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Abstract. A classical problem in finite group theory dating back to

Jordan, Klein, E. H. Moore, Dickson, Blichfeldt etc. is to determine all finite

subgroups in SLðn;CÞ up to conjugation for some small values of n. This question

is important in group theory as well as in the study of quotient singularities. Some

results of Blichfeldt when n ¼ 3; 4 were generalized to the case of finite primitive

subgroups of SLð5;CÞ and SLð7;CÞ by Brauer and Wales. The purpose of this

article is to consider the following case. Let p be any odd prime number and G be a

finite primitive subgroup of SLðp;CÞ containing a non-trivial monomial normal

subgroup H so that H has a non-scalar diagonal matrix. We will classify all these

groups G up to conjugation in SLðp;CÞ by exhibiting the generators of G and

representing G as some group extensions. In particular, see the Appendix for a list

of these subgroups when p ¼ 5 or 7.

1. Introduction.

There is no question that the most renowned problem in the finite group

theory is the classification of finite simple groups. Another classification problem

dating back to Jordan, Klein, E. H. Moore, Dickson, Blichfeldt etc. is the

determination of all finite subgroups in SLðn;CÞ up to conjugation for some small

values of n [Fe1, Section 6], [Br1], [Br2, pp.32–33], [Wa1], [Li], [Si], [Zh2]. The

latter problem was initiated by Camille Jordan (1838–1922) in an attempt to

classify differential equations of the Fuchsian class with algebraic solutions. More

precisely, a linear homogeneous differential equation of order n, whose coefficients

are meromorphic functions on the complex plane, is called an equation of the

Fuchsian class if it has only regular singularities [Po, p.76], [Gr, Chapter 2], a

solution of such a differential equation is an algebraic solution if it is locally a

branch of some algebraic function [Gr, p.48]. Besides solving these equations,

Fuchs tried to characterize those equations with algebraic solutions [Gr, p.48],

[Po, Chapters IV and V]. Jordan discovered a group-theoretic answer to this
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question: An n-th order differential equation of the Fuchsian class has algebraic

solutions if and only if its monodromy group is a finite subgroup of SLðn;CÞ [Jo],
[Gr, Chapter 3], [Po, pp.45–46]. Hence it fell on the shoulders of group theorists

to list all finite subgroups of SLðn;CÞ, at least when n is small.

It was solved by Jordan and Klein to classify all finite subgroups in SLðn;CÞ
up to conjugation in the case n ¼ 2 [Suz, p.404] and by Blichfeldt in the case

n ¼ 3; 4 [Bl], [Fl1], [Fl2], [Hö]. Richard Brauer was absolutely fascinated by this

problem, as remarked by Feit [Fe2, p.13], that ‘‘for a long time Brauer had been

intrigued by the work of H. F. Blichfeldt [Bl]’’ (see Ron Solomon’s comment also

[So, p.733]). In recent years this program attracts curiosity of people working on

symbolic algebraic computation also.

This question is important not only in the study of pure group theory, but

also for the understanding of quotient singularities [MM], [KW], [YY]. Let X be

a complex smooth manifold and !X be its canonical bundle. Supposing that

�ðX;!n
XÞ 6¼ 0, Kodaira defines the n-th pluricanonical map �n : X !

Pð�ðX;!n
XÞ

�Þ. The manifold X is of general type if �n is a birational map when

n is large enough. Since �nðXÞ is canonically sitting inside the complex projective

space, it is this birational model of X that is studied most of the time [MS]. The

singularities which occur in �nðXÞ are called canonical singularities. If dim X ¼ 1,

the pluricanonical models are always smooth. If dim X ¼ 2, the canonical

singularities are isolated quotient singularities C2=G where G is some finite

subgroup of SLð2;CÞ. These points are called rational double points and can be

represented locally by hypersurfaces in C3 through the explicit A-D-E equations:

Ak : x
2 þ y2 þ zkþ1 ¼ 0; k � 1;

Dk : x
2 þ y2zþ zk�1 ¼ 0; k � 4;

E6 : x
2 þ y3 þ z4 ¼ 0;

E7 : x
2 þ y3 þ yz3 ¼ 0;

E8 : x
2 þ y3 þ z5 ¼ 0:

The theory of quotient singularities in higher dimensions has received a lot of

attention. Let � be a finite subgroup of GLðn;CÞ and Y� ¼ Cn=�. An element

g 2 � is called a pseudo-reflection if rankðg� IÞ ¼ 1. A classical theorem of

Shephard-Todd-Chevalley asserts that Y� is smooth if and only if � is generated

by pseudo-reflections [ST], [Ch], [Co]. In general, let �0 be the subgroup of �

generated by pseudo-reflection elements in �, and define b� ¼ �=�0. Then it is clear

that Y� ¼ Y�0
=b�; moreover, the group b� is a small subgroup, i.e. it has no pseudo-

reflection element.
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The dualizing sheaf !Y� of a quotient singularity Y� is studied by Watanabe:

If � is a small subgroup of GLðn;CÞ, then Y� is Gorenstein if and only if � �
SLðn;CÞ [Wat]. In this situation, i.e. � � GLðn;CÞ is a small subgroup, Prill

shows that the singular locus of Y� is equal to S=� where S ¼ fx 2 Cn : gðxÞ ¼
x for some g 2 � n fIgg [Pr]. As a corollary, if � is a small cyclic group of order N,

then Y� has an isolated singularity if and only if all the eigenvalues of a generator

of � consist of primitive n-th roots of unity. If n � 3, Schlessinger shows that an

isolated singularity of Cn=� is rigid, and therefore it can never be a hypersurface

singularity [Sc]. On the other hand, Kac and Watanabe show that a quotient

singularity is not isolated if n � 3 [KW]. In short, it is crucial to know what finite

subgroups of SLðn;CÞ and GLðn;CÞ look like in the study of quotient

singularities. For other applications, see [Ro], [BKR], [GM] and the references

therein.

Now let’s return to the classification of subgroups in SLðn;CÞ for small values

of n. In his approach [Bl], Blichfeldt considered the reducible and irreducible

finite subgroups in SLð3;CÞ (resp. SLð4;CÞ) separately. For the irreducible

groups, he considered the primitive groups and imprimitive groups (see Definition

1.1). There are three classes of finite primitive groups: (i) those groups in which all

the proper normal subgroups are reducible; (ii) those groups with an irreducible

imprimitive normal subgroup; (iii) those groups with an irreducible primitive

normal subgroup. We may find finite subgroups in GLðn;CÞ through our

knowledge for finite subgroups in SLðn;CÞ by the method of A. M. Cohen in [Co,

(3.1), p.392]. Since SLðn;CÞ contains no pseudo-reflections, the quotient

singularities associated with finite subgroups of SLðn;CÞ are always Gorenstein

by Watanabe’s Theorem [Wat].

Many techniques and results of Blichfeldt may be generalized to linear groups

of degree � 5 [Br1], [Wa1], [Wa2], [Wa3], [BZ]. In fact, it is possible to get

concrete information for linear groups of prime degree [Li], [Si], [Su], [DZ1],

[DZ2], [TZ], [Zh1]. The purpose of this article is to find, by listing a set of

generators, all the finite primitive subgroups G in SLðp;CÞ with p an odd prime

number such that G contains a monomial normal subgroupH so that H has a non-

scalar diagonal matrix. Note that a (qualitative) description of these groups were

already known and can be found in [Si], [DZ1]; we will emphasize that our goal is

an explicit exhibition of these groups in terms of generators.

Before stating our main results, we will clarify some notions first. Through-

out this paper, p denotes an odd prime number. Two finite subgroups G1 and G2 in

SLðp;CÞ are called equivalent, if there exists some g 2 SLðp;CÞ such that

G2 ¼ gG1g
�1. A general program initiated by Jordan, Klein and Blichfeldt is to

find a complete list of all the non-equivalent finite subgroups in SLðn;CÞ by

exhibiting their generators, when n is a small positive integer.
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DEFINITION 1.1. Given SLðn;CÞ, take x0; x1; . . . ; xn�1 to be the standard

basis and denote V ¼ �0�i�n�1C � xi so that we get an isomorphism between

SLðn;CÞ and SLðV Þ via this basis x0; . . . ; xn�1.

A finite subgroup G � SLðn;CÞ is called imprimitive if G is irreducible and

there exists a decomposition V ¼ V1 � � � � � Vr of V into a direct sum of proper

subspaces Vi 6¼ 0, 1 � i � r such that the action of any g 2 G on V induces a

permutation on the set fVi j 1 � i � rg.
A finite subgroup G � SLðn;CÞ is called primitive if G is irreducible and is

not imprimitive.

If we choose a fixed basis for V , we will call an imprimitive subgroup of

GLðn;CÞ a monomial group if all the imprimitivity subspaces are one-dimen-

sional. Specifically a monomial group G � SLðn;CÞ is irreducible and consists of

matrices, where each row (resp. column) has only one non-zero entry (remember

that we choose the standard basis x0; x1; . . . ; xn�1 to be the basis for presenting

matrices of SLðn;CÞ).
In order to have a better perspective of the question we investigate in this

paper, we will review some previously known results.

THEOREM 1.2 (Blichfeldt [Bl, p.106], [YY, p.18]). Let G be a finite

primitive subgroup in SLð3;CÞ such that G contains a monomial normal subgroup.

Then G is equivalent to one of the following three groups,

(i) G1 is a group of order 108 generated by

S ¼
1

!

!2

0B@
1CA; T ¼

0 0 1

1 0 0

0 1 0

0B@
1CA; V ¼

1ffiffiffiffiffiffiffi
�3

p
1 1 1

1 ! !2

1 !2 !

0BB@
1CCA

where ! is a primitive cubic root of unity;

(ii) G2 is a group of order 216 generated by G1 and

W ¼
1ffiffiffiffiffiffiffi
�3

p
1 1 !2

1 ! 1

! 1 1

0B@
1CA;

(iii) G3 is a group of order 648 generated by G1 and
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U ¼
�

�

�!

0B@
1CA

where � is a primitive 9-th root of unity satisfying �3 ¼ !2.

THEOREM 1.3. Let G be a finite primitive subgroup in SLðp;CÞ containing a
non-trivial monomial normal subgroup.

