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Abstract. Given a strictly pseudoconvex hypersurface M C C"* 1, we
discuss the problem of classifying all local CR diffeomorphisms between open
subsets N, N’ C M. Our method exploits the Tanaka—Webster pseudoher-
mitian invariants of a contact form 1 on M, their transformation formulae,
and the Chern—Moser invariants. Our main application concerns a class of
generalized ellipsoids where we classify all local CR mappings.

Introduction.

In this paper, we give a contribution to the problem of classifying local CR
mappings between real hypersurfaces in C™*1. Namely, given a surface M := b{Q,
where Q C C™*! is a smooth open set, we consider the problem of classifying all
CR mappings f : N — N’ where N and N’ are open subsets of M. The question
is rather natural, because biholomorphic mappings of € that extend smoothly to
the boundary define CR mappings on M.

Our approach is mainly based on CR differential geometry of strictly pseudo-
convex manifolds. We fix a contact form ¢ on M, we calculate the Tanaka—Webster
invariants (see [Tan62], [Web78]) and we exploit Lee’s transformation formulae,
see [Lee88|. The idea is reminiscent of known techniques in the study of conformal
mappings in Riemannian manifolds, see [LF76], [KR95], [IMO01]. Our point of
view is described in Section 1, in the setting of CR surfaces in C"t!, n > 2.

We also exploit the connection between pseudohermitian invariants and the
classical Cartan—Chern—Moser CR invariants, see [CM74]. In particular, we intro-
duce a new Chern-invariant cone bundle. Namely, starting from the Chern tensor,
we define a subset . := |Jpc,, /P of the holomorphic tangent bundle which is
preserved by CR mappings. The definition of 7 is given in Section 1. We believe
that the study of this cone bundle may be of some interest in similar or related
situations.

These ideas are applied to the model given by a generalized ellipsoid
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M:=bE, E={zeC"™: |5 + - 4|z +]z?=1}, (0.1)

where 21, 22, ..., 2, are groups of variables and the numbers m; satisfy suitable
hypotheses. The automorphism group of E is studied in [Sun78] and the model
is considered also in [KKM92]. In [DP97] the authors prove that all local CR
mappings of bE extend to global biholomorphic mappings of F, under suitable
hypotheses on the dimension of the groups of variables z;.

In the present paper, we study local CR mappings on bE. We recover both the
results in [Sun78] and [DP97] on the model (0.1). Our arguments are completely
different and new. The statement of our classification result for CR mappings on
generalized ellipsoids is contained in Section 2, Theorem 2.2. Subsections 3.1 and
3.2 contain the computation of the pseudohermitian and Chern-Moser invariants
in our model. Section 4 is devoted to the computation of the CR factor of a
mapping and to the classification of CR mappings which are “Levi-isometric”.

We mainly use differential geometric arguments, which require a certain com-
putational effort. On the other hand, they provide a good understanding of the
geometry of the manifold M. Several other strategies are available in the study
of CR mappings. For a complete account, we refer the reader to the monograph
[BER99], where Segre varieties, infinitesimal CR mappings and other tools are
widely discussed.

1. Chern-invariant cones.

Let M C C™! be a strictly pseudoconvex real hypersurface. Fix on M a
contact form ¥ and let L := —id¥ denote the Levi form. For a fixed frame of
holomorphic vector fields Zo, o =1,...,n, let h, 5 = L(Za, Zﬁ)'

A diffeomorphism f : N — N’ between open subsets N and N’ of M is by
definition a CR mapping if f*9 = A9 for some function A > 0 on N and the
tangent mapping f, preserves the complex structure. We call A the CR factor
of f. Observe that CR mappings preserve orthogonality with respect to the Levi
form:

L(f.Z, W) = AL(Z,W) for all Z,W € T*°N, (1.1)

where TV N ¢ CTN denotes the holomorphic tangent bundle. Observe also that
L(f.Z, fW) = L(Z,W) = 0 for all Z,W € T"ON. Therefore CR mappings are
somewhat similar to conformal mappings in Riemannian manifolds and (1.1) is an
overdetermined system analogous to the system satisfied by conformal mappings
in the Riemannian setting.

Let us denote by u = A~ the inverse of the CR factor. Given a contact form
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J = w19, the pseudohermitian Ricci curvature Raﬁ and the pseudohermitian
torsion A,g transform according to Lee’s formulae [Lee88|:

~ n+2 2 1 2(n+2) 2
Rg=Rg+ =, {“,aﬁ + U0~ u“’““ﬂ} i M{A“ T IVl phap
(1.2)
and
~ i
Aa,@ = Aaﬁ — Eu’o‘ﬁ' (1.3)

We refer the reader to [Tan75], [Web78|, [DT06] for definition and basic prop-
erties of these tensors. Here, U 5= Vﬁvau denote second order covariant deriva-
tives with respect to the Webster connection V, while Au = u,” + u 5" and
|Vu|? = u,u?. As usual, we raise an lower indices by h*P the matrix defined by
haﬁhvg = 05, so that u 7 = h”ﬁuﬁ and u .Y = h”’ﬁuﬁﬁ. Here and henceforth, we
omit summation on repeated indices. For future reference, recall the contracted
version of (1.2)

1~ 1 2
R-Rp+ T {Au’” |Vu|2}, (1.4)
u u u

where R := h*f8 Raﬁ = R, is the pseudohermitian scalar curvature.

Formulae (1.2) and (1.3) are relevant in the study of the CR Yamabe problem,
see [JL88|. The Riemannian version of (1.2) is also important in some regularity
questions for conformal mappings, see [LF76].

