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Abstract. A classical problem in finite group theory dating back to
Jordan, Klein, E. H. Moore, Dickson, Blichfeldt etc. is to determine all finite
subgroups in SL(n, C) up to conjugation for some small values of n. This question
is important in group theory as well as in the study of quotient singularities. Some
results of Blichfeldt when n = 3,4 were generalized to the case of finite primitive
subgroups of SL(5, C) and SL(7, C) by Brauer and Wales. The purpose of this
article is to consider the following case. Let p be any odd prime number and G be a
finite primitive subgroup of SL(p, C) containing a non-trivial monomial normal
subgroup H so that H has a non-scalar diagonal matrix. We will classify all these
groups G up to conjugation in SL(p, C) by exhibiting the generators of G and
representing G as some group extensions. In particular, see the Appendix for a list
of these subgroups when p =5 or 7.

1. Introduction.

There is no question that the most renowned problem in the finite group
theory is the classification of finite simple groups. Another classification problem
dating back to Jordan, Klein, E. H. Moore, Dickson, Blichfeldt etc. is the
determination of all finite subgroups in SL(n, C) up to conjugation for some small
values of n [Fel, Section 6], [Brl], [Br2, pp.32-33|, [Wal], [Li], [Si], [Zh2]. The
latter problem was initiated by Camille Jordan (1838-1922) in an attempt to
classify differential equations of the Fuchsian class with algebraic solutions. More
precisely, a linear homogeneous differential equation of order n, whose coefficients
are meromorphic functions on the complex plane, is called an equation of the
Fuchsian class if it has only regular singularities [Po, p.76], [Gr, Chapter 2], a
solution of such a differential equation is an algebraic solution if it is locally a
branch of some algebraic function [Gr, p.48]. Besides solving these equations,
Fuchs tried to characterize those equations with algebraic solutions [Gr, p.48],
[Po, Chapters IV and V]. Jordan discovered a group-theoretic answer to this
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question: An n-th order differential equation of the Fuchsian class has algebraic
solutions if and only if its monodromy group is a finite subgroup of SL(n, C) [Jo],
[Gr, Chapter 3|, [Po, pp.45-46]. Hence it fell on the shoulders of group theorists
to list all finite subgroups of SL(n, C), at least when n is small.

It was solved by Jordan and Klein to classify all finite subgroups in SL(n, C)
up to conjugation in the case n =2 [Suz, p.404] and by Blichfeldt in the case
n = 3,4 [Bl], [F11], [F12], [HG]. Richard Brauer was absolutely fascinated by this
problem, as remarked by Feit [Fe2, p.13], that “for a long time Brauer had been
intrigued by the work of H. F. Blichfeldt [Bl]” (see Ron Solomon’s comment also
[So, p.733]). In recent years this program attracts curiosity of people working on
symbolic algebraic computation also.

This question is important not only in the study of pure group theory, but
also for the understanding of quotient singularities [MM], [KW], [YY]. Let X be
a complex smooth manifold and wy be its canonical bundle. Supposing that
I'X,w%) #0, Kodaira defines the n-th pluricanonical map ¢, :X —
P(I'(X,w%)"). The manifold X is of general type if ¢, is a birational map when
n is large enough. Since ¢,,(X) is canonically sitting inside the complex projective
space, it is this birational model of X that is studied most of the time [MS]. The
singularities which occur in ¢, (X) are called canonical singularities. If dim X = 1,
the pluricanonical models are always smooth. If dim X =2, the canonical
singularities are isolated quotient singularities C?/G where G is some finite
subgroup of SL(2, C). These points are called rational double points and can be
represented locally by hypersurfaces in C® through the explicit A-D-E equations:

A+ + 2 =0, k> 1,
Dp:a® +f2+ 21 =0, k>4,
Eg: 22+ +72' =0,
Er:2 4+ 9y +y2* =0,
Ey:2*+°+ 2 =0.

The theory of quotient singularities in higher dimensions has received a lot of
attention. Let T' be a finite subgroup of GL(n, C) and Yy = C"/T. An element
g €T is called a pseudo-reflection if rank(g—I)=1. A classical theorem of
Shephard-Todd-Chevalley asserts that Yr is smooth if and only if I" is generated
by pseudo-reflections [ST], [Ch], [Co]. In general, let Ty be the subgroup of T
generated by pseudo-reflection elements in I', and define [ = I'/Ty. Then it is clear
that Yr = Yp[)/f; moreover, the group T is a small subgroup, i.e. it has no pseudo-
reflection element.
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The dualizing sheaf wy; of a quotient singularity Yt is studied by Watanabe:
If T is a small subgroup of GL(n, C), then Yi is Gorenstein if and only if T' C
SL(n, C) [Wat]. In this situation, i.e. I' C GL(n, C) is a small subgroup, Prill
shows that the singular locus of Yr is equal to S/T where S = {z € C": g(z) =
xfor someg € T'\ {I}} [Pr]. As a corollary, if T is a small cyclic group of order N,
then Yr has an isolated singularity if and only if all the eigenvalues of a generator
of T" consist of primitive n-th roots of unity. If n > 3, Schlessinger shows that an
isolated singularity of C"/I is rigid, and therefore it can never be a hypersurface
singularity [Sc]. On the other hand, Kac and Watanabe show that a quotient
singularity is not isolated if n > 3 [KW]. In short, it is crucial to know what finite
subgroups of SL(n,C) and GL(n,C) look like in the study of quotient
singularities. For other applications, see [Ro], [BKR], [GM] and the references
therein.

Now let’s return to the classification of subgroups in SL(n, C) for small values
of n. In his approach [Bl], Blichfeldt considered the reducible and irreducible
finite subgroups in SL(3, C) (resp. SL(4, C)) separately. For the irreducible
groups, he considered the primitive groups and imprimitive groups (see Definition
1.1). There are three classes of finite primitive groups: (i) those groups in which all
the proper normal subgroups are reducible; (ii) those groups with an irreducible
imprimitive normal subgroup; (iii) those groups with an irreducible primitive
normal subgroup. We may find finite subgroups in GL(n, C) through our
knowledge for finite subgroups in SL(n, C) by the method of A. M. Cohen in [Co,
(3.1), p.392]. Since SL(n,C) contains no pseudo-reflections, the quotient
singularities associated with finite subgroups of SL(n, C) are always Gorenstein
by Watanabe’s Theorem [Wat].

Many techniques and results of Blichfeldt may be generalized to linear groups
of degree > 5 [Brl], [Wal], [Waz2], [Wa3], [BZ]. In fact, it is possible to get
concrete information for linear groups of prime degree [Li], [Si], [Su], [DZ1],
[DZ2], [TZ], [Zh1]. The purpose of this article is to find, by listing a set of
generators, all the finite primitive subgroups G in SL(p, C) with p an odd prime
number such that G contains a monomial normal subgroup H so that H has a non-
scalar diagonal matrix. Note that a (qualitative) description of these groups were
already known and can be found in [Si], [DZ1]; we will emphasize that our goal is
an explicit exhibition of these groups in terms of generators.

Before stating our main results, we will clarify some notions first. Through-
out this paper, p denotes an odd prime number. Two finite subgroups G and G5 in
SL(p, C) are called equivalent, if there exists some g€ SL(p, C) such that
Gy = gG1g~'. A general program initiated by Jordan, Klein and Blichfeldt is to
find a complete list of all the non-equivalent finite subgroups in SL(n, C) by
exhibiting their generators, when n is a small positive integer.
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DEFINITION 1.1.  Given SL(n, C), take xg,x1,...,2Z,—1 to be the standard
basis and denote V = Dp<i<—1C - x; so that we get an isomorphism between
SL(n, C) and SL(V) via this basis g, ..., ;1.

A finite subgroup G C SL(n, C) is called imprimitive if G is irreducible and
there exists a decomposition V=V, @ --- @V, of V into a direct sum of proper
subspaces V; #0, 1 <14 <r such that the action of any g € G on V induces a
permutation on the set {V; |1 <i <r}.

A finite subgroup G C SL(n, C) is called primitive if G is irreducible and is
not imprimitive.

If we choose a fixed basis for V, we will call an imprimitive subgroup of
GL(n, C) a monomial group if all the imprimitivity subspaces are one-dimen-
sional. Specifically a monomial group G C SL(n, C) is irreducible and consists of
matrices, where each row (resp. column) has only one non-zero entry (remember
that we choose the standard basis xg,x1,...,T,_1 to be the basis for presenting
matrices of SL(n, C)).

In order to have a better perspective of the question we investigate in this
paper, we will review some previously known results.

THEOREM 1.2 (Blichfeldt [Bl, p.106], [YY, p.18]). Let G be a finite
primitive subgroup in SL(3, C) such that G contains a monomial normal subgroup.
Then G is equivalent to one of the following three groups,

(i) G is a group of order 108 generated by

1 0 0 1 1 1 1
1
S = w , T = 1 0 O R V=—— 1 w (UQ
v—=3
Ww? 01 0 1 W w

where w is a primitive cubic root of unity;
(ii) Gy is a group of order 216 generated by Gy and

2

V=75

)

£ = =

1 w
w 1
1 1

(iii) G3 is a group of order 648 generated by G1 and



Some primitive linear groups of prime degree 1017

£

Ew

where £ is a primitive 9-th root of unity satisfying & = w?.

THEOREM 1.3.  Let G be a finite primitive subgroup in SL(p, C) containing a
non-trivial monomial normal subgroup.

(1) (Brauer [Brl, (9A)]) If p =5, then G is equivalent to either (i) Go, a
uniquely determined group of order 5%-24 whose Sylow 5-subgroups are not
abelian, and which contains a normal subgroup D of order 5° and exponent 5, or
(ii) a certain subgroup of Gy in (i) with D as its Sylow 5-subgroup.

(2) (Wales [Wa2, Theorem 4.1]) If p = 7, then G is equivalent to either (i) Gy,
a uniquely determined group of order T*-48 whose Sylow T-subgroups are not
abelian, and which contains a normal subgroup D of order 7> and exponent T
satisfying Go/D ~ SL(2, F7); or (ii) a certain subgroup of Gy in (i) with D as its
Sylow T-subgroup.

THEOREM 1.4 (Dixon and Zalesski [DZ1, Lemma 1.1]). Let G be a finite
primitive subgroup of SL(p, C) and Z be its center. Let S be the socle of G/ Z. If S

is an elementary abelian p-group of order p?, then G/ Z is isomorphic to a subgroup
of SL(p, C) which is a split extension of S by SL(2, F,).

In the above theorem, the extension of S by SL(2, F,) was explained in [DZ1,
p.126, the fourth paragraph]; see [Si, Theorem 1] also. For applications to
problems in geometry, the goal of this article is to provide a more explicit
description of the group G beyond the qualitative information (see Theorems 2.5,
2.6, 2.7, Summary and Example 8.14 at the end of Section 8). In particular, see
the appendix for a list of generators of these subgroups (there are precisely six
non-equivalent such groups if p =5, and precisely eleven such groups if p = 7).
Our proof will not assume previous knowledge of results in [Si], [DZ1], [Su]. We
remark that, in Theorem 1.4 if the socle S is not an elementary abelian p-group of
order p?, then it is a non-abelian simple group and its structure is depicted in
[DZ1, Theorem 1.2] (see also the remark of Proposition 2.3).

In this article, we will denote by p an odd prime number. F), ~ Z, is the finite
field with p elements and (= e2V=1/p g a primitive p-th root of unity. .S,,
GL(n, F,) and PGL(n, F,) denote the symmetric group on n letters, the general
linear group and the projective linear group over F), respectively. We emphasize
that a monomial (or imprimitive) group in SL(p, C) is necessarily irreducible.
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2. Main results.

In Blichfeldt’s proof, the invariant triangles were crucial in determining the
group structure [Bl, p.105], [YY, p.18]. Unfortunately Blichfeldt talked about
them in passing without taking the trouble to provide a formal definition. Here is
a notion which will play the same role as invariant triangles in our case.

DEFINITION 2.1. Let I’ be a finite monomial subgroup of GL(n,C) and
U = @o<i<n-1C - z;, where zg,x1,...,2,—1 is the standard basis. A I'-polygon
A = {vp,v1,...,v,-1} is a set of n vectors in U satisfying (i) U = > ;.- C - vi,
and (ii) for any g € T', any 0 < ¢ <n—1, g-v; € Cv; for some j. Two I'-polygons
{vo,v1, .., vp—1} and {Agvg, \jv1, ..., A1}, Ay € C \ {0}, will be regarded as
the same I'-polygon.

From the definition, {xg, z1,...,z,_1} is a [-polygon. We will show that there
are only finitely many I'-polygons (see Lemma 3.1).

DEFINITION 2.2. Let zg,21,...,2,-1 be the standard basis. We will define
0,7, A € SL(p, C) by

O:XjF Tjq1,
s Jop .
Tz (o,

Ad :Tj— €Tq)

where d#0 (modp), 0<j<p-—1, and € € C\ {0} is adjusted to ensure
det(Ag) = 1. In particular, we require € =1 or —1.

The following Proposition, although it will not be used anywhere in this
paper, shows that our assumptions are equivalent to those of Dixon and Zalesski
in Theorem 1.4 [DZ1, Lemma 1.1]. Its proof relies on the validity of Lemmas 3.7
and 3.8 to be proved later; we include this Proposition and its proof here for the
convenience of the reader.

PROPOSITION 2.3.  Let G be a finite primitive subgroup in SL(p, C). Then
the followings are equivalent.

(1) G contains a monomial normal subgroup H so that H has a non-scalar
diagonal matrix.

(2) If S is the socle of G/Z with Z being the center of G, then S is an
elementary abelian group of order p*.

PROOF. (1)= (2) By Lemma 3.7 and Lemma 3.8 D is an extra-special
group of order p?, and D < G. Hence the socle of G/Z is not a non-abelian simple
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group. Apply [DZ1].