(1) (Brauer [Br1, (9A)]) If p ¼ 5, then G is equivalent to either (i) G0, a

uniquely determined group of order 54 � 24 whose Sylow 5-subgroups are not

abelian, and which contains a normal subgroup D of order 53 and exponent 5, or

(ii) a certain subgroup of G0 in (i) with D as its Sylow 5-subgroup.

(2) (Wales [Wa2, Theorem 4.1]) If p ¼ 7, then G is equivalent to either (i) G0,

a uniquely determined group of order 74 � 48 whose Sylow 7-subgroups are not

abelian, and which contains a normal subgroup D of order 73 and exponent 7

satisfying G0=D ’ SLð2;F7Þ; or (ii) a certain subgroup of G0 in (i) with D as its

Sylow 7-subgroup.

THEOREM 1.4 (Dixon and Zalesski [DZ1, Lemma 1.1]). Let G be a finite

primitive subgroup of SLðp;CÞ and Z be its center. Let S be the socle of G=Z. If S

is an elementary abelian p-group of order p2, then G=Z is isomorphic to a subgroup

of SLðp;CÞ which is a split extension of S by SLð2;FpÞ.

In the above theorem, the extension of S by SLð2;FpÞ was explained in [DZ1,

p.126, the fourth paragraph]; see [Si, Theorem 1] also. For applications to

problems in geometry, the goal of this article is to provide a more explicit

description of the group G beyond the qualitative information (see Theorems 2.5,

2.6, 2.7, Summary and Example 8.14 at the end of Section 8). In particular, see

the appendix for a list of generators of these subgroups (there are precisely six

non-equivalent such groups if p ¼ 5, and precisely eleven such groups if p ¼ 7).

Our proof will not assume previous knowledge of results in [Si], [DZ1], [Su]. We

remark that, in Theorem 1.4 if the socle S is not an elementary abelian p-group of

order p2, then it is a non-abelian simple group and its structure is depicted in

[DZ1, Theorem 1.2] (see also the remark of Proposition 2.3).

In this article, we will denote by p an odd prime number. Fp ’ Zp is the finite

field with p elements and � ¼ e2�
ffiffiffiffiffi
�1

p
=p is a primitive p-th root of unity. Sn,

GLðn;FpÞ and PGLðn;FpÞ denote the symmetric group on n letters, the general

linear group and the projective linear group over Fp respectively. We emphasize

that a monomial (or imprimitive) group in SLðp;CÞ is necessarily irreducible.
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2. Main results.

In Blichfeldt’s proof, the invariant triangles were crucial in determining the

group structure [Bl, p.105], [YY, p.18]. Unfortunately Blichfeldt talked about

them in passing without taking the trouble to provide a formal definition. Here is

a notion which will play the same role as invariant triangles in our case.

DEFINITION 2.1. Let � be a finite monomial subgroup of GLðn;CÞ and

U ¼ �0�i�n�1C � xi, where x0; x1; . . . ; xn�1 is the standard basis. A �-polygon

� ¼ fv0; v1; . . . ; vn�1g is a set of n vectors in U satisfying (i) U ¼
P

0�i�n�1 C � vi,
and (ii) for any g 2 �, any 0 � i � n� 1, g � vi 2 Cvj for some j. Two �-polygons

fv0; v1; . . . ; vn�1g and f�0v0; �1v1; . . . ; �n�1vn�1g, �i 2 C n f0g, will be regarded as

the same �-polygon.

From the definition, fx0; x1; . . . ; xn�1g is a �-polygon. We will show that there

are only finitely many �-polygons (see Lemma 3.1).

DEFINITION 2.2. Let x0; x1; . . . ; xp�1 be the standard basis. We will define

�; �; �d 2 SLðp;CÞ by

� : xj 7! xjþ1;

� : xj 7! �jxj;

�d : xj 7! "xdj

where d 6� 0 (mod p), 0 � j � p� 1, and " 2 C n f0g is adjusted to ensure

detð�dÞ ¼ 1. In particular, we require " ¼ 1 or �1.

The following Proposition, although it will not be used anywhere in this

paper, shows that our assumptions are equivalent to those of Dixon and Zalesski

in Theorem 1.4 [DZ1, Lemma 1.1]. Its proof relies on the validity of Lemmas 3.7

and 3.8 to be proved later; we include this Proposition and its proof here for the

convenience of the reader.

PROPOSITION 2.3. Let G be a finite primitive subgroup in SLðp;CÞ. Then
the followings are equivalent.

(1) G contains a monomial normal subgroup H so that H has a non-scalar

diagonal matrix.

(2) If S is the socle of G=Z with Z being the center of G, then S is an

elementary abelian group of order p2.

PROOF. ð1Þ ) ð2Þ By Lemma 3.7 and Lemma 3.8 D is an extra-special

group of order p3, and D / G. Hence the socle of G=Z is not a non-abelian simple
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group. Apply [DZ1].

ð2Þ ) ð1Þ From the proof of [DZ1, Lemma 1.1], there exists a normal

subgroup S0 in G such that S0 is an extra-special group of order p3. Hence S0 is

equivalent to a monomial group containing a non-scalar diagonal matrix. �

REMARK. In a previous version we even tried to prove that any one

statement in Proposition 2.3 is equivalent to a weaker condition that G contains a

non-trivial monomial normal subgroup H (such a subgroup is not contained in the

center of G, because H is irreducible by Definition 1.1), using [DZ1, Theorem 1.2]

and the classification of finite simple groups. We thank Zalesski for communicat-

ing one of us that the list in [DZ1, Theorem 1.2] missed some groups (e-mail to J.

Zhang, 28 Feb. 2007).

DEFINITION 2.4. Let x0; x1; . . . ; xp�1 be the standard basis. We will define

pþ 1 sets �1;�0; . . . ;�p�1 as follows.

�1 ¼ fx0; x1; . . . ; xp�1g;
�0 ¼ fu0; u1; . . . ; up�1g , where uj ¼

X
0�‘�p�1

�j‘x‘ for 0 � j � p� 1;

�i ¼ fv0; v1; . . . ; vp�1g, where 1 � i � p� 1 and

v0 ¼
X

0�‘�p�1

�i
‘
2ð Þx‘; vj ¼ �jðv0Þ ¼

X
0�‘�p�1

�i
‘
2ð Þx‘þj

for 1 � j � p� 1.

We will prove that they are all the D-polygons for some monomial group

D � SLðp;CÞ.
The following Theorems 2.5–2.7 are the main tools of finding explicit

generators of all the primitive groups G � SLðp;CÞ with monomial normal

subgroups (containing a non-scalar diagonal matrix). In fact, use Theorems 2.6

and 2.7 first, and reduce the question to finding the conjugacy classes of some

subgroups in SLð2;FpÞ, which will be explained more precisely in Lemma 7.2 and

Theorem 7.5. Then we may apply Theorem 2.5 to achieve our goal. A detailed

strategy of solving this question will be given in Section 8. A list of these groups

will be provided in the Appendix when p ¼ 5 or 7.

THEOREM 2.5. Let G0 � SLðp;CÞ be a finite primitive subgroup such that G0

has a monomial normal subgroup H 0 containing a non-scalar diagonal matrix.

Then G0 is equivalent to a group G � SLðp;CÞ with the following properties.

(A) G contains the subgroup D ¼ h�; �i as a normal subgroup.

(B) �1;�0; . . . ;�p�1 are all the D-polygons.
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(C) The group G acts on the set f�1;�0; . . . ;�p�1g by gð�iÞ :¼ fgðw0Þ; gðw1Þ,
. . . ; gðwp�1Þg for any g 2 G, where i 2 f1; 0; 1; . . . ; p� 1g and �i ¼ fw0; w1; . . .,

wp�1g.
(D) The group action of G in (C) induces a non-trivial group homomorphism

� : G ! PGLð2;FpÞ with Kerð�Þ ¼ h�; �i or h�; �; �p�1i according to whether

�p�1 62 G or �p�1 2 G. Denote H0 ¼ Kerð�Þ.
(E) For any g 2 G, if �ðgÞ is known, then some element � may be described

explicitly, where g 2 � �Kerð�Þ. More explicitly, if g 2 G satisfies

(i) g : �1 7! �1, �0 7! �0, then there exist � 2 gH0 and some integer k 6� 0

(mod p) such that

� : x‘ 7! " � xk‘

for 0 � ‘ � p� 1, " 2 C n f0g, and �ð�Þ 2 PGLð2;FpÞ is the map x 7! k�2x, where

x ¼ 0; 1; 2; . . . ; p� 1;1; or

(ii) g : �1 7! �1, �0 7! �i for some 1 � i � p� 1, then there exist � 2 gH0

and some integer k 6� 0 (mod p) such that

� : x‘ 7! c �i
k‘
2ð Þxk‘

for 0 � ‘ � p� 1, c 2 C n f0g, and �ð�Þ 2 PGLð2;FpÞ is the map x 7! k�2xþ i,

where x ¼ 0; 1; . . . ; p� 1;1; or

(iii) g : �1 7! �0 7! �1, then there exist � 2 gH0 and some integer k 6� 0

(mod p) such that

� : x‘ 7! c �
X

0�‘0�p�1

�k‘‘
0
x‘0

for 0 � ‘ � p� 1, c 2 C n f0g, and �ð�Þ 2 PGLð2;FpÞ is the map x 7! �k2=x,

where x ¼ 0; 1; . . . ; p� 1;1; or

(iv) g : �1 7! �0 7! �i for some 1 � i � p� 1, then there exist � 2 gH0 and

some integer k 6� 0 (mod p) such that

� : x‘ 7! c ��i �i�1k‘
2ð Þ X

0�‘0�p�1

�k‘‘
0
x‘0

for 0 � ‘ � p� 1, c 2 C n f0g, and �ð�Þ 2 PGLð2;FpÞ is the map x 7!
i=ð1� k�2ixÞ, where x ¼ 0; 1; . . . ; p� 1;1; or

(v) g : �1 7! �i 7! �1 for some 1 � i � p� 1, then there exist � 2 gH0 and
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some integer k 6� 0 (mod p) such that

� : x‘ 7! c ��i ‘
2ð Þ�i �k‘

2ð Þ X
0�‘0�p�1

�i
‘0
2ð Þx‘0þk‘

for 0 � ‘ � p� 1, c 2 C n f0g and �ð�Þ 2 PGLð2;FpÞ is the map x 7!
ðix� i2k2 � i2Þ=ðx� iÞ, where x ¼ 0; 1; . . . ; p� 1;1; or

(vi) g : �1 7! �i 7! �0 for some 1 � i � p� 1, then there exist � 2 gH0 and

some integer k 6� 0 (mod p) such that

� : x‘ 7! c ��i ‘
2ð Þ

X
0�‘0�p�1

�i
‘0
2ð Þx‘0þk‘

for 0 � ‘ � p� 1, c 2 C n f0g and �ð�Þ 2 PGLð2;FpÞ is the map x 7!
ðix� i2Þ=ðxþ ik2 � iÞ; or

(vii) g : �1 7! �i 7! �j for some 1 � i 6¼ j � p� 1, then there exist � 2 gH0

and some integer k 6� 0 (mod p) such that

� : x‘ 7! c �
1
2½‘2ð

i2k2

i�j�i�ik2Þþi‘	 X
0�‘0�p�1

�i
‘0
2ð Þx‘0þk‘

for 0 � ‘ � p� 1, c 2 C n f0g and �ð�Þ 2 PGLð2;FpÞ is the map x 7!
ðixþ 	j� i2Þ=ðxþ 	 � iÞ, where 	 ¼ ði� jÞ�1i2k2.