Equations (1.2) and (1.3) form a system of nonlinear PDEs for the inverse of
the CR factor uw. This system also involves f, in a way that becomes clear in the
coordinate-free notation:

Ric(f«Z, fsW) = Ric(Z, W) + n;;? {VQU(Z, W)+ V2u(W, Z) — zZuWu}
1 2n+2) . _
+ 2u{Au S [Vul }L(Z, w), (1.5)

and

A(f*Z, f*W) = A(Za W) - %VQU(Z, W)7 (16)
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for any Z,W € T*ON. The function f appears through the geometric terms with
Ric and A in the left-hand side of (1.5) and (1.6).
When M has dimension 2n +1 > 5, i.e. n > 2, the Chern tensor S

aBAI
introduced in [CMT4] is a nontrivial relative CR invariant which satisfies
~ 1
Sapinm = 7 Sabm (1.7)

see [Web00]. The tensor S5, can be expressed in terms of the pseudohermitian
curvatures by means of the Webster’s formula, see [Web78|, [DT06],

1
aE}‘ﬁ_n—FQ

R
T T D 1 2) Vet + haghan ) (1.8)

S

g = B {haBR/\ﬁ + hygRap + hapRy5 + h)\ﬁRaE}

Let us introduce a Chern-invariant cone bundle # C T'9M which is pre-
served by CR mappings. Namely, let 5 := Jp.,, #p, where

Hp ={U €Ty’ M : RU,V,Z,W)=0forall V,Z,W € Tp°M
such that L(U,V) = L(U,W) = L(Z,V) = L(Z,W) = 0}. (1.9)

The set J¢p is a cone in the vector space T};OM. tuUv,ZWwWe T}D’OM satisfy
the orthogonality relations in (1.9), then we have R(U,V,Z, W) = S(U,V,Z, W),
by (1.8). In particular, 5 does not depend on ¢ and, moreover, any CR mapping
f: N — N’ satisfies

[«(Hp) = Hypy for any P € N. (1.10)

In general, the set J¢p is not closed under addition. If ¥ is any contact form on
the standard sphere or on the Siegel domain, then 7 = T1%M and (1.10) carries
no information. On the other hand, if the Chern tensor has a nontrivial structure,
then 4 can provide some useful information on how a CR mapping f transforms
the holomorphic tangent space.

In the case of the generalized ellipsoids (0.1), ## can be decomposed as 5 =
G ® Y+, where & and ¥+ are orthogonal with respect to the Levi form. This is
discussed in Section 3.2. A cone similar to .7 was used in the Riemannian setting
in [Mor09]. In that case, the cone bundle is related to umbilical surfaces in the
underlying structure. It could be of interest to understand whether also in the CR
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setting the cone 7 is related to significant geometric objects.

2. The generalized ellipsoid model: main result and skeleton of
the proof.

In this section, we state the classification theorem for CR mappings on gen-
eralized ellipsoids and we indicate the scheme of the proof. Let

p(2,2) =21 P™ + o 21 P 4 2,

where z = (21,...,25) € C™ x --- x C™ = C™. We assume that the integers
m;,n;, j=1,...,s, satisfy

(2.1)

m; >landn; >2, ifl1<j<s—1,
ng > 0.

We denote by z* the ath variable in C™ and we partition the indexes {1,...,n}
into the following sets

11:{1,...,711}, Ig:{n1+1,...,n1+n2}, ey Is:{n1—|—-~-—|—ns_1—|—1,...,n},

so that |z;]? = Dacr, |z%2. Tt may be Iy = 0, if ng = 0. Two indexes a, 3 €
{1,...,n} are said to be equivalent, and we write a ~ (3, if they belong to the
same set [;. Two indexes «, 3 are said to be orthogonal, and we write av L 3, if
a € I; and B € I, with k # 5.

Let

Q= {(z,2"t) e C" : Im(z") > p(z,%)},

My :==bQ = {(z,z""") € C""' : Im(z"") = p(2, %)}, and
(2.2)

s—1
M := {(z,z”“) € My : H |z;] # O}.

j=1

We will see that M is the strictly pseudoconvex part of the surface My. The
unbounded open set €2 is biholomorphically equivalent to the bounded generalized
ellipsoid

E:= {(w,w"“) cC"tt: Z lw; > + [w" TP < 1}

Jj=1
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via the map

Q3 (22"
21/’"121 21/’"3*123_1 2z i—zntl >
(i+zn+1)1/m1""’ (i+zn+1)1/7ns,1’,L'_i_zn—i-l’i_i_zn-i—l c L.

In the rest of the paper, we will work on the unbounded model, where the com-
putations are easier.

REMARK 2.1. In (2.1) we require m; > 2 and n; > 2 for j =1,...,s — L.
The case n; = 1 for all j is discussed in the recent paper [LS09]. Assumption (2.1)
ensures that all local CR mappings extend to global biholomorphic mappings, see
[DP97]. If (2.1) is violated, this is in general not true.

Let us consider the following biholomorphic mappings. The mapping I : Q2 —
Q

n+1y 21 Zs—1 Zs . 1
I(z1, .. 2621, 26, 2 ) = ((Zn—&-l)l/ml""’ (Zn+1)1/ms—1’ sntl? ontl (2:3)
is the inversion. For any r > 0, the mappings J, : Q@ — Q,
6 (21, .., Z5—1, 25, 2"T1) = (rl/mlzl, Y VAL R 1"22’”1) (2.4)

form a one-parameter group of dilatations. Finally, consider the mappings ¢ of
the form

d)(zv Zn+1) = (Blzo(l)v SRR Bs—lza(s—1)7
Byzs + b, 0"+ 2"+ 2i(Byz, - by)), (2.5)
where o is a permutation of {1,...,s — 1} such that my(;) = m; and n,(;) = n;
for any j =1,...,s — 1, B; € U(n;) are unitary matrices, by € C™, and prtl =
to +ilbs|> € C for some ty € R.

For a = (as,a™") € C™ x C with a"*! =ty + i|as|? for some ty € R, let ¢,
be the mapping

(Z)a(zla sy Rs—1yRsy Zn+1) = (Zh oy Rs—15Rs + as, Zn+1 + a'n+1 + 2@25 : ab) (26)

The mapping ¢, is a particular case of (2.5).
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A composition of the mappings (2.3)—(2.5) extends to a CR mapping of My,
possibly off one point. Our main theorem states that any local C R mapping of M
is such a composition.

THEOREM 2.2. Let f: N — N’ be a CR mapping between connected open
subsets of M. Then, for a suitable choice of ¥ as in (2.5), r > 0, and a =
(as,to +ilas|*) € C™ x C we have

[ =v00,0J0¢,, (27)
where either J =1 as in (2.3) or J is the identity map.

SCHEME OF THE PROOF OF THEOREM 2.2.

Step 1: For a suitable contact form ¥ on M, we show that the CR factor A;
of a CR function f between open, either connected subsets of M is a constant or
it has the form

A= k722" 4™t 4 24z, a7, (2.8)
for some k > 0, ag € C™ and a" ! = tg+i|as|®> € C, where a;, = 0 if n, = 0. This
is proved in Theorem 4.2. The proof requires the study of the overdetermined
system in (1.5) and (1.6). To solve the system, we exploit the structure of the
Chern-invariant cone bundle 7. This is carried out in Subsection 3.2.

