+ 1;λ2

1, . . . , λ
2
n

)

up to a constant multiple.

Proof. We will appeal to the uniqueness criterion of Proposition 7.4.
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(1) We have seen in (14) that the function Q is a polynomial in z1, . . . , zn at
the origin, is symmetric, and satisfies the non-vanishing condition at the origin.
By Theorem 5.3, the function Q satisfies the system of differential equations with
the specified parameters. Hence Q is a multiple of 2F1(a, b; c; z1, . . . , zn).

(2) We will consider the function f(z1, . . . , zn) = Q(λ1, . . . , λn)/(λ1 · · ·λn).
We have seen in (14) that the function f is a polynomial in z1, . . . , zn at the
origin, is symmetric, and satisfies the non-vanishing condition at the origin.
By Theorem 5.3, the function Q satisfies the system of differential equations
D′

k(a, b, c)Q = abQ with the parameters a = −ν/2, b = (ν +d−n−1)/2, c = n/2.
Now we use the relation

(
D′

k(a, b, c)− ab
) ◦ √z1z2 · · · zn =

√
z1z2 · · · zn ◦

(
D′

k(a′, b′, c′)− a′b′
)
,

where a′ = a+(1/2), b′ = b+(1/2), c′ = c+1. This relation shows that f satisfies
the system of differential equations D′

k(a′, b′, c′)f = a′b′f . Hence Q is a multiple
of 2F1(a′, b′; c′; z1, . . . , zn). ¤

This is an explicit formula of the polynomials which we are interested in.
We give a remark on the system of differential equations appearing in Propo-

sition 7.4. As is mentioned, the function 2F1(a, b; c; z), which is annihilated by
the differential operators D′

k − ab (k = 1, . . . , n), is the hypergeometric function
associated with the root system BCn and with a degenerate spectral parameter
(−a, . . . ,−a). But for other functions annihilated by all the differential opera-
tors D′

k − ab (k = 1, . . . , n), we do not know they would satisfy the system of
hypergeometric differential equations associated with the root system BCn and
with a degenerate spectral parameter (−a, . . . ,−a). The D-module counter part
is also a question; It is suggested that the left ideal of the ring D of differential
operators generated by D′

k−ab (k = 1, . . . , n) would be contained in the left ideal
of the commuting differential operators corresponding to the generalized hyper-
geometric systems of type BCn with the parameter (−a, . . . ,−a). Note that the
rank of the generalized hypergeometric systems of type BCn is the order of the
Weyl group W (Bn) of type Bn, which is 2nn!. The generalized hypergeometric
system associated with the root system is irreducible for generic parameters. We
show in Appendix B that the system given by D′

k − ab (k = 1, . . . , n) is holo-
nomic of rank 2n. We will expect that there exists the subsystem of rank 2n in
the generalized hypergeometric system of type BCn with a degenerate parameter
(−a,−a, . . . ,−a) ∈ Cn with a 6= 0, and such a system is given by the operators
D′

k. This expectation is compatible with the fact that the number of orbits of the
Weyl group W (Bn) through (−a,−a, . . . ,−a) ∈ Cn with a 6= 0 is 2n.
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7.3. Appendix: zonal polynomial.
We recall the definition of zonal polynomials. The monomial symmetric func-

tion mκ = mκ(z1, . . . , zn) is by definition the sum of distinct permutations of a
monomial zk1

1 zk2
2 · · · zkn

n . We introduce a lexicographic order ≤ on the set of par-
titions of k. That is, two partitions κ and κ′ of k has a relation κ′ < κ if and
only if there exists a natural number i such that k′1 = k1, . . . , k

′
i−1 = ki−1 and

k′i < ki. For example, (1, . . . , 1) ≤ κ ≤ (k) for any partition κ. We denote by
Cκ(z) = Cκ(z1, . . . , zn) the zonal polynomial corresponding to the partition κ.
This polynomial has the following properties (see, e.g., [16]):