REMARKS. In the explicit formula of � of Part (E), there are two

parameters c 2 C n f0g and k 6� 0 (mod p). It is understood that c is adjusted to

ensure that � 2 SLðp;CÞ, and (according to the following Theorem 2.6) k should

be chosen to guarantee that the ‘‘determinant’’ of the fractional linear trans-

formation �ð�Þ 2 PGLð2;FpÞ is 1.

THEOREM 2.6. Keep the assumptions and notation in Theorem 2.5.

(1) For any g 2 G, �ðgÞ 2 PSLð2;FpÞ; thus we may regard � as a map from G

to PSLð2;FpÞ.
(2) For any g 2 G, if g � � � g�1 ¼ �r�a�c, g � � � g�1 ¼ �s�b�d for some

a; b; c; d; r; s 2 Fp, define

�ðgÞ ¼
a b

c d

 !
2 GLð2;FpÞ:
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Then �ðgÞ 2 SLð2;FpÞ; and therefore � : G ! SLð2;FpÞ is a well-defined group

homomorphism with Kerð�Þ ¼ D.

(3) If �0 : SLð2;FpÞ ! PSLð2;FpÞ is the canonical projection, then �0� ¼ �.

THEOREM 2.7. Keep the assumptions and notation in Theorem 2.5. Define

�1; �2; �3 2 SLðp;CÞ by

�1 : x‘ 7! c1 �
‘
2ð Þx‘;

�2 : x‘ 7! c2 �
X

0�‘0�p�1

�‘‘
0
x‘0 ;

�3 : x‘ 7! c3 xh‘;

where h is a generator of F

p and c1; c2; c3 2 C n f0g.

(1) Let G0 be the subgroup of SLðp;CÞ generated by D and �1; �2; �3. Then G0

is a primitive group of order p4ðp2 � 1Þ containing a monomial normal subgroup H

which has a non-scalar diagonal matrix.

(2) Let G0 � SLðp;CÞ be any finite primitive subgroup such that G0 has a

monomial normal subgroup H 0 containing a non-scalar diagonal matrix. Then G0

is equivalent to a subgroup G of G0 such that G contains D. Moreover, if p4 divides

the order of G, then G ¼ G0; if p
4 doesn’t divide the order of G, then G is a semi-

direct product of D and a subgroup of SLð2;FpÞ.

One crucial tool in our proof of these theorems is the notion of �-polygons for

a monomial group � � SLðn;CÞ (see Definition 2.1). Roughly speaking, a

�-polygon is simply a decomposition of an n-dimensional space into a direct

sum of some one-dimensional eigenspaces. In other words, a �-polygon corre-

sponds to an index n subgroup D of � with a one-dimensional D-eigenspace.

Another tool is a formula of Gauss sum
P

0�‘�p�1 �
‘2 , which helps to find the

explicit formulas of elements in G (see Theorem 4.5 and the proof of Theorem 2.5

in Section 6).

We will explain briefly the ideas of our proof. Let G � SLðp;CÞ be a finite

primitive subgroup containing a monomial normal group H such that H has a

non-scalar diagonal matrix. We consider the projection � : H ! Sp, where

�ðhÞðiÞ ¼ j if and only if hðxiÞ 2 C � xj for 0 � i � p� 1. Since H is normal in G

and G is primitive, H has at least two H-polygons. Using H-polygons, we may

determine explicitly elements in Kerð�Þ (see Lemma 3.7). With the conjugation

action of H on Kerð�Þ we find that H is solvable (see Lemma 3.8). Hence �ðHÞ is a
transitive solvable subgroup in Sp; and therefore we know what it looks like. In

particular, its Sylow p-subgroup is normal. Thus the preimage of this subgroup
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under �, denoted by D, is the unique Sylow p-subgroup of H. It follows that D is a

monomial normal subgroup of G; it is the maximal normal p-subgroup studied in

[Br1].

D is an extra-special group of order p3. If Z is the center of G, then D=Z is the

socle of G=Z in the paper by Dixon and Zalesski [DZ1]. With the aid of D and

D-polygons, it is possible to find the generators of H. However, we adopt another

approach. Because D is monomial normal and contains a non-scalar diagonal

matrix, D itself is a ‘‘legal’’ candidate of H. Thus it is unnecessary to find other

monomial normal subgroup containing D.

Now consider the conjugation action of G on D=Z. Since D=Z may be

regarded as a 2-dimensional vector space over Fp, we get a representation of

G to GLð2;FpÞ. Descending to PGLð2;FpÞ, we get the homomorphism

� : G ! PGLð2;FpÞ. This homomorphism induces an action of G on the set of

D-polygons. The action of G on these D-polygons is just the same as that

described in Theorem 2.5(C). We will proceed to prove Theorem 2.5. For any two

points i; j 2 P1ðFpÞ ¼ f0; 1; . . . ; p� 1, 1g, if we know the images of gð�iÞ and

gð�jÞ, it is possible to obtain an explicit form of some element � 2 g �Kerð�Þ. In
determining the explicit form of �, a lot of ‘‘tedious’’ computations are required. It

is amid these computations that the formula of Gauss sum comes to the rescue. As

a by-product, we find that �ðGÞ is a subgroup of PSLð2;FpÞ; thus we get a

homomorphism � : G ! PSLð2;FpÞ. Better than it is that this map � : G !
PSLð2;FpÞ can be lifted to a map � : G ! SLð2;FpÞ so that the associated action

of G is equivariant to the aforementioned action of G on D=Z. It is not difficult to

find that the kernel of � is D.

However we take a slightly different way in the presentation of this paper for

this action of G. We study the D-polygons in Section 4. The action of G on these

D-polygons is defined as in Theorem 2.5(C) and Lemma 3.3. Thus we get a group

homomorphism � : G ! PGLð2;FpÞ as in Theorem 2.5(D). It will be explained in

Section 5 that this action is just the conjugation action of G on D=Z mentioned

before. Being armed with this action we will prove Theorem 2.5(E). By Theorem

2.5(E), it can be shown that the image of � : G ! PGLð2;FpÞ is contained in

PSLð2;FpÞ and this map can be lifted to � : G ! SLð2;FpÞ (see Section 7).

Apparently, the order of the group G is a divisor of p4ðp2 � 1Þ, which was

anticipated by Brauer and Wales when p ¼ 5 or 7 [Br1], [Wa2]. Moreover, all the

subgroups of SLð2;FpÞ of the form �ðGÞ can be listed up to conjugation in

SLð2;FpÞ and the generators of �ðGÞ may be exhibited (see Section 8). Thus we

may describe the groups G explicitly by using Theorem 2.5. We will remark that a

description of all the subgroups of SLð2;FpÞ is usually known as a theorem of

Dickson (see Theorem 7.5 or [Suz, Theorem, p.404]). What we need is to find all

the conjugacy classes of the subgroups and to find a set of generators for a
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representative of each conjugacy class, instead of merely a description of these

subgroups as abstract groups.

More notation need be introduced (besides those in the last paragraph of

Section 1). We will present our results in terms of matrix groups instead of a

faithful representation of some group; thus In is the n
 n identity matrix and

x0; x1; . . . ; xp�1 is the standard basis. If a is an integer, we denote a
2

� �
¼ aða�1Þ

2 2 Zp.

Note that the simple-minded formula aþb
2

� �
¼ a

2

� �
þ b

2

� �
þ ab is quite handy in

Section 6. If a is an integer with a 6� 0 (mod p),
a
p

� �
denotes the Legendre symbol.

3. Determining the structure of monomial normal subgroups.

LEMMA 3.1. Let � be a finite monomial group in GLðn;CÞ.
(1) If � ¼ fu0; u1; . . . ; un�1g is a �-polygon, then the subgroup �0 :¼ fg 2 � :

gðu0Þ 2 C � u0g is of index n in �.

(2) If �0 is a subgroup � of index n and �0 has a ‘‘generalized eigenvector’’, i.e.

a non-zero vector v satisfying gðvÞ 2 C � v for any g 2 �0, then the orbit of C � v
under � forms a �-polygon.

(3) There is a one-to-one correspondence between the set of �-polygons and

the set of conjugacy classes of subgroups �0 of � satisfying the properties (i)

½� : �0	 ¼ n, and (ii) �0 has a ‘‘generalized eigenvector’’. In particular, there are

only finitely many �-polygons.

PROOF. We will prove (1) only and leave the proof of (2) and (3) to the

reader.

For the proof of (1), if ½� : �0	 < n, then the orbit of u0 under � contains less

than n elements. Since the subspaces in an orbit of � generate a �-invariant

subspace, this will be a contradiction to the assumption that � is irreducible. �

From now on we will consider finite subgroups in SLðp;CÞ. Remember that

x0; x1; . . . ; xp�1 denotes the standard basis.

LEMMA 3.2. If eG is a finite primitive subgroup of SLðp;CÞ such that eG has a

monomial normal subgroup eH containing a non-scalar diagonal matrix, then there

exists some element g 2 SLðp;CÞ satisfying (i) g�1 eHg is a monomial group, (ii)

� 2 g�1 eHg (see Definition 2.2 for �), and (iii) g�1 eHg contains a non-scalar

diagonal matrix.