Step 2:  Once the form of the CR factor A; is known, we consider the map-

pings ¢, in (2.6) and ¢, in (2.4) with » = 1/k. Elementary computations on the
CR factors give:

Ao, (2) =1, Ar(2) = [2"TH 72, and s, =72 (2.9)

Let G := 61/ 0 I 0 ¢, and define the mapping ¢ via the identity f =1 o G. By
(2.9), ¢ satisfies * = ¢. Indeed, the CR factor Ag of G is

Aa(2) = A, (L(6a(2)A1(@a(2)) N, (2) = k2[4 ™ 4 20z, @] 7,
and therefore
A (2) = Ap(G(2))Aa(2) = Ap(G(2))k2 |2 + ™ 4 20z, a7

Thus, by the form of A in (2.8) we deduce that the CR factor of ¢ is Ay, = 1. In
Subsection 4.2 we show that all such mappings, that we call Levi-isometric, have
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the form (2.5).
This concludes the proof of the classification result. O

3. Pseudohermitian and Chern—Moser invariants in generalized el-
lipsoids.

3.1. Computation of the pseudohermitian invariants.
Fix on My the pseudohermitian structure ¥ = i(0F — OF), where
F(z,%,2""1 2" = Im(2" 1) — p(2,%) is a defining function for M:

_de 4 dz !

J: 5

— i(padza — pgdza) =dt — z'(padza — padfa). (3.1)

We use the notation p, = 9p/02* and we let t = Re(z"™1). On My we fix the
coordinates (z,t) € C™ X R, i.e., we identify (z,t) € C x R with (z,t+ip(z,%)) €
M. Fix the holomorphic frame

Zo = 0o +ipa0y fora=1,...,n, (3.2)

and let Zz = Z,. We clearly have ¥(Z,) = 9(Zz) = 0 for any a = 1,...,n.
The Levi form on M is the 2-form L = —idY. From the identities

hog = L(Za, Z5) = —id0(Za, Zz) = i0([Za, Z5]) and (3.3)
[Za, ZE] = —2ip 50 for a,8=1,...,n, (3.4)
we obtain
2|22 =) (5 ( 1)2%5) fa~Bel
m|z; |2\ T ag+(m; —1)——= ifa~pel;,
ha=q T BENCEY
0 ifa LS.
The inverse matrix A*® has the form
1 m; —12*z°
_ N W N if A\~ g€,
WM = 2mj|z;20mi—1) ( A mj |Zj|2) 1 peh (3.6)
0 it A Lg.

The surface M defined in (2.2) is strictly pseudoconvex, because det h.5>0
on M. The characteristic vector field of ¥ is T' = 0,41 + Opg1 = 0/0t.
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For j =1,...,s, let us introduce the holomorphic vector fields

Z 2° (3.7)

aEI

We say that E; is a vector field “of radial type”. A short computation based on
(3.5) shows that, for any « € {1,...,n}, j,k € {1,...,s},
L(Za, E;) = 2m|z;| (M~ Dz if o €I;, and 38)
3.8
L(E;j, Ex) = 2|2;|*™ 6y, forall jk=1,...,s

Here, 6, is the Kronecker’s symbol. The vector fields Fy,...,E, span an s-
dimensional subbundle & C TV°M. If ny, = 0, we have no vector field E; and &
has dimension s — 1. We denote by &+ the orthogonal complement of & in 719 M
with respect to the Levi form.

Let Q: T"OM — &+ be the projection

= —Z % E;. (3.9)

If ny = 0, in the sum the index j ranges from 0 to s — 1. In particular, for any
je{l,...,s} and o € I;, let W, be the holomorphic vector field

Wo = Q(Za) = Y QaZs.

Bel;
By (3.8), (3.9), and (3.7), we deduce that the coefficients Q2 are

—a B
Q=062 (3.10)

|21%

Let us introduce the hermitian form @, on TV°M associated with Q:

Q,(U, V) :=L(QU),V) = LIQU),Q(V)) forany U,V ¢ T"°M.  (3.11)

Letting Q.5 := Qy(Za, Z5), we have for a ~ 8 € I
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7028

Quz = @it =m0 (dy = T ) =2l P08, (312)

2412
whereas Qaﬁ =0ifa Ll f.
Finally observe that (3.2) and (3.10) give

a8
Wa=0a—Y %aﬁ if o € I;. (3.13)
ger; '™

Thus Wyp =0for a =1,...,n,ie., W, is a holomorphic vector field in C™ which
is tangent to the hypersurfaces of C™ given by p(z,Z) = constant.

The bundle &+ is n— s dimensional (in fact, (n — s+ 1)-dimensional if n, = 0)
and it is generated by the vector fields W, with a = 1,...,n. Let #; C T*'M
be the subbundle spanned by the vector fields W, with « € I;, where #; = (0),
if ng =0 or ng =1. Then we have &+ = #, @ --- ® #,_1 ® #,. Finally, we have
W; L W if g,k € {1,...,s} are different. Indeed, for any o € I; and § € I,
we have L(W,, WB) = QgQghwg = 0, because h,z = 0 if v L 0. Therefore the
decomposition

TYM=H & W10 W;dE (3.14)

is orthogonal. Observe also that #; ® & = span{E,...,FEs_1,Z4 : a € I}.

PROPOSITION 3.1.  The hermitian form Q, introduced in (3.11) satisfies:

Q,(E,Z)=0 for all E € & and Z € TY° M, (3.15a)
Q,(V,W) = L(V,W) forallje{l,...,s} and V,W € #;; (3.15b)
Q(Z,Z) >0 for all Z € TVYOM

and & = {Z € T"°'M : Q,(Z,Z) =0}.  (3.15¢)

PROOF. Let E € & and Z € T“OM. Then Q,(E,Z) = L(Q(E),Z) = 0,
because Q(E) = 0. This proves the first line. To prove the second line, just
observe that Q,(V,W) = L(Q(V),W) = L(V,W), because Q(V) = V. The third
line (3.15¢) follows from (3.11), letting U = V and from strict pseudoconvexity. [J

Let V be the Tanaka-Webster connection of (M,d). We refer to [TanT75],
[WebT78] and [DTO06] for the relevant facts concerning V. The curvature operator
of Vis R(Zx, Zg)Zo = V2,V2z,Z0 — V2,V 2, 20 — V(25,21 %a- The curvature
tensor have components R, 5, = L(R(Zx, Z7)Za, ZE). It enjoys the symmetries
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R =R and Raﬁ"rﬁ = Eﬂauﬁ7 (316)

aBym yBan
see [DTO06, Section 1.4]. The pseudohermitian Ricci tensor is defined by Rz =
Ra/\ ap» and the scalar curvature is R = h®"R,z. Finally, the pseudohermitian
torsion of V is defined by 7(Z5) = VrZs — Vz,T — [T, Zs] =: AjZg, where
Anp = L(7(Zy), Zp) satisties Aag = Aga, as proved in [WebT78].