(2) = (1) From the proof of [DZ1, Lemma 1.1], there exists a normal
subgroup Sy in G such that Sy is an extra-special group of order p®. Hence S is
equivalent to a monomial group containing a non-scalar diagonal matrix. O

REMARK. In a previous version we even tried to prove that any one
statement in Proposition 2.3 is equivalent to a weaker condition that G contains a
non-trivial monomial normal subgroup H (such a subgroup is not contained in the
center of G, because H is irreducible by Definition 1.1), using [DZ1, Theorem 1.2]
and the classification of finite simple groups. We thank Zalesski for communicat-
ing one of us that the list in [DZ1, Theorem 1.2] missed some groups (e-mail to J.
Zhang, 28 Feb. 2007).

DEFINITION 2.4. Let zg,21,...,2,-1 be the standard basis. We will define
p+1sets A, Ag,..., A, as follows.

Ay = {x0,21,...,2p-1};

Ao = {up s, upt}, where uy = 3 oy for 0<j<p—1L
0</<p—1

A; ={vg,v1,...,0p-1}, where 1 <i<p—1and

vy = Z Ci(g)xl, v = O’j(Uo) = Z C(;)zZ-H

0<t<p—1 0<t<p—1
for1<j<p-1.

We will prove that they are all the D-polygons for some monomial group
D c SL(p, C).

The following Theorems 2.5-2.7 are the main tools of finding explicit
generators of all the primitive groups G C SL(p, C) with monomial normal
subgroups (containing a non-scalar diagonal matrix). In fact, use Theorems 2.6
and 2.7 first, and reduce the question to finding the conjugacy classes of some
subgroups in SL(2, F,), which will be explained more precisely in Lemma 7.2 and
Theorem 7.5. Then we may apply Theorem 2.5 to achieve our goal. A detailed
strategy of solving this question will be given in Section 8. A list of these groups
will be provided in the Appendix when p =5 or 7.

THEOREM 2.5. Let G' C SL(p, C) be a finite primitive subgroup such that G’
has a monomial normal subgroup H' containing a non-scalar diagonal matriz.
Then G’ is equivalent to a group G C SL(p, C) with the following properties.

(A) G contains the subgroup D = (o, T) as a normal subgroup.

(B) A, Ag, ..., Ap_y are all the D-polygons.
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(C) The group G acts on the set { A, Ao, ..., Ap_1} by g(A;) == {g(wo), g(wr),
., 9(wp1)} for any g € G, where i € {00,0,1,...,p—1} and A; = {w,wn, ...,
U@_l}.

(D) The group action of G in (C) induces a non-trivial group homomorphism
¢:G— PGL(2,F),) with Ker(¢) = (o,7) or (o,7,\—1) according to whether
Mp-1 &€ G or \_1 € G. Denote Hy = Ker(¢).

(E) For any g € G, if $(g) is known, then some element p may be described
explicitly, where g € p - Ker(¢). More explicitly, if g € G satisfies

(i) g: A = An, Ag = Ay, then there exist p € gHy and some integer k Z 0
(mod p) such that

P € Ty

for0<l<p-1,e€ C\{0}, and ¢(p) € PGL(2, F,) is the map x — k™ >z, where
z=0,1,2,...,p—1,00; or

(ii) g: Aso — An, Ao — A; for some 1 < i < p—1, then there exist p € gH,
and some integer k Z 0 (mod p) such that

pTe— CCi(g/)xke

for 0<t<p—1, ce C\{0}, and ¢(p) € PGL(2, F,) is the map z+— k™ 2x +1,
where x =0,1,...,p—1,00; or

(iii) g: Ao — Ay — Ay, then there exist p € gHy and some integer k# 0
(mod p) such that

"
p:xg—C E ¢z
0<l'<p—1

for 0<¢<p—1, ce C\{0}, and ¢(p) € PGL(2, F,) is the map z— —k*/x,
where x =0,1,...,p—1,00; or

(iv) g: A = Ag = A; for some 1 < i <p—1, then there exist p € gHy and
some integer k Z 0 (mod p) such that

pram e (1) T g,

0<t'<p—1

for 0<¢<p—1, ce C\{0}, and ¢(p) € PGL(2,F,) is the map x~—
i/(1 — k~2iz), where x = 0,1,...,p — 1,00; or
(V) g: A — Aj = Ay for some 1 <i < p—1, then there exist p € gHy and
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some integer k £ 0 (mod p) such that

pxy cCil(é)*l(fé‘) Z Ci(g)zmu

0<t'<p-1

for 0<{<p-1, ce C\{0} and ¢(p) € PGL(2,F,) is the map z~—
(ix — i?k* — i%)/(z — i), where x = 0,1,...,p — 1,00; or

(vi) g: A = A; = Ag for some 1 < i <p—1, then there exist p € gHy and
some integer k 0 (mod p) such that

1Ty c(_i(g) Z Ci(”xéw@z

0<l/<p—1

for 0<{<p-1, ce C\{0} and ¢(p) € PGL(2,F,) is the map x~—
(ix —i%)/(x + ik* —i); or

(vil) g: A —= Aj = A for some 1 <1 # j < p—1, then there exist p € gH
and some integer k £ 0 (mod p) such that

122K oy L
Py CCZ[Z (5 —i—ik*)+if] 2 : Cl(z)xf’-&-k{
0<t<p—1

for 0<l<p-—1, ce C\{0} and ¢(p) € PGL(2,F,) is the map z~—
(iz + 6j — %) /(x4 6 — i), where § = (i — j) %K%

REMARKS. In the explicit formula of p of Part (E), there are two
parameters ¢ € C'\ {0} and k # 0 (mod p). It is understood that c is adjusted to
ensure that p € SL(p, C), and (according to the following Theorem 2.6) k should
be chosen to guarantee that the “determinant” of the fractional linear trans-
formation ¢(p) € PGL(2, F,) is 1.

THEOREM 2.6. Keep the assumptions and notation in Theorem 2.5.

(1) For any g € G, ¢(g) € PSL(2, Fp); thus we may regard ¢ as a map from G
to PSL(2, F,).

(2) For any g€ G, if g-7-g'=(7%°, g-o-g' =70’ for some
a,b,c,d,r,s € F,, define
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Then ®(g) € SL(2, Fy); and therefore ® : G — SL(2, F,) is a well-defined group
homomorphism with Ker(®) = D.
(3) If my : SL(2, F,) — PSL(2, F,) is the canonical projection, then my® = ¢.

THEOREM 2.7. Keep the assumptions and notation in Theorem 2.5. Define
P1, P2, P3 € SL(I% C) by

Pl Ty —C1 C(é)l‘g,

. o
P2 T —Co E ¢z,

0<l'<p—1

pP3 T > C3They

where h is a generator of F and cy,ca,c3 € C\ {0}.

(1) Let Gy be the subgroup of SL(p, C) generated by D and p1, pa, p3. Then Gy
is a primitive group of order p*(p? — 1) containing a monomial normal subgroup H
which has a non-scalar diagonal matriz.

(2) Let G' C SL(p, C) be any finite primitive subgroup such that G' has a
monomial normal subgroup H' containing a non-scalar diagonal matriz. Then G’
is equivalent to a subgroup G of Gy such that G contains D. Moreover, if p* divides
the order of G, then G = Gy; if p* doesn’t divide the order of G, then G is a semi-
direct product of D and a subgroup of SL(2, F)).

One crucial tool in our proof of these theorems is the notion of I'-polygons for
a monomial group T' C SL(n, C) (see Definition 2.1). Roughly speaking, a
I'-polygon is simply a decomposition of an n-dimensional space into a direct
sum of some one-dimensional eigenspaces. In other words, a I'-polygon corre-
sponds to an index n subgroup D of I" with a one-dimensional D-eigenspace.
Another tool is a formula of Gauss sum > 4./, ; ¢”, which helps to find the
explicit formulas of elements in G (see Theorem 4.5 and the proof of Theorem 2.5
in Section 6).

We will explain briefly the ideas of our proof. Let G C SL(p, C) be a finite
primitive subgroup containing a monomial normal group H such that H has a
non-scalar diagonal matrix. We consider the projection m:H — S,, where
m(h)(i) = j if and only if h(x;) € C-z; for 0 <4 < p— 1. Since H is normal in G
and G is primitive, H has at least two H-polygons. Using H-polygons, we may
determine explicitly elements in Ker(w) (see Lemma 3.7). With the conjugation
action of H on Ker(w) we find that H is solvable (see Lemma 3.8). Hence w(H) is a
transitive solvable subgroup in S,; and therefore we know what it looks like. In
particular, its Sylow p-subgroup is normal. Thus the preimage of this subgroup
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under 7, denoted by D, is the unique Sylow p-subgroup of H. It follows that D is a
monomial normal subgroup of G; it is the maximal normal p-subgroup studied in
[Brl].

D is an extra-special group of order p?. If Z is the center of G, then D/Z is the
socle of G/Z in the paper by Dixon and Zalesski [DZ1]. With the aid of D and
D-polygons, it is possible to find the generators of H. However, we adopt another
approach. Because D is monomial normal and contains a non-scalar diagonal
matrix, D itself is a “legal” candidate of H. Thus it is unnecessary to find other
monomial normal subgroup containing D.

Now consider the conjugation action of G on D/Z. Since D/Z may be
regarded as a 2-dimensional vector space over F,, we get a representation of
G to GL(2,F,). Descending to PGL(2,F,), we get the homomorphism
¢: G — PGL(2, F,). This homomorphism induces an action of G on the set of
D-polygons. The action of G on these D-polygons is just the same as that
described in Theorem 2.5(C). We will proceed to prove Theorem 2.5. For any two
points ,7 € Pl(Fp) ={0,1,...,p—1, oo}, if we know the images of g(A;) and
9(4A;), it is possible to obtain an explicit form of some element p € g- Ker(¢). In
determining the explicit form of p, a lot of “tedious” computations are required. It
is amid these computations that the formula of Gauss sum comes to the rescue. As
a by-product, we find that ¢(G) is a subgroup of PSL(2, F,); thus we get a
homomorphism ¢ : G — PSL(2, F,). Better than it is that this map ¢: G —
PSL(2, F,) can be lifted to a map ® : G — SL(2, F,) so that the associated action
of G is equivariant to the aforementioned action of G on D/Z. Tt is not difficult to
find that the kernel of ® is D.

However we take a slightly different way in the presentation of this paper for
this action of G. We study the D-polygons in Section 4. The action of G on these
D-polygons is defined as in Theorem 2.5(C) and Lemma 3.3. Thus we get a group
homomorphism ¢ : G — PGL(2, F) as in Theorem 2.5(D). It will be explained in
Section 5 that this action is just the conjugation action of G on D/Z mentioned
before. Being armed with this action we will prove Theorem 2.5(E). By Theorem
2.5(E), it can be shown that the image of ¢ : G — PGL(2, F,) is contained in
PSL(2, F,) and this map can be lifted to ® : G — SL(2, F),) (see Section 7).

Apparently, the order of the group G is a divisor of p*(p? — 1), which was
anticipated by Brauer and Wales when p = 5 or 7 [Br1], [Wa2]. Moreover, all the
subgroups of SL(2,F,) of the form ®(G) can be listed up to conjugation in
SL(2, F),) and the generators of ®(G) may be exhibited (see Section 8). Thus we
may describe the groups G explicitly by using Theorem 2.5. We will remark that a
description of all the subgroups of SL(2, F)) is usually known as a theorem of
Dickson (see Theorem 7.5 or [Suz, Theorem, p.404]). What we need is to find all
the conjugacy classes of the subgroups and to find a set of generators for a
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representative of each conjugacy class, instead of merely a description of these
subgroups as abstract groups.

More notation need be introduced (besides those in the last paragraph of
Section 1). We will present our results in terms of matrix groups instead of a
faithful representation of some group; thus I, is the n X n identity matrix and

ala—1)

%0, %1, - - ., Tp—1 is the standard basis. If a is an integer, we denote (g) ==5—€ Z).

Note that the simple-minded formula (“;b) = (;) + (g) + ab is quite handy in

Section 6. If a is an integer with a Z 0 (mod p), (%) denotes the Legendre symbol.

3. Determining the structure of monomial normal subgroups.

LEMMA 3.1.  Let T be a finite monomial group in GL(n, C).

(1) If A = {ug,u1,...,u,—1} i a T-polygon, then the subgroup Ty :={ge T :
g(ug) € C-ugy} is of indexn inT.

(2) If Ty is a subgroup T’ of indexn and 'y has a “generalized eigenvector”, i.e.
a non-zero vector v satisfying g(v) € C-v for any g € I'y, then the orbit of C -v
under I' forms a I'-polygon.

(3) There is a one-to-one correspondence between the set of I'-polygons and
the set of conjugacy classes of subgroups Ty of T' satisfying the properties (i)
[[': Ty] =n, and (ii) Ty has a “generalized eigenvector”. In particular, there are
only finitely many I'-polygons.

PrOOF. We will prove (1) only and leave the proof of (2) and (3) to the
reader.

For the proof of (1), if [I" : Ty] < n, then the orbit of uy under I' contains less
than n elements. Since the subspaces in an orbit of I' generate a I'-invariant
subspace, this will be a contradiction to the assumption that I' is irreducible. [J

From now on we will consider finite subgroups in SL(p, C). Remember that
20,1, .., Tp—1 denotes the standard basis.

LEMMA 3.2.  IfG is a finite primitive subgroup of SL(p, C) such that G has a
monomial normal subgroup H containing a non-scalar diagonal matrix, then there
exists some element g € SL(p, C) satisfying (i) g 'Hg is a monomial group, (ii)
o€ g 'Hyg (see Definition 2.2 for o), and (iii) g Hg contains a non-scalar
diagonal matriz.