PROOF. Consider the map �0 : eH ! Sp defined by �0ðgÞðiÞ ¼ j if and only if

gðxiÞ 2 C � xj for 0 � i � p� 1. Since eH is irreducible, the image �0ð eHÞ is a

transitive subgroup of Sp. We may assume that the p-cycle ð0; 1; . . . ; p� 1Þ
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belongs to �ð eHÞ if we reindex x0; x1; . . . ; xp�1 when necessary. Find �0 2 eH so that

�0ð�0Þ ¼ ð0; 1; . . . ; p� 1Þ, i.e. �0ðxjÞ 2 Cxjþ1. Define x0
0 ¼ x0 and x0

j ¼ �0ðx0
j�1Þ

inductively for 1 � j � p� 1.

Then �0 : x0
0 7! x0

1 7! x0
2 7! � � � 7! x0

p�1 7! cx0
0 for some c 2 C n f0g. Since

detð�0Þ ¼ 1, it follows that c ¼ 1. Define g 2 SLðp;CÞ by gðxjÞ ¼ dx0
j, for 0 � j �

p� 1 and d 2 C n f0g is chosen to ensure that detðgÞ ¼ 1. It is not difficult to

verify that g�1 eHg is a monomial group, � 2 g�1 eHg and g�1 eHg contains a non-

scalar diagonal matrix. �

CONVENTION. From now on, G and H are the groups defined as: G ¼ g�1 eGg

andH ¼ g�1 eHg in the above lemma. Thus G and H satisfy the properties (i) G is a

finite primitive subgroup of SLðp;CÞ, (ii) H is a monomial normal subgroup of G,

(iii) � 2 H, and (iv) H contains a non-scalar diagonal matrix. We will define

� : H ! Sp by �ðhÞðiÞ ¼ j if and only if hðxiÞ 2 Cxj for 0 � i; j � p� 1. Define

D ¼ hKerð�Þ; �i. All these notation will remain in force till the end of this paper,

unless otherwise specified.

In the rest of this section we will prove that Kerð�Þ ¼ h�; �Ipi; in particular, �

and �Ip belong to H.

LEMMA 3.3. For any g 2 G and any H-polygon � ¼ fu0; u1; . . . ; up�1g,
define gð�Þ ¼ fgðu0Þ, gðu1Þ; . . . ; gðup�1Þg.

(1) gð�Þ is an H-polygon. In particular, the group G acts on the set of all

H-polygons.

(2) There are at least two H-polygons. Thus there are at least two D-polygons

also.

PROOF. (1) For any h 2 H, we will show that hðgðuiÞÞ 2 C � gðujÞ for some

j. Since g�1hg 2 H, it follows that hðgðuiÞÞ ¼ gðg�1hgÞðuiÞ ¼ gðg�1hgðuiÞÞ ¼
gð� � ujÞ for some j and some � 2 C n f0g. Thus hðgðuiÞÞ ¼ � � gðujÞ.

(2) Assume that there is only one H-polygon. Thus � ¼ fx0; x1; . . . ; xp�1g is

the unique H-polygon. From (1), gð�Þ ¼ � for any g 2 G. Thus gðxiÞ ¼ �ixj for

some j and some �i 2 C n f0g, i.e. G is a monomial group, which contradicts with

the assumption that G is primitive. �

LEMMA 3.4. Let � ¼ fu0; u1; . . . ; up�1g be a D-polygon. If �ðuiÞ 2 Cui for

some 0 � i � p� 1, then � ¼ f
P

0�‘�p�1 �
i‘x‘ : 0 � i � p� 1g.

PROOF. The cyclic group h�i acts on the set fCui : 0 � i � p� 1g. If it has
a fixed point, then the action is trivial because any �-orbit in the set has length 1

or p. Thus, if �ðuiÞ 2 Cui for some i, then �ðujÞ 2 Cuj for any 0 � j � p� 1. It
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follows that u0; u1; . . . ; up�1 are linearly independent eigenvectors of �. However,

all the eigenvectors of � (up to a scalar) are of the form
P

0�‘�p�1 �
i‘x‘ for some

0 � i � p� 1. �

DEFINITION 3.5. Let � ¼ fv0; v1; . . . ; vp�1g be a D-polygon so that

�ðviÞ 62 Cvi for any 0 � i � p� 1. Since the �-orbit containing Cv0 is of length

p, this orbit is just fCvj : 0 � j � p� 1g. Thus, after reindexing v0; v1; . . . ; vp�1,

we may assume that � � vj 2 Cvjþ1. Define a map �� : D ! Sp by ��ðhÞðiÞ ¼ j if

and only if hðviÞ 2 Cvj for 0 � i � p� 1. We find that ��ð�Þ ¼ ð0; 1; . . . ; p� 1Þ.

Recall the definition of �1;�0;�1; . . . ;�p�1 in Definition 2.4.

LEMMA 3.6. Let � ¼ fv0; v1; . . . ; vp�1g be a D-polygon and � 6¼ �1. As-

sume that �ðviÞ 62 Cvi for any 0 � i � p� 1.

(1) ��ðDÞ is the cyclic group generated by ��ð�Þ.
(2) If � 2 Kerð�Þ is a non-scalar matrix, then ��ð�Þ is also a generator of

��ðDÞ.
(3) Kerð�Þ ¼ h�; �Ipi.

PROOF.

Step 1: Note that Kerð�Þ is abelian, because it consists of diagonal matrices.

Thus D ¼ hKerð�Þ; �i is solvable. It follows that ��ðDÞ is a solvable subgroup of

Sp. Thus ��ðDÞ is generated by the permutation s1 and s2, where s1 : x 7! xþ 1

and s2 : x 7! dx for 0 � x � p� 1 and some d 6� 0 (mod p) by [Coh, Proposition

11.6, p.117]. Note that ��ðDÞ is abelian if and only if d � 1 (mod p).

Since ��ð�Þ ¼ ð0; 1; . . . ; p� 1Þ, we find that h��ð�Þi is normal in ��ðDÞ and
� ¼ fv0; �ðv0Þ; . . . ; �p�1ðv0Þg. If we write �iðv0Þ ¼

P
0�j�p�1 cijxj, where cij 2 C ,

there exists some i so that ci0 6¼ 0. Multiplying �iðv0Þ by a non-zero scalar, we can

assume that ci0 ¼ 1. By abusing the notation we will denote �iðv0Þ by v0. Write

v0 ¼
P

0�j�p�1 cjxj and vi ¼ �iðv0Þ ¼
P

0�j�p�1 cjxjþi, where c0 ¼ 1 and cj 2 C .

Note that the set fv0; v1; . . . ; vp�1g is a D-polygon equivalent to (i.e. regarded as

the same as) the previous one. Thus we call this ‘‘new’’ D-polygon by � also.

Step 2: For any � 2 Kerð�Þ which is not a scalar matrix, ��ð�Þ is not the

identity permutation.

For, write � : xj 7! �jxj, where �j 2 C n f0g and assume that ��ð�Þ is the

identity permutation. Then �ðviÞ ¼ aivi for some ai 2 C n f0g, i.e.
P

j cj�jþixjþi ¼
ai
P

j cjxjþi. Thus cj�jþi ¼ aicj for any 0 � j � p� 1. Since c0 ¼ 1, we find ai ¼ �i.

It follows that cj�jþi ¼ �icj for any 0 � i; j � p� 1. By assumption � 6¼ �1. Thus

there is some index ‘ with 1 � ‘ � p� 1 satisfying that c‘ 6¼ 0. Hence �‘þi ¼ �i for

any 0 � i � p� 1. It follows that �0 ¼ �‘ ¼ �2‘ ¼ � � � ¼ �ðp�1Þ‘, i.e. �0 ¼ �1 ¼ � � � ¼
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�p�1 and � is a scalar matrix.

Step 3: There is some non-scalar matrix � 2 Kerð�Þ such that ��ð�Þ belongs
to h��ð�Þi, and thus it is a generator of h��ð�Þi. Hence ��ðDÞ ¼ ��ðKerð�ÞÞ.

Assume that ��ð�Þ 62 h��ð�Þi for any non-scalar matrix � 2 Kerð�Þ. Then

��ðKerð�ÞÞ \ h��ð�Þi ¼ fidg. Since Kerð�Þ / D, it follows that ��ðKerð�ÞÞ is

normal in ��ðDÞ. Because both h��ð�Þi and ��ðKerð�ÞÞ are normal subgroups,

��ðDÞ is a direct product of h��ð�Þi and ��ðKerð�ÞÞ. Thus ��ðDÞ is an abelian

group. From the structure of ��ðDÞ, we find s2 ¼ id and thus ��ðDÞh��ð�Þi. We

are led to the conclusion ��ð�Þ 2 h��ð�Þi for any non-scalar matrix � in Kerð�Þ. A
contradiction to the starting assumption.

Thus there is some non-scalar � 2 Kerð�Þ such that h��ð�Þi ¼ h��ð�Þi. It

follows that ��ðDÞ ¼ ��ðKerð�ÞÞ.
Step 4: Proof of (1) and (2).

Since Kerð�Þ is abelian, we find that ��ðDÞ is abelian and s2 ¼ id. Thus we

find that ��ðDÞ ¼ h��ð�Þi, which is equal to h��ð�Þi for some non-scalar

� 2 Kerð�Þ.
Now consider any non-scalar matrix � in Kerð�Þ. Since ��ð�Þ is not the

identity permutation, it is also a generator of the cyclic group generated by ��ð�Þ.
Step 5: If � 2 Kerð�Þ is any non-scalar matrix and 1 � k0 � p� 1, then �k

0
is

not a scalar matrix.

For, if �k
0
is a scalar matrix, then ��ð�k

0 Þ ¼ id. On the other hand, ��ð�Þ ¼
��ð�Þk for some 1 � k � p� 1. Thus id ¼ ��ð�k

0 Þ ¼ ��ð�Þk
0
¼ ��ð�Þkk

0
. Since

��ð�Þ is a p-cycle, this is impossible.

Step 6: If �0 2 Kerð�Þ be any non-scalar matrix, then there is some 1 � k0 �
p� 1 such that �0k

0
¼ �b�a, where 1 � a; b � p� 1. Moreover, h�; �Ipi � Kerð�Þ.