( i ) Cκ(z) is a homogeneous symmetric polynomial of degree k(= k1 + · · ·+kn).
( ii ) Cκ(z) is a linear combination of monomial symmetric functions mκ′ with

κ′ ≤ κ. The coefficient of mκ in Cκ is non-zero.
(iii) Cκ(z) satisfies the differential equation

( n∑

i=1

z2
i

∂2

∂z2
i

+
n∑

i=1

∑

j( 6=i)

z2
i

zi − zj

∂

∂zi

)
Cκ(z)

=
(

k(n− 1) +
n∑

i=1

ki(ki − i)
)

Cκ(z).

(iv) We have the following expression in the generating function

(z1 + · · ·+ zn)k =
∑

κ

Cκ(z1, . . . , zn).

Note that the conditions (i) (ii) (iii) define Cκ up to a constant multiple, and the
condition (iv) gives a normalization of this constant multiple. Note that the zonal
polynomial is a zonal spherical function on GL(n)/O(n) with a parameter κ.

8. Appendix A: Spherical polynomials on symmetric spaces.

In this section we give a summary on pluriharmonic polynomials and zonal
spherical functions on Grassmann manifolds.

We assume that d > 2n, and we put GL(n) = GL(n, R), O(n) = O(n, R),
and Mn,d = Mn,d(R) for short.

8.1. Irreducible representations of GL(n).
Each irreducible (finite-dimensional) polynomial representation ρ of GL(n)

corresponds to a partition (f1, f2, . . . , fn) of length at most n, where f1 ≥ f2 ≥
· · · ≥ fn are non-negative integers. A partition is often identified with the Young
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diagram.

Lemma 8.1. For an irreducible polynomial representation ρ of GL(n), the
followings are equivalent.

• The restriction of ρ to the subgroup SO(n) contains the trivial representation
of SO(n). In such a case, the multiplicity of the trivial representation is
always one.

• ρ or det−1⊗ρ (or equivalently det⊗ρ) arises in C[M(n)]SO(n), where det
is the determinant representation of GL(n). In such a case, the multiplicity
of ρ on C[M(n)]SO(n) is always one.

• ρ or ρ ⊗ sgn arises in C[Symn]. In such a case, the multiplicity of such a
representation in C[Symn] is always one.

• The partition corresponding to ρ satisfies the condition that fi − fj is even
for any 1 ≤ i < j ≤ n.

Here C[M(n)]SO(n) is defined to be the space of polynomials f on M(n) such
that f(xk) = f(x) for all k ∈ SO(n), x ∈ M(n). The action L(g) of g ∈ GL(n)
is given by the left translation (L(g)f)(x) = f(g−1x) for x ∈ M(n). Let Symn be
the set of symmetric matrices of size n and C[Symn] the space of the polynomials
P (X) on Symn. The action of g ∈ GL(n) on P is given by P (X) 7→ P (gXtg).
The proof of Lemma 8.1 is easily obtained by using [8, p. 257, Theorem 5.2.9] and
the Frobenius reciprocity.

We denote by Ψ the set of all irreducible polynomial representations of GL(n),
and by Ψ0 ⊂ Ψ the subset consisting of the representations with the properties in
Lemma 8.1.

8.2. The space of pluriharmonic polynomials.
Recall that Hn,d is defined to be the space of pluriharmonic polynomials

P (X) in Mn,d. The group GL(n) × O(d) acts on Hn,d by P (tAXh) for (A, h) ∈
GL(n)×O(d), X ∈ Mn,d. Now we consider a representation ρ⊗λ of GL(n)×O(d)
realized in Hn,d. Let Σ be the set of all irreducible representations of O(d),
and Σ1 the set of irreducible representations of O(d) which arises in Hn,d. If
an irreducible representation ρ ⊗ λ of GL(n) × O(d) is realized in Hn,d, we put
τ(λ) = ρ. Kashiwara and Vergne [19] shows that τ gives an injective map from
Σ1 to the set of irreducible polynomial representations of GL(n). We denote its
image by Ψ1. The map τ gives a bijective correspondence between Σ1 and Ψ1.
We define Ψ2 := Ψ0∩Ψ1, and Σ2 := τ−1(Ψ2). We denote by H

