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Abstract. In this paper we construct nontrivial pairs of S-related (i.e.
Smith equivalent) real G-modules for the group G = PΣL(2, 27) and the
small groups of order 864 and types 2666, 4666. This and a theorem of
K. PawaÃlowski-R. Solomon together show that Laitinen’s conjecture is affir-
mative for any finite nonsolvable gap group. That is, for a finite nonsolvable
gap group G, there exists a nontrivial P(G)-matched pair consisting of S-
related real G-modules if and only if the number of all real conjugacy classes
of elements in G not of prime power order is greater than or equal to 2.

1. Introduction.

Let G be a finite group. We denote by S (G) the set of all subgroups of G

and by P(G) the set of all subgroups of G of prime power order. In this paper,
a real G-representation space of finite dimension is referred to, briefly, as a real
G-module, a smooth manifold as a manifold, and a smooth G-action on a manifold
as a G-action on a manifold, unless otherwise stated. Real G-modules V and W

are called D-related (resp. S-related) and written as V ∼D W (resp. V ∼S W ) if
there exists a G-action on a manifold X diffeomorphic to a disk (resp. homotopy
sphere) such that XG = {a, b} and the tangential G-representations Ta(X) and
Tb(X) are isomorphic to V and W , respectively. If V and W are both D-related
and S-related then they are called DS-related and written as V ∼DS W . A
homotopy sphere Σ with (smooth) G-action is called a 2-fixed-point sphere, or 2fp
sphere, if |ΣG| = 2. If V and W are real G-modules and Σ is a 2fp sphere such
that ΣG = {a, b}, Ta(Σ) ∼= V and Tb(Σ) ∼= W then we call Σ an S-realization of
V and W .

M. Atiyah-R. Bott [1] and J. Milnor [19] showed that S-related real G-
modules V and W are isomorphic if the G-action of an S-realization of V and
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W is semifree. In addition, C. Sanchez [44] showed that S-related real G-modules
V and W are isomorphic if the order |G| of G is an odd prime power. On the
other hand, many researchers, e.g. T. Petrie, S. Cappell-J. Shaneson, K. H. Dover-
mann, D.Y. Suh, E. Laitinen-K. PawaÃlowski, K. PawaÃlowski-R. Solomon and etc.
have found nontrivial pairs (V, W ), i.e. V 6∼= W , consisting of S-related G-
representations for various groups G. We note that their nontrivial pairs (V, W )
satisfy dim V N = dimWN whenever N is a normal subgroup of G with prime
power index. In the present paper, we show the next theorem.

Theorem 1.1. If G = PΣL(2, 27), SG(864, 2666), or SG(864, 4666), then
there exist DS-related pairs (V, W ) satisfying the following conditions:

(1) dimV N > 0, dimWN = 0 for a normal subgroup N of G with index 3, and
(2) dimV P = dim WP ≥ 6 for every Sylow subgroup P of G.

In the above, SG(m,n) denote the small group of order m and type n which
is obtained as SmallGroup(m,n) in GAP [13]. We showed in [22] that if V and
W are S-related and N is a normal subgroup of G with index 2 then V N ∼= WN

as real G/N -modules. The theorem above shows that V N ∼= WN does not always
hold if |G/N | = 2 is replaced by |G/N | = p with an odd prime p.

We recall (see [28]) that if there exists a G-action on a disk with exactly two
G-fixed points then G is an Oliver group, that is G can acts on a disk without
G-fixed points, which is also equivalent to that G is not a mod-P hyperelementary
group, namely G never admits a normal series P E H E G such that P and G/H

have both prime power order and H/P is cyclic. Let aG denote the number of real
conjugacy classes (g)± = (g) ∪ (g−1) of G such that the order of g is not a prime
power. In the paper [17], we read the following conjecture.

Conjecture (Laitinen’s Conjecture). Let G be an Oliver group. Then
there exists an S-realization Σ of G-modules V and W such that Σg is connected
for every element g ∈ G having order 2m with m ≥ 3, if and only if aG ≥ 2.

We have, however, seen in [22] and [14] that this conjecture fails for the groups
G = Aut(A6), SG(1176, 220), and SG(1176, 221). In addition, K. PawaÃlowski-
T. Sumi [36] showed that the conjecture also fails for the groups G = SG(72, 44),
SG(288, 1025), SG(432, 734), and SG(567, 8654).

Let F be a set of subgroups of G. A real G-module V is called F -free if
V H = 0 for all H ∈ F . Real G-modules V and W are called F -matched if
resG

HV ∼= resG
HW for all H ∈ F . An F -matched pair (V, W ) is said to be of type 1

if dimV G = 1 and dimWG = 0. Let L (G) be the smallest upper closed subset of
S (G) containing all normal subgroups N E G such that G/N is of prime power
order. We say that V satisfies the gap condition if dimV P > 2 dim V H for all
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subgroups P � H of G such that P is of prime power order. A real G-module V

is called a gap module if V is L (G)-free and satisfies the gap condition. A finite
group G is called a gap group if there exists a gap real G-module. K. PawaÃlowski-
R. Solomon showed [35, Theorem B3] that if G is a nonsolvable gap group and G

is not isomorphic to PΣL(2, 27) then Laitinen’s conjecture is affirmative. Thus,
our result for the group G = PΣL(2, 27) stated above implies the next theorem.

Theorem 1.2. If G is a nonsolvable gap group then Laitinen’s conjecture is
affirmative for G.

Let RO(G) denote the real representation ring of G. Define

RO(G, D) = {[V ]− [W ] ∈ RO(G) | V ∼D W},
RO(G, S) = {[V ]− [W ] ∈ RO(G) | V ∼S W},

RO(G, DS) = {[V ]− [W ] ∈ RO(G) | V ∼DS W}.

In this paper we will study RO(G, DS).
For sets F and G of subgroups of G and M ⊆ RO(G), we define

MF = {[V ]− [W ] ∈ M | V and W are F -matched},
MG = {[V ]− [W ] ∈ M | V and W are G -free},
MG

F = MF ∩MG .

B. Oliver [27] showed RO(G, D) = RO(G){G}P(G) for an arbitrary Oliver group G.

In addition, E. Laitinen-K. PawaÃlowski [17] showed that rankZ RO(G){G}P(G) =
max(aG − 1, 0), which also follows from B. Oliver [27]. We will show the equal-
ity RO(G, DS) = RO(G){G}P(G) in the cases G = PΣL(2, 27), SG(864, 2666),
SG(864, 4666). This is stated in a slightly general form as the next theorem.
In order to state it, we define, for a prime p, the Dress subgroup G{p} ≤ G of type
p, to be the smallest normal subgroup N E G such that |G/N | is a power of p

(possibly G = G{p}). Let Gnil denote the smallest normal subgroup N of G such
that G/N is nilpotent. Then the equality

Gnil =
⋂

p: prime

G{p}

holds, cf. [15]. Let D2n denote the dihedral group of order 2n:

〈a, b | an = e, b2 = e, bab = a−1〉.
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For a subset S of G, let P(S) denote the set of all elements g of S such that the
order of g is not a power of a prime. Here we regard e 6∈ P(S) for the sake of
convenience.