Let �0 2 Kerð�Þ be any non-scalar matrix. Then ��ð�0Þ ¼ ��ð�Þk for some

1 � k � p� 1. Choose k0 such that kk0 � 1 (mod p) and define � ¼ �0k
0
. Then � 2

Kerð�Þ is not a scalar matrix by Step 5 and ��ð�Þ ¼ ��ð�Þ ¼ ð0; 1; . . . ; p� 1Þ.
Write � : xj 7! tjxj for 0 � j � p� 1 and tj 2 C n f0g. Note that �ðvjÞ ¼

bjvjþ1 for any 0 � j � p� 1, where bj 2 C n f0g. Substitute it into the formula

vj ¼
P

‘ c‘x‘þj with c0 ¼ 1. We get
P

‘ c‘t‘þjx‘þj ¼ bj
P

‘ c‘x‘þjþ1. Hence bj ¼ c1tjþ1

and c‘þ1t‘þjþ1 ¼ c1c‘tjþ1 for any 0 � ‘; j � p� 1. In particular cj 6¼ 0 for all

0 � j � p� 1.

Taking ‘ ¼ 1 in the formula c‘þ1t‘þjþ1 ¼ c1c‘tjþ1, we get

tjþ1

tj
¼

c21
c2

for any 0 � j � p� 1. Denote t ¼ c21=c2. We find that tp ¼
Q

0�j�p�1ðtjþ1=tjÞ ¼ 1.
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Hence t ¼ �a for some a, i.e. tjþ1 ¼ �atj for 0 � j � p� 1. Note that a 6� 0 (mod p);

otherwise � would be a scalar matrix.

Thus we may write � : xj 7! t0�
ajxj for 0 � j � p� 1. Since detð�Þ ¼ 1, we

find t0 ¼ �b for some integer b.

It is easy to verify that ����1 ¼ ��a�. Thus ��aIp ¼ ����1��1 2 D. Hence

�Ip 2 Kerð�Þ. Since � ¼ �b�a, we find that � 2 Kerð�Þ and � 2 h�; �Ipi. In

particular, the order of � is p.

Step 7: Kerð�Þ ¼ h�; �Ipi.
Because of Step 6, it remains to show that Kerð�Þ is a p-group. Suppose not.

Since Kerð�Þ is abelian, there exists an element �0 in Kerð�Þ and the order of �0 is k0

with 1 � k0 � p� 1. Obviously �0 is not a scalar matrix. Now there is some 1 �
k00 � p� 1 such that �0k

00
is of order p. This is impossible. �

LEMMA 3.7. Kerð�Þ ¼ h�; �Ipi. In particular, h�; �Ipi is a normal subgroup

of H.

PROOF. By Lemma 3.3, there are at least two D-polygons. Let � ¼
fu0; u1; . . . ; up�1g be a D-polygon other than �1.

Case 1: �ðuiÞ 62 Cui for any 0 � i � p� 1.

Apply Lemma 3.6.

Case 2: �ðuiÞ 2 Cui for some 0 � i � p� 1.

Apply Lemma 3.4 and get ui ¼
P

0�j�p�1 �
ijxj for 0 � i � p� 1. For any non-

scalar matrix � 2 Kerð�Þ, we find that �ðu0Þ ¼ aui for some i. Obviously i 6� 0

(mod p).

Write � : xj 7! cjxj for cj 2 C n f0g. From the relation �ðu0Þ ¼ aui, we find

a ¼ c0 and cj ¼ c0�
ij. Thus the non-scalar matrix � is just c0�

i. Since detð�Þ ¼ 1 we

find c0 ¼ �b for some integer b. Consider ����1��1 again. We conclude that

Kerð�Þ ¼ h�; �Ipi as in the proof of Lemma 3.6(3). �

LEMMA 3.8. H is a solvable group and D is a normal subgroup of G.

PROOF. Since h�; �Ipi is normal in H by Lemma 3.7, we find that

����1 ¼ �a � �bIp for some a; b 2 Zp with a 6� 0 (mod p). Hence the following map

� is a homomorphism from H to Zp � Z

p (the semi-direct product of Zp with Z


p

where Zp is a normal subgroup),

� :H �! Zp � Z

p

� 7�! ða; bÞ

if ����1 ¼ �a � �bIp.
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We claim that Kerð�Þ ¼ h�; �Ipi. Suppose that � 2 Kerð�Þ. Then �� ¼ ��.

Since � is a diagonal matrix with distinct eigenvalues, it is not difficult to find that

� is also a diagonal matrix. Thus � 2 Kerð�Þ ¼ h�; �Ipi.
Since the kernel and the image of � are solvable groups, so is H. Now �ðHÞ is

a transitive solvable subgroup of Sp. Hence j�ðHÞj ¼ pf for some f dividing p� 1;

moreover, the p-cycle ð0; 1; . . . ; p� 1Þ generates a normal subgroup of �ðHÞ. Hence

D ¼ ��1ðhð0; 1; . . . ; p� 1ÞiÞ is a normal Sylow p-subgroup of H. It follows that D is

a characteristic subgroup of H. Thus D / G. �

4. D-polygons and Gauss sums.

First we will determine all the D-polygons.

LEMMA 4.1. The monomial group D has precisely pþ 1 subgroups of index

p : D1 ¼ h�; �Ipi and Di ¼ h��i; �Ipi, where 0 � i � p� 1. These subgroups

provide all the D-polygons �1;�0;�1; . . . ;�p�1, which are defined in Definition

2.4.

PROOF. Note that ����1��1 ¼ ��1Ip.

It is not difficult to show that all the index p subgroups of D are D1 and Di

with 0 � i � p� 1. Now we will determine D-polygons via these index p

subgroups. We will do this for Di, where 0 � i � p� 1 and leave the case D1
to the reader.

Write the coset decomposition of D with respect to Di, i.e. D ¼
S

0�j�p�1 gjDi

with g0 ¼ id. Let v be a common eigenvector for all elements in Di. By Lemma 3.1

the set fgjðvÞ : 0 � j � p� 1g is the D-polygon associated to Di.

Since the subspace C � v is fixed by Di, all the other subspaces C � gjðvÞ are
fixed by Di also (see the proof of Lemma 3.4). Hence these gjðvÞ are nothing but

the eigenvectors of ��i.

The map ��i can be exhibited as ��i : xj 7! �ijxjþ1. Thus it is routine to verify

all elements of �i in Definition 2.4 are eigenvectors of ��i. �

Once we know that D is a monomial normal subgroup of G, it would be

unnecessary to determine the structure of H. We may simply replace H by D and

proceed to the proof of Theorem 2.5.

Recall the definitions of ui; vj in Definition 2.4.

LEMMA 4.2. Let g 2 G.

(1) If gð�1Þ ¼ �1 and gðx0Þ 2 C � x0, then there exists some k 6� 0 (mod p)

such that g : x‘ 7! c‘xk‘ for 0 � ‘ � p� 1 and c‘ 2 C n f0g.
(2) If gð�1Þ ¼ �0 and gðx0Þ 2 C � u0, then there exists some k 6� 0 (mod p)
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such that g : x‘ 7! c‘uk‘ for 0 � ‘ � p� 1 and c‘ 2 C n f0g.
(3) If gð�1Þ ¼ �i for some 1 � i � p� 1 and gðx0Þ 2 C � v0, then there exists

some k 6� 0 (mod p) such that g : x‘ 7! c‘vk‘ for 0 � ‘ � p� 1 and c‘ 2 C n f0g.

PROOF. We will prove (1) only, because the proof of (2) and (3) are almost

the same.

Since gð�1Þ ¼ �1 there is a permutation 	 2 Sp such that gðx‘Þ ¼ c‘x	ð‘Þ and

	ð0Þ ¼ 0.

Note that g�1�g ¼ �r�s�t for some r; s; t because D / G. Suppose that

gðxkÞ 2 C � x1, i.e. 	ðkÞ ¼ 1. Consider g�1�gðx0Þ ¼ �r�s�tðx0Þ. We find that

k ¼ s, i.e. �g ¼ �rg�k�t.

For any 0 � j � p� 1, consider �gðxjÞ ¼ �rg�k�tðxjÞ. We find that �ðjÞ ¼
	ðjþ kÞ for any j. By induction we get 	ðjkÞ ¼ j for any j, i.e. 	ðjÞ ¼ k�1j for

0 � j � p� 1.

In case of (2), we may consider g�1�g; in case of (3), consider g�1�g. �

LEMMA 4.3. Keep the notation in Theorem 2.5; in particular, H0 ¼ Kerð�Þ.
Then H0 ¼ h�:�; �di for some integer d with d2 � 1 (mod p). More generally, if

g 2 G satisfies gð�1Þ ¼ �1 and gð�iÞ ¼ �i for some 0 � i � p� 1, then

hg;H0i ¼ hg0; H0i, where g0 is defined by

g0 : x‘ 7! "�i
d0‘
2ð Þ�i ‘

2ð Þxd0‘

for some d0 6� 0 (mod p), for any 0 � ‘ � p� 1, and " ¼ 1 or �1.

PROOF.

Step 1: If g 2 Kerð�Þ, then hg;Di ¼ h�d;Di for some d 6� 0 (mod p) with

d2 � 1 (mod p).

Since gð�1Þ ¼ �1 and gð�0Þ ¼ �0, replace g by �rg�s for suitable r and s if

necessary; we will denote �rg�s by g (by abusing the notation). We may assume

that gðx0Þ 2 C � x0 and gðu0Þ 2 C � u0, where u0 ¼
P

0�‘�p�1 x‘.

By Lemma 4.2 there exists an integer d 6� 0 (mod p) such that g : x‘ 7! c‘xd‘

for 0 � ‘ � p� 1. Substitute it into gðu0Þ ¼ au0 for some a 2 C n f0g. It follows

that c0 ¼ c1 ¼ � � � ¼ cp�1.

Since gð�iÞ ¼ �i for any 1 � i � p� 1, we have gðv0Þ ¼ b � vt for some

0 � t � p� 1, b 2 C n f0g, where v0 ¼
P

0�‘�p�1 �
i ‘

2ð Þx‘ and �i ¼ fv0; v1; . . . ; vp�1g.
Substitute g : x‘ 7! cxd‘ into this formula. We get
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c
X

0�‘�p�1

�i
‘
2ð Þxd‘ ¼ a

X
0�‘�p�1

�i
‘
2ð Þx‘þt

¼ a
X

0�‘�p�1

�i
d‘�t
2ð Þxd‘:

Hence

c � �i ‘
2ð Þ ¼ a�i

d‘�t
2ð Þ

for any 0 � ‘ � p� 1.