PROOF. Consider the map ' : H — S, defined by 7'(g)(¢) = j if and only if
g(z;) € C-zj for 0 <i<p—1. Since H is irreducible, the image 7'(H) is a
transitive subgroup of S,. We may assume that the p-cycle (0,1,...,p—1)
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belongs to 7(H) if we reindex zg, z1, . . . , xp—1 when necessary. Find ¢’ € H so that
m'(0') =(0,1,...,p—1), ie. o'(x;) € Cxjy. Define 2y =wy and 2 =0o'(2 ;)
inductively for 1 <j<p-—1.

Then o : x> o) = oy -2+ cryy for some c€ C\{0}. Since
det(o’) = 1, it follows that ¢ = 1. Define g € SL(p, C) by g(z;) = da’, for 0 < j <
p—1 and d € C\ {0} is chosen to ensure that det(g) = 1. It is not difficult to
verify that ¢g~'Hg is a monomial group, o € g-'Hg and ¢g~'Hg contains a non-
scalar diagonal matrix. O

CONVENTION. From now on, G and H are the groups defined as: G = g~'Gyg
and H = g’lﬁg in the above lemma. Thus G and H satisfy the properties (i) G is a
finite primitive subgroup of SL(p, C), (ii) H is a monomial normal subgroup of G,
(iii) o € H, and (iv) H contains a non-scalar diagonal matrix. We will define
m:H — S, by m(h)(¢) =j if and only if h(z;) € Cz; for 0 <4,j <p— 1. Define
D = (Ker(m), o). All these notation will remain in force till the end of this paper,
unless otherwise specified.

In the rest of this section we will prove that Ker(w) = (7, (I,); in particular, 7
and (I, belong to H.

LEMMA 3.3. For any g€ G and any H-polygon A = {up,u1,...,up-1},
define g(A) = {g(uo)? g(u1)7 tee 79(“}’)—1)}'

(1) g(A) is an H-polygon. In particular, the group G acts on the set of all
H-polygons.

(2) There are at least two H-polygons. Thus there are at least two D-polygons
also.

PROOF. (1) For any h € H, we will show that h(g(u;)) € C - g(u;) for some
j. Since g 'hge H, it follows that h(g(u;)) = g(g thg)(u;) = g(g~thg(u;)) =
g(A - u;) for some j and some A € C\ {0}. Thus h(g(w;)) = A - g(u;).

(2) Assume that there is only one H-polygon. Thus A = {zy,z1,...,%p-1} is
the unique H-polygon. From (1), g(A) = A for any g € G. Thus g(z;) = \z; for
some j and some \; € C \ {0}, i.e. G is a monomial group, which contradicts with
the assumption that G is primitive. O

LEMMA 34. Let A = {ug,u1,...,up—1} be a D-polygon. If o(u;) € Cu; for
some0<i1<p-—1, then A = {ZOSKSP*I Cfzp:0<i<p-—1}.

PROOF. The cyclic group (o) acts on the set { Cu; : 0 < i < p— 1}. If it has
a fixed point, then the action is trivial because any o-orbit in the set has length 1
or p. Thus, if o(u;) € Cu; for some ¢, then o(u;) € Cu; for any 0 < j<p—1. 1t
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follows that wug,u1,...,u,-1 are linearly independent eigenvectors of 0. However,
all the eigenvectors of o (up to a scalar) are of the form >, ; ¢zy for some
0<i<p-—1. 0

DEFINITION 3.5. Let A ={wy,v1,...,u-1} be a D-polygon so that
o(v;) € Cu; for any 0 <i < p— 1. Since the o-orbit containing Cvy is of length
p, this orbit is just {Cv;:0 < j <p—1}. Thus, after reindexing vy, v1,. .., Vp_1,
we may assume that o - v; € Cvjyq. Define a map ma : D — S, by wa(h)(i) = j if
and only if h(v;) € Cv; for 0 <i < p—1. We find that 7a(c) = (0,1,...,p — 1).

Recall the definition of Ay, Ag, Ay, ..., A, ; in Definition 2.4.

LEMMA 3.6. Let A ={vg,v1,...,v,-1} be a D-polygon and A # A,. As-
sume that o(v;) ¢ Cv; for any 0 <i<p—1.

(1) wa(D) is the cyclic group generated by ma (o).

(2) If p € Ker(m) is a non-scalar matriz, then wa(p) is also a generator of
wa(D).

(3) Ker(m) = {r,C1,).

PROOF.

Step 1: Note that Ker(r) is abelian, because it consists of diagonal matrices.
Thus D = (Ker(7),0) is solvable. It follows that wa(D) is a solvable subgroup of
Sp. Thus ma(D) is generated by the permutation s; and ss, where s; : @ — z +1
and sy : x — dx for 0 <z <p—1 and some d Z 0 (mod p) by [Coh, Proposition
11.6, p.117]. Note that wa (D) is abelian if and only if d =1 (mod p).

Since ma(o) = (0,1,...,p — 1), we find that (ma(0)) is normal in 7 (D) and
A = {vy,0(vg),...,07 Hvg)}. If we write o' (vg) = > 0<j<p-1 CijTj, Where ¢;; € C,
there exists some i so that ¢y # 0. Multiplying o?(vg) by a non-zero scalar, we can
assume that ¢,y = 1. By abusing the notation we will denote o'(vg) by vy. Write
V0 = D gcjep1 G and v = 0" (Vo) = Yo jc, 1 CTjri, Where ¢ =1 and ¢; € C.
Note that the set {vy, v1,...,v,-1} is a D-polygon equivalent to (i.e. regarded as
the same as) the previous one. Thus we call this “new” D-polygon by A also.

Step 2: For any p € Ker(w) which is not a scalar matrix, ma(p) is not the
identity permutation.

For, write p: x; — Ajz;, where \; € C'\ {0} and assume that ma(p) is the
identity permutation. Then p(v;) = a;v; for some a; € C'\ {0}, i.e. 37, ¢;Ajixji =
a; Zj ¢jTjqi- Thus cjAjp = ajcj forany 0 < j <p — 1. Since ¢y = 1, we find a; = A;.
It follows that c;Aj+; = Aicj for any 0 < 4,5 < p — 1. By assumption A # A,.. Thus
there is some index ¢ with 1 < ¢ < p — 1 satisfying that ¢, # 0. Hence A\;y; = \; for
any 0 <i<p-—1. It followsthat \g =N =y = = Ay, i g =Ny =+ =
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Ap—1 and p is a scalar matrix.

Step 3: There is some non-scalar matrix p € Ker(r) such that wa(p) belongs
to (ma(0)), and thus it is a generator of (wa(c)). Hence wa(D) = ma(Ker(m)).

Assume that 7a(p) € (wa(0)) for any non-scalar matrix p € Ker(w). Then
ma(Ker(m)) N (ma(o)) = {id}. Since Ker(w) < D, it follows that ma(Ker(nw)) is
normal in A (D). Because both (ra(0)) and 7wa(Ker(w)) are normal subgroups,
ma(D) is a direct product of (wa(0)) and wa(Ker(w)). Thus wa(D) is an abelian
group. From the structure of ma (D), we find s2 = id and thus wa(D)(ma(0)). We
are led to the conclusion ma(p) € (wa(o)) for any non-scalar matrix p in Ker(w). A
contradiction to the starting assumption.

Thus there is some non-scalar p € Ker(m) such that (ma(p)) = (wa(0)). It
follows that ma (D) = ma(Ker(m)).

Step 4: Proof of (1) and (2).

Since Ker(m) is abelian, we find that wa (D) is abelian and sy = id. Thus we
find that wa(D) = (ma(0)), which is equal to (ma(p)) for some non-scalar
p € Ker(m).

Now consider any non-scalar matrix p in Ker(r). Since ma(p) is not the
identity permutation, it is also a generator of the cyclic group generated by ma (o).

Step 5: If p € Ker(r) is any non-scalar matrix and 1 < k' < p — 1, then p¥ is
not a scalar matrix.

For, if p" is a scalar matrix, then ma(p") = id. On the other hand, 7a(p) =
7a(0)¥ for some 1<k<p—1. Thus id=ma(p") = malp)t = WA(U)W. Since
7ma(o) is a p-cycle, this is impossible.

Step 6: If p' € Ker(m) be any non-scalar matrix, then there is some 1 < ¥ <
p — 1 such that p'k/ = ("7, where 1 < a,b < p — 1. Moreover, (7,(I,) C Ker(n).

Let o/ € Ker(r) be any non-scalar matrix. Then 7a(p') = 7a(0)" for some
1 <k <p-—1. Choose k' such that k&' =1 (mod p) and define p = p’k/. Then p €
Ker(7) is not a scalar matrix by Step 5 and ma(p) = 7a(o) = (0,1,...,p — 1).

Write p:xzj—tjz; for 0<j<p-—1 and t; € C\ {0}. Note that p(v;) =
bjvj+1 for any 0 < j<p—1, where b; € C\ {0}. Substitute it into the formula
v = Zl CoXyyj with ¢g = 1. We get ZZ Cotpy oy = bj Zé ¢y j1- Hence bj =it
and ceyitipj1 = cictjpr for any 0< /4,7 <p—1. In particular ¢; #0 for all
0<j<p-1

Taking £ =1 in the formula co11terj41 = cicitjr1, we get

tj+1 C
tj

for any 0 < j < p— 1. Denote t = ¢?/cy. We find that t¥ = [locjepi(tjr1/t) = 1.
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Hence t = ¢* for some q, i.e. ;11 = (*t; for 0 < j < p — 1. Note that a # 0 (mod p);
otherwise p would be a scalar matrix.

Thus we may write p: x; — t,(%z; for 0 < j < p—1. Since det(p) =1, we
find ty = ¢’ for some integer b.

It is easy to verify that opo~' = (~*p. Thus ¢, = opo~tp~' € D. Hence
(I, € Ker(m). Since p= (7% we find that 7€ Ker(r) and p € (r,(l,). In
particular, the order of p is p.

Step 7: Ker(n) = (7, (I,).

Because of Step 6, it remains to show that Ker(r) is a p-group. Suppose not.
Since Ker(r) is abelian, there exists an element p' in Ker(7) and the order of p' is ¥
with 1 < ¥ < p— 1. Obviously p’ is not a scalar matrix. Now there is some 1 <
kK" < p — 1 such that p’k// is of order p. This is impossible. O

LEMMA 3.7.  Ker(m) = (7,(l,). In particular, {T,(I,) is a normal subgroup
of H.

PROOF. By Lemma 3.3, there are at least two D-polygons. Let A =
{up,u1,..., up_1} be a D-polygon other than A,.

Case 1: o(u;) € Cu; forany 0 <i<p-—1.

Apply Lemma 3.6.

Case 2: o(u;) € Cu; for some 0 <i<p-—1.

Apply Lemma 3.4 and get u; = ZOSjSpfl ¢Yz;for 0 <i < p—1.For any non-
scalar matrix p € Ker(n), we find that p(ug) = au; for some i. Obviously i #Z 0
(mod p).

Write p: z; — cjx; for ¢; € C\ {0}. From the relation p(uy) = aw;, we find
a = ¢p and ¢; = ¢p¢¥. Thus the non-scalar matrix p is just ¢o7’. Since det(p) = 1 we
find ¢y = ¢* for some integer b. Consider opo~'p~' again. We conclude that
Ker(m) = (7,(I,) as in the proof of Lemma 3.6(3). O

LEMMA 3.8. H is a solvable group and D is a normal subgroup of G.

PROOF. Since (7,(I,) is normal in H by Lemma 3.7, we find that
prp~t =71 (I, for some a,b € Z, with a # 0 (mod p). Hence the following map
V¥ is a homomorphism from H to Z,, - Z; (the semi-direct product of Z, with Z;
where Z, is a normal subgroup),

V:H—Z, Z;
p+— (a,b)

if prp~t =191,
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We claim that Ker(¥) = (r,(I,). Suppose that p € Ker(¥). Then pr = 7p.
Since 7 is a diagonal matrix with distinct eigenvalues, it is not difficult to find that
p is also a diagonal matrix. Thus p € Ker(r) = (7,(I,).

Since the kernel and the image of ¥ are solvable groups, so is H. Now 7(H) is
a transitive solvable subgroup of S,. Hence |w(H)| = pf for some f dividing p — 1;
moreover, the p-cycle (0,1,...,p — 1) generates a normal subgroup of 7(H). Hence
D =r1{((0,1,...,p—1))) is a normal Sylow p-subgroup of H. It follows that D is
a characteristic subgroup of H. Thus D < G. O

4. D-polygons and Gauss sums.

First we will determine all the D-polygons.

LEMMA 4.1. The monomial group D has precisely p + 1 subgroups of index
p: Do =(1,¢L,) and D;={o7',(l,), where 0<i<p—1. These subgroups
provide all the D-polygons A, Ao, A1, ..., Ap_1, which are defined in Definition
2.4.

PROOF. Note that oro~'77! = (71,

It is not difficult to show that all the index p subgroups of D are D, and D;
with 0<i<p—1. Now we will determine D-polygons via these index p
subgroups. We will do this for D;, where 0 <7 < p—1 and leave the case D
to the reader.

Write the coset decomposition of D with respect to D;, i.e. D = U0§j§p71 9;D;
with gy = id. Let v be a common eigenvector for all elements in D;. By Lemma 3.1
the set {g;(v) : 0 < j <p—1} is the D-polygon associated to D;.

Since the subspace C - v is fixed by D;, all the other subspaces C - g;(v) are
fixed by D; also (see the proof of Lemma 3.4). Hence these g;(v) are nothing but
the eigenvectors of or'.

The map o7’ can be exhibited as o7 : xTj— Ci'jxj+1. Thus it is routine to verify
all elements of A; in Definition 2.4 are eigenvectors of o7'. (]

Once we know that D is a monomial normal subgroup of G, it would be
unnecessary to determine the structure of H. We may simply replace H by D and
proceed to the proof of Theorem 2.5.