Theorem 1.3. Let G be an Oliver group satisfying Conditions (1)–(4) below.
Here N stands for Gnil.

(1) N has a subquotient group isomorphic to D2qr for distinct primes q and r.
(2) G/N is a nontrivial group of odd order.
(3) The set GrN contains an element not of prime power order.
(4) |P(gN)| = |P(g′N)| for all g, g′ ∈ GrN .

Then there exists a P(G)-matched pair (U1, U2) of type 1 consisting of real G-
modules such that UN

1 = R[G/N ] and UN
2 = 0, and RO(G){G}P(G) contains a direct

summand 〈x〉Z generated by an element x = [V1]−[V2] such that V N
1 = (R[G/N ]−

R[G/N ]G)⊕m for some m ≥ 1 and V N
2 = 0. For the element x, the implication

〈x〉Z ⊆ RO(G, DS) ( 6= 0) holds and hence RO(G)L (G)
P(G) 6= RO(G, DS). Moreover

in the case aG = 2, the equality RO(G, DS) = RO(G){G}P(G) holds.

Remark 1.4. In the theorem above, if |G/N | = 3 then Condition (4) is
automatically satisfied.

In each case G = PΣL(2, 27), SG(864, 2666), SG(864, 4666), it is easy to
see that aG = 2, |G/G{3}| = 3, Gnil = G{3}, G{3} ⊃ D2qr (q and r are distinct
primes), RO(G){G}P(G)

∼= Z, RO(G)L (G)
P(G) = 0, and GrGnil contains an element not

of prime power order. Thus Theorem 1.1 follows from Theorem 1.3.
The readers familiar with [35] would see the next.

Theorem 1.5. Let G be a gap Oliver group. Then the implication
RO(G)L (G)

P(G) ⊆ RO(G, DS) holds. If Gnil contains distinct two real conjugacy

classes of elements not of prime power order, then RO(G)L (G)
P(G) 6= 0 and hence

RO(G, DS) 6= 0.

The rest of this paper is organized as follows. We prepare basic facts concerned
with P(G)-matched real G-modules in Section 2. A key to proving Theorem 1.3 is
observation of the tangent bundle of the real projective space P (V ) associated with
a real G-module V . In Section 3, we exhibit basic results related to the tangent
space. In Section 4 we claim several lemmas showing an outline of the proof of
Theorem 1.3, and in Section 5 we explain known facts which are used to prove the
lemmas. These lemmas are proved in Sections 6–9. Finally, Theorems 1.3 and 1.5
are proved in Section 10.

The author wishes to express his gratitude to the referee for his carefully
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reading the manuscript, pointing out errors in it, and giving invaluable comments.

Notation.

S (G) = the set of all subgroups of G

P(G) = {P ∈ S (G) | P is of prime power order}

L (G) = {H ∈ S (G) | H ⊇ G{p} for some prime p}
M (G) = S (G)rL (G)

N2(G) = {N ∈ S (G) | N E G, |G : N | ≤ 2}
PC (G) = {H ∈ S (G) | ∃ P ∈ P(G) such that P E H and H/P is cyclic}

X×m = X × · · · ×X (the m-fold cartesian product of X)

V ⊕m = V ⊕ · · · ⊕ V (the m-fold direct (Whitney) sum of V )

2. Preliminary on real G-modules.

Let G be a finite group and V a real G-module. If H is a subgroup of
G then the H-fixed point set V H is a real NG(H)-module. Let VH denote the
orthogonal complement of V H in V with respect to a G-invariant inner product.
VH is uniquely determined up to NG(H)-isomorphisms independently of the choice
of a G-invariant inner product on V . Thus we have the direct sum decomposition

V = V H ⊕ VH as real NG(H)-modules.

If x ∈ RO(G) has the form x = [V ]− [W ] with real G-modules V and W , then xH

stands for the element [V H ] − [WH ] in RO(NG(H)/H) as well as RO(NG(H)).
In the same situation, dimxH stands for the integer dimV H − dimWH . Let V L

denote the G-subspace of V spanned by all elements in V L, where L ranges over
L (G). Namely

V L =
∑

q: prime

V G{q}
= V G ⊕

⊕

q: prime

(
V G{q} − V G

)
.

It induces a direct sum decomposition

V = V L ⊕ VL as real G-modules.
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If G = G{2} then V (G) = R[G]L is a gap G-module, cf. Lemma 5.2, and hence
G is a gap group.

Each element x = [V ] − [W ] ∈ RO(G) determines the character (function)
χx = χV −χW . We can regard RO(G) as a set of functions G → R taking a same
value on a real conjugacy class. Note that for g ∈ NG(H),

χxH (g) =
1
|H|

∑

h∈H

χx(gh).

Thus, for a real conjugacy class function f : G → R, we define fH : NG(H) → R

by

fH(g) =
1
|H|

∑

h∈H

f(gh).

If g ∈ G then let f(g)± : G → Z denote the class function defined by

f(g)±(h) =

{ |G|
|(g)±| if h ∈ (g)±

0 otherwise.

Lemma 2.1. Let g1, g2 be elements not of prime power order of G. Then
the class function ϕ defined by

ϕ = f(g1)± − f(g2)±

belongs to RO(G)P(G) ⊗Z R. Clearly, if (g1)± 6= (g2)± then ϕ 6= 0. If N is a
normal subgroup of G and g1, g2 ∈ N then ϕN = 0.

Proof. By the character theory, the class function ϕ above belongs to
RO(G) ⊗Z R. Since ϕ(a) = 0 holds for all a ∈ G of prime power order, ϕ ∈
RO(G)P(G) ⊗Z R. Suppose N E G and g1, g2 ∈ N . Then for g ∈ G,

ϕN (g) =
1
|N |

∑

a∈N

ϕ(ga)

=

{ 1
|N |

∑
h∈N ϕ(h) if g ∈ N

0 if g /∈ N
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=





1
|N |

(
|(g1)±| |G|

|(g1)±| − |(g2)±| |G|
|(g2)±|

)
if g ∈ N

0 if g /∈ N

= 0.

We have checked ϕN = 0. ¤

The lemma above immediately implies the next.

Corollary 2.2. Let g1 and g2 be elements not of prime power order in G.
Suppose (g1)± 6= (g2)± and g1, g2 ∈ Gnil. Then RO(G)L (G)

P(G) is a nontrivial direct

summand of RO(G). In particular, rank RO(G)L (G)
P(G) ≥ 1.

On the other hand, we are also interested in the case where RO(G)L (G)
P(G) = 0

and RO(G){G}P(G) 6= 0, e.g. G = PΣL(2, 27), SG(864, 2666), SG(864, 4666). The
next follows from straightforward computation using the character table.