Thus, for any 0 � ‘ � p� 1, the value

�i
d‘�t
2ð Þ�i ‘

2ð Þ ¼ �
i
2½ðd2�1Þ‘2�ð2dtþd�1Þ‘þðt2�tÞ	

is a constant. Hence d2 � 1 (mod p).

Step 2: If i is some integer with 0 � i � p� 1 and g 2 G satisfies gð�1Þ ¼
�1 and gð�iÞ ¼ �i, then there is some g0 2 hg;Di given by

g0 : x‘ 7! "�i
d0‘
2ð Þ�i ‘

2ð Þxd0‘

for some d0 6� 0 (mod p), " ¼ �1.

When i � 0 (mod p), the proof is similar to Step 1 and is left to the reader. It

remains to prove the case when 1 � i � p� 1.

Replacing g by �rg�s if necessary, we may assume that gðx0Þ 2 C � x0 and

gðv0Þ 2 C � v0, where v0 ¼
P

0�‘�p�1 �
i ‘

2ð Þx‘.

Apply Lemma 4.2. Find an integer d0 6� 0 (mod p) so that g0 : x‘ 7! c‘xd0‘ for

c‘ 2 C n f0g. Substitute it into gðv0Þ ¼ av0 for some a 2 C n f0g. We find that

c‘ � c�1
0 ¼ �i

d0‘
2ð Þ�i ‘

2ð Þ for any ‘. Since detðgÞ ¼ 1, it follows that c0 ¼ " � �t, where
" ¼ sgnfx 7! d0x : 0 � x � p� 1g and t is some integer. �

LEMMA 4.4. Let a be an integer. Then

X
0�‘�p�1

�a‘ ¼
0; if a 6� 0 (mod p)

p; if a � 0 (mod p).

(

PROOF. This formula is standard and thus its proof is omitted. �
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THEOREM 4.5. Let a be an integer with a 6� 0 (mod p). Then

X
0�‘�p�1

�a‘
2 ¼

a

p

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

p

� �
p

s
:

PROOF. Omitted. �

LEMMA 4.6. If a and b are integers with a 6� 0 (mod p), then

X
0�‘�p�1

�a
‘
2ð Þþb‘ ¼

2a

p

� �
��

að2a�1b�1Þ2
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

p

� �
p

s
:

PROOF.

X
0�‘�p�1

�a
‘
2ð Þþb‘ ¼

X
‘

�
a
2ð‘2�‘Þþb‘ ¼

X
‘

�
a
2½‘2�‘þ2a�1b‘	

¼
X
‘

�
a
2½‘2þð2a�1b�1Þ‘	 ¼

X
‘

�
a
2½ð‘þ

2a�1b�1
2 Þ2�ð2a�1b�1Þ2

4 	

¼
X
‘

�
a
2ð‘þ

2a�1b�1
2 Þ2�að2a�1b�1Þ2

8

¼ ��
að2a�1b�1Þ2

8

X
‘

�
a
2‘

2:
�

5. Proof of Theorem 2.5: the first stage.

We will start to prove Theorem 2.5. The proof of Theorem 2.5(E) will be

delayed till Section 6.

(A) has been proved in Lemma 3.8.

(B) is proved in Lemma 4.1.

(C) The group action of G on the set f�1;�0; . . . ;�p�1g is well-defined

because of Lemma 3.3.

It remains to discuss (D).

Now we will consider the action of G on the D-polygons �1;�0; . . . ;�p�1.

Note that, for i ¼ 0; 1; . . . ; p� 1;1, each �i is associated to Di, where

D1 ¼ h�; �Ipi, Di ¼ h��i; �Ipi for 0 � i � p� 1.

Since D / G and that D1; D0; . . . ; Dp�1 are all the index p subgroup D, it

follows that G permutes D1; D0; . . . ; Dp�1.
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LEMMA 5.1. Let x; y 2 f1; 0; 1; . . . ; p� 1g. For any g 2 G, gð�xÞ ¼ �y if

and only if g �Dx � g�1 ¼ Dy.

PROOF. From the proof of Lemma 4.1, elements of �x are precisely the

linearly independent eigenvectors of Dx. Hence the result. �

DEFINITION 5.2. For any g 2 G, if g � � � g�1 ¼ �r�a�c, g � � � g�1 ¼ �s�b�d for

some a; b; c; d; r; s 2 Fp. We will define a map � : G ! GLð2;FpÞ by

�ðgÞ ¼
a b

c d

 !
2 GLð2;FpÞ:

This map is the conjugation action of G on D=h�Ipi ’ Fp � � 0 � Fp � �0 ’ F2
p,

where � 0 and �0 are the images of � and � in D=h�Ipi respectively. The coordinates
of � 0 and �0 are 1

0

� �
and 0

1

� �
respectively. The projective line P1ðFpÞ consists of

pþ 1 points: 1 ¼ 1
0

� �
, i ¼ i

1

� �
for 0 � i � p� 1. These points correspond to D1,

Di for 0 � i � p� 1, and they also correspond to �1, �i for 0 � i � p� 1. It is

straightforward to see that these correspondences respect the actions of G.

We will show that �ðgÞ 2 SLð2;FpÞ in Section 7. At present we only know

that �ðgÞ 2 GLð2;FpÞ. Let �0 : GLð2;FpÞ ! PGLð2;FpÞ be the canonical projec-

tion. By Lemma 5.1 we find that �ðgÞ ¼ �0�ðgÞ. Note that

�ðgÞ
a b

c d

 !
2 PGLð2;FpÞ

may be regarded as a fractional linear transformation on P1ðFpÞ which sends

x 2 P1ðFpÞ ¼ f1; 0; 1; . . . ; p� 1g to ðaxþ bÞ=ðcxþ dÞ.
We record the above discussion as the following lemma.

LEMMA 5.3. Keep the notation in Theorem 2.5. Let the points

1; 0; 1; . . . ; p� 1 on P1ðFpÞ correspond to the D-polygons �1;�0;�1; . . . ;�p�1.

If g 2 G satisfies g � � � g�1 ¼ �r�a�c, g � � � g�1 ¼ �s�b�d for some a; b; c; d; r; s 2 Fp,

then g permutes �1;�0;�1; . . . ;�p�1 as the fractional linear transformation

x 7! ðaxþ bÞ=ðcxþ dÞ, where x ¼ 1; 0; 1; . . . ; p� 1. Moreover this action induces

a non-trivial group homomorphism � : G ! PGLð2;FpÞ such that Kerð�Þ ¼
h�; �; �di for some integer d2 � 1 (mod p).

PROOF. The assertion about Kerð�Þ is proved in Lemma 4.3.

If � is trivial, i.e. G ¼ Kerð�Þ, then G ¼ h�; �; �di is a monomial group. This is
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a contradiction to the assumption that G is primitive. �

6. Proof of Theorem 2.5: the second stage.

All the notation are the same as in Theorem 2.5.

Let g 2 G.

Case 1: g : �1 7! �1, �0 7! �0.

Apply Lemma 4.3. There exists � 2 gH0 such that � : x‘ 7! "xk‘ for some

k 6� 0 (mod p) and for any 0 � ‘ � p� 1.

It remains to find �ð�Þ explicitly. Note that �ðgÞ ¼ �ð�Þ.
Since �1 and �0 correspond to the groups D1 ¼ h�; �Ipi and D0 ¼ h�; �Ipi

respectively, the assumption that gð�1Þ ¼ �1 and gð�0Þ ¼ �0 is equivalent to

that g�g�1 ¼ �r�a and g�g�1 ¼ �s�d for some integers r; s; a; d. Hence g gives rise to

the matrix

a 0

0 d

 !
¼

� 0

0 1

 !
2 PGLð2;FpÞ ð6:1Þ

where � ¼ ad�1 2 F

p . It remains to evaluate � in terms of the constant k in the

definition of �.

Note that (6.1) corresponds to the fractional linear transformation x 7! �x.

Since 1 7! �, it suffices to find gð�1Þ.
Clearly gð�1Þ ¼ �i for some 1 � i � p� 1.

Write �i ¼ fw0; w1; . . . ; wp�1g, where w0 ¼
P

0�‘�p�1 �
i ‘

2ð Þx‘, and �1 ¼

fv0; . . . ; vp�1g, where v0 ¼
P

0�‘�p�1 �
‘
2ð Þx‘.

From the assumption �ðv0Þ ¼ a � wt for some 0 � t � p� 1, we find

"
X

0�‘�p�1

�
‘
2ð Þxk‘ ¼ a

X
0�‘�p�1

�i
‘
2ð Þx‘þt

¼ a
X

0�‘�p�1

�i
‘�t
2ð Þx‘

¼ a
X

0�‘�p�1

�i
k‘�t
2ð Þxk‘:

Thus we find that, for any 0 � ‘ � p� 1,

"�
‘
2ð Þ ¼ a�i

k‘�t
2ð Þ:
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Hence we get ik2 � 1 (mod p) and 1 ¼ ikð1þ 2tÞ, i.e. gð�1Þ ¼ �k�2 and

� ¼ k�2.

Case 2: g : �1 7! �1, �0 7! �i for some 1 � i � p� 1.

Write �0 ¼ fu0; . . . ; up�1g, �i ¼ fv0; . . . ; vp�1g, where u0 ¼ x0 þ � � � þ xp�1

and v0 ¼
P

0�‘�p�1 �
i ‘

2ð Þx‘.

As in the proof of Lemma 4.3, consider ��rg�s for suitable r; s. We find

� 2 gH0 such that �ðx0Þ 2 C � x0 and �ðu0Þ 2 C � v0.
Apply Lemma 4.2. There exists k 6� 0 (mod p) such that � : x‘ 7! c‘xk‘ for

0 � ‘ � p� 1 and c‘ 2 C n f0g. Substitute it into �ðu0Þ ¼ av0 for a 2 C n f0g. We

get

X
0�‘�p�1

c‘xk‘ ¼ a
X

0�‘�p�1

�i
‘
2ð Þx‘ ¼ a

X
0�‘�p�1

�i
k‘
2ð Þxk‘:

Thus we get

� : x‘ 7! c � �i k‘
2ð Þxk‘

for some c 2 C n f0g.
It remains to determine �ð�Þ. Note that g determines the element

a bi

0 b

 !
¼

� i

0 1

 !
2 PGLð2;FpÞ ð6:2Þ

where � 2 F

p .