Recall the definitions of u;, v; in Definition 2.4.

LEMMA 4.2. Letge€ G.

(1) If g(Ax) = A and g(xg) € C - o, then there exists some k Z 0 (modp)
such that g : xp— cpxiy for 0 <L <p—1andc, € C\ {0}.

(2) If g(Ax) = Ag and g(zg) € C - ug, then there exists some k# 0 (modp)
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such that g : g — cpupe for 0 <€ <p—1and ¢, € C\ {0}.
(3) If g(As) = A; for some 1 <i < p—1 and g(xg) € C - vy, then there exists
some k Z 0 (modp) such that g : ¢ — covge for 0 <L <p—1and ¢, € C\ {0}.

PROOF. We will prove (1) only, because the proof of (2) and (3) are almost
the same.

Since g(Ax) = Ay there is a permutation 6 € S, such that g(z/) = ¢y and
8(0) = 0.

Note that g 'og= ("o*r" for some r,s,t because D<G. Suppose that
g(z) € C -z, ie. 8(k)=1. Consider g log(wg) = ("0’ (xg). We find that
k=s,ie. og=("gokrt.

For any 0 < j<p—1, consider og(z;) = ("go*r'(x;). We find that o(j) =
8(j + k) for any j. By induction we get §(jk) = j for any j, i.e. §(j) = k~!j for
0<j<p-1

In case of (2), we may consider g~'7g; in case of (3), consider g~og. O

LEMMA 4.3.  Keep the notation in Theorem 2.5; in particular, Hy = Ker(¢).
Then Hy = (0.7, \q) for some integer d with d> =1 (modp). More generally, if
g € G satisfies g(Ax) =As and g(A;) =A; for some 0<i<p-—1, then
(9, Ho) = (¢, Ho), where ¢ is defined by

g’ Txy 5@(11;)77.’(2)93(1/[

for some d £ 0 (modp), for any0 < <p—1, ande =1 or —1.

PROOF.

Step 1: If g € Ker(¢), then (g, D) = (\g, D) for some d # 0 (modp) with
d’> =1 (mod p).

Since g(Ax) = Ay and g(Ag) = Ay, replace g by o”gr* for suitable r and s if
necessary; we will denote ¢”g7m® by g (by abusing the notation). We may assume
that g(zo) € C - xy and g(up) € C - ug, where ug = ZOSZS[}*I 4.

By Lemma 4.2 there exists an integer d Z 0 (mod p) such that g: x; — cpzg
for 0 < ¢ < p— 1. Substitute it into g(ug) = aug for some a € C\ {0}. It follows
that Ch=¢C =" "= Cp-1-

Since ¢(A;) =A; for any 1<i<p-—1, we have g(vy) =b-v for some

0<t<p-—1,be C\ {0}, where vy = ZOSZS;ufl Ci(;).’ﬂ[ and A; = {vp,v1,..., 1}

Substitute g : x; — cxg into this formula. We get
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c Z Ci(g)l’(ﬂ(:a Z Ci(g)xéﬂ

0<t<p-1 0<t<p—1

=a Z Ci(df;)ﬂvdz-

0<l<p-1

Hence

c- Ql(fz) = acl(m{;f)
forany 0 </<p-—1.
Thus, for any 0 < ¢ < p — 1, the value

gi("f;‘)—i(é) _ g%[(dz—l)[z—(2dt+d—1)é+(t2—t)]

is a constant. Hence d*> =1 (mod p).
Step 2: If 4 is some integer with 0 < ¢ <p—1 and g € G satisfies g(Ay) =
A and g(A;) = A;, then there is some ¢ € (g, D) given by

g' Txy — ggi(qéz)_i(é)xd%

for some d' £ 0 (modp), e = +1.

When ¢ =0 (mod p), the proof is similar to Step 1 and is left to the reader. It
remains to prove the case when 1 < <p—1.

Replacing g by o"gr® if necessary, we may assume that g(xg) € C -z and

(0

g(vo) € C -y, where vo = ),y CZ(Q)W~

Apply Lemma 4.2. Find an integer d’ #Z 0 (mod p) so that ¢ : 2y — cpzgy for
¢ € C\ {0}. Substitute it into g(vy) = avy for some a € C\ {0}. We find that
crcpt = Ci(dy)ﬂ‘(’ﬁ) for any /. Since det(g) =1, it follows that ¢y = ¢ - (', where
e=sgn{z— dx:0<x<p-—1} and ¢ is some integer. O

LEMMA 4.4. Let a be an integer. Then

Z ol — { 0, if a0 (modp)

0<l<p—1 p, if a=0 (modp).

PROOF. This formula is standard and thus its proof is omitted. O
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THEOREM 4.5.  Let a be an integer with a Z 0 (mod p). Then

1
“ =G E)
oggq p p !

PROOF. Omnitted. t

LEMMA 4.6. If a and b are integers with a Z 0 (mod p), then

5 ot () [,

0<l<p—1 p p

PROOF.

§ +b/ § : %/Z ()+bl __ § :C [2—t+2a" bl

0<l<p— 1 ¢

Z [42+<2a 1p—1)¢ ZCZ [_,'_m b12 _ (207 11; 1)’ ]
2(¢ Zalh )2 M
=2

4

_ Cin(la ;b—l Z C%/{Z‘ |:|
14

5. Proof of Theorem 2.5: the first stage.

We will start to prove Theorem 2.5. The proof of Theorem 2.5(E) will be
delayed till Section 6.

(A) has been proved in Lemma 3.8.

(B) is proved in Lemma 4.1.

(C) The group action of G on the set {A.,Ag,...,Ap_1} is well-defined
because of Lemma 3.3.

It remains to discuss (D).

Now we will consider the action of G' on the D-polygons Ay, Ag,...,Ap_1.
Note that, for ¢=0,1,...,p— 1,00, each A, is associated to D;, where
Dy = (1,1}, D; = (07", (I,) for 0 <i<p—1.

Since D <G and that Do, Dy,..., D, are all the index p subgroup D, it
follows that G permutes Do, Dy, ..., Dy_q.
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LEMMA 5.1.  Let z,y € {00,0,1,...,p—1}. For any g € G, g(A;) =47, if
and only if g- D, - g~ = D,

PROOF. From the proof of Lemma 4.1, elements of A, are precisely the
linearly independent eigenvectors of D,. Hence the result. O

DEFINITION 5.2. Forany g€ G,ifg-7-¢g7' = (1% g-0-g ' = (37P0? for
some a,b,c,d,r,s € F,. We will define a map ® : G — GL(2, F,) by

®(g) = (a Z) € GL(2, F,).

c

This map is the conjugation action of G on D/((I,) ~ F, -7 & F, -0’ ~ FZ,
where 7/ and o’ are the images of 7 and o in D/((I,,) respectively. The coordinates

of 7 and o’ are ((1]) and ((1)) respectively. The projective line Pl(Fp) consists of

p+ 1 points: co = (é), 1= ({) for 0 < i < p— 1. These points correspond to D,
D; for 0 <1i <p—1, and they also correspond to Ay, A; for 0 <i<p—1.1Ttis
straightforward to see that these correspondences respect the actions of G.

We will show that ®(g) € SL(2, F),) in Section 7. At present we only know
that ®(g) € GL(2, F}). Let my : GL(2, F,) — PGL(2, F,) be the canonical projec-
tion. By Lemma 5.1 we find that ¢(g) = m®(g). Note that

a b
¢<g>< d) € PGL(2 F,)

may be regarded as a fractional linear transformation on P'(F,) which sends
z € P(F,) = {00,0,1,...,p— 1} to (ax + b)/(cz + d).
We record the above discussion as the following lemma.

LEMMA 5.3. Keep the mnotation in Theorem 2.5. Let the points
00,0,1,...,p—1 on P'(F,) correspond to the D-polygons A, Mg, Ay,. .., A, ;.
If g € G satisfiesg-7-g ' = ("1, g-0- g1 = (*rP0? for some a,b,c,d,r,s € F,,
then g permutes A, Do, A1,..., 0,1 as the fractional linear transformation
x+— (ax +b)/(cx +d), where x = 00,0,1,...,p — 1. Moreover this action induces
a mnon-trivial group homomorphism ¢ : G — PGL(2,F,) such that Ker(¢) =
(0,7, \a) for some integer d> =1 (mod p).

PROOF. The assertion about Ker(¢) is proved in Lemma 4.3.
If ¢ is trivial, i.e. G = Ker(¢), then G = (o, 7, \y) is a monomial group. This is
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a contradiction to the assumption that G is primitive. O

6. Proof of Theorem 2.5: the second stage.

All the notation are the same as in Theorem 2.5.

Let g € G.

Case 1: g:Ax — A, Do — Ag.

Apply Lemma 4.3. There exists p € gHy such that p: xy+— exp for some
k# 0 (modp) and for any 0 < ¢ <p—1.

It remains to find ¢(p) explicitly. Note that ¢(g) = ¢(p).

Since Ay and Ay correspond to the groups Do, = (7,(l,) and Dy = (o, (I,)
respectively, the assumption that g(Aw) = Ax and g(Ag) = Ag is equivalent to
that grg~! = ("% and gog~ ' = (*o? for some integers r, s, a, d. Hence g gives rise to

the matrix
o0 = AD € PGL(2, F 6.1
0 d 0 1 ( ’ p) ( ' )

where A = ad™! € F. It remains to evaluate A in terms of the constant k in the
definition of p.
Note that (6.1) corresponds to the fractional linear transformation x +— Az.
Since 1 — A, it suffices to find g(A;).
Clearly g(A1) = A; for some 1 <i<p—1.
4

Write A; = {w,wr,...,wp_1}, where wy= Zogzgp—1 (Z(z)xg, and A =

43
{vo, ..., vp_1}, where vy = ZOSI(S})*I g(z)w.
From the assumption p(vy) = a - w; for some 0 <t < p — 1, we find

€ Z C(g)x;dg:a Z Ci(g)x/ﬂ

0<t<p-1 0<t<p-1

=a Z Ci(lgt)gc(//

0</<p—1
=a Z Ci(”;)zkb
0</<p—1

Thus we find that, for any 0 </ <p—1,

gg(g) = aCi(wgf) .
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Hence we get ik’ =1 (modp) and 1=ik(1+2t), i.e. g(A;) = A2 and
A=k2

Case 2: g: Ay +— Ay, Ag— A; for some 1 <i<p-—1.

Write Ag = {ug,...,up-1}, A;={vp,...,vp-1}, where wy=a9+ -+ xp_1

and vy = Zoggpﬂ Ci(g)w-

As in the proof of Lemma 4.3, consider o "gr® for suitable r,s. We find
p € gHy such that p(xp) € C - xy and p(up) € C - vy.

Apply Lemma 4.2. There exists k # 0 (modp) such that p: xy — cpzye for
0<{<p-—1andc¢ € C\ {0}. Substitute it into p(uy) = avy for a € C'\ {0}. We
get

Z T = a Z Ci(g)fﬂz:a Z Ci(@)xkl’,-

0<t<p-1 0</<p-1 0</<p-1

Thus we get

prae—c- (o,

for some ¢ € C'\ {0}.
It remains to determine ¢(p). Note that g determines the element

“ b = A € PGL(2, F 6.2
where A € F\.

Since (6.2) determines the map = — Az + ¢, we will find g(A;). Note that
either g(A1) = Ap or g(A;) = A for some 1 < j < p — 1. It is not difficult to show
that, (i) if g(A1) = A, then 1+ ik’ =0 (modp); and (ii) if g(A;) = Aj, then
1+ (i —7)k* =0 (mod p).

In either case, it will imply that A = k2. The details are left to the reader.

Case 3: g:Ax— Ay — Ax.

Use similar methods in Case 2. Let p =0 "¢g7® so that p(xg) € C-uy and
p(uy) € C - xy. Apply Lemma 4.2 to get that p : 2y — cpug for some k 2 0 (mod p)
and ¢y € C'\ {0}. Substitute it into p(ug) = ax, for some a € C \ {0}. We get

.o P!
E E ¢ \ e = am.
0<t'<p—1

0<(<p—1
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Define a complex p x p matrix T' = (tr¢)y<p 4,1 by defining tp, = ¢k,

If 0<V#0"<p—1, then > e 1try tpry = > o<t<p_1 = = by
Lemma 4.4.
Thus 7T =p- 1,, where ‘T is the conjugate transpose of the matrix 7.

Moreover,
Cy 1
C1 0
T =a
Cp—1 0

Multiply ‘T on both side of the above identity. We get
pce=a

forany 0 < ¢ <p—1.Thus p:x—c)cpe, CH 2y for some ¢ € C\ {0}.

Now we will determine ¢(p). Since g determines

0 a 0 A
(00 (0 D) erary

¢(p) is the map z +— A/z. We will find g(A;). Note that g(A;) = A; for some
1<i<p-—1.

Thus we have a relation g(3_, <(§)LL'[) =a), (i(g)m”t for some a € C\ {0}
and some 0 < ¢ < p— 1. Hence get

CZ C(Q)H:M' _ acqj(é’z—t)
1

for any 0 < ¢ <p—1. Apply Lemma 4.6 to evaluate the left-hand side of the
above relation (with a = 1 and b = k¢'). We find a non-zero constant A such that

_@ke-1)?
s

¢ A- ¢ = () (6.3)

for any 0 < ¢ < p — 1. In particular, taking ¢ = 0 (modp), we get
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Dividing (6.3) by (6.4), we find that
¢ = (3)-16)

for any 0 < ¢ < p — 1. It is easy to find that i = —k?. Thus A\ = —k?.

Case 4: g: Ay +— Agr— A; for some 1 <i<p-—1.