Proposition 2.3. Let G be one of PΣL(2, 27), SG(864, 2666), or
SG(864, 4666) and N = G{3} (= Gnil). Then there exist P(G)-matched pairs
(U1, U2) and (V1, V2) such that UN

1 = R[G/N ], UN
2 = 0, V1 = (U1 − UG

1 )⊕3 ⊕W

for some real G-module W with WN = 0, and V N
2 = 0, and moreover RO(G){G}P(G)

coincides with 〈[V1] − [V2]〉Z , the submodule generated by the element [V1] − [V2]
in RO(G).

Let N be a normal subgroup of G. Suppose

|P(gN)| = |P(g′N)| > 0 for all g, g′ ∈ GrN.

Set C = |P(g0N)| for an element g0 ∈ GrN and define a function φ : G → Q by

φ =
|N |
C

∑

(g)±:g∈P(GrN)

δ(g)±

where

δ(g)±(a) =

{
1 (a ∈ (g)±)

0 (a /∈ (g)±)

for a ∈ G. Then for a ∈ GrN , we have
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φN (a) =
1
|N |

∑

h∈N

|N |
C

∑

(g)±:g∈P(GrN)

δ(g)±(ah)

=
1
|N |

|N |
C

C

= 1.

If a ∈ N then φN (a) = 0. Thus |G/N |φN = |G/N |χQ[G/G] − χQ[G/N ] as Q-
valued functions on G/N . The function |G/N |φ : G → Q takes a same value on
each rationally conjugate class of G. The Q-module consisting of all rationally
conjugate class functions G → Q is canonically isomorphic to R(G, Q) ⊗Z Q,
where R(G, Q) is the rational representation ring. Thus, for some positive integer
m, m|G/N |φ lies in RO(G), namely m|G/N |φ = χV −χW for some real G-modules
V and W , and [V N ]− [WN ] = m|G/N |[R]−m[R[G/N ]].

Immediately, we get the next lemma.

Lemma 2.4. Let G be a finite group with a normal subgroup N satisfying
|P(gN)| = |P(g′N)| > 0 for all g, g′ ∈ GrN . Then there exists x ∈ RO(G)P(G)

such that xN = m|G/N |[R]−m[R[G/N ]] for some positive integer m.

3. Real projective spaces and their tangent bundles.

Let V be a real G-module and let M denote the real projective space P (V )
and γM the canonical line bundle over M . In particular, the total space of γM is

{
({±x}, v) | x ∈ S(V ), v ∈ V with v ∈ L±x

}

where L±x is the straight line in V containing the points x and −x. We often abuse
the notation γM to denote the total space. The total space has the induced G-
action and γM is a real G-vector bundle over M . Let γ⊥M denote the complementary
G-vector bundle of γM in the product bundle εM (V ) with fiber V . Thus εM (V ) =
γM ⊕γ⊥M . Let T (X) denote the tangent bundle of X. Then we have the next basic
lemma.

Lemma 3.1. The following equalities hold up to G-vector bundle isomor-
phisms.

(1) Hom(γM , γM ) = εM (R).
(2) Hom(γM , εM (R)) = γM .
(3) T (M) = Hom(γM , γ⊥M ).
(4) T (M)⊕ εM (R) = Hom(γM , εM (V )).
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(5) Hom(γM , εM (V )) = γM ⊗ V .

Proof. The equalities (1)–(4) above follow from the proof of [20,
Lemma 4.4]. The equality (5) follows from

Hom(γM , εM (V )) = Hom(γM , εM (R))⊗ V = γM ⊗ V. ¤

The lemma says that the tangent bundle T (M) is stably isomorphic to γM ⊗
V − εM (R). By this, we immediately get the next lemma which is a key to
constructing an S-realization of nonisomorphic real G-modules.

Lemma 3.2. Let G be a finite group and set K = Gnil. Let (U1, U2) be a
P(G)-matched pair of real G-modules such that UN

1 = R for all N ∈ N2(G), and
UK

2 = 0. Then the real projective space M = P (UK
1 ) and the real G-vector bundle

ξM = (γM ⊗ U1) ⊕ (γ⊥M ⊗ U2), where γM ⊕ γ⊥M = εM (UK
1 ), have the following

properties,

(1) MG = {x0} and M=N = MN r {x0} is a closed manifold (possibly the
empty set) for any N ∈ N2(G).

(2) T (M)⊕ εM (R) ∼= γM ⊗ UK
1 .

(3) Tx0(M) ∼= UK
1 G (= UK

1 − UG
1 ).

(4) ξM |x0
∼= Tx0(M)⊕R⊕ U1K ⊕ (UK

1 G ⊗ U2).
(5) T (M)K ⊕ εM (R)K ∼= ξM

K as real G-vector bundles.
(6) ξM is P(G)-matched to εM (UK

1 ⊗ U2), i.e. resG
P ξM

∼= resG
P εM (UK

1 ⊗ U2)
for all P ∈ P(G).

4. Steps to construct S-realizations.

In this section, we give the outline of our construction of S-realizations of two
real G-modules by describing lemmas in a step by step way.

Let S (G)/conj denote the set of all conjugacy classes of subgroups of G. Let
K = {K1, . . . , Kc} be a complete set of representatives of the conjugacy classes
of proper subgroups of G, i.e. Ki 6= G. Thus, S (G)/conj = {(G), (K1), . . . , (Kc)}
with c+1 = |S (G)/conj|. As usual, we arrange K so that if (Ki) ≥ (Kj), namely
Kj is subconjugate to Ki, then i ≤ j. By this convention, we have Kc = {e}.
Define a finite G-CW complex R by

R =
c∐

i=1

G/Ki

and refer to R as the set of reference points.
If |G| = pa1

1 · · · pan
n , where p1, . . . , pn are distinct primes and a1, . . . , an ≥ 1,
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then we denote by pow(G) the maximum in the set {a1, . . . , an}.
The first step is constructing a finite contractible G-CW complex Y including

a given G-manifold M .

Lemma 4.1. Let G be an Oliver group and M a compact G-manifold with
x0 ∈ MG. Then there exist a finite contractible G-CW complex Y and G-
subcomplexes NY and QY having the following properties.

(1) Y G = MG.
(2) χ(Y H) = 1 for all H ∈ M (G).
(3) NY ∩QY = ∅ and QY ⊃ R.
(4) χ(NH

Y qQH
Y ) = 1 for all H ∈ M (G).

(5) Each G-connected component of QY rR is G-diffeomorphic to G/K×T for
some K ∈ M (G) and a connected closed orientable 2-dimensional manifold
T with the trivial G-action, or to G/Kj for some Kj ∈ K .

(6) NY = MqN1q· · ·qNs such that each Ni is G-diffeomorphic to G/Kj(i)×M

for some Kj(i) ∈ K .
(7) Iso(G,Y r (NY ∪QY )) = P(G).
(8) For each P ∈ P(G), Y P is simply connected.
(9) dimY P > dimY P ′ for all P , P ′ ∈ P(G) with P ( P ′.

(10) dimY = max(dim M, 2) + pow(G) + 1.

The second step is constructing a finite contractible G-CW complex Z with
prescribed G-fixed point set and a real G-vector bundle ηZ over Z which will play
like a stable tangent bundle of Z.