Since (6.2) determines the map x 7! �xþ i, we will find gð�1Þ. Note that

either gð�1Þ ¼ �0 or gð�1Þ ¼ �j for some 1 � j � p� 1. It is not difficult to show

that, (i) if gð�1Þ ¼ �0, then 1þ ik2 � 0 (mod p); and (ii) if gð�1Þ ¼ �j, then

1þ ði� jÞk2 � 0 (mod p).

In either case, it will imply that � ¼ k�2. The details are left to the reader.

Case 3: g : �1 7! �0 7! �1.

Use similar methods in Case 2. Let � ¼ ��rg�s so that �ðx0Þ 2 C � u0 and

�ðu0Þ 2 C � x0. Apply Lemma 4.2 to get that � : x‘ 7! c‘uk‘ for some k 6� 0 (mod p)

and c‘ 2 C n f0g. Substitute it into �ðu0Þ ¼ ax0 for some a 2 C n f0g. We get

X
0�‘0�p�1

X
0�‘�p�1

c‘�
k‘‘0

� �
x‘0 ¼ ax0:
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Define a complex p
 p matrix T ¼ ðt‘0;‘Þ0�‘0;‘�p�1 by defining t‘0;‘ ¼ �k‘‘
0
.

If 0 � ‘0 6¼ ‘00 � p� 1, then
P

0�‘�p�1 t‘0;‘ � t‘00;‘ ¼
P

0�‘�p�1 �
kð‘0�‘00Þ‘ ¼ 0 by

Lemma 4.4.

Thus T �tT ¼ p � Ip, where tT is the conjugate transpose of the matrix T .

Moreover,

T

c0

c1

..

.

cp�1

0BBBBB@

1CCCCCA ¼ a

1

0

..

.

0

0BBBBB@

1CCCCCA:

Multiply tT on both side of the above identity. We get

pc‘ ¼ a

for any 0 � ‘ � p� 1. Thus � : x‘ 7! c
P

0�‘0�p�1 �
k‘‘0x‘0 for some c 2 C n f0g.

Now we will determine �ð�Þ. Since g determines

0 a

b 0

 !
¼

0 �

1 0

 !
2 PGLð2;FpÞ;

�ð�Þ is the map x 7! �=x. We will find gð�1Þ. Note that gð�1Þ ¼ �i for some

1 � i � p� 1.

Thus we have a relation gð
P

‘ �
‘
2ð Þx‘Þ ¼ a

P
‘ �

i ‘
2ð Þx‘þt for some a 2 C n f0g

and some 0 � t � p� 1. Hence get

c
X
‘

�
‘
2ð Þþk‘‘0 ¼ a�i

‘0�t
2ð Þ

for any 0 � ‘0 � p� 1. Apply Lemma 4.6 to evaluate the left-hand side of the

above relation (with a ¼ 1 and b ¼ k‘0). We find a non-zero constant A such that

c �A � ��
ð2k‘0�1Þ2

8 ¼ a�i
‘0�t
2ð Þ ð6:3Þ

for any 0 � ‘0 � p� 1. In particular, taking ‘0 � 0 (mod p), we get
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c �A � ��1
8 ¼ a�i

�t
2ð Þ: ð6:4Þ

Dividing (6.3) by (6.4), we find that

��
ð2k‘0�1Þ2

8 þ1
8 ¼ �i

‘0�t
2ð Þ�i �t

2ð Þ

for any 0 � ‘0 � p� 1. It is easy to find that i ¼ �k2. Thus � ¼ �k2.

Case 4: g : �1 7! �0 7! �i for some 1 � i � p� 1.

Define u0 ¼ x0 þ � � � þ xp�1 and v0 ¼
P

0�‘�p�1 �
i ‘

2ð Þx‘.

Find suitable r and s so that � ¼ �rg�s 2 gH0 and �ðx0Þ 2 Cu0, �ðu0Þ 2 C � v0.
By Lemma 4.2, there exists k 6� 0 (mod p) such that � : x‘ 7! c‘

P
0�‘0�p�1 �

k‘‘0x‘0

for 0 � ‘ � p� 1 and c‘ 2 C n f0g. Substitute it into �ðu0Þ ¼ av0 for some

a 2 C n f0g. We find that

X
0�‘�p�1

c‘�
k‘‘0 ¼ a�i

‘0
2ð Þ

for any 0 � ‘0 � p� 1.

We will use the same method in Case 3 and define a complex p
 p matrix

T ¼ ðt‘0;‘Þ0�‘0;‘�p�1 by defining t‘0;‘ ¼ �k‘‘
0
.

Then T � tT ¼ p � Ip and

T �

c0

c1

..

.

cp�1

0BBBBB@

1CCCCCA ¼ a

1

..

.

�i
‘0
2ð Þ

..

.

0BBBBBBB@

1CCCCCCCA:

It follows that

p �

c0

..

.

cp�1

0BBB@
1CCCA ¼ a � tT

1

..

.

�i
‘0
2ð Þ

..

.

0BBBBBBB@

1CCCCCCCA:
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Hence

p � c‘ ¼ a
X

0�‘0�p�1

��k‘‘0 � �i ‘0
2ð Þ ¼ a

X
0�‘0�p�1

�i
‘0
2ð Þ�k‘‘0

for any 0 � ‘ � p� 1.

Apply Lemma 4.6. We find a non-zero constant A such that

c‘ ¼ A � ��
ið2i�1k‘þ1Þ2

8

for 0 � ‘ � p� 1. In particular, c0 ¼ A � �� i
8 . Hence

c‘ � c�1
0 ¼ ��i

½ð2i�1k‘þ1Þ2�1	
8 ¼ ��i �i�1k‘

2ð Þ

as desired.

Now consider �ð�Þ. Since g � � � g�1 ¼ �r�a, g � � � g�1 ¼ �sð��iÞb for some a; b

6� 0 (mod p), we find that �ð�Þ determines

0 ib

a b

 !
¼

0 i

� 1

 !
2 PGLð2;FpÞ:

Hence �ð�Þ is the map x 7! i=ð1þ �xÞ. We will find the value of �. Since

���1 7! 1, we will find some 1 � j � p� 1 such that gð�jÞ ¼ �1.

Consider �ð
P

0�‘�p�1 �
j ‘

2ð Þx‘Þ ¼ axt for some 0 � t � p� 1 and a 2 C n f0g.

Substitute the map � : x‘ 7! c��i �i�1k‘
2ð ÞP

0�‘0�p�1 �
k‘‘0x‘0 to get

X
0�‘�p�1

�j
‘
2ð Þ�i �i�1k‘

2ð Þþk‘‘0¼0 ð6:5Þ

for any ‘0 6� t (mod p).

The left-hand side of (6.5) can be written as

X
‘

�
j
2ð‘2�‘Þ�k

2ði�1k‘2þ‘Þþk‘‘0 ¼
X
‘

�ðj�i�1k2Þ ‘
2ð Þþ2k‘0�k�i�1k2

2 ‘

which is not zero for any 0 � ‘0 � p� 1 provided that j� i�1k2 6� 0 (mod p),

because of Lemma 4.6.
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Thus j � i�1k2 (mod p) and � ¼ �k�2i.

Case 5: g : �1 7! �i 7! �1 for some 1 � i � p� 1.

Find � ¼ ��rg�t 2 gH0, where r; t are suitable integers so that �ðx0Þ 2 C � v0
and �ðv0Þ 2 C � x0, where �i ¼ fv0; v1; . . . ; vp�1g and v0 ¼

P
0�‘�p�1 �

i ‘
2ð Þx‘. Apply

Lemma 4.2 to get � : x‘ 7! c‘vk‘ for some k 6� 0 (mod p). Substitute it into �ðv0Þ ¼
ax0 for some a 2 C n f0g. We find thatX

0�‘;‘0�p�1

c‘�
i ‘

2ð Þþi ‘0
2ð Þx‘0þk‘ ¼ ax0:

The left-hand side of the above identity may be written as

X
‘;‘0

c‘�
i ‘

2ð Þþi ‘0�k‘
2ð Þx‘0 ¼

X
0�‘0�p�1

X
0�‘�p�1

c‘�
i ‘

2ð Þþi ‘0�k‘
2ð Þ

� �
x‘0 :

Define a complex p
 p matrix T ¼ ðt‘0;‘Þ0�‘0; ‘�p�1, where t‘0;‘ ¼ �i
‘
2ð Þþi ‘0�k‘

2ð Þ.

If 0 � ‘0 6¼ ‘00 � p� 1, then
P

0�‘�p�1 t‘0;‘ � t‘00;‘ ¼
P

‘ �
i ‘0�k‘

2ð Þ�i ‘00�k‘
2ð Þ ¼P

‘ �
i ‘0

2ð Þ�i ‘00
2ð Þþik‘ð‘00�‘0Þ ¼ �i

‘0
2ð Þ�i ‘00

2ð Þ ¼
P

‘ð�ikð‘
00�‘0ÞÞ‘ ¼ 0 by Lemma 4.4. In summary,

T � tT ¼ p � Ip, where tT is the conjugate transpose of the matrix T .

We also find that

T

c0

c1

..

.

cp�1

0BBBBB@

1CCCCCA ¼ a

1

0

..

.

0

0BBBBB@

1CCCCCA:

Multiply tT on both sides of the above identity. We get

pc‘ ¼ a � ��i ‘
2ð Þ�i �k‘

2ð Þ:

Thus � may be defined as

� : x‘ 7! c � ��i ‘
2ð Þ�i �k‘

2ð Þ X
0�‘0�p�1

�i
‘
2ð Þx‘0þk‘

for any 0 � ‘ � p� 1 and for some c 2 C n f0g.
Now we will determine �ð�Þ.
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Since g � � � g�1 ¼ �rð��iÞa, g � ��i � g�1 ¼ �s � �b for some a; b 6� 0 (mod p), we

get g � � � g�1 ¼ �s
0
�b�ai2��ai. The matrix determined by g is

ai b� ai2

a �ai

 !
¼

i �� i2

1 �i

 !
2 PGLð2;FpÞ:

Thus �ð�Þ is the map x 7! ðixþ �� i2Þ=ðx� iÞ.
We will find gð�0Þ. Note that gð�0Þ may be �0 or �j for some 1 � j � p� 1.