SO(n)
n,d the space of

pluriharmonic polynomials which are left invariant by SO(n). Since SO(n)-fixed
vector in each irreducible representation of GL(n) is at most one-dimensional
(Lemma 8.1), the space H

SO(n)
n,d is a direct sum of irreducible subrepresentations

of O(d) in Σ2 with multiplicity-free.
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Σ ⊃ Σ1 τ−→
∼

Ψ1 ⊂ Ψ

∪ ∪ ∪
Σ2 τ−→

∼
Ψ2 ⊂ Ψ0

We employ the standard parametrization of the irreducible representations
of O(d). By the explicit description of the map τ given in Theorem 6.9 and
Theorem 6.13 of Kashiwara and Vergne [19], we can read off the set Σ2. The
conclusion is

Σ1 = parameters with depth at most n

=
{(

f1, . . . , fn, 0, . . . , 0; (−1)f1+···+fn
) | f1 ≥ · · · ≥ fn ≥ 0

}
,

Σ2 = parameters in Σ1 with the ‘even’ condition

=
{(

f1, . . . , fn, 0, . . . , 0; (−1)f1+···+fn
) ∈ Σ1 | fi − fj ∈ 2Z (1 ≤ i < j ≤ n)

}

under our assumption d > 2n. We also have Ψ = Ψ1 and Ψ2 = Ψ0.

8.3. Grassmann manifolds.
We consider the oriented Grassmann manifold G ◦d,n consisting of n-

dimensional oriented subspaces in the d-dimensional fixed real vector space. We
denote by L2(Gd,n) the space of square integrable functions on the oriented Grass-
mannian manifold G ◦d,n. The orthogonal group O(d) acts on L2(G ◦d,n) by the
right regular representation. Let L2(G ◦d,n)O(d) be the set of O(d)-finite vectors
in L2(G ◦d,n). Every element in L2(G ◦d,n)O(d) is a real analytic function on G ◦d,n,
and L2(G ◦d,n)O(d) is a dense subspace of L2(G ◦d,n). The representation of O(d) on
L2(G ◦d,n) (resp. L2(G ◦d,n)O(d)) is decomposed into a Hilbert direct sum (resp. an
algebraic direct sum) of irreducible representations of O(d) with multiplicity-free,
and the set of the irreducible representations of O(d) arising there is Σ2. See, e.g.,
in page 546 of [8].

We identify Mn,d with the set of n vectors in Rd, where Rd is considered
to be the set of row vectors. We denote by M ′

n,d the open dense subset of Mn,d

consisting of n linearly independent vectors in Rd, and by M ′′
n,d the compact subset

of M ′
n,d consisting of n orthonormal vectors in Rd. The natural inclusion M ′′

n,d ⊂
M ′

n,d ⊂ Mn,d is compatible with the natural action of O(d) from the right. The
group GL(n) acts on M ′

n,d from the left, and the subgroup O(n) acts on the subset
M ′′

n,d. The action of O(d) is transitive on M ′′
n,d so that M ′′

n,d
∼= O(d − n)\O(d).

Using these actions, we have
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G ◦d,n
∼= SO(n)\M ′′

n,d

∼= (SO(n)×O(d− n))\O(d)

∼= (SO(n)× SO(d− n))\SO(d)

∼= GL(n)+\M ′
n,d (22)

as O(d)-homogeneous manifold. Here GL(n)+ = GL(n, R)+ := {g ∈ GL(n) |
det(g) > 0} is the identity component of GL(n).