Lemma 4.2. Let G be an Oliver group, M a compact G-manifold with x0 ∈
MG, ξM = τM ⊕ νM a real G-vector bundle over M , and U a real G-module
satisfying the following conditions.

( i ) T (M)⊕ εM (Rk) ∼= τM .
( ii ) νL

M
∼= εML(0) for all Dress subgroups L = G{q}.

(iii) ξM is P(G)-matched to εM (ξM |x0).
(iv) U is P(G)-matched to Tx0(M).

Then there exist a finite contractible G-CW complex Z, G-subcomplexes NZ , QZ ,
and a real G-vector bundle ηZ over Z having the following properties.

(1) ZG = MG.
(2) χ(ZK) = 1 for all K ∈ M (G).
(3) NZ ∩QZ = ∅ and QZ ⊃ R.
(4) χ(NH

Z qQH
Z ) = 1 for all H ∈ M (G).

(5) Each G-connected component of QZrR is G-diffeomorphic to G/K×T for
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some K ∈ M (G) and a connected closed orientable 2-dimensional manifold
T with the trivial G-action, or to G/Kj for some Kj ∈ K .

(6) NZ = M qN1 q · · · qNs with G-diffeomorphisms fi : Ni → G/Kj(i) ×M

for some Kj(i) ∈ K , i = 1, . . . , s.
(7) Iso(G,Z r (NZ ∪QZ)) = P(G).
(8) T (ZL rQZ) ∼= ηL

Z |ZLrQZ
for all Dress subgroups L = G{q}.

(9) ηZ |M ∼= T (M)⊕ νM ⊕ εM (R[G]⊕ dim Z
L ).

(10) For each Ni above, ηZ |Ni
∼= f∗i (G/Kj(i)×(T (M)⊕νM ))⊕εNi

(R[G]⊕ dim Z
L ).

(11) ηZ |QZ
∼= εQZ

(U ⊕ νM |x0 ⊕R[G]⊕ dim Z
L ).

(12) For each P ∈ P(G), π1(ZP ) is a finite abelian group of order prime to |P |.
(13) dimZ = max(dim M, 2) + pow(G) + 2.

The third step is constructing a G-manifold D diffeomophic to a disk by
equivariantly thickening Z with respect to ηZ .

Lemma 4.3. Let G be an Oliver group, M a compact G-manifold with x0 ∈
MG, ξM = τM ⊕ νM a real G-vector bundle over M , and U a real G-module
satisfying Conditions (i)–(iv) in Lemma 4.2. Let Z, NZ = M q N1 q · · · q Ns,
and QZ ⊃ R be the G-CW complexes described in Lemma 4.2. Then there exists
a disk D with a smooth G-action having the following properties.

(1) DG = MG.
(2) D ⊃ NZ∪(Q(0)

Z ×D(U)), where Q
(0)
Z is the union of 0-dimensional connected

components of QZ .
(3) DL = NL

Z ∪ (Q(0)
Z ×D(U))L for all Dress subgroups L = G{q}.

(4) T (D)|M = T (M)⊕ νM ⊕ εM (R[G]⊕(dim Z+1)
L ).

(5) For each P ∈ P(G), π1(DP ) is a finite abelian group of order prime to |P |
and the inclusion induced map j# : π1(∂DP ) → π1(DP ) is an isomorphism.

Let (V1, V2) be a P(G)-matched pair of real G-modules, y1 = 0 ∈ V1, and
y2 = 0 ∈ V2. Applying the lemma above to the case M = D(V1) q D(V2),
ξM = τM = T (M), νM = εM (0), and U = V1, we immediately obtain the next
corollary.

Corollary 4.4. Let G be an Oliver group and (V1, V2) be a P(G)-matched
pair of real G-modules such that V G

1 = 0 and V G
2 = 0. Then there exists a disk

D(V1, V2) with a smooth G-action such that

(1) D(V1, V2) ⊃ D(V1)qD(V2),
(2) D(V1, V2)G = {y1, y2}, and
(3) T (D(V1, V2))|D(V1)qD(V2)

∼= (εD(V1)(V1) q εD(V2)(V2)) ⊕ εD(V1)qD(V2)

(R[G]⊕(d+1)
L ), where d = max(dim V1, 2) + pow(G) + 2.
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(4) For each P ∈ P(G), π1(D(V1, V2)P ) is a finite abelian group of order
prime to |P | and the inclusion induced map j# : π1(∂D(V1, V2)P ) →
π1(D(V1, V2)P ) is an isomorphism.

Let M be a closed G-manifold and D a G-manifold diffeomorphic to a disk
such that DG = MG. Let D′ denote the m-fold cartesian product D×m of D,
where m is a positive integer. The fourth step is constructing a G-manifold D′′

diffeomorphic to a disk such that D′′G = ∅ and ∂(D′′) = ∂(D′) by a deleting
theorem of G-fixed point sets. The union of D′ and D′′ glued along the boundary
is a homotopy sphere Σ having the property ΣG = M×mG.

Lemma 4.5. Let G be a gap Oliver group, V a gap G-module, and m a
positive integer. Let M be a closed G-manifold (hence, ∂M = ∅) with x0 ∈ MG,
ξM = τM⊕νM , and U a real G-module satisfying Conditions (i)–(iv) in Lemma 4.2.
Let D be a disk with a smooth G-action satisfying the following conditions.

( v ) D ⊃ M as a G-submanifold and DG = MG.
(vi) For each L = G{p}, DL rML is a closed subset of D.
(vii) T (D)|M = T (M)⊕ νM ⊕ εM (E), for an L (G)-free real G-module E.

Let W be an L (G)-free real G-module. Then for any integers a ≥ m dimD +
dimW + 3 and b ≥ 3, there exists a homotopy sphere Σ with a smooth G-action
having the following properties.

(1) Σ ⊃ M×m as a G-submanifold.
(2) ΣG = M×mG.
(3) T (Σ)|M×m = (T (M)⊕ νM ⊕ εM (E))×m ⊕ εM×m(W ⊕ V ⊕a ⊕R[G]⊕b

L ).

Using the lemma above, we construct an S-realization of an appropriately
given P(G)-matched pair (V1, V3).

Lemma 4.6. Let G be an Oliver group and V a gap real G-module. Set
K = Gnil. Let (U1, U2), (U3, U4) and (V1, V3) be P(G)-matched pairs of real G-
modules such that UN

1 = R and UN
3 = R for all N ∈ N2(G), UK

2 = 0 = UK
4 ,

V1 = (U1 − R)⊕m1 ⊕ W1, and V3 = (U3 − R)⊕m3 ⊕ W3, where m1 and m3 are
nonnegative integers and W1 and W3 are L (G)-free real G-modules. Then there
exist positive integers N1 and N2 such that for any integers a ≥ N1 and b ≥ N2,
one has a smooth G-action on a standard sphere S having the following properties.