Case 5.1: Suppose that gð�0Þ ¼ �0.

From �ð
P

‘ x‘Þ ¼ a
P

‘ �
j‘x‘, where a 2 C n f0g, we get

c �
X

0�‘�p�1

��i ‘
2ð Þ�i �k‘

2ð Þþi ‘0�k‘
2ð Þ ¼ a�j‘

0 ð6:6Þ

for any 0 � ‘0 � p� 1.

The left-hand side of (6.6) may be simplified as

c �
X

0�‘�p�1

��i ‘
2ð Þþi ‘0

2ð Þ�ik‘‘0 ¼ c � �i ‘0
2ð Þ X

0�‘�p�1

��i ‘
2ð Þ�ik‘‘0

¼ A�i
‘0
2ð Þþið2k‘0�1Þ2

8

for some non-zero constant A which is independent of ‘0, by Lemma 4.6. Thus

A � �i ‘0
2ð Þþið2k‘0�1Þ2

8 ¼ a�j‘
0

for any 0 � ‘0 � p� 1. In particular, A � � i
8¼a. Thus we have

�i
‘0
2ð Þþið2k‘0�1Þ2

8 � i
8 ¼ �j‘

0

for any 0 � ‘0 � p� 1. It follows that

i
‘0

2

� �
þ

ik‘0ðk‘0 � 1Þ
2

� j‘0 ðmod pÞ

for any 0 � ‘0 � p� 1.

Thus iþ ik2 � 0 (mod p), i.e. k2 � �1 (mod p).

Case 5.2: Suppose that gð�0Þ ¼ �j for some 1 � j � p� 1. It is clear that

j 6� i (mod p).
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From �ð
P

‘ x‘Þ ¼ a
P

‘ �
j ‘

2ð Þx‘þt for some 0 � t � p� 1 and a 2 C n f0g, we

get

c �
X

0�‘�p�1

��i ‘
2ð Þ�i �k‘

2ð Þþi ‘0�k‘
2ð Þ ¼ a�j

‘0�t
2ð Þ ð6:7Þ

for any 0 � ‘0 � p� 1.

Note that the left-hand side of (6.7) is the same as that of (6.6). Hence we get

A � �i ‘0
2ð Þþið2k‘0�1Þ2

8 ¼ a�j
‘0�t
2ð Þ

for any 0 � ‘0 � p� 1. It follows that

�i
‘0
2ð Þþið2k‘0�1Þ2

8 � i
8 ¼ �j

‘0�t
2ð Þ�j �t

2ð Þ

for any 0 � ‘0 � p� 1.

Hence we get iþ ik2 ¼ j.

Combine the results of Case 5.1 and Case 5.2. We find that gð�0Þ ¼ �iþik2 .

On the other hand, the fractional linear transformation we obtain is

x 7! ðixþ �� i2Þ=ðx� iÞ. Hence 0 7! ð�� i2Þ=ð�iÞ. We get iþ ik2 ¼
ð�� i2Þ=ð�iÞ. Thus � ¼ �i2k2.

Case 6: g : �1 7! �i 7! �0 for some 1 � i � p� 1.

Find suitable r and s so that � ¼ �rg�s 2 gH0 and �ðx0Þ 2 C � v0,
�ðv0Þ 2 C � u0, where v0 ¼

P
‘ �

i ‘
2ð Þx‘, u0 ¼

P
‘ x‘.

By Lemma 4.2, there exists k 6� 0 (mod p) and � : x‘ 7! c‘
P

0�‘0�p�1 �
i ‘0

2ð Þx‘0þk‘.

Substitute this into �ðv0Þ ¼ au0 for some a 2 C n f0g. We getX
0�‘�p�1

c‘�
i ‘

2ð Þþi ‘0�k‘
2ð Þ ¼ a

for any 0 � ‘0 � p� 1.

Define a p
 p complex matrix T ¼ ðt‘0;‘Þ0�‘0;‘�p�1, where t‘0;‘ ¼ �i
‘
2ð Þþi ‘0�k‘

2ð Þ.
If ‘0 6¼ ‘, then X

0�‘�p�1

t‘0;‘ � t‘00;‘ ¼
X

0�‘�p�1

�
i
2ð‘00�‘Þð‘00þ‘0�1þk‘Þ ¼ 0

by Lemma 4.4.

Hence we find that T � tT ¼ p � Ip and
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T

c0

c1

..

.

cp�1

0BBBBB@

1CCCCCA ¼ a

1

1

..

.

1

0BBBBB@

1CCCCCA:

Solve these c‘. We get

pc‘ ¼ a
X

0�‘0�p�1

��i ‘
2ð Þ�i ‘0�k‘

2ð Þ ð6:8Þ

for 0 � ‘ � p� 1.

The right-hand side of (6.8) may be simplified as

a
X
‘0

��i½ ‘
2ð Þþ ‘0

2ð Þþ �k‘
2ð Þ�k‘‘0	 ¼ a��i ‘

2ð Þ�i �k‘
2ð ÞX

‘0

�i
‘0
2ð Þþik‘‘0

¼ A��i ‘
2ð Þ � ��i �k‘

2ð Þ � �
ið2k‘þ1Þ2

8 :

for some non-zero constant A which is independent of ‘, by Lemma 4.6.

We obtain

pc‘ ¼ A � ��i ‘
2ð Þ�i �k‘

2ð Þþið2k‘þ1Þ2
8

and

c‘ � c�1
0 ¼ ��i ‘

2ð Þ�i �k‘
2ð Þþið2k‘þ1Þ2

8 � i
8 ¼ �i

‘
2ð Þ:

Thus � can be chosen as the following map

� : x‘ 7! c � ��i ‘
2ð Þ

X
0�‘0�p�1

�i
‘0
2ð Þx‘0þk‘:

It remains to determine �ð�Þ. From g � � � g�1 ¼ �rð��iÞa and g � ð��iÞ � g�1 ¼
�s � �b, where a; b 6� 0 (mod p), we find that g�g�1 ¼ �s

0
��ai2�b�ai. We get the

matrix
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ai �ai2

a b� ai

 !
¼

i �i2

1 �� i

 !
2 PGLð2;FpÞ:

Hence �ð�Þ is the map x 7! ðix� i2Þ=ðxþ �� iÞ.
We will find gð�0Þ. Note that gð�0Þ may be �1 or �0 for some 1 � j � p� 1.

Case 6.1: Suppose that gð�0Þ ¼ �1.

From the relation gð
P

‘ x‘Þ ¼ axt for some 0 � t � p� 1 and some

a 2 C n f0g, we find that

c �
X
‘0

X
‘

��i ‘
2ð Þþi ‘0�k‘

2ð Þ
� �

x‘0 ¼ axt:

Thus

X
‘

��i ‘
2ð Þþi ‘0�k‘

2ð Þ ¼ 0 ð6:9Þ

for any ‘0 6� t (mod p).

The left-hand side of (6.9) can be written as

X
‘

��i ‘
2ð Þþi ‘0

2ð Þþi �k‘
2ð Þ�ik‘‘0 ¼ �i

‘0
2ð ÞX

‘

��i ‘
2ð Þþi �k‘

2ð Þ�ik‘‘0

¼ �i
‘0
2ð ÞX

‘

�
i
2½ðk2�1Þ‘2þðkþ1�2k‘0Þ‘	

which is never zero by Lemma 4.6, if k2 � 1 6� 0 (mod p).

We conclude that k2 � 1 � 0 (mod p).

Case 6.2: Suppose that gð�0Þ ¼ �j, for some 1 � j � p� 1.

From the relation gð
P

‘ x‘Þ ¼ a
P

‘ �
j ‘

2ð Þx‘þt for some 0 � t � p� 1 and some

a 2 C n f0g, we find that

c �
X
‘

��i ‘
2ð Þþi ‘0�k‘

2ð Þ ¼ a�j
‘0�t
2ð Þ

for any 0 � ‘0 � p� 1.

Proceed as in Case 6.1. We get
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c � �i ‘0
2ð ÞX

‘

�
i
2½ðk2�1Þ‘2þðkþ1�2k‘0Þ‘	 ¼ a�j

‘0�t
2ð Þ ð6:10Þ

for any 0 � ‘0 � p� 1.

If k2 � 1 � 0 (mod p), then the left-hand side of (6.10) becomes zero for those

‘0 such that kþ 1� 2k‘0 6� 0 (mod p). This will lead to a contradiction. Thus

k2 � 1 6¼ 0.

We rewrite the left-hand-side of (6.10) as

c � �i ‘0
2ð ÞX

‘

�iðk
2�1Þ ‘

2ð Þþiðk2þk�2k‘0 Þ
2 ‘ ¼ A�

i ‘0
2ð Þ�iðk�2k‘0þ1Þ2

8ðk2�1Þ

by Lemma 4.6, where A is a constant independent of ‘0.

Hence we get

�
i ‘0

2ð Þ�iðk�2k‘0þ1Þ2
8ðk2�1Þ þ iðkþ1Þ2

8ðk2�1Þ ¼ �j
‘0�t
2ð Þ�j �t

2ð Þ

for 0 � ‘0 � p� 1.

We find that

i‘0ð‘0 � 1Þ �
�ik‘0ðk‘0 � k� 1Þ

k2 � 1
¼ j‘0ð‘0 � 1Þ � 2jt‘0

for 0 � ‘0 � p� 1.

Hence j ¼ i� ik2

k2�1 ¼ �iðk2 � 1Þ�1.

Combine the results of Case 6.1 and Case 6.2, we find that � ¼ ik2.

Case 7: g : �1 7! �i 7! �j for some 1 � i 6¼ j � p� 1.

Find suitable r and s so that � ¼ �rg�s 2 gH0 and �ðx0Þ 2 Cv0, �ðv0Þ 2 Cw0,

where v0 ¼
P

‘ �
i ‘

2ð Þx‘, w0 ¼
P

‘ �
j ‘

2ð Þx‘.

By Lemma 4.2 there exists k 6� 0 (mod p) such that

� : x‘ 7! c‘
X

0�‘0�p�1

�i
‘0
2ð Þx‘0þk‘:

Substitute it into �ðv0Þ ¼ aw0 for some a 2 C n f0g. We get

X
‘0

X
‘

c‘�
i ‘

2ð Þþi ‘0�k‘
2ð Þ

� �
x‘0 ¼ a

X
‘0

�j
‘