Now we study the curvature tensors on the hypersurface M. Associated with
the decomposition CTM = TYO°M @ T*1M @ CT, we have the projections 7 :
CTM — T'9M and 7n_ : CTM — T%'M. By definition, for U,V holomorphic

vector fields, we have ViV := m_([U, V]). In our case, from (3.4) we find
Vz.25=0 foralla,f=1,...,n (3.17)

If U,V are holomorphic vector fields, then V;V is defined by L(VyV, W) =
UL(V,W) — L(V,VyW) for all W € T*°M. Thus, we obtain

V2, Zo = (h7P0rh,5) Zs foralla,A=1,...,n. (3.18)
Since h,5 = 2p,5, we deduce from (3.18) that

Vz,Zo=0 foralla,Ael,...,n witha L A\ (3.19)

The Tanaka—Webster connection satisfies VI' = 0. Moreover, in our case we have
VrZ, =7 ([T, Z,]) = 0. By (3.4), we deduce that

Vizyz:%a =0 forall a,\,p€{1,...,n}. (3.20)
By (3.17) and (3.20), the curvature operator reduces to R(Zx,Zz)Z, =

-V ng 7, Za, and taking into account (3.18), we get the Riemann and Ricci ten-
sors

Rag)ﬁ = 73/7(}1075)\}1&7) hgg, (3.21)
Rozi = R g = =05 (W7 0xhar). (3.22)

Finally, since Vz T = V1 Z, = [Z,,T] = 0, the torsion vanishes identically,

Agp = 0. (3.23)
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PROPOSITION 3.2.  The curvature tensor of V of (M, V) has the form

m;

1 .
RQBAﬁ = QmJ |Z_7| 2 ]{QXﬁQaE + QaﬁQ)\ﬁ} ZfaaﬂvAa,U’ € Ija (324)

for some j € {1,...,s}, and R, zxz = 0 if two of the indices o, B,\, 1 are
orthogonal. Moreover, R(U,V,Z, W) = 0 as soon as one of the vector fields
UV, ZW € TYOM belongs to & ® Ws. The pseudohermitian Ricci tensor has
the form

nj(m; —1)

g = = 2m
J

125172 Qo if A € I, (3.25)

and Ryz = 0 if X L p. Moreover, Ric(U, V) = 0 as soon as one of the vector fields
U,V € TYOM belongs to & © ;. Finally, the scalar curvature is

s—1
nij(n; —1)(m; —1), | o
R=— EAIE) 2 |2 3.26
D (3.26)

PrROOF. We start from the formula (3.21). The components of the Levi
form are given in (3.5) (and (3.6)). Note that

OZJ_)\:>8)\haV:O,
o L p=07(h"0zhaz) =0,
al = %(h”VBAhaq)hGB =0.
Using the symmetries (3.16), we conclude that RaBAE = 0 as soon as there are two

orthogonal indexes.
Assume that «, 8, A, p are in I;. From (3.5) we get

o[ . 7%207
a/\haﬁ = 2mj(mj — 1)|Zj|2(m7 2){2)\6‘1’7 +Zz 6)\’7 + (mj — 2)|22},
J

and thus

- m; — 1 722972
0 = B (Pl 5000 S
J
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After a short computation based on (3.10) and (3.12), we find

m;

. —1 L -
@)+ asen}

mj — 1 —zamg g o
51217 { QG Qs + Q3 Qui (3.27)
m;

—Ro% g = 0z (h7 0z hay) =

and contracting with h 7, we get (3.24).

Next we show that R(Z,W,U,V) =0if Z € #, & &. If Z € &, this follows
trivially from the first line of (3.15a). If Z € #;, then R(Z, 25, I, Zz) =0if at
least one of the indexes (3, A\, u does not belong to I. If all 5, A\, u € I, then, by
(3.24), R(Z, Zg, Zx, Zg) =0, because m; — 1 =01if j = s.

Identities (3.25) and (3.26) follow upon contracting indexes in (3.24), Ry =
R,“»m. Recall that by (3.10) and (3.12) we have Zate Q% = n; — 1 and

Zo—ejj QZQO',TL:QOL,TJJ lf %NGIJ D

REMARK 3.3. Let V € &+ be a vector such that V = Vi + --- + V,_1 with
V; € #;. The pseudohermitian sectional curvature of (M,9) along V # 0 is

R(V,V,V,V) 1 Smyj =1, o
k - R — _ J |—2m; 14 2
(V) Vi G g Tl (3.28)

where |V| := L(V,V)'/2 denotes the Levi-length of V. This formula follows from
(3.24) and (3.15b). Notice, in particular, that, since m; > 1 for all j < s —1, then
E(V)#£O0forany Ve B @ Wy with V #£0.

3.2. Chern invariant cones in generalized ellipsoids.
We describe the structure of the cones #p introduced in (1.9). Here and
hereafter, let |U| := L(U,U)/? denote the Levi-length of U € T*OM.

PROPOSITION 3.4. Let M C C"*! be the surface defined in (2.2). Then
H =W U UW U (WD E). (3.29)

ProOF. We prove that & @ #;, C . In fact, if U € & & #;, then
R(U,V,Z,W) =0 for all V, Z,W € T*°M, by Proposition 3.2.

In order to show that #; C s for all j = 1,...,5s =1, let U € #; and
take V, Z,W € TYOM such that L(U,V) = L(U,W) = L(Z,V) = L(Z,W) = 0.
Observe that, writing V = V; + VjJ-, where V; € #; is the projection of V onto %;
and VjJ- =V -V;=E+3,; Vi for some E € &, by (3.14), we have
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LU, V)=L(U,V;) and L(UW)=L(UW;). (3.30)
Here, we made for W the same decomposition as for V. Observe also that
Qb(UaV) = Qb(vaj)7 and Qb(UaW) = Qb(U7Wj)7 by (311) Then we have
by (3.24)

_mj—l

R(U7V7 Z, W) = |Zj‘_2mj {Qb(U7 Vj)Qb(Z7 W) + Qb(U’ WJ)Qb(Zvv)}

2mj

T (LU 7,)Q4(2 ) + L)@ 2T =
J

by (3.30) and by the definition of JZ.