(1) SG = {y1, y3}.
(2) Ty1(S) ∼= V1 ⊕ V ⊕a ⊕R[G]⊕b

L .
(3) Ty3(S) ∼= V3 ⊕ V ⊕a ⊕R[G]⊕b

L .
(4) dimSH ≥ 6 for all H ∈ M (G).
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In the special case where (U3, U4) = (U1, U2) and m3 = 0, we have the next
corollary.

Corollary 4.7. Let G be a gap Oliver group and V a gap real G-module.
Set K = Gnil. Let (U1, U2) and (V1, V3) be P(G)-matched pairs of real G-modules
such that UN

1 = R for all N ∈ N2(G), V1 = (U1 − R)⊕m1 ⊕ W1, UK
2 = 0,

and V3 and W1 are L (G)-free, where m1 is a nonnegative integer. Then there
exist positive integers N1 and N2 such that for arbitrary integers a ≥ N1 and
b ≥ N2, one has a smooth G-action on a standard sphere S satisfying the following
conditions.

(1) SG = {y1, y3}.
(2) Ty1(S) ∼= V1 ⊕ V ⊕a ⊕R[G]⊕b

L .
(3) Ty3(S) ∼= V3 ⊕ V ⊕a ⊕R[G]⊕b

L .
(4) dimSH ≥ 6 for all H ∈ M (G).

The corollary above implies the next result.

Theorem 4.8. Let G be a gap Oliver group and set K = Gnil. Let (U1, U2)
be a P(G)-matched pair of real G-modules such that UN

1 = R for any N ∈ N2(G)
and UK

2 = 0. Then for x = [U1]− [U2], the implication

(〈x− xG〉Z + RO(G)L (G)
)
P(G)

⊆ RO(G, DS)

holds.

We remark that the last implication formula also holds for x = 0 if G is a gap
Oliver group.

5. Known basic facts.

As was seen in the previous section, our proof of Theorem 4.8 is based on
certain knowledge of transformation group theory. For reader’s convenience, we
recall basic results on the real G-module V (G) = R[G]L , a bundle subtraction
lemma, an equivariant thickening theorem, and a deleting theorem of G-fixed point
sets.

Lemma 5.1. A real G-module V is L (G)-free if and only if V is isomorphic
to a submodule of R[G]⊕m

L for some integer m.

Proof. This immediately follows from the fact that an arbitrary irreducible
real G-module is isomorphic to a submodule of R[G]. ¤
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Lemma 5.2 ([15, Theorem 2.3]). Let G be a finite group not of prime power
order. Then the following properties hold.

(1) R[G]L
H 6= 0 if and only if H ∈ M (G).

(2) dimR[G]L
H ≥ |K : H|dimR[G]L

K if H ≤ K ∈ S (G).
(3) Let H, K ∈ M (G) with H ≤ K. Then dimR[G]L

H = 2dim R[G]L
K if

and only if |K : H| = 2, |KG{2} : HG{2}| = 2, and HG{p} = G for all odd
primes p.

Lemma 5.3 ([25, Proposition 1.9]). Let G be a finite group not of prime
power order and H ∈ M (G).

(1) If |G : H| = pa1
1 · · · pan

n , n ≥ 2, for distinct primes p1, . . . , pn, and
a1, . . . , an ≥ 1, then

dimR[G]L
H ≥ (pa1

1 − 1) · · · (pan
n − 1).

(2) If |G : H| is a power of a prime p then dimR[G]L
H ≥ p− 1, and further-

more, in the case p = 2, dimR[G]L
H

> 2.

Lemma 5.4 ([25, Proposition 2.3]). Let G be a finite group not of prime
power order. Then for each H ∈ M (G), any irreducible real H-module is isomor-
phic to a submodule of resG

HR[G]L .

Lemma 5.5 (Bundle Subtraction Lemma). Let G be a finite group, V a real
G-module, and W a real G-module such that for any H ∈ M (G), each irreducible
component of resG

HV is isomorphic to a submodule of resG
HW . Let (Z,X) be a

finite G-CW pair (Z ⊇ X) such that Iso(G,Z r X) ⊆ M (G) and let ` be an
integer such that ` ≥ dimZ. Let ηZ and ξX be real G-vector bundles over Z and
X, respectively, such that

( i ) ηZ |X = ξX ⊕ εX(V ⊕W⊕`), and
( ii ) ηZ |x ⊃ resG

Gx
V (as real Gx-modules) for all x ∈ Z.

Then there exist a G-subbundle θZ of ηZ and a complementary G-subbundle νZ to
θZ in ηZ , i.e. ηZ = θZ ⊕ νZ , satisfying the following properties.

(1) θZ
∼= εZ(V ).

(2) θZ |X = εX(V ).
(3) νZ |X = ξX ⊕ εX(W⊕`).

Proof. This follows from Proof of Theorem 2.2 in [25]. ¤
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Theorem 5.6 (Equivariant Thickening Theorem). Let G be a finite group.
Let X be a compact G-manifold, and νX a real G-vector bundle over X such that
νL

X = εXL(0) for all Dress subgroups L = G{p}. Let Z be a finite G-CW complex
such that X ⊂ Z and Iso(G,Z rX) ⊆ M (G), and ηZ a real G-vector bundle over
Z such that ηZ |X = T (X)⊕ νX ⊕ εX(W ) for an L (G)-free real G-module W . If
the dimension conditions

(a) dim ηZ |Hx > 2 dim ZH for all H ∈ M (G) and x ∈ ZH ,
(b) dim ηZ |Hx − dim ηZ |>H

x > dimZH for all H ∈ M (G) and x ∈ ZH , and
(c) dim ηZ |Px > dimZP + 2 for all P ∈ P(G) and x ∈ ZP

are satisfied, then there exist a compact G-manifold N ⊃ X and a strong G-
deformation retraction f : N → Z having the following properties.

(1) N contains Z as a G-subcomplex.
(2) N contains X as a G-submanifold.
(3) Iso(G,N rX) = M (G).
(4) T (N) ∼= f∗ηZ (hence, T (N)|Z ∼= ηZ and T (N)|X ∼= T (X)⊕ νX ⊕ εX(W )).
(5) π0(∂NP ) = π0(NP ) and π1(∂NP , x) = π1(NP , x) for all P ∈ P(G) and

x ∈ ∂NP .

Proof. See Proof of Theorem 3.1 in [25]. ¤

Theorem 5.7 (Deleting Theorem). Let G be an Oliver group and Y a
smooth G-manifold diffeomorphic to a disk with exactly s G-fixed points y1, . . . , ys,
where s ≥ 1. Suppose the following conditions.

(1) dimY P > 2(dimY H + 1) for any P ∈ P(G), H ∈ S (G) with P ( H.
(2) dimY =H ≥ 3 for any H ∈ PC (G), where Y =H denotes the set of all points

y in Y with Gy = H.
(3) dimY P ≥ 5 for any P ∈ P(G).
(4) π1(Y P ) is a finite group of order prime to |P | for each P ∈ P(G).
(5) The inclusion induced map π1(∂Y P ) → π1(Y P ) is an isomorphism for each

P ∈ P(G).
(6) The connected component Y L

i of Y L containing yi is a closed manifold for
each L ∈ L (G) and each i with 1 ≤ i ≤ s.