8.4. Relation between pluriharmonic polynomials and Grassmann
manifolds.

The restriction of a polynomial on Mn,d to M ′′
n,d induces the map from Hn,d to

the space of functions on M ′′
n,d. Since this map is O(n)×O(d)-equivariant, H

SO(n)
n,d

is mapped to the SO(n)-invariant functions on M ′′
n,d. By the isomorphism (22),

we obtain an O(d)-equivariant map

H
SO(n)

n,d → L2(G ◦d,n)O(d).

Since both sides have the same irreducible decomposition as O(d)-modules, we
conclude that this is an isomorphism.

8.5. Zonal spherical functions on Grassmann manifolds.
First we recall the zonal spherical functions on G ◦d,n. For each irreducible

subrepresentation V of O(d) on L2(G ◦d,n), we have the unique function f(g) of
g ∈ O(d) up to a constant multiple which is bi-(SO(n)×O(d−n))-invariant. This
is also considered to be a function f(x) in V of x ∈ Gd,n such that f(xh) = f(x)
(for all h ∈ SO(n)×O(d− n)). This function is usually called the zonal spherical
function.

Now we explain the standard idea of doubling the variables. Let us consider
the diagonal action of O(d) on the product G ◦d,n × G ◦d,n by (x, y) 7→ (xh, yh) for
h ∈ O(d). A natural isomorphism

(Gd,n × Gd,n)/O(d)

∼= (((SO(n)×O(d− n))\O(d))× ((SO(n)×O(d− n))\O(d)))/O(d)

∼= (SO(n)×O(d− n))\O(d)/(SO(n)×O(d− n))

∼= G ◦d,n/(SO(n)×O(d− n))

induces the isomorphism L2(G ◦d,n×G ◦d,n)O(d) ∼= L2(G ◦d,n)SO(n)×O(d−n). In this man-
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ner, a zonal spherical function is considered to be a function in L2(G ◦d,n×G ◦d,n)O(d).
If we take an orthonormal basis {fi | i = 1, . . . ,dimV } of an irreducible subrepre-
sentation (λ, V ) ∈ Σ2 of O(d) in L2(G ◦d,n), then f(x, y) =

∑dim V
i=1 fi(x)fi(y) is the

zonal spherical function under this identification.
Now we explain the relation between the polynomial P ∗(X, Y ) in Section 2

and the zonal spherical function f(x, y) =
∑dim V

i=1 fi(x)fi(y). Take a lift P ∗i ∈
H

SO(n)
n,d of fi under the identification H

SO(n)
n,d

∼= L2(G ◦d,n), explained in 8.4. We

consider P ∗(X, Y ) :=
∑dim V

i=1 P ∗i (X)P ∗i (Y ). Then P ∗(X, Y ) satisfies the following
three conditions:

( i )′ The action of GL(n) × GL(n) on the linear span of P ∗(aX, bY ) (a, b ∈
GL(n)) is ρ⊗ ρ, where ρ = τ(λ) is the irreducible representation of GL(n).

( ii ) P ∗(Xh, Y h) = P ∗(X, Y ) (h ∈ O(d)).
(iii) P ∗(X, Y ) is pluriharmonic with respect to each X or Y .

Conversely, the restriction of P ∗ with these properties (i)′ (ii) (iii) to Gd,n ×
Gd,n gives a zonal spherical function associated with an irreducible representation
(λ, V ) ∈ Σ2. Such a polynomial seems to be essentially a generalized Jacobi
polynomial defined in [17].

We now consider the special case that the representation ρ of GL(n) is one-
dimensional; ρ(A) = (detA)ν for some non-negative integer ν. In this case the
condition (i)’ is rephrased as

( i ) P ∗(AX, BY ) = (det AB)νP ∗(X, Y ) for all A,B ∈ GL(n),

which is the same as (i) in Section 2. The corresponding parameter of λ such that
ρ = τ(λ) is given by λ = (ν, · · · , ν︸ ︷︷ ︸

n

, 0, . . . , 0︸ ︷︷ ︸
[d/2]−n

; (−1)nν).