Now we show that any vector field U = X +Y with X € £ $ #, and Y €
WD ®Ws_1 such that | X| # 0 and |Y| # 0 does not belong to 7. We assume
without loss of generality that |[Y| = 1. We choose Z = X +Y and V = W =
X — kY with k = |X|? # 0, in such a way that L(U,V) = L(X +Y,X —kY) = 0.
By Proposition 3.2, R(U,V,Z,W) = k*2R(Y,Y,Y,Y) = E*|Y|[*k(Y) # 0, thanks
to (3.28).

Finally, we prove that if V € (& @ #4) \ (#/4U---U#;_1) then V ¢ 2.
Let V = Vi 4+ .-+ Vi with V; € #; and assume without loss of generality that
[Vi| # 0 and |Va| = 1. Let W = V; — kVa where x = |[V4|? in such a way that
L(V,W) = 0. By Proposition 3.2 and Remark 3.3, we have R(V,W,V,W) =
R(Vl,Vl, V1,V1) + HZR(VQ,VQ, V27V2) 7é 0, as claimed. O

Let NN’ C M be connected open sets and let f : N — N’ be a Cauchy—
Riemann diffeomorphism. By (1.10) it must be f.(¢p) = J}p). Then there are
two cases:

(A) ful(DWs) =8 Ws;

(B) there exists j =1,...,s — 1 such that f.(& & #) = #;.

Here and hereafter, with slight abuse of notation let f.(& @ #5) = & ® #; stand
for f.(& ®W.)p = (& © #5)s(p), for all P € N.

Case (B) may occur only if dim(& @ #;) = dim(%;). Actually, the Case B cannot
occur at all, as the following theorem states.

THEOREM 3.5. Let N, N' C M be open sets. A CR diffeomorphism f : N —
N’ C M satisfies f.(& & Ws) = E ® Ws. In particular, there exists a permutation
o of {1,...,s = 1} such that f.(#;) C Wy forall j=1,...,5—1.

We prove Theorem 3.5 in Section 5. In the following proposition, we prove
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that, in case (A), CR diffeomorphisms preserve the Ricci Tanaka—Webster curva-
ture of 9. Diffeomorphisms that preserve the Ricci curvature of a Riemmanian
metric are rather studied in Riemannian geometry, see [KR95], [0S92]. It could
be interesting to see whether such mappings enjoy any significant geometric prop-
erty in the CR setting.

PROPOSITION 3.6. Let N,N' C M be open sets. A CR diffeomorphism
f: N — N’ such that f.(8 & W) = & & W preserves the Ricci curvature of 9,
i.e. Ric(fiZ, fuW) = Ric(Z, W) for all Z,W € T*ON.

ProOOF. We divide the proof into two steps.
Step 1:  We claim that R = AR o f, where R is the scalar curvature of ¢ and
A > 0 is the CR factor of f, i.e., f*9 = AJ.

Let Z € & ® W with |Z| = 1. Proposition 3.2 and Webster formula (1.8)
yield

B — 2R
S(Z,Z,2,2) = ————. 3.31
( ) (n+1)(n+2) (3.31)
Since f.Z € & ® ¥, we analogously have
— — 2R o 2\2R o
S(f*Z, I+Z, [+ Z, f*Z) = ! |f*Z|4 = ! (3-32>

(n+1)(n+2) (n+1)(n+2)’

where we also used |f.Z|? = A\|Z|? = X\. Thus, by the relative CR invariance (1.7)
we have

So(f«Z, fiZ, f. 2, f*7) = Sf*ﬁ(Z,Z, Z,?) = S,\Ig(Z,Z, Z,Z) = )\Sﬁ(Z,?, 277),
Here, Sy, Sf-9 and Syy denote the Chern tensors relative to ¥, f*¢, and A9, re-
spectively. Comparing (3.31) and (3.32) we conclude Step 1.

Step 2:  We claim that Ric(f.V, f,W) = Ric(V, W) for all V, W € (§ @ W,)*.

Take vector fields V,W € (& ® W,)*. Let also Z € & ® Wy be such that
|Z] = 1. All terms in the Chern tensor containing curvature tensors along Z or
terms of the form L(V, Z) and L(Z,W) vanish. Thus

1
n+2

{Ric(V, - 2w W)}. (3.33)

S(V\W,Z,Z) = — D)
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Since f.Z € & ® W, and f.W, f.V € (& @ W,)*, we analogously have

ARo f
+1

SV, £V, .2, 1.Z) = —7112{1%( A L(v, W)}. (3.34)

Recall that S(f.V, fiW, f. Z, fZ) = Sxo(V,W,Z,Z) = AS(V,W,Z,Z), by the
CR invariance (1.7). Thus the Step 2 can be accomplished on comparing (3.33),
(3.34) and using the Step 1.

The proof is finished, because Ric(Z,W) = 0 for all Z € & © #; and W €
T1OM. O

PROPOSITION 3.7. Let N,N' C M be open sets and let f : N — N’ be a
CR diffeomorphism such that f.(& ® #5) = & ® #s. Then the CR factor \ of f
satisfies WA =0 for anya € 1 U---Ul;_4.

Proor. Leta €l U---Ul,_1 and fix W = W,. We first observe that

dV(f T, f W) = fH(d9)(T, W) = d(f*I)(T, W)
= ((dX) A+ AdY) (T, W) = =W .

Therefore, it suffices to show that dd(f.T, f.W) = 0.
Using (3.4), we find for any j,k=1,...,s—1

[E;,Ey] = ﬁ > 2ip,52°F 5T = —2ilz ™ 5T, (3.35)
7 a,Bel;

because Y, ;. Paz® = m;|z;|*™. Thus we have
J

fiT = ———f.[E;, Ej] = [f+E;, f«E;] forallj=1,...,s— 1.

2|Z |2m 2|Z |2m

Notice the commutation relations

[Ej,Za} =0 fa€elsand j<s—1; and
(3.36)
[Za, Z5] = —2ibasT if o, B € L.