Then there exists a smooth G-manifold X diffeomorphic to the disk such that
XG = ∅ and ∂X is G-diffeomorphic to ∂Y .

Proof. This follows from Theorem 1.3 of [23]. ¤
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6. Proof of Lemma 4.1.

For a finite G-CW complex X, define χ(X) to be the number χ(X)−1, where
χ(X) is the Euler characteristic of X. If H is a subgroup of G then χH(X) and
χH(X) denote the numbers χ(XH) and χ(XH)−1, respectively. Let Ω(G) denote
the Burnside ring, cf. [8], [21]. Each element x ∈ Ω(G) has the form [X1] − [X2]
with finite G-CW complexes (or finite G-sets) X1 and X2. For each subgroup H

of G, we define the homomorphism χH : Ω(G) → Z using the Euler characteristic:
χH(x) = χ(XH

1 )−χ(XH
2 ). By definition, [X1]− [X2] = [Y1]− [Y2] holds if and only

if χH(X1)−χH(X2) = χH(Y1)−χH(Y2) for all subgroups H of G. By Theorem 1.3
of [15], we have the next lemma.

Lemma 6.1. If G is a finite group, then there exists an element β ∈ Ω(G)
such that χG(β) = 0 and χH(β) = 1 whenever H ∈ M (G).

Let G be an Oliver group and let β =
∑c

i=1 bi[G/Ki] be an element given
in Lemma 6.1. Then take an element (−β)% =

∑c
i=1 b′i[G/Ki] in Ω(G) such that

b′i ≥ 0 and

b′i ≡ −bi mod 2|G||K̃0(Z[G])|.

For finite G-CW complexes X and Y with reference points x0 and y0, respec-
tively, having a same isotropy subgroup H, let X ∨G/H Y denote the equivari-
ant wedge sum, namely the union of X and Y identified gx0 with gy0 for each
g ∈ G. If X has the reference point x0 of isotropy subgroup H then we regard
(eH, x0) as the reference point of the G-space G/H × X with the diagonal G-
action. Then the isotropy subgroup of (eH, x0) is H. Take the equivariant wedge
sum X ∨G/H (G/H ×X) and denote this space by ([G/G] + [G/H]) ◦X for the
sake of convenience. It holds that

χH(X ∨G/K ((G/K)×X)) = χH(X) + |(G/K)H |χH(X).

If X ⊃ R (=
∐c

i=1 G/Ki), the set of reference points, then we denote by ([G/G] +
(−β)%) ◦X the space obtained by iterating wedge sum operation on X associated
with (−β)%. Then we have

χH

(
([G/G] + (−β)%) ◦X

)
=

(
1 + χH((−β)%)

)
χH(X)

≡ (
1− χH(β)

)
χH(X) mod 2|G|.

If H ∈ S (G) then (G/K ×X)H = (G/K)H ×XH , and hence if (H) > (K) then
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(G/K ×X)H = ∅.
Let M be a compact G-manifold. Set

Y0 =
(
[G/G] + (−β)%

) ◦ (M qR).

Let QY0 denote the subset of Y0 obtained as ([G/G] + (−β)%) ◦ R. Let NY0 =
Y0 rQY0 . If i is the smallest integer such that Ki ∈ M (G) and χKi

(Y0) 6= 0 then
χKi

(Y0) is divisible by 2|G|, and hence by 2|NG(Ki)/Ki|. Thus there exists a finite
G-CW complex Y1 such that Y1 = Y0 q (G/Ki × T ) q · · · q (G/Ki × T ) for some
connected closed orientable 2-dimensional manifold T (with the trivial G-action)
and χKi

(Y1) = 0. We set QY1 = QY0 q (Y1 r Y0) and NY1 = NY0 . Performing
subsequently this procedure, we obtain a finite G-CW complex Y2 = NY2 q QY2

satisfying the following conditions.

(1) Y G
2 = MG.

(2) χH(Y2) = 0 for all H ∈ M (G).
(3) QY2 ⊃ R.
(4) Each G-connected component of QY2 is G-diffeomorphic to G/K × T for

some K ∈ M (G) and a connected closed orientable 2-dimensional manifold
T with the trivial G-action, or to G/Kj for some Kj ∈ K .

(5) NY2 = M qN1q· · ·qN` such that for each i, Ni
∼=G G/Kj(i)×M for some

j(i).

By the same argument as in [28] (alternatively [30]), we can obtain a finite
G-CW complex Y3 containing Y2 such that Iso(G,Y3 r Y2) ⊆ P(G), and Y P

3

is simply connected as well as Zp-acyclic for every P ∈ P(G) with P 6= {e},
where p is the prime dividing |P |. We can also obtain a finite G-CW complex Y4

containing Y3 such that Y4 r Y3 consists of free cells, namely the isotropy type is
{e}, Y4 is 1-connected, dim Y4 ≥ 2, and Hi(Y4, {x0};Z) = 0 for all i < dimY4.
Set n = dimY4. Then by Nakayama’s theorem, Hn(Y4;Z) is a projective module
over Z[G]. For Y5 = ([G/G] + (−β)%) ◦ Y4, Hn(Y5;Z) is a stably free module
over Z[G]. Hence by attaching free cells of dimension n and n + 1 to Y5, we can
obtain a finite contractible G-CW complex Y . Set QY = ([G/G] + (−β)%) ◦QY2 .
Define NY to be the G-manifold contained in Y5 which is generated by NY2 via
the wedge sum operation on Y4 associated with [G/G] + (−β)%. Then these Y ,
NY , QY satisfy the desired conditions.

7. Proof of Lemma 4.2.

Let G, M , ξM = τM ⊕ νM , x0 ∈ MG be as in Lemma 4.2. Clearly, we
have ξM |x0 = τM |x0 ⊕ νM |x0 . Let Y , R =

∐c
i=1 G/Ki, QY and NY be as in
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Lemma 4.1. For each Ni, 1 ≤ i ≤ s, define a real G-vector bundle ξNi
by ξNi

=
G/K × ξM using K such that Ni

∼= G/K × M . Set ξNY
= ξM ∪ ⋃s

i=1 ξNi
,

ξQY
= εQY

(U ⊕Rk ⊕ νM |x0), and X = NY ∪QY . Then the real G-vector bundle
ξX = ξNY

∪ ξQY
over X has the following properties.

(a) ξX has the form ξ′X ⊕ εX(Rk).
(b) resG

P ξX = 0 in K̃OP (X) for all P ∈ P(G).
(c) χ(XH) = χ(Y H) for all H ∈ S (G).
(d) χ(XH) = χ(Y H) = 1 for all H ∈ M (G).

Let BGO and B∗
GO be the G-spaces and LG : BGO → B∗

GO be the G-map
defined in [27]. Let fX : X → BGO denote the classifying map of ξX . Then
gX = LG ◦ fX is G-homotopic to a constant map. Thus gX extends to a G-map
gY : Y → B∗

GO which is G-homotopic to a constant map.
We wish to lift gY to a G-map Y → BGO, although it is impossible in general.