9. Appendix B: Holonomic D-modules.

The purpose of this section is to give a proof of the following theorem:

Theorem 9.1. Let Dk be the operators given in Theorem 5.3. For each
complex parameters d and ν, the system

DkQ = 0 (1 ≤ k ≤ n)

is holonomic of rank 2n.

We summarize the general terminology and the fact in D-modules. These are
given in the standard textbook, e.g., [12], [18].

Let X be an n-dimensional complex manifold. In this paper, we may assume
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that X is an open subset of Cn. We denote by T ∗X the cotangent bundle of X,
and by (z1, . . . , zn, ζ1, . . . , ζn) the coordinates on T ∗X.

Let OX be the sheaf of the ring of holomorphic functions on X, D = DX the
sheaf of the ring of (linear) differential operators with holomorphic coefficients on
X, OT∗X the sheaf of the ring of holomorphic functions on T ∗X. For a differential
operator D ∈ D , we denote by σ(D) ∈ OT∗X the principal symbol of D.

Example 9.2 ([12, Example 2.2.6]). Let I be a left ideal of D . We denote
by σ(I ) the ideal of OT∗X generated by {σ(D) | D ∈ I }. The characteristic
variety of the left D-module D/I is equal to the common zeros of the ideal σ(I );

Ch(D/I ) = {(z, ζ) ∈ T ∗X | f(z, ζ) = 0, for all f ∈ σ(I )}.

It is known that the dimension of a non-empty characteristic variety is at least n =
dimX. A left D-module D/I is called holonomic if the dimension of the charac-
teristic variety Ch(D/I ) is at most n = dim X. For an irreducible component V of
the characteristic variety Ch(D/I ), the multiplicity of D/I along V is defined to
be the multiplicity of OT∗X/σ(I ) along V ; multV (D/I ) := multV (OT∗X/σ(I )).

The zero section of the tangent bundle T ∗X is denoted by T ∗XX; T ∗XX =
{(z, ζ) | ζ = 0}.

Lemma 9.3 ([12, Example 2.2.4, Proposition 2.2.5]). The following condi-
tions on I are equivalent.

( i ) The characteristic variety Ch(D/I ) = T ∗XX, and the multiplicity r =
multT∗XX(D/I ).

( ii ) The OX-module OT∗X/σ(I ) is locally free of rank r.
(iii) The left D-module D/I is an integrable connection of rank r.
(iv) The space HomD(D/I ,OX) of solutions forms a vector bundle of rank r

over X.

Moreover, such a D-module D/I is holonomic on X.

Note that as for the condition (iv), the sheaf of holomorphic solutions is given
by

HomD

(
D/I ,OX

) ∼=
{
f ∈ OX | Df = 0 for all D ∈ I

}

=
{
f ∈ OX | D1f = · · · = DNf = 0

}

if I is generated by D1, . . . ,DN .
The following fact is a direct consequence from the definition.
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Lemma 9.4. Let I be a left ideal of D generated by Di with i = 1, 2, . . . , N .

(1) The ideal generated by σ(Di) with i = 1, 2, . . . , N is contained in σ(I ).
(2) The characteristic variety Ch(D/I ) is contained in the common zeros of

σ(D1), . . . , σ(DN ).
(3) If the dimension of such common zeros is at most n(= dimX), then the D-

module D/I is holonomic on X.

We give an example of Lemma 9.4(3).

Example 9.5. Let Di ∈ D (1 ≤ i ≤ n) be the differential operators with
holomorphic coefficients on X such that σ(Di) = ζ2

i (1 ≤ i ≤ n). Let I be the
ideal of D generated by D1, . . . ,Dn. Then the left D-module D/I is holonomic.

In general, the inclusion (1) in Lemma 9.4 could be strict. The set
D1, . . . ,DN ∈ I is called an involutive system of generators if the symbols
σ(D1), . . . , σ(DN ) generate σ(I ) over OT∗X . We give a sufficient condition to be
an involutive system.