»

In view of (3.36) and (3.35), we claim that for any vector field Z € & @ #; there
exist a real function o and a vector field U € & @ #; such that
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(2,7) = ioT +U —T. (3.37)

Formula (3.37) can be checked by a routine computation. Here and hereafter, with
slight abuse of notation we denote sections of a bundle with the same notation of
the bundle. The claim applies to Z = f.(E;) € £ & W, for j=1,...,s — 1. The
vector fields f,W € #1 @ --- @& #;_1 and f, T are then orthogonal with respect to
the Levi form and the proof is concluded. O

4. CR mappings in generalized ellipsoids.

4.1. Computation of the CR factor.

LEMMA 4.1. Let N C M be an open set and let v be a CR function in N
such that vop = 0 for all o, =1,...,n. Then foranya € I;, 7 =1,...,s, we
have

n;(m; — 1)

Z,Tv =
at? 2im;(n + 1)|z;|*mi

WCK’Ua (41)

where Wy, = Q(Zy,) is the vector field (3.13).

PROOF. We use the third order commutation formulae in [JL88, eq. (2.1)].
Because v 4o = 0, we have

— = — _q — _ o _ — _g — _ o _
/U,",/Ba - v;\/aﬁ Zhaﬁvﬁo R’Y aﬁv’Q - Zhaﬂvﬁo RW a,BIU,Q'

On the other hand, by the commutation formula v BT VG, = ihwﬁv,o and since

vz =0, we get ih, 50,00 = —ih,5050 — Ry¢,5v,,. Contracting with hP yields

nj(m; —1) o,

- L P e Y, P ey _ _p oo, _
i(n+1voa = —Ry% "0, =R, 0%, = —Ra%v, a¥.o

O 2mylz[Pm
and the proof is concluded. ]

THEOREM 4.2. Let N C M be a connected open set and let f : N — f(N) C
M be a CR diffeomorphism with CR factor A\ = u~'. Then, either u is a constant
or there exist k € R\ {0} and (as,a™™t) = (as,to + ilas|?) € C™*! such that
w = k22" 4 a4 20z, - a2

PrROOF. The argument here is similar to [JL88]. The torsion Ay of ¥ van-
ishes, as noted in (3.23), Aag = 0. On the other hand, denoting by A = Ay
the torsion of ¥ = f*9, we have Apy(Z,W) = Ay(fZ, W) = 0, for all
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Z,W € T*ON. Thus we also have A,s = 0. From (1.3), we deduce that u
satisfies the system of equations u o3 = 0.

By Theorem 3.5, the assumptions of Proposition 3.6 hold and therefore f
preserves the Ricci curvature of ¥J. By (1.2), we have the system of equations

2 2(n+2)
(n+ 2){u}aﬁ +ug, — uu’au’ﬁ} + {Au -

|qu}hM30. (4.2)
Then, the function w = logwu satisfies the system of equations w 0B Tt W3, =
(Aw/n)h,5. By [Lee88, Proposition 3.3], w is locally the real part of a CR
function F', i.e., we have locally

F+F)/2 |2

u=el =00 =|v

where v := /2 is a CR function. Since u o5 = 0, we also have v 45 = 0.

The function g := T'v satisfies g5 = ZgTv = TZzv = 0. (Recall that 7" and
Zz commute.) By Proposition 3.7, we have Wou =0 for all « € [{ U--- U I4_;.
This implies W,v = 0 for the same indexes. By Lemma 4.1, we deduce that for
any a = 1,...,n we also have g, = Z,Tv = 0. The equations g, = ga =0
imply that g is locally constant. Therefore there exist a constant k € C and a
function ¥ = v(z,%z) such that v(z,%,t) = kt + ¥(z,%). Since v is CR, it must be
Oz — ikOzp = 0, which means

v="k(t+ip(z,7) + ¢(2),

for some holomorphic function ¢. Possibly multiplying v by a unitary complex
number, we can assume that & is real.

Moreover, for any a € 11 U--- U Is_1 we have W,¢ = 0, because W,v = 0.
This fact implies that v depends locally only on |z1],...,|2s—1| and, if I # (), on
zs. From v .3 = 0 and since V,Z3 = 0 for all «, 8 € I, see (3.18), we deduce
that for all o, 8 € I, we have 0%¢/92%0z” = 0, which finally yields

v(2,2,t) = k(t +ip(2,2)) + 25 - d + c (4.3)

for some d € C™ and ¢ € C. In order to find the imaginary part of ¢, we
observe that if u solves the system (4.2), it also solves the contracted equation
Au — ((n+ 2)/u)|Vu|*> = 0. After a computation, this implies that v solves the
equation
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i(Vvp — v,0) = W v T, (4.4)

Plugging (4.3) into (4.4), we get kIm(c) = |d|?/4. If k = 0 then d = 0, ¢(z) = c
and v is constant. If k # 0 then, letting to = Re(c)/k, we obtain v = k{t + to +
zs - d/k+i(p+ |d]*/(4k?)) }. Letting d/k = 2ia,, we get

v=Fk{t+to+ip+2iz s +ilas[*} = k{z"T" +a""! + 20z, a},  (4.5)

where 2"+! =t 4+ ip(z,%) and a" ! = to + i|as|?. This concludes the proof. O

4.2. Levi-isometric mappings.

Let M be the surface (2.2) endowed with the pseudohermitian structure ¢
introduced in (3.1). We say that a CR diffeomorphism ¢ : N — N’ is Levi-
isometric with respect to ¢ if ¥*9 = 9. A Levi isometric mapping 1) satisfies
L. Z, W) = L(Z,W) for all Z,W € T*YN. Moreover, since we trivially have
Vo (TY") = (T?)y, it turns out that a Levi isometric mapping satisfies

T =T, (4.6)

THEOREM 4.3. Let N,N' C M be connected open sets and let i) : N — N’
be a Levi-isometric mapping with respect to . Then, there exists a permutation
o of {1,...,s — 1} such that m,;) = m; and ng;y =n; forany j=1,...,5 -1,
there are unitary matrices B; € U(n;), and, if ng > 1, there are Bs € U(ns) and
a vector (bs, b" 1) = (bs, to+1i|bs|?) € C™ x C such that for all (z,t) € N we have

’l/}(Z, Zn+1) = (Blza(l)v ce- 7Bsflza(sfl)a

Biyzs + b, 0" 4 2"+ 2i(Byz, - b)), (4.7)

We start with an easy lemma.