Hence we need some modification. Observe the G-homotopically commutative
diagram

X
fX //

ϕX

²²

BGO

LG

²²
Y gY

// B∗
GO.

Diagram (D1)

By Proposition 2.3 of [27], Diagram (D1) extends to a G-homotopically commu-
tative diagram

Z
fZ //

ϕZ

²²

BBO

LG

²²
Y gY

// B∗
GO,

Diagram (D2)

where Z is a finite contractible G-CW complex containing X with Iso(G,ZrX) ⊆
P(G), and fZ and ϕZ are extensions of fX and ϕX , respectively. Furthermore,
we can obtain Z so that π1(ZP ) is a finite abelian group of order prime to |P | for
each P ∈ P(G). This fact follows from that π1(Y P ) is trivial and Ker(π1(βα1))
appearing in Proof, Finite Case of [27, Lemma 2.2] is finite abelian of order prime
to p (see Proof, Finite Case, Step 1 of [27, Proposition 2.3], too). Here we can
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choose Z so that dim Z = dim Y + 1. Define NZ and QZ by NZ = NY and
QZ = QY .

Let ωZ be a real G-vector bundle over Z associated with fZ . By Lemma 5.1,
each L (G)-free irreducible real G-module is isomorphic to a submodule of R[G]L .
We can take ωZ so that

ωZ |X = ξX ⊕ εX

(
V ⊕R[G]⊕`

L

)

for some real G-module V and some integer `. Here we may suppose ` ≥ dimZ.
Since Iso(G,Z rX) ⊆ P(G) and ZP is connected for every P ∈ P(G), we see

ωZ |x ⊇ resG
Gx

(
Rk ⊕ V ⊕R[G]⊕(`−dim Z)

L

)

for all x ∈ Z. By Bundle Subtraction Lemma (Lemma 5.5), there exists an actual
G-subbundle θZ of ωZ such that θZ

∼= εZ(Rk ⊕ V ⊕R[G]⊕(`−dim Z)
L ) and

ηZ |X ∼= ξ′X ⊕ εX

(
R[G]⊕ dim Z

L

)
, (7.1)

where ηZ is the complementary bundle of θZ in ωZ , i.e. ωZ = θZ ⊕ ηZ , These Z,
NZ , QZ and ηZ are desired ones in Lemma 4.2.

8. Proofs of Lemmas 4.3 and 4.5.

Let G be an Oliver group, M a compact G-manifold with x0 ∈ MG, ξM =
τM ⊕νM a real G-vector bundle over M , and U a real G-module satisfying (i)–(iv)
in Lemma 4.2. Let Z, NZ = M qN1 q · · · qNs, QZ ⊃ R and ηZ be those stated
in Lemma 4.2. Set

η′Z = ηZ ⊕ εZ(R[G]L ).

Using Lemmas 5.2 and 5.3, we can check that η′Z satisfies the dimension condition
(a)–(c) in Theorem 5.6 for ηZ replaced by η′Z .

Proof of Lemma 4.3. Set X = NZ q (Q(0)
Z ×D(U)). Note that X equiv-

ariantly simply collapses to NZ q Q
(0)
Z . In addition, ηZ |L

NZ∪Q
(0)
Z

= T (NL
Z ) q

T ((Q(0)
Z )L × D(U)L)|

(Q
(0)
Z )L for all Dress subgroups L = G{p}. Now use Equiv-

ariant Thickening Theorem (Theorem 5.6) for the initial manifold X and the
real G-vector bundle η′Z over Z, instead of ηZ , and obtain a disk D as stated in
Lemma 4.3. ¤
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Proof of Lemma 4.5. Let D be the disk with a G-action, V the gap G-
module, E and W the real G-modules, and a and b integers stated in Lemma 4.5.
Then the disk D1 = D×m ×D(W ⊕ V ⊕a) satisfies the strong gap condition

dimDP
1 > 2

(
dimDH

1 + 1
)

for all P ∈ P(G), H ∈ S (G) with P ( H. Thus D2 = D×m × D(W ⊕ V ⊕a ⊕
R[G]⊕b

L ) satisfies the following conditions:

(1) dimDH
2 ≥ 6 for all H ∈ M (G).

(2) dimDP
2 > 2(dimDH

2 + 1) for all P ∈ P(G), H ∈ S (G) with P ( H.
(3) D2 ⊇ M×m ⊃ M×mG 3 x1 = (x0, . . . , x0).
(4) T (D2)|M×m

∼= (T (M)⊕ νM ⊕ εM (E))×m ⊕ εM×m(W ⊕ V ⊕a ⊕R[G]⊕b
L ).

Now we are ready to use Deleting Theorem (Theorem 5.7). We can use D2 as Y of
Deleting Theorem to obtain a smooth G-action on a disk D3 such that DG

3 = ∅ and
∂D3 = ∂D2. The union Σ = D2 ∪∂ D3 glued along the boundary is a homotopy
sphere. ¤

We close this section with the next proposition.

Proposition 8.1. The homotopy sphere Σ above can be converted to the
standard sphere having the desired properties in Lemma 4.5.

Proof. Let Σ be as above. Note for each Sylow subgroup P of G with
|P | = qa > 1, the set Σ=P is a connected open dense subset of the Zq-homology
sphere ΣP of dimension ≥ 6. By [16, Proposition 2.1], taking an equivariant
connected sum of copies of Σ, we obtain a smooth G-action on the sphere S such
that dimS = dim Σ, SG = ΣG, and the normal bundle ν(SG, S) is G-isomorphic to
the normal bundle ν(ΣG,Σ). This S satisfies the properties required in Lemma 4.5
in place of Σ. ¤

9. Proof of Lemma 4.6.

Let G be an Oliver group with a gap G-module V . Let (U1, U2), (U3, U4) and
(V1, V3) be the real P(G)-matched pairs described in Lemma 4.6. We note that
the dimension of each of these G-modules is greater than or equal to 3.

For each i = 1, 3, let Mi = P (UK
i ), τMi

= γMi
⊗ UK

i , νMi
= (γMi

⊗ UiK) ⊕
(γ⊥Mi

⊗ Ui+1), where γMi ⊕ γ⊥Mi
= εMi(U

K
i ), and ξMi = τMi ⊕ νMi . Since Ui+1 is

L (G)-free, we have R[G]⊕ni

L = (UK
i G ⊗Ui+1)⊕Ai+1 for some positive integer ni

and an L (G)-free real G-module Ai+1. By Lemma 3.2, T (Mi) ⊕ εMi
(R) ∼= τMi

.
Using these data, we obtain a finite contractible G-CW complex Zi (⊃ Mi) such
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that dimZi = di + pow(G) + 2 with di = dimUi, and a real G-vector bundle ηZi

described in Lemma 4.2. Apply Lemma 4.3 for these Zi, ηZi
and U = UK

i G to
obtain a disk Di (⊃ Mi) with a G-action having Properties (1)–(5) in Lemma 4.3.
In particular,

T (Di)|Mi
= T (Mi)⊕ (γMi

⊗ UiK)⊕ (γ⊥Mi
⊗ Ui+1)⊕ εMi

(Ei),

where

Ei = R[G]⊕(di+pow(G)+3)
L .