Define uy = g+ -+ + xp—1 and vy = Z()gzgpfl C7(§)1:/

Find suitable r and s so that p = 77g7* € gHy and p(xg) € Cug, p(ug) € C - vy.
By Lemma 4.2, there exists k # 0 (modp) such that p: 2+ ¢/ gcpep CH
for 0<{<p-1 and ¢ € C\ {0}. Substitute it into p(ug) =avy for some
a € C\ {0}. We find that

Z cocket = agi(g’)

0</<p—1

forany 0 </ <p-—1.
We will use the same method in Case 3 and define a complex p X p matrix

T= (tﬂj)()ﬁf’,[ﬁpfl by defining ¢y, = Ckw.
Then T-'T =p- I, and
1
(&)
C1
T- =a L
¢t
Cp—1
It follows that
1
Co
P =a-'T ,
¢t

Cp—1



1038 M.-C. KANG, J.-P. ZHANG, J.-Y. SHI, Y. YU and S. S. T. YAU

Hence

p-ce=a Z R .Ci(é/) =g Z Cz‘(g”)fm'

0<l<p—1 0<l<p—1

forany 0 </<p-—1.
Apply Lemma 4.6. We find a non-zero constant A such that

(2 ke+1)?
8

ca=A4A-C
for 0 < ¢ < p— 1. In particular, ¢y = A - (5. Hence

(20 ke+1)?— (iRt
e eyt = ¢t = i)

as desired.
Now consider ¢(p). Since g-7-g~ 1 = ("0 g-o-g* = (o7’ for some a,b
# 0 (mod p), we find that ¢(p) determines

0 ib 0 i
.oy =l ) EPCLERFy).

Hence ¢(p) is the map x +— i/(1 + Azx). We will find the value of A. Since
—A"! — 0o, we will find some 1 < j < p—1 such that g(A;) = Ax.
4

Consider p(d p<sc) 1 Qj(Q)xg) = az; for some 0<t<p-—1and a € C\ {0}.

—i ke

Substitute the map p : zy — c(fi( 2") > 0<r<p1 ¢ zp to get

Z Cj(g)_i(—f S M) +kee=0 (6.5)

0<<p—1

for any ¢ £t (mod p).
The left-hand side of (6.5) can be written as

Z Cg(ztzyg(r]kz‘1+/:>+m/ _ Z C(j_rlkZ)(g) SENESC)Y
L l

which is not zero for any 0 </ <p—1 provided that j— i 'k*> £ 0 (modp),
because of Lemma 4.6.
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Thus j =i 'k* (mod p) and A\ = —k~2i.

Case b: g:Ayp+— Aj— Ay for some 1 <i<p-—1.

Find p = 07 "gr! € gHy, where r,t are suitable integers so that p(zy) € C - vg
and p(v) € C - g, where A; = {vg,v1,...,vp-1} and vo = Do e C(Q‘W Apply
Lemma 4.2 to get p : z; — ¢y for some k # 0 (mod p). Substitute it into p(vy) =
axg for some a € C\ {0}. We find that

Z CzCi(é)ﬂ(g)l?Mke = axy.

0<t,0'<p—1

The left-hand side of the above identity may be written as

SO g, = 3 ( 3 ngi(é)ﬂ(f’ﬂ))w

x4 0<l'<p—1 \0</<p-1

Define a complex p x p matrix T' = (ty 1)o<p 4, 1, Where tp, = Ci(z)‘”(wtfzw)_
_ (0RO g (=M
If  0<C#0<p—1, then Yo itos-tri=Y, c()=i("3) =
D0 Ci(g)ii(g)ﬂk«wim = Ci(g)ii(g) = ZZ(CMT(Z”_K”)( = 0 by Lemma 4.4. In summary,

T ‘T=p- 1,, where T is the conjugate transpose of the matrix 7.
We also find that

Co 1
C1 0

T =a
Cp—1 0

Multiply ‘T on both sides of the above identity. We get
pCr = a - CiL(§)77(7§[)
Thus p may be defined as

p:xe s e ¢CE)7i(E) Z Ty

0<l<p-1

for any 0 < ¢ <p—1 and for some c € C\ {0}.
Now we will determine ¢(p).
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Since g-7-g ' =("(07)", g- o7 - g7 = ¢ - 7° for some a,b # 0 (modp), we

get g-o- gt = (779" 5% The matrix determined by g is

ai b— ai® i A=
) = ) € PGL(2, F)).
a —at 1 —1

Thus ¢(p) is the map z +— (iz + X — %) /(x — i).

We will find g(Ay). Note that g(Ag) may be Ag or A; for some 1 < j<p—1.
Case 5.1:  Suppose that g(Ay) = A.

From p(3>,2) = a ", x4, where a € C\ {0}, we get

e S0 i) = o (6.6)

0<<p-1

forany 0 </ <p-—1.
The left-hand side of (6.6) may be simplified as

- Z C—i(ﬁ)w(ﬁ’)—zm’:C_Cz(g’) Z C—fz(g)—zm'

0<l<p-1 0</<p—1
L 2k -1)?
= Ac )+
for some non-zero constant A which is independent of ¢, by Lemma 4.6. Thus

[r) (2Kl —1)°

AT — gt
for any 0 < ¢ < p — 1. In particular, A - (=*. Thus we have
gi(‘ﬁ/ﬁw*% =t
for any 0 < ¢ < p— 1. It follows that

=j¢ (modp)

, <£> LRk 1)

1
2 2

forany 0 < /¢ <p-—1.

Thus i + ik*> = 0 (mod p), i.e. k¥* = —1 (mod p).

Case 5.2: Suppose that g(Ag) = A; for some 1 < j < p—1. It is clear that
j#i (modp).
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From p(3> ,xz) =a), (J< )W+t for some 0 <t<p-—1 and a € C\ {0}, we
get

Y ) Z g )

0</<p—1

forany 0 </ <p-—1.
Note that the left-hand side of (6.7) is the same as that of (6.6). Hence we get

A OHEERE i)
for any 0 < ¢ < p— 1. It follows that
GOV 5)(3)

forany 0 </ <p-—1.

Hence we get i + ik? = j.

Combine the results of Case 5.1 and Case 5.2. We find that g(Ag) = A -

On the other hand, the fractional linear transformation we obtain is
r (ix+X—i?)/(x —i). Hence 0~ (A—1i?)/(=i). We get i+ik®=
(A —i%)/(—i). Thus X = —i?k%.

Case 6: g: A — A;j— Agforsome 1 <i<p—1.

Find suitable r and s so that p=o0"gr® € gHy and p(zg) € C - vy,
p(vo) € C - uy, where vy =3, ¢ i(‘[).’ljg, Uy =), Ty

By Lemma 4.2, there exists k£ # 0 (mod p) and p : z¢ — ¢/ gcpey 1 C'2 i )l'[urkg
Substitute this into p(vg) = aug for some a € C\ {0}. We get

(i) g

0</<p—1

forany 0 < /¢ <p-—1.
(0 (0 —kt
Define a p x p complex matrix T = (t¢¢)o<p y<, 1, Where tp, = Cl(z)“( ),
If ¢/ # ¢, then

ST teptoe= > GO0 =11k _

0<t<p—1 0<t<p—1

by Lemma 4.4.
Hence we find that T'- 'T = p - I, and
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Co 1
&1 1

T =a
Cp—1 1

Solve these ¢;. We get

pey = a Z Cii(é)ﬂ'([’fzw) (6.8)

0<l<p—1

for0</i<p-—1.
The right-hand side of (6.8) may be simplified as

> ¢ilE)+E)+CE) k) — g e=ia)=i() > ¢is)+iket
e/ él
= A¢7i6) . i) g%“)z

for some non-zero constant A which is independent of ¢, by Lemma 4.6.
We obtain

ke | i(2k6+1)?

peyg = A - C’i(é)’i(fz )+
and
B O e L0}
Thus p can be chosen as the following map

prag e (0 Z ¢ o
0<0<p—1
It remains to determine ¢(p). From g-7-¢g7 ' = ("(07))* and g- (o7') - g7! =
¢*- o, where a,b#0 (modp), we find that gog™! = ¢ gh=ai We get the
matrix
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ai  —ai? -
| = .| € PGL(2, F,).
a b—ai 1 A—1

Hence ¢(p) is the map z +— (iz — %) /(x + X — i).

We will find g(Ay). Note that g(Ay) may be Ay or Ag for some 1 < j <p—1.

Case 6.1: Suppose that g(Ay) = Ax.

From the relation ¢(> ,z;) =ax, for some 0<t<p—1 and some
a € C\ {0}, we find that

c- Z(ZQ i("3") >xgr:axt.
Thus

>R — o (6.9)

4

for any ¢ #£ ¢ (mod p).
The left-hand side of (6.9) can be written as

Z< z ,' —ikel! ZC z 30)—iked

(¢ 2 :CE [(K*=1)4(k+1-2k0)0]
‘

which is never zero by Lemma 4.6, if k2 — 1 % 0 (modp).
We conclude that k* —1 =0 (mod p).
Case 6.2:  Suppose that g(Ag) = A, for some 1 < j<p—1.

From the relation g(}",z¢) =a)_, CJ( )xgﬁ for some 0 <t <p—1 and some
a € C\ {0}, we find that

o3 O g()
l

forany 0 </ <p-—1.
Proceed as in Case 6.1. We get



1044 M.-C. KANG, J.-P. ZHANG, J.-Y. SHI, Y. YU and S. S. T. YAU

e i) 3 D12k (') (6.10)
J4

for any 0 < /¢ <p-—1.

If > — 1 = 0 (mod p), then the left-hand side of (6.10) becomes zero for those
¢ such that k+1—2k¢’ 20 (modp). This will lead to a contradiction. Thus
K2 —14#0.

We rewrite the left-hand-side of (6.10) as

i(k—2k+1)?

ZC k2 1 AH 2kl)[ AC (/’) s

by Lemma 4.6, where A is a constant independent of ¢'.
Hence we get

G- _ i(5)-9)
for0</¢ <p-1.
We find that
—ikl' (kO — k— 1
(e — 1y -~ ) _ e —1) - 2jtr

k2 —1

for0</ <p-1.

Hence j =i — 5 = —i(k* — 1)~

Combine the results of Case 6.1 and Case 6.2, we find that A = ik

Case 70 g: A= Aj— Ajforsome 1 <i#j<p—-1

Find suitable r and s so that p = o"g7* € gHj and p(zy) € Cuvy, p(vy) € Cuwy,
where vy =Y, Ci(é)ﬂ?h wy =Y, gf(g)w

By Lemma 4.2 there exists k # 0 (mod p) such that

pTp =y E C »Tzurke

0<<p-1

Substitute it into p(vy) = awy for some a € C \ {0}. We get

> (g: c(ggi(é)ﬂ(”z“)) 2y =a XZ: )z,

2
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Use the same technique as in Case 6. We find that
1 Acg[ﬂ(%qﬂw)ﬂz}

cocy =

for any 0 < £ < p — 1. The details are left to the reader.
Now consider ¢(p). The matrix determined by g is

ai  bj — ai® i Aj—i?
) = ) € PGL(2, Fy).
a b—ai 1 A—3

Hence ¢(p) is the map = — (iz + A\j — %) /(z + X — ).

1045

We will determine the preimage of Ay. It may happen that g(Ag) = Ay or

g(Ay) = Ay for some 1 <t <p-—1.
Case 7.1: Suppose that g(Ag) = A.

From ¢(>,z¢) = axy for some 0 <# <p—1 and some a € C\ {0}, we find

that

SIS (o Sy P

0<l<p—1\0<<p-1

1 272
where ay = 5[%(% — i —ik*) + if).

i—j

Hence

Caﬁi(«/éw) —0

0<t<p—1

for any ¢ £ ¢ (mod p).

This will imply j =i — ik?* (mod p). The verification is omitted.
Case 7.2: Suppose that g(A;) = A, for some 1 <t <p—1.

L

From ¢(}°, Ct(Z)w) = axy for some 0 <t <p-—1 and some a € C\ {0}, we

find that

S ( 3 <w+t<s>+z~<f’;f>)w:axt,

0<0'<p—1 \0<(<p-—1

where ay is same as in the previous case.
It follows that
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Z Ca;+t(§)+i(";*”) -0

0<(<p—1

for any ¢ # ¢’ (mod p).
Note that

T cortt(e)+i(") = 3 cortt(5)+l(8 )+ (4) et
0<i<p-1 0<t<p-1
_ Ci(.’;) Z C%[ZZ(%—i+t)+/z(i—t+ik—2ikl’)]

0<(<p—1

is never zero by Lemma 4.6, provided that % —i+t#£0 (modp).

We conclude that % —i+t =0 (modp).

Combine the results of Case 7.1 and Case 7.2. We find g(A;) = A, with
t=1— % Hence A = (i — ) 'i2k2.

7. Proof of Theorem 2.6 and Theorem 2.7.

PROOF OF THEOREM 2.6 (1).

The “determinants” of the fractional linear transformation in (i) ~ (vii) of
(E) in Theorem 2.5 belong to F;Q. Thus these elements may be adjusted to
become elements in PSL(2, F,).

Because of Theorem 2.6(1) it is important to know the subgroups in
PSL(2, F)).

THEOREM 7.1 ([Hu, 8.27 Hauptsatz, p.213]). A subgroup of PSL(2, F,) is
isomorphic to one of the following groups,

(i) a cyclic group of order m, where m is a divisor of p,(p —1)/2 or (p+1)/2,

(ii) a dihedral group of order 2m, where m is a divisor of (p—1)/2 or
(b+1)/2,

(iii) the alternating group Ay,

(iv) the symmetric group Sy if p?> = 1 (mod 16),

(v) the alternating group As if p=>5 or p> =1 (mod 5),

(vi) a semi-direct product of a cyclic group of order p with a cyclic group of
order m, where m is a divisor of p — 1,

(vii) the group PSL(2, F)) itself.

PROOF OF THEOREM 2.7.