LEMMA 4.4. Let D C C%, d > 2, be an open connected set and let  : D —
C? be a nonconstant holomorphic mapping such that |((z)| is constant if |z| is
constant, for z € D. Then there exists B € GL(d,C) such that ((z) = Bz and
B*B = 0*I for some o0 > 0.

PrOOF. Assume without loss of generality that there exists z € D such that
|¢(2)] = |z| = 1. This can be achieved multiplying ¢ by a positive constant. Then,
by the Poincaré-Alexander theorem, see [Ale74], [Tan62], [Rud81], ¢ is the
restriction of an automorphism of the unit ball B; := {z € C?: |z| < 1}. Thus, see
[Kra01], [Rud81], there exist a unitary matrix B € U(d) and a € C? with |a| < 1
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such that ((z) = B¢,(z) for all z € D, where ¢,(z) = (a — Pz—+/1 — |a|?Qz)/
(1 —2-a), with Pz = (2-a/|a]*)a and Qz = 2 — Pz. When a = 0 we have
da(z) = —z. If a # 0, ¢, takes bBy to bB; but it does not take any other (open
piece of) sphere bB, with r # 1 to a sphere centered at the origin. Then we have
a = 0 and the Lemma follows. O

PROOF OF THEOREM 4.3. All our claims along the proof are of a local na-
ture. In the coordinates (z,t) € C™ x R on M, we have ¢ = (¢},...,¢(", 7) with
¢P:N-C,f=1,...,n,and 7 : N - R. We first notice that Zz(? = 0
for all , 3 = 1,...,n, because ¢ is a CR mapping. Moreover, we have Tt = 1
and T¢? = 0 because ¢, T = T, by (4.6). Then, for j = 1,...,s the functions
¢; = ¢j(#) are holomorphic and 7 =t + v(z,Z) for some real function v.

By Theorem 3.5, there exists a permutation o of {1,...,s — 1} such that
VW = Wy(;)- In the following we let j° = o(j). In particular, we have nj = n;
forall j=1,...,s—1.

Fix je {1,...,s—1}. Let V € #; with |[V| = 1. Since 9 is Levi isometric, 9
preserves the sectional curvature of 9, k(1.V) = k(V'). By (3.28), we deduce that

mj/

m; — 1 -1 —om.,
|z —[¢jr(2)| M (4.8)

|—2mj —
mj mj

With the notation 27 = (21,3 2j=1,Zj+1, - - -, Zs), consider for fixed z; the map-
ping 2z; — (j/(25;2;). This mapping is nonconstant and holomorphic from an
open subset of C™ to C™. Moreover, by (4.8) it takes (pieces of) spheres of C™
centered at the origin into spheres centered at the origin. By Lemma 4.4, there
exist B; € GL(n;,C) and g; > 0 such that (;(z) = Bj(2})z; with BfB; = 071.
Here Bj = B(z}) is holomorphic, while g; = 0;(z},%}). Therefore, (4.8) becomes

‘Q(mj—mj/) — mj; — 1 mjr * —*)27”.7”

0j (Zj » %5

|Zj mj mj/ —1
Both the left-hand side and the right-hand side must be constant. Therefore
mj = my and o(z},7;) = 1. Ultimately we have for any j < s —1, (;:(2) = B;z;j,
for some constant matrix B; € U(n;).

Next we claim that, if ny > 1 then (s depends only on z;. To prove the claim
it suffices to show that for all 7 < s — 1 we have

Wi(" =0 forall\eI;,vyel,; and (4.9a)
E;(" =0 forallyel,. (4.9b)
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To prove (4.9a), fix j < s—1and A € I;. Then

YWy = Z Z Wi(")(04)y + Z WxC")(0y)y + (WaT)(0r)y  (since ¢ is CR)

k=1~€ly ~El
:iz WAC)(Zy)w + D (Wal")(Zy) -
k=1~€l}, ~elL

But Wy € #},. Then all the terms in the last sum vanish and (4.9a) is proved.
To prove (4.9b) start by computing ¢, E; for j < s — 1:

i Z ByuEj2" (Zy)y + Z E;i¢"(Zy)y

¢*Ej -
k'=1~€Il yel,
nEIR
=) B’m (Zo)y + Y B (Zy)y = (Bj)y + ) Ei((Z,)y
RIS yels vyels
uef

Taking the Levi-length, we find |, E;|? = |(E} )w‘2+zv oer. (Ej¢)(E;C%) (hog) .
But we have [, E;? = [E;? = 20z?™ and |(E;)gl¥ = 202 = 2]z,
Moreover it is (hyz)y = 20+,, because v, o € I. Then we conclude that E;¢7 = 0,
as required.

Next, we compute v and (;. Let o € Ij, where j < s — 1. Recall that
T =t+4v(z,%). Since d,(s; = 0, we have

Voo = Z Bsa(0)y + (0av + imj|zj|2(mj_1)§°‘)(8t)¢ (since ¢ is CR)

ﬂGI]-/
. m. —1)7PB
=Y BsalZs)y = Y Bsa{(0s)y +imy [P TN (9)y }
ﬂEI]-/ BGI]-/
= 3 Boa(@)y +im; |57 V2 (@),
BeL,
where we used [(j/| = [2;], mj» = m; and Y5, BgaBpy = Oay, if a,y € I
J

Comparing the first and third lines we get v, = 0. Thus v depends only on z,, t.
Finally, we find (s and v when ng > 1. For a € I; we have
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ViZo =Y (0aC")(0p)y + {iZ% + 0av} Ty, (4.10)
BEIs

as well as

ViZo =3 (0aC)Zs)y = 3 (0a0°) ((95)s +iC Ty). (4.11)

Bels BEI,

Since 1 is Levi isometric, we have 204y = L(¢+Zq, ¥« Z7) for o,y € I;. Using
formula (4.11), we obtain 3 5./ (3(!(5)(8#?3) = 0o, for all o,y € I;. Therefore it
must be (s(z) = bs+ Bzs, for some B € U(ng) and by € C™=. Moreover, comparing
the coefficients of T' in (4.10) and (4.11), we obtain the equation iz% 4+ J,v =
izﬂels Zﬂaacﬁ’ which implies d,v = iZBeIs Bgagﬁ. Since v is a real function,
we finally find v = tg — 2Im(Bz; - bs) for some t; € R.