Proposition 9.6 ([18, Proposition 2.12]). Let D1, . . . ,DN ∈ D be differ-
ential operators of order m1, . . . , mN , respectively. Let I = DD1 + · · · + DDN

be the left ideal of D generated by D1, . . . , DN . Let Y be the common zeros of
the symbols σ(D1), . . . , σ(DN ). Assume the following (a) and (b):

(a) The codimension of Y in T ∗X is N .
(b) There exist differential operators Gijk ∈ D of order ≤ mi + mj −mk − 1 such

that [Di,Dj ] =
∑N

k=1 GijkDk for all i, j = 1, . . . , N .

Then D1, . . . ,DN is an involutive system of generators and Ch(D/I ) = Y .

Now we consider the case when the number N of generators is equal to the
dimension n of the manifold X.

Proposition 9.7. Suppose Di ∈ D (1 ≤ i ≤ n) be the differential operators
with holomorphic coefficients on X which satisfy the condition (b) in Proposi-
tion 9.6 and the following condition:

(a’) The common zeros of the symbol σ(Di) (1 ≤ i ≤ n) is the zero section
{(z, ζ) ∈ T ∗X | ζ = 0}.

Then the space of solutions of the system of differential equations

D1f = · · · = Dnf = 0

forms a vector bundle over X of rank r, where r is given by the multiplicity :
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r = multT∗XX(OT∗X/(σ(D1), . . . , σ(Dn))).

Proof. We apply Proposition 9.6 for N = n. The condition (a’) im-
plies the condition (a). Then D1, . . . ,Dn is an involutive system of gener-
ators. Let I be a left ideal of D generated by Di with i = 1, 2, . . . , n.
Then σ(I ) = (σ(D1), . . . , σ(Dn)) and Ch(D/I ) = T ∗XX by the condition
(a). Finally, r = multT∗XX(D/I ) = multT∗XX(OT∗X/σ(I )) = multT∗XX(OT∗X/

(σ(D1), . . . , σ(Dn))). Hence we see that the condition (i) in Lemma 9.3 is verified,
and the conclusion of this Proposition is the condition (iv) in Lemma 9.3. ¤

Note that only the condition (a’) is sufficient for the D-module D/I to be a
vector bundle because of Lemma 9.4(2). In order to obtain an exact formula of its
rank r, we need an extra condition such as the condition (b).

Remark 9.8. The multiplicity r given in Proposition 9.7 seems to be equal
to the product of the orders of D1, . . . ,Dn, that is, the product of the homogeneous
degrees in ζ of σ(D1), . . . , σ(Dn).

We show the following formula for the commutators.

Lemma 9.9. Let Dk be the operators given in Theorem 5.3. Then we have

[Dk,Dl] =
2λ2

kλ2
l − λ2

k − λ2
l(

λ2
k − λ2

l

)2 (Dk −Dl).

Proof. Since the proof is obtained by a straight forward calculation, we
omit it here. ¤

Proof of Theorem 9.1. We will apply Proposition 9.7. Let X be the set
{(λ1, . . . , λn) ∈ Cn | λi 6= λj(1 ≤ i < j ≤ n)} and m1 = · · · = mn = 2. Then
Lemma 9.9 shows that D1, . . . ,Dn satisfies the condition (b) in Proposition 9.7.
Since the symbol σ(Dk) = ζ2

k , then we see that the condition (a’) in Proposition 9.7
is also satisfied. We compute the multiplicity as

r = multX

(
OX ⊗ (C[ζ1, . . . , ζn]/(ζ2

1 , . . . , ζ2
n))

)

= dimC

(
C[ζ1, . . . , ζn]/(ζ2

1 , . . . , ζ2
n)

)
= 2n.

Then the system is holonomic on X of rank 2n. ¤
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[ 3 ] S. Böcherer, Über die Fourier Jacobi-Entwicklung Siegelscher Eisensteinreihen, II (Ger-

man), Math. Z., 189 (1985), 81–110.
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