(1) Tt is routine to verify that plTpfl =T, plapfl =0T, p27p51 =0t

9
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paopyt =T, psTpzt = ™, psopy ! = o”. In the notation of Theorem 2.6(2), we find

that
1 1 0 1 Al oo
‘I’(Pl)=<0 1>7¢(P2)=<_1 0)7@(03):< 0 h>'

Thus ®(p;) € SL(2, F,) for i = 1,2,3. Clearly ¢(p;) = mo®P(p;) by Lemma 5.3.

Since every matrix in SL(2, F,) can be brought to a diagonal matrix by the
row operations and the column operations, it follows that SL(2, F,) is generated
by @(p1), ®(p2), ®(ps3). Thus ¢(Go) = PSL(2, ).

Note that A,_; belongs to the cyclic subgroup generated by ps. It follows that
the order of Gy is 2p* - |[PSL(2, F,)| = p*(p* — 1). Obviously Gy is primitive.

(2) Since ¢(G) C ¢(Gp), hence G C Gy. The proof of the remaining part will
be delayed till we finish the proof of Theorem 2.6.

PROOF OF THEOREM 2.6 (2) AND (3).

By Theorem 2.7(2), G C Gy. Hence ®(G) C ®(Gy). In the proof of Theorem
2.6(1) we have found that ®(Gy) = (®(p;) : ¢ =1,2,3) C SL(2, F)) and ¢(p;) =
mo®(p;). Hence the same conclusions are valid for all elements of G. Note that A,_4
is not in the kernel of ®. Apply Lemma 4.3 to show that Ker(®) = D.

LEMMA 7.2. Keep the assumptions and notation in Theorem 2.7. If G1, Gs
are primitive subgroups of Gy containing D such that ®(G1) and ®(G3) are
conjugate to each other in SL(2, F,), then G1 is conjugate to Go in Gy. In
particular, they are equivalent in SL(p, C).

PROOF.  Suppose that ®(Gy) = ¢®(G,)g " for some ¢ € SL(2, F,). Choose
a preimage g € Gy of ¢. Then G» = gG1g~ . O

LEMMA 7.3. Keep the assumptions and notation in Theorem 2.5. If ¢(G) is
isomorphic to a cyclic group of order m with m dividing p(p — 1)/2 or the semi-
direct product in (vi) of Theorem 7.1, then G is not a primitive group.

PROOF. We may assume that ¢(G) is nontrivial. If ¢(G) is a subgroup of a
cyclic group of order p or (p — 1)/2, it is conjugate to a cyclic group with generator

of the form (é }) or (g a‘L) for some a € F, \ {0}. Apply Part (ii) of (E) in

Theorem 2.5. The group G is equivalent to a monomial group.
Now suppose ¢(G) is isomorphic to the semi-direct product in (vi) of
Theorem 7.1. Without loss of generality we may assume that the generator of the
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cyclic subgroup of order p in ¢(G) is of the form <(1) }) It is routine to verify that

#(@G) is a triangular matrix group in PSL(2, F,). Apply Part (ii) of (E) in Theorem
2.5 to show that G is a monomial group. O

LEMMA 74. IfT is a subgroup of SL(2, F,) and my(I') = PSL(2, F,), where
mo : SL(2, F),) — PSL(2, F)) is the canonical projection, then I' = SL(2, F,).

PROOF.

Case 1: —I, = <Bl —01) erl.

Clearly we have I' = SL(2, F)).

Case 2: —I = <Bl —01> ¢T.

Since I is an index two subgroup in SL(2, F,), it is a normal subgroup. Thus
SL(2, F,) is a direct product of I' and —1Is.

On the other hand, I" has an element of order two; call it p. Note that p and

—1I, are conjugate in GL(2, F}). Since —I is in the center of GL(2, F},), it follows
that p = —I5. A contradiction. O

PROOF OF THEOREM 2.7 (2) (continued).

Suppose p? is a divisor of |G|. Then p divides the order of ¢(G). By Theorem
7.1 and Lemma 7.3 we find that ¢(G)= PSL(2,F,). By Theorem 2.6
m0(®(G)) = PSL(2, F,). Thus ®(G) = SL(2,F,) by Lemma 7.4. It follows that
G = Gy.

If p* doesn’t divide |G|, then the order of ®(G) = G/D is relatively prime to
that of D. Hence this group extension splits by Schur-Zassenhaus Theorem [Suz,
Theorem 8.10, p.235]. O

By Theorem 2.7(2) it remains to find subgroups in SL(2, F,) whose orders are
relatively prime to p. It is a special case of Dickson’s Theorem [Suz, Theorem
6.17, p.404], [Hu, p.213]. We record it as the following theorem.

THEOREM 7.5. Let p be an odd prime number, ¢ = p/ for some positive
integer f, and ' be a subgroup of SL(2, F;) such that the order of I is relatively
prime to p. Then T is isomorphic to one of the following groups,

(i) a cyclic group of order m, where m is a divisor of g — 1 or g+ 1,

(i) a group of order 4m generated by x,y with relation ™ =y* and
y lwy =271, where m > 2 and is a divisor of (q—1)/2 or (¢+1)/2,

(iii) the group SL(2, Fs3) if p # 3,

(iv) the group 32 if ¢ =1 (mod 16), where 3’: is the representation group of
the symmetric group of degree 4 in which the transpositions correspond to the
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elements of order 4;
(v) the group SL(2, F5) if ¢ =1 (mod 5).
The group in (ii) will be called a binary dihedral group of order 4m.

8. Subgroups of SL(2, F,).

In this section we will find explicit generators of all the subgroups (up to
conjugation in SL(2, F;)) in Theorem 7.5. We emphasize that g is an odd prime
power.

First we give an isomorphism of SU(2, F ) onto SL(2, F,).

DEFINITION 8.1. For any a € F
define SU(2, F) by

2, write @ = a?, the conjugate of a. We

-b a

a b
SU(2,Fq2)—{< — >€SL(2,Fq2):a,b€Fq2}.

LEMMA 8.2. Let o€ Fp \ F, be any element such that ac = —1. Define a
group homomorphism ¥ by

V. SU(2,Fp)— SL(2,F,)

o=

Then ¥ is an isomorphism.

REMARKS. The existence of « is ensured by the fact that the norm map
from FJ; to F is surjective and the preimage of —1 is not contained in F.

PROOF. The map ¥ is well-defined because it is routine to verify that each
entry of W(A), where A € SU(2, Fp) is invariant under the conjugation map on
F . Since SL(2, F,) and SU(2, F ) have the same order and V is injective, thus ¥
is an isomorphism. See [Hu, 8.8 Hilfssatz, p.194] for a somewhat different
proof. ([

Recall several facts about SL(2, F).

LEMMA 8.3 ([Suz, (6.23), p.410]).
(1) There exist an element Ay of order ¢ — 1 and an element Ay of order ¢+ 1
in SL(2, F,);
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(2) Any cyclic subgroup of SL(2,F,) with order relatively prime to q is
conjugate to a subgroup of (A1) or (As);

(3) If ¢ # 3 (resp. ¢ =3 and i = 2), the normalizer of A; in SL(2, F,) is a
binary dihedral group of order 2(q+ (—1)") defined in Theorem 7.5(ii). In
particular, all binary dihedral groups of order 2(q + 1) (resp. of order 2(q — 1) with
g > 3) are conjugate in SL(2, F,).

LEMMA 8.4 ([Suz, (6.19), p.407]). Letx be a non-scalar matriz of SL(2, F,).
(1) 22 is a scalar matriz if and only if the trace of = is 0.
(2) 23 is the identity matriz if and only if the trace of x is —1.

LEMMA 8.5.  Let m > 2 be an integer, and I' = (x,y : 2™ = o*,y toy = 271)
be a binary dihedral group of order 4m. Let n > 2 be a divisor of m.

(1) If " is a non-abelian subgroup of T' with order 4n, then it is isomorphic to a
binary dihedral group of order 4n.

(2) There are at most two conjugacy classes for binary dihedral groups of
order 4n contained in I'. There are precisely two such conjugacy classes if and only
if m/n is even.

PROOF. Let IV be a non-abelian subgroup with order 4n contained in T'.

Since I is not contained in (x), I contains an element u outside (z). Hence
u = z¥y for some k. Note that the order of u is 4. Clearly I' = (z,u) with
T

Let v be an element in I \ (u) of maximal order. Note that the order of v
must be even. Furthermore we may assume that v = 2! with i = m/n. For, if
v = z'u then 2’ € I" and we may replace z'u by . It is not difficult to show that
I'" = (v,u) and is a binary dihedral group of order 4n.

For any integers j and ¢, note that 2/I"z 77 = (v,2%u) = (v,v'z¥u) =
(v, 2!"2y). In particular, if i =m/n is odd, then I’ is conjugate to (v,y).
Similarly, if m/n is even, then I" is conjugate either to (v,y) or (v, zy); it is not
difficult to see that (v,y) is not conjugate to (v, xy) in I. O

DEFINITION 8.6. We will define several elements in F, which will be used
in the remaining part of this section. Let £ be a fixed generator of F:z Define
a=¢@2 =gl and 0:5(‘12’1)/4. Note that « satisfies the assumption in
Lemma 8.2 and o is a square root of —1. We will choose € € F \ F, such that
€€=1/2, which is possible because the norm map from F to F is surjective.

DEFINITION 8.7.  We will define some matrices in SL(2, F,) by
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R 0 -1\ _ 7t 0\ 1 al—a
= = = .
1 0 0 7 Y al—a a?+a®-1

Note that g is equal to

1 a\/a® 0 1 o)’
—a 1 0 o2 —a 1 ’
which is the pull-back of some matrix of SU(2, F) by Lemma 8.2.

Now we will describe conjugacy classes of subgroups in Theorem 7.5.

PROPOSITION 8.8.  The case of cyclic groups.

Any abelian subgroups of SL(2, F,;) of order relatively prime to q are cyclic
groups. Moreover, a cyclic subgroup of SL(2, F,) of order m dividing ¢ — 1 (resp.
q+1) is conjugate to the subgroup (i*), where q—1=mk (resp. (§¥), where
g+ 1=mk).

PrROOF. Apply Theorem 7.5 and Lemma 8.3. ([l

THEOREM 8.9. The case of binary dihedral groups.

(1) The groups (Z, z) and (g, Z) are binary dihedral groups of order 2(q — 1) (if
g # 3) and 2(qg+ 1) respectively. Every binary dihedral group of SL(2,F,) with
order 2(q — 1) (if ¢ # 3) or 2(q + 1) is conjugate to (Z,z) or (g, z).

(2) Assume that q# 3. Let n >4 be an even divisor of ¢— 1 and write
g—1=nk. If k is odd, every binary dihedral group in SL(2, Fy) with order 2n is
conjugate to (i*,2). If k is even, (Z¥,Z) and (z*,£Z) are two non-conjugate binary
dihedral groups of order 2n; every binary dihedral group of order 2n is conjugate to
one of them.

(3) Letn > 4 be an even divisor of ¢ + 1 and write ¢ + 1 = nk. Ifk is odd, every
binary dihedral group in SL(2, F,)) with order 2n is conjugate to (§*, 2). If k is even,
(TF, 2) and (¥, §Z) are two non-conjugate binary dihedral groups of order 2n; every
binary dihedral group of order 2n is conjugate to one of them.

PrOOF. (1) follows from Lemma 8.3. (2) and (3) follow from Lemma 8.5
because every binary dihedral group of order 2m can be enlarged to a binary
dihedral group of order 2(q — 1) or 2(¢ + 1) by Lemma 8.3. O

DEFINITION 8.10. For ¢ =0,1, we will define elements a;, b;, u;, w;, s;,
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t; € Fq.
If ¢ =1 (mod 4), define

where ¢ =0, 1.
If g =3 (mod 4), define

—2a0(’a® + o) + (1 — o?)(a® — a™)

"o 1+ a2 )
y _ 20(Ea” — ™) +o(1 — o?)(€a® + o)
L 1+ a?

where ¢ =0, 1.
After a;,b; have been defined, we define u;, w;, s;,t; by

bi—a,;—l b,+a1—1
= wi=——
2 2
si(a; — b;) = ti(a; + b;)

U; )

where s? + 2 = —1.

THEOREM 8.11.  The case of SL(2, F3) if p £ 3, and Sy if ¢ = 1 (mod 16).
We define matrices E;, L; € SL(2, F,) by

U; w; Si ti
E; = » Li=
w; +1 =1 —wuy ti —s;
where i =0,1.

(1) Assume that q # 3.

The subgroups (z, Ey) and (Z, E1) are not conjugate in SL(2, F},) if and only if
@ =1 (mod 16); both of these two groups are isomorphic to SL(2,F3). Any
subgroup of SL(2, F,), which is isomorphic to SL(2, Fy), is conjugate to (z, Ey) or
<27 El)

(2) Assume ¢*> =1 (mod 16).

The subgroups (%, Ey, Lo) and (Z, En, L1) are not conjugate in SL(2, F); both
of them are isomorphic to E’Z. Any subgroup of SL(2, F,), which is isomorphic to
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g;, is conjugate to (Z, Eq, Ly) or (2, Ey, Ly).

PROOF. For brevity we will write ¥ = SL(2, F,;) and denote a quaternion
group of order 8 by Qs.

Step 1: We will determine conjugacy classes of subgroups in X, which are
isomorphic to Qg.

Note that any subgroup in ¥, which is isomorphic to Qg, is conjugate to
(2, M), where Z is defined in Definition 8.7, M is a matrix of order 4 such that
22 = M?,M~'2M = z!. By Lemma 8.4 M has the form

where a? + bc = —1.

Apply the relation M~12M = 7', We find that b= c.

Step 2: For the group (%, M) constructed in Step 1, we will find a matrix F
such that the order of E is 3 and (%, M, E) is isomorphic to SL(2, Fs). In
particular, (Z, M) is a normal subgroup of (Z, M, E).