The structure (4.7) of the isometry % is now determined locally. The proof is
concluded because N is connected. g

5. Proof of Theorem 3.5.

This section is devoted to the proof of Theorem 3.5. The proof is rather
involved, but we were not able to find a more direct one. In many situations, the
study of this case can be avoided for trivial dimensional reasons, see the discussion
before the statement of Theorem 3.5.

PROPOSITION 5.1.  Let N C M be an open set and let f : N — f(N) C M
be a CR diffeomorphism such that f.(& @ W) = W; for some j =1,...,s — 1.
Then there exists v € N U {0} such that
M = {(21,20,2" ) e C"? x C" x C':
Imz"t! = 2™ + |2/%, and z; #0}. (5.1)
Moreover, we have AR o f = R where X is the CR factor of f.

PROOF. For some k =1,...,5s — 1 we have f.(#}) = & ® #5. Since f is a
CR diffeomorphism, it must be dim #; = dim(& & #;) = dim #},. In other words,

nj =Mng+5="ny (5.2)

For any V € #}, with |[V| = 1 we evaluate S(V) := S(V,V,V,V). By (1.8), (3.24),
(3.25), and (3.15b) we get
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1

S(V) = n+2{(2nk—n—2)

2R
2 5.3
amer Z5L 69

Since f.V € & @ #s, all the terms involving curvature in S(f.V) vanish and we
get

2Ro f 2Ro f

S(fV)= ——————|fV[' =N — . 5.4
(£:V) (n+1)(n+2)|f | (n+1)(n+2) (54)
By the CR invariance (1.7), we deduce from (5.3) and (5.4)
2ARo f mg — 1 2R

e (2ng —n —2) |2k R (5.5)

Let Z € & ® #; with |Z| = 1. We have

2
S(Z) = —R (5.6)

(n+1)(n+2)

Since f.Z € #; for some j < s — 1, arguing as in (5.3) we find

—io e 2L 6

)\2

5(-2) = g { eng - n-2)™

where we let (¢, (") = f(z,2"*!) € M. By the CR invariance (1.7), we obtain

(5.8)

m; — 1 ~ 2Rof 2R

/\ M. — -2 J |—2m; _ )

{( o ) m; Gl +n+1} n+1
Comparing (5.5) and (5.8) we get

mp — mj — 1

1 v
(2n; —n —2) |2k 72 4+ A(2n; —n — 2) ¢ ™2™ = 0. (5.9)

J
Recall that by (5.2), it must be n; = ng. Therefore, (5.9) becomes

mg —

<2njn2>{ a2 4 AL G| 2"“}‘0'

mg

But the curly bracket is positive. Then, we have n; = n, = (n + 2)/2. Moreover,
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it must be j = k, because if j # k the condition n; + n, < n is not satisfied.
Finally, using n; > 2 for all ¢ < s — 1 and n, = n; — s, we get

nznl—l—---—i—ns:nj+nS+Zni2nj+ns+2(s—2)
i#]
=2nj+s—4=n+s—-2.

This gives s < 2. If s = 1, then M is the surface Im(23) = (|2}|? + |22]?)™. If
s = 2, we have n = nj + ns = n/2 + 1 + nay, which implies n; = ny + 2 and the
domain has the form (5.1). O

PROPOSITION 5.2.  Let M be as in (5.1) and let f : N — N’ be a CR
diffeomorpshism such that f.(& ® #s) = #1. Then the CR factor X of [ satisfies
Ei)= -\

Proor. Fixo,p€liandlet W =%2°2,-2"Z, =Z°0,, —7"0,. Notice that
L(W, E1) =0 and thus W € #;. We also have [W, W] = 290, +210,,—2° 02" 05
and

[[VV, Wi, El]

o =0 = 1 = . m
270, + 20, — % %—z“aﬁ,m—l > 705 —ils ™o =0, (5.10)
Bel

Finally, we have i0([W, W]) = —idd(W, W) = 2m |21 2™ =Y (|27? + [2#]?).
Since f.W € & @ #5, as in the proof of Proposition 3.7, see (3.37), we have

LW, W] = [fW, W] = F — F + kT, (5.11)

for some F' € &@#5 and some real function k on f(N). Since f.Eq € #1, f«[W, W]
and f.E; are orthogonal by (5.11). Then, also using (5.10), we get

that is equivalent with By (\|z1]|2(™1 =1 (|27]2 +|2#|?)) = 0. Since o, u are arbitrary,
this implies By (A z1[*™) = 0 and eventually B4\ + A = 0, because Ej|z|?™ =
|2’1‘2m1. O

PROOF OF THEOREM 3.5. Assume by contradiction that f,(& @& #;) = #;
for some j =1,...,s — 1. Then, by Proposition 5.1, M is of the form (5.1), and
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by Proposition 5.2 we have E1 A = — ), where A = u~! is the CR factor of f. We
have fu,#1 = Wo @ & and f.(Wo ® &) = H].

In terms of u we have Eju = u. Note that (3.17) implies that Vg Ey = 0.
Thus

_ — 2
V2u(Ey, Ey) + V*u(Ey, Er) — E|E1u\2 =0.

Since Ric(E1, E1) = 0, (1.5) becomes

. — 1 2(n+2
Ric(f.Fy, [.Ty) = %{Au - (nu)WuF}ElF
_ ;{Au - 2(”;2)|vu2}|f*E1|2. (5.13)

On the other hand, since f.E; € #;, comparing (3.25) and (3.26), we get

. = 1
Ric(f.E1, foE1) = ﬁ(Ro OIfErl, (5.14)
and therefore (5.13) becomes

ftof _ py- 2052 g0 (5.15)

) —
n—1 U

By Proposition 5.1 we have Ro f = uR, and from (1.4) we obtain

~ 2
uR_Rof_R_uR+(n+1){Au n;r |Vu|2},

that gives Au = ((n + 2)/u)|Vu|?. Inserting this identity into (5.15) and using
formula (3.26), we obtain

|Vul? my — 1 my —1
u? mi(n + 2)|z 2™ " o |21 ]2 (5.16)
because, n; = v+ 2 and ng = v, so that ny/(n+2) = 1/2. On the other hand, by
Eru = u and |Eq|* = 2|21*™ we have |Vu|?> > |E1ul?/|E1|? = u?/2|z[*™, which
contradicts (5.16). The proof is concluded. O
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