Apply Lemma 4.5 for the disk Di and the integer mi to obtain a homotopy sphere
Σi (⊃ M×mi

i ) with a G-action stated in Lemma 4.5 such that

T (Σi)|M×mi
i

=
(
T (Mi)⊕ (γMi

⊗ UiK)⊕ (γ⊥Mi
⊗ Ui+1)⊕ εMi

(Ei)
)×mi

⊕ ε
M
×mi
i

(
A⊕mi

i+1 ⊕Wi ⊕ V ⊕ai ⊕R[G]⊕bi

L

)
,

where ai ≥ mi(di−1+nir)+mir(di+pow(G)+3)+dimWi+3 with r = dim R[G]L
and bi ≥ 3 can be arbitrarily chosen. Let xi (i = 1, 3) be the unique G-fixed point
of Σi. Then we have

Txi
(Σi) ∼= Vi ⊕ E⊕mi

i ⊕ V ⊕ai ⊕R[G]⊕(mini+bi)
L .

Thus there exist positive integers N1 and N2 such that for arbitrary a ≥ N1,
b ≥ N2, we have one-fixed-point G-actions on spheres Σ1 and Σ3 such that

Txi(Σi) ∼= Vi ⊕ V ⊕a ⊕R[G]⊕b
L .

Let M ′
1 = D(V1), M ′

3 = D(V3), M ′ = M ′
1 q M ′

3, τM ′
1

= εM ′
1
(V1), τM ′

3
=

εM ′
3
(V3), τM ′ = τM ′

1
q τM ′

3
, νM ′ = εM ′(0), and ξM ′ = τM ′ . Then there exists a

G-action on a disk D(V1, V3) described in Corollary 4.4. Let y1 and y3 denote
origins in V1 and V3, respectively. The G-fixed points of D(V1, V3) are y1 and y3.
It holds that

T (D(V1, V3))|M ′
1qM ′

3
∼= (εM ′

1
(V1)q εM ′

3
(V3))⊕ εM ′

1qM ′
3

(
R[G]⊕(d+1)

L

)

with d = max(dim V1, 2) + pow(G) + 2.
We may assume N2 ≥ d + 1. Then let
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∆ = D(V1, V3)×D
(
V ⊕a ⊕R[G]⊕(b−d−1)

L

)

and take the double Σ5 = ∆ ∪∂ ∆′ (a sphere) of ∆, where ∆′ is a copy of ∆.
Obviously, we have ΣG

5 = {y1, y3, y
′
1, y

′
3}, Ty1(Σ5) ∼= Ty′1(Σ5) ∼= Tx1(Σ1), Ty3(Σ5) ∼=

Ty′3(Σ5) ∼= Tx3(Σ3). Thus we can construct the G-connected sum Σ of Σ5 with the
spheres Σ1 and Σ3 at the point data (y′1, x1) and (y′3, x3). Then ΣG = {y1, y3}.
By [16, Proposition 1.3], the homotopy sphere Σ can be modified to a G-manifold
diffeomorphic to the standard sphere, without changing the local data around y1

and y3. The sphere S has the desired properties.

10. Proofs of Theorems 1.3 and 1.5.

Now we are ready to prove our main theorem.

Proof of Theorem 1.3. Let G be a finite group satisfying the hypotheses
in Theorem 1.3. Set N = Gnil. Since |G/N | is odd, R[G]L is a gap G-module.
For N has a subquotient group isomorphic to D2qr, there exists a P(N)-matched
pair (W1,W2) of type 1 consisting of real N -modules. Let U1 = indG

NW1 and
U2 = indG

NW2. Then (U1, U2) is a P(G)-matched pair of type 1, UN
1 = R[G/N ],

and UN
2 = 0. By Lemma 2.4, there exists a P(G)-matched pair (M1,M2) such

that [MN
1 ]− [MN

2 ] = m[R[G/N ]]−m|G/N |[R] for some positive integer m. Then

(
[MN

1 ]− [MN
2 ]

)
+ (m|G/N | −m)

(
[UN

1 ]− [UN
2 ]

)

= m[R[G/N ]]−m|G/N |[R] + (m|G/N | −m)[R[G/N ]]

= m|G/N |([R[G/N ]]− [R])

= m|G/N |[R[G/N ]−R[G/N ]G].

Thus there exists a P(G)-matched pair (V1, V2) such that V N
1 = (R[G/N ] −

R[G/N ]G)⊕n and V N
2 = 0, where n is a positive integer. Set x = [V1] − [V2].

Replacing (V1, V2) if necessary, we may suppose that if y ∈ RO(G){G}P(G) satisfies
ky = x for an integer k then k = 1 or −1. Namely the element x is a basis element
of RO(G){G}P(G). By Theorem 4.8, we have 〈x〉Z ⊆ RO(G, DS). If additionally

aG = 2, then RO(G){G}P(G) = 〈x〉Z . Since RO(G, DS) ⊆ RO(G){G}P(G), we conclude

RO(G, DS) = RO(G){G}P(G). ¤

Remark 10.1. By a little further work, we can see the following. Let G be
a gap Oliver group containing a subgroup K with the following properties. Set
N = Knil.
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(1) K is an Oliver group
(2) N has a subquotient group isomorphic to a dihedral group D2qr of order

2pq with distinct primes q and r.
(3) K/N is a nontrivial group of odd order.
(4) K rN contains an element not of prime power order, i.e. |P(K rN)| > 0.
(5) |P(gN)| = |P(g′N)| for all g, g′ ∈ K rN .

Then RO(G, DS) contains an element x = [V ]−[W ] such that dimV N 6= dim WN ,
and hence RO(G, DS) 6= 0.

Proof of Theorem 1.5. Let x be an element in RO(G)L (G)
P(G). We have a

P(G)-matched pair (V1, V2) such that x = [V1]−[V2] and V1 and V2 are L (G)-free.
By hypothesis, G has a gap real G-module V . By Lemma 5.4, any irreducible real
H-module, where H ∈ M (G), is isomorphic to a submodule of resG

HR[G]L . By
[35, Theorem 4.1] or Corollary 4.4, V1⊕ (V ⊕R[G]L )⊕h and V2⊕ (V ⊕R[G]L )⊕h

are D-related whenever h is sufficiently large. Moreover, by [35, Theorem 4.3],
the real G-modules V1 ⊕ (V ⊕R[G]L )⊕k and V2 ⊕ (V ⊕R[G]L )⊕k are S-related
whenever k is sufficiently large. Thus the real G-modules V1 ⊕ (V ⊕ R[G]L )⊕`

and V2 ⊕ (V ⊕R[G]L )⊕` are DS-related whenever ` is sufficiently large.
If Gnil contains distinct two real conjugacy classes of elements not of prime

power order, then by Lemma 2.1 we have the nontriviality RO(G)L (G)
P(G) 6= 0. ¤
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