Choose any elements a,b€ F, satisfying a®>+b*>=—1. Define u=
(b—a—-1)/2,w=(+a—1)/2. Then u(l+u)+ww+1)=-1. (We will ex-
plain later the reason why we choose u,w in this way.) Define E by

E:<w+1 —1—u>' (8.1)

Then E € SL(2, F,) is a matrix of order 3 by Lemma 8.4.
Define

l1+u+w w—1u
w—1u —1l—u—-w]/’

y=FE13E = <

Substituting the relations u = (b —a —1)/2,w = (b + a — 1)/2 into entries of
the above matrix, we get

l1+u+w w—u b a
w—1u —l-u—w/] \a =b)
Moreover, it is routine to verify that E~'yFE = Zy. In fact, starting from a
matrix E defined by (8.1) (u,w : undetermined coefficients) and defining y by
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requiring y = E~'2F and E~'yE = Zy, we are led to the equation wu(1+u)+
w(w+ 1) = —1. To solve this equation, we may choose u=(b—a—1)/2,w=
(b+a—1)/2.

We conclude that (Z,y) is isomorphic to Qs (by Step 1) and (Z, E) is
isomorphic to SL(2, F3).

Step 3: If ¢> = 1 (mod 16), then 2 is a square in F,.

Write ¢ = p/ for some positive integer f. If f is an even integer, since Fpis
the unique quadratic extension of the prime field, the equation X? — 2 is reducible
in F[X]. Now assume that f is an odd integer. It follows that ¢ = p (mod 8).
Since ¢ = 1 (mod 16), it is necessary that p = 1 or —1 (mod 8). Thus 2 is a square
in F, by the quadratic reciprocity law.

Step 4: If ¢> =1 (mod 16), we will find a matrix L such that L? = —I, and
(3, E, L) = S,. In particular (%,y) is normal in (2, E, L).

By Lemma 8.4 and Step 1, choose L to be

where s,t are any elements in F, satisfying s* + t* = —1. We require furthermore
that s(a — b) = t(a + b); be careful that, if a = b, choose s?> = —1,t = 0; if a = —b,
choose s = 0,t> = —1. (This is possible: If a = b or —b, plugging in the relation
a’ +1v* = —1, we get 2a> = —1. Since 2 is a square in F, by Step 3, so is —1.)

It is easy to verify that L'EL=FE"',L7'2L = 7' L~'yL =y Thus
(3,E,L) = S,.

Step 5: For a finite group I', denote by Oy(T") the maximal normal 2-subgroup
of T'. Consider two subgroups T;(j = 0,1) in ¥ which are isomorphic to SL(2,3)

(resp. SZ) We will prove that T and T are conjugate in X if and only if Oy (Tp)
and O9(T}) are conjugate in X. Thus the conjugation problem in X for subgroups

isomorphic to SL(2,3) (resp. S’Z) is equivalent to that for subgroups isomorphic to

Qs because the maximal normal 2-subgroup of SL(2,3) (resp. S'Z) is isomorphic to
Qs.

It suffices to show that, if Oy(Ty) and O2(T7) are conjugate in X, then T and
Ty are conjugate in X.

Consider the normalizer of Oy(T;) in X for ¢ = 0, 1. Since Oy(T;) is isomorphic
to Qg and the normalizer contains 7; and is a subgroup of X, we find that, by
Theorem 7.5, this subgroup is either isomorphic to /Sz if > =1 (mod 16), or
isomorphic to SL(2,3) otherwise. It follows that either T; equals to the normalizer
of Oy(T;) in X or T; is an index 2 subgroup of the normalizer of Oy(T;) in X. The
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latter possibility occurs only when ¢> = 1 (mod 16). However, the group TS'Z has
only one subgroup of index 2. Thus, if Oy(T;) are conjugate in 3 for i = 0, 1, then
the normalizer of O2(T;) in ¥ are conjugate and therefore T; are conjugate.

Step 6: We will solve the conjugation problem for subgroups isomorphic to
Qs. In fact, we will exhibit two such subgroups which are possibly non-conjugate
and prove that (i) ¥ has at most two conjugacy classes of subgroups isomorphic to
Qs, and (ii) 3 has precisely two conjugacy classes of such subgroups if and only if
¢® =1 (mod 16).

Case 1: ¢ =1 (mod 4).

Recall the definitions of &, 7, - - - in Definition 8.6 and z, Z, - - - in Definition 8.7.
Note that z,Z € 3. Define a matrix y € 3 by

c 0
v= 0 o'}

A subgroup of ¥, which is isomorphic to Qs, is conjugate to (y, 2z') for some i.
The conjugation by Z repeatedly will reduce these subgroups to at most two
conjugacy classes : (y,Z) and (y, Z&). Note that both (y, 2) and (y, 2&) are binary
dihedral groups. By Theorem 8.9(2), these two subgroups are not conjugate in 3 if
and only if g — 1 =0 (mod 8), i.e. ¢> =1 (mod 16).

Case 2: ¢ = 3 (mod 4).

Imitate the proof of the above case and construct the subgroups (y, ) and

(y, zZz) in SU(2, Fp), where
~ o 0
z= 0 o)

Note that the conjugation by Z is still an inner automorphism of SU(2, F ).
Thus there are at most two conjugacy classes in SU(2, F) : (y, Z) and (y, Zz). Pull
back these information from SU(2, F ) to ¥ by Lemma 8.2. Apply Theorem 8.9
(3). We find that these two subgroups are not conjugate in X if and only if
¢+1=0 (mod 8), i.e. ¢> =1 (mod 16).

Step 7: We will construct explicitly the conjugacy classes of subgroups
isomorphic to SL(2,3) or gz. Because of Step 5, we will construct conjugacy
classes of subgroups isomorphic to Qs with the form in Step 1.

First we solve the question for the case ¢ =1 (mod 4). The remaining case
will be solved in Step 8.

Define
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1 —0/2
5= <—a 1/2 )
o 0
Slzs:< _1>.
0 o

Now define 3y = SZS~! and y; = SZzS~'. Then

Then

—o(m'/A+n™) 0 /A-n"
yi = , ; : .
n/A=n" o /A+nT)
Clearly (z,y;) = Qs. Corresponding to y; we can construct F; and L; as in
Step 2 and Step 4 so that (Z, ;) & SL(2,3), (Z, E;, L;) = SZ.
Step 8: The case ¢ = 3 (mod 4).

We will construct similar groups in SU(2, F ) and pull back the information
by Lemma 8.2. Explicitly define

where € is defined in Definition 8.6.
It is straightforward to check that

o 0
T3 = )
0 ot

Define

We find that (T12T, 1)) = Qs.
Define
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1 « - A
vi= —a 1 Yi —a 1 '

It is easy to find that

where, for i = 0,1,

20 (20 — 102 + (1 — a?)(2a? + %)

bi = 1+ a2 ’
200 (2% + a7 + (1 — a2) (a2 — o)
a; =
14+ a?

These subgroups (Z,y;) are isomorphic to Qs. Once they are constructed, we
may find the corresponding F; and L; as in Step 7. O

DEFINITION 8.12.  Assume that ¢> = 1 (mod 5). Recall the definition of 9,
in Definition 8.6.

If =1 (mod 5), define u = (n*¢ /5 — 1)~

If g = —1 (mod 5), define B = o?@D/5 4 = (5% — 1)717 and w' € Fp satisfies
w'w' = 1 — u@i; such an element w' does exist because the norm map from F to

F; is surjective.

THEOREM 8.13.  The case of SL(2, Fs).
(1) Assume that g =1 (mod 5).
Define matrices B, E1, Ey € SL(2, F) by

(¢=1)/5 0 —i
n u n
B= , E;= .
0 n~la=/5 —-n(l+u+u?) —-1-u

where i =0, 1.

Then (B, Ey) and (B,E\) are not conjugate in SL(2, Fy); both of them are
isomorphic to SL(2, F5). Moreover, any subgroup of SL(2, F), which is isomorphic
to SL(2, F5), is conjugate to (B, Ey) or (B, E).

(2) Assume that g = —1 (mod 5).

Define matrices B, E1, Ey € SL(2, Fy) by
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s | R AT Y
__/6(1+a2) OL(l*ﬂQ) 1+04252 ’ (2 1+a2 ,y 5_

where
a=u—a*(u+1)+ ol — o Hw'?),
B — 70[(1 4 QU) 4 a?iw/ + a?*?iw/q,
5 =—a(l +2u) — o — o Hw',

§=—1—u+u—a(a®uw — a2 w'?).

Then (B, Ey) and (B,E\) are not conjugate in SL(2, Fy); both of them are
isomorphic to SL(2, F5). Moreover, any subgroup of SL(2, F), which is isomorphic
to SL(2, F5), is conjugate to (B, Ey) or (B, E).

PROOF. Denote ¥ = SL(2, F,).

Step 1: Recall a standard result about SL(2, F5) (see [Suz, Example 4,
p.176)): If K is a group defined by K = (z,y : 2 = ¢y = 1, where (zy)” is a central
element of order 2), then there is a surjection from K onto SL(2, F5).

In particular, if we can find elements z,y € ¥ such that 2° =9* =1 and
(a:y)2 = —I, by Theorem 7.1 and Theorem 7.5, the subgroup (x,y) is isomorphic
to SL(2, F5) or X. Since ¥/(—1I5) is a simple group (remember ¢*> =1 (mod 5)),
(x,y) is isomorphic to SL(2, F5).

We will consider the case ¢ =1 (mod 5) first and discuss the case ¢ = —1

(mod 5) later.
a 0
B = .
0 a!

Define a = nl1/% and
We will find matrix X € 3 such that X # I, and

(BX)? = <_01 _01>, X4 =1. (8.2)

Step 2: By Lemma 8.4 any matrix of order 3 is of the form
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)

where u, w,v € F, with u(1 + u) +wv = —1.
Define u = (a> — 1), we F,\ {0},v = —w (1 + u+u?) and

u w
E:< )
v —1—u

Then E is a solution of Equation (8.2), i.e. (BE)* = —I, and E? = I. In fact,
it is obtained as follows.
For any matrix X € ¥ with the form

(u - )
X = ,
v —1l—u

a?u? + vw a*uw — w(l + u)
w—a 201 +u) vw+a2(1+u)’

consider BX. Note that
(BX)? =

Hence (BX)® = —I, if and only if a®u® + vw = —1, w(a?u — (1 4+ u)) = v(u —
a2(1+u))=0and a2(1+u)* 4+ vw= —1.

We claim that vw # 0. Otherwise, u(1+u) = —1 and a?> = —u~2. It follows
that u is of order 3 in F, and a® = =% = 1, which is contradictory to the fact that
the order of a is 5.

Hence a®u— (14 u) =0,u= (a®>—1)" and v = —w (1 4+ u + u?), which is
the reason why we define the matrix E. Moreover, from the above discussion,
Equation (8.2) has exactly ¢ — 1 solutions in ¥ with w an arbitrary element in
F,\ {0}. Any subgroup of X, which is isomorphic to SL(2, Fs), is conjugate to
(B, E) for some w € F,\ {0}.

Step 3: We will consider the question of conjugacy classes.

For any b € F,\ {0}, note that

b 0 U w b1 0 U b2w
0o b1 j/\v —1-u 0 bv) \v2 —1-u)
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Thus any subgroup of X, which is isomorphic to SL(2, F), is conjugate to
(B, Ey) or (B, Ey), where E; is defined by

u N
E=( ,
—n(l+u+uv?) —1—-u

where u = (2@ 0/5 —1)7",

Step 4: We claim that (B, Ej) is not conjugate to (B, Ey) in X.

If not, find = € ¥ such that (B, F;)" = (B, Ey), where (B, E;)" denotes
.’17_1 . <B, E1> - .

There is an element te (B Ey) such that (B)"=(B)". Hence
xt~! € Nx((B)) = (%, ), where Nx((B)) denotes the normalizer of (B) in X.

Since Nx({B)) N (B, Ey) = Np g, ({B)) is of order 20, there is an element s in
(B, Ey) of order 4 such that s '#s = 77! and (%, ) = (Z, s), where s is of the form

We conclude that there are exactly (¢ — 1)/10 subgroups of (B, Ey), which are
conjugate to (&, Z); moreover, there are exactly five solutions X to Equation (8.2)
in each of (B, E0>"in, where n is any integer. For example, the five solutions in
(B, Ey) are B/FEyB’, with j=0,1,2,3,4.

Since at~! = #'s’, and (B,Ey) = (B, E\)" = (B, )" Thus (B,E,) =

(B, E1>"i", contains at least ten solutions of Equation (8.2), which is a contra-
diction.

Step 5: Now we consider the case ¢ = —1 (mod 5).

We may apply similar arguments in SU(2,4?). Thus we will simply exhibit
the two non-conjugating classes in SL(2, F,).

As before, we work in SU(2,¢?) first. Define 8= 2@t/ 4 = (62— 1)
Note that 39" =1 and u+u? = (32 —1) "' + (672 —=1)"' = —1. Define

B/:<5 0).
0 p

All the solutions X € SU(2,¢*) (where X # I5) to the following equation
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, (-1 0 ;
(BX)’ = . XP=1
0 -1

has the form

with vu? + ww? = 1.
There are exactly ¢ + 1 of them. Choose any w' satisfying w'w'? = 1 — uu? and

define
E/ u w/a2i
A ( " a2i)q ud

where ¢ = 0,1. Thus both (B, E{) and (B, E}) are isomorphic to SL(2,5).

Now we define
~1
B 1 « 6 0 1 «
= 1) 0 p )\ -a 1
1 « u o 1 o\’
E;, = , .
—« 1 _(a21w/)f1 ud —« 1

It is routine to verify that

s | A B
S8+ \a(l-p) 1+a28?) T 1+a?\y §

and

Qi

where
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a=u—ac(u+1)+ ol —a Hw'?),
3= —a(l + 2u) + o*w 4 o* 2w
s ( :
,? — —O[(l + 2U) _ a2i+2w/ _ a*?iwlq’

b=—1—u+d’u—a(c®w —a 2. 0
Summary.

Because of Lemma 7.2 and Lemma 7.3, we find that any finite primitive
subgroup in SL(p, C) containing a non-trivial monomial normal subgroup H so
that H has a non-scalar diagonal matrix is equivalent to a group G such that ®(G)
is conjugate to SL(2, F)), or a cyclic subgroup of order m, where m > 3 and m is a
divisor of ¢ + 1, or a group of type (ii)—(v) in Theorem 7.5. The generators of these
subgroups of SL(2, F,) (up to conjugation) may be found in Proposition 8.8,
Theorem 8.9, Theorem 8.11 and Theorem 8.13. Once these subgroups are
obtained, we may apply Theorem 2.5.

In the Appendix the reader will find a list of generators of these subgroups
when p = 5 or 7. The following example provides a brief account of our method in
the case p < 7.

EXAMPLE 8.14.  Subgroups in SL(3, C). The conjugacy classes for ®(G) are:
a cyclic group of order 4, a binary dihedral group of order 8, or the group SL(2, F5)
itself. Thus we recover Theorem 1.2, i.e. Blichfeldt’s Theorem.

Subgroups in SL(5, C). The conjugacy classes for ®(G) are: cyclic groups of
order 3 or 6, binary dihedral groups of order 8 or 12, or a group isomorphic to
SL(2, F3), or the group SL(2, F5) itself. Thus we obtain in total six non-equivalent
primitive subgroups of this type. This provides an explicit description of Brauer’s
Theorem, i.e. Theorem 1.3(1).

Subgroups in SL(7, C). The conjugacy classes for ®(G) are: cyclic groups of
order 4 or 8, binary dihedral groups of order 8 (two non-conjugating subgroups),
12 or 16, or two non-conjugate subgroups isomorphic to SL(2, F'3), or two non-
conjugate subgroups isomorphic to SZ, or the group SL(2, F7) itself. Thus we
obtain in total eleven non-equivalent primitive subgroups of this type. This
provides an explicit description of Wales’s Theorem, i.e. Theorem 1.3(2).

Appendix.

For the convenience of the reader, in this appendix we will provide a
complete list of non-conjugate finite subgroups of SL(p, C) containing a non-
trivial monomial normal subgroup together when p = 5 or 7 (see Theorem A.3 and
Theorem A.6).
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LEMMA A.l. Let p=5 or 7, and (= e2mV=1/p, Define the Vandermonde
matriz T = (aij)o<; j<p-1 € GL(p, C) by defining a;; = CJ. If p=5, then

det(T) = —(V5)*. If p = 7, then det(T) = (V7)" - v/=1.
PROOF. Omitted. O

DEFINITION A.2.  We will define matrices in SL(5, C), which will be used in
Theorem A.3. Let ¢ = e2™=1/5. Define

000 0 1 1 0 0 0 O
1 0000 0 ¢ 0 0 0
o=|0 10 00|, r=]0 0 ¢ 0 o],
00100 00 0 ¢ 0
00010 00 0 o0 ¢
100 0 0 11 1 1 1
010 0 0 1 ¢ ¢ ¢ ¢
1 .
plzoogoo,pgffﬁlﬁﬁccs,
000 ¢ 0 1 ¢ ¢ ¢ ¢
000 0 ¢ 1 ¢t ¢ ¢ ¢
10000 1 ¢ ¢ ¢ ¢
000 1 0 1 1 1 1 1
1 .
ngz—01000,p4:EC21C3CC47
0 00 0 1 ¢ ¢3¢
00100 ¢ ¢ 1 ¢ ¢
11<3<4<3
1 ¢ ¢ 1 <
I TR A
S 1 1 ¢
p5\/5CC ¢

¢ ¢ ¢ ¢
¢ ¢ ¢
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THEOREM A.3. Let D= (o,7) C SL(5,C) where o,7,p; are defined in
Definition A.2. If G C SL(5, C) is a finite primitive group containing a non-trivial
monomial normal subgroup, then G is conjugate to exactly one group in the
following list,

D, p3),
D, p4),
D, p2, p3),
D, pa, pa),
D, p2, ps),

G =
Gy = {
Gs = (
Gy =
Gs = (
Gs = (D, p1, p2, p3)-

PROOF.

Step 1: By Proposition 2.3 we may assume that G contains a non-scalar
diagonal matrix.

Step 2: Apply Theorem 2.5 and Theorem 2.6. We may assume that there is a
group homomorphism ® : G — SL(2, F5) such that Ker(®) = D. It remains to
find ®(G). Note that the conjugacy class of G in SL(p, C) depends only on the
conjugacy class of ®(G) in SL(2, F5) by Lemma 7.2.

Step 3: By Theorem 2.7, if 54| |G|, then G is conjugate to Gy = (D, p1, p2, p3)
which is Gg in our list. Thus we may assume that 5! /|G| from now on.

Since |D| = 5%, it follows that 5/|®(G)|. Now we may use Theorem 7.5 and
Lemma 7.3 to determine the structure of ®(G).

Step 4: It is not difficult to see that ®(G) is conjugate to one of the subgroups
of SL(2, F;) described in Example 8.14.

Step 5: If (@) is a cyclic group of order 3 or 6, apply Proposition 8.8. We
may assume that ®(G) = (7*) or () (in the notation of Proposition 8.8).

Recall the construction of y in Definition 8.6 and Definition 8.7. We choose
a € Fy5 such that Fo5 = F3(a), o® +3a +4 = 0. Note that a = & for some ¢ €
Fys with FJ, = (£). It follows that 0 =1 =2 € F5. Thus we find that

(30 /1 3

Tlo2) YT\s 0)
Since y corresponds to the fractional linear transformation z — (z + 3)/(3x), it
follows that g: Ay — Ay — Ay where ®(g9) =y. Apply Theorem 2.5(E) (vi) to

find an explicit form of ¢g by taking & = 1 (mod 5). Thus g is the matrix ps. (Note
that the matrix \/5p4 can be transformed to the Vandermonde matrix in Lemma



Some primitive linear groups of prime degree 1065

A.1 by successive elementary row and column operations. Thus we may find its
determinant.)

Hence we get the groups G; and G in the list.

Step 6: If ®(G) is a binary dihedral group of order 8 or 12, apply Theorem 8.9.
Thus ®(G) is conjugate to (T,z) or (g, z).

Note that the matrix & € SL(2, F;) is given in Step 5 while Z is given in
Definition 8.7. Let g1, go € G such that ®(g;) =z, ®(¢2) = .

Since Z corresponds to the fractional linear transformation z — —1/z, we find
that g1 : Ay — Ag — Ay. Hence we may apply Theorem 2.5(E) (iii) by taking
k=1 (mod 5). Thus, up to an element in D, we may assume that g; is po.
Similarly go : Ay — Ao, Ag — Ag, Ay — Ay. Thus we apply Theorem 2.5(E) (i)
by taking k =2 (mod 5). We get g2 = ps.

Step 7: If ®(G) is isomorphic to SL(2, F3), apply Theorem 8.11. Since 5% # 1
(mod 16), the group (z, Ey) and (z, E1) in Theorem 8.11 are conjugate. Hence it
suffices to find (z, Ey).

By Definition 8.10, since n = 2 € F5 (by Step 5), we find ay = 3, by = 0. Hence
ug = 3, wy = 1. By Theorem 8.11, we get

E 51 SL(2, F
U € SL(2, F5).

Let g € G satisfying ®(g) = Ey. Then g: Ay — Ay — Ay. Apply Theorem
2.5(E) (vii) with i =4, j =2 and k = 2 (mod 5). Thus we may choose g = p5. O

DEFINITION A.4. We will consider the case p = 7.

We will determine the parameters «a, 7,0, ... in Definition 8.6 and Definition
8.10 first.

Choose « € Fyy satisfying a®> +a —1=0. Define £ =24 3a € Fy. It is
routine to verify that Fj; = (£) and o = &,

Define n=€8=3¢€ F;. 0 =¢2=2—-3a € Fy9. Choose ¢ =4+« so that
€€ = 1/2. By Definition 8.10, we find that ag =4, by =5, a1 =3, by = 5. Hence
ug = 0, wg = 4, u; = 4, w; = 0. Thus we may choose sg = 3, tg =2, sy =2, t; = 3.

DEFINITION A.5.  We will define matrices in SL(7, C') which will be used in

Theorem A.6. Let ¢ = e2™V=1/7 and ¢ = (\/7@"\/*_1/14)—1.
Define
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0
1
0
c=10
0
0
0
1
0
0
pr=10
0
0
0
p3 =
ps = —¢C

o
o O O o o =

o O O O = O O

o
o o o o = O
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o o O
S Ny
o o S O O = O O O

o O O = O O o

C3
CG
C2
CS

_ O O O o o o

o O = O O O O

SO = O O O O O

(an]
o O O = O O

C4
C3
CZ

Ju—y

CG

_ o O O O©O O O

o o o O

C()‘

o O O O o O

o O = O O O O

Ty
o O o o o o

1 0 0
0 ¢ 0
00 ¢
s=|o o0 o
0 0 O
0 0 O
0 0 O
1
1
1
, p=c| 1
1
1
1
1
1
¢
p1=—c| ¢
¢
¢
¢
1
¢l
¢
¢, ops=—c
¢
¢
&

s

CS
<4
Cs
C()’

<2

<~4

<4

C4
CS
C3
C5
<~4

C2
C4
CG

C3
CS

0
0
0
0

<~4
0

CG
<4
<3
C‘S
<4
CG
CQ

CG
CZ
<2
C6

C3
C6
CQ
<5

C4

o O o o O

C5
<2

CG
CG

CQ
C?

CZ

C4
C4

C4

CS
CQ
CG
CS

o O O o o o

<6
<2
CG
<4
CS
<-3
C4
CG
43
C4
CQ
C4
CS
Cﬁ

C5
C3

CG
C4
C?

<4

C4
CQ

CS

<5
C6
<4
CG

CG
CS
C4
CB
CZ

C3
CG
<3

CG

<3
C3

CQ
C3

<3
CZ
C5
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11 ¢ ¢ ¢ ¢ ¢ 11 ¢ ¢ ¢ e
L ¢ e ¢ 1 el 1 ¢ 1 ¢ ¢ ¢ ¢
¢ ¢ 1 ¢ ¢ ¢ ¢ ¢ d
pr=cl ¢ ¢ ¢ ¢ ¢ O o= CE OO
¢ ¢ 1 o¢ ¢t ¢ ¢ ¢ ¢ e ¢
¢ 1 ¢ e ¢ ¢ 1 ¢ 1 ¢ ¢
¢ ¢ ¢ e d ¢ ¢ ¢ 11 ¢

THEOREM A.6. Let D= (o,7) C SL(7,C) where o,7,p; are defined in
Definition A.5. If G C SL(7, C) is a finite primitive group containing a non-trivial
monomial normal subgroup, then G is conjugate to exactly one group in the
following list,

G = (D»P3>7

Gy = (D, pa),

Gs = (D, pa, p3),
Gy = (D, pap2, p3),
Gs = (D, p2, p3),
Gs = (D, pa, pa),
Gr = (D, p2, ps),
Gs = (D, p2, pe),
Gy = (D, p2, p5, p1),
Gro = (D, p2, ps, ps),
G = (D, p1, p2, p3)-

PROOF. The proof is quite similar to that of Theorem A.3. Thus we will
outline the main steps only.

Step 1: Let ® : G — SL(2, F7) be the group homomorphism in Theorem 2.6.
If 74| G, then G is conjugate to Gy = (D, p1, p2, p3) by Theorem 2.7, which is Gq in
our list. Otherwise, ®(G) is conjugate to one of the subgroups of SL(2, F;)
described in Example 8.14.

Step 2: If ®(G) is a cyclic group of order 4 or 8, apply Proposition 8.8. We find
that ®(G) = (%) or (y). Using the parameters described in Definition A.4, we find
that
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(50 (11 (0 -1 0 4
T = ) y= ) = ) EO = )
0 3 1 2 1 0 5 —1
4 0 3 2 2 3
E, = . Ly= , L= .
1 2 2 =3 3 =2

If g € G satisfies that ®(g) =y, then G : A, — A; — Aj. Apply Theorem 2.5(E)
(vii) withi =1, j = 3, k=1 and § = 3. We may assume that g = p, without loss of
generality. Hence we get G and Gs.

Step 3: If ®(G) is a binary dihedral group of order 8 (there are two such
groups), 12 or 16, apply Theorem 8.9 and recall the matrices Z, ¥, Z in Step 2. If g is
a preimage of Z, then g: A, — Ay, Ag — Ay, Ay — Ay; apply Theorem 2.5(E)
(i) with k=3 (mod 7). We find g = p3. For Z, apply Theorem 2.5(E) (iii) with
k=1 (mod 7); we get g = po. Thus we obtain G3,Gy, G5, Gg.

Step 4: If ®(G) is isomorphic to SL(2, F3), apply Theorem 8.11. Let g; € G
correspond to E; for i = 0, 1. Since gg : Ay — Ag — As, we apply Theorem 2.5(E)
(iv) with 4=3 and k=3 (mod 7). Thus we may take gy = p5. Similarly
g1 A — Ay — Ag; thus we apply Theorem 2.5(E) (vii) withi =4, j =5, k = 2,
6 =—1 (mod 7). We find ¢g; = pg. Thus we get G7 and Gs.

Step 5: If ®(G) is isomorphic to EZ, apply Theorem 8.11. Let g; correspond to
L; for i = 0,1. Since gg : Ax < Aj, we apply Theorem 2.5(E) (v) with k = 2 (mod
7). We get go = pr7. Similarly ¢; : Ay < As. Apply Theorem 2.5(E) (v) with k = 3
(mod 7). We get g1 = ps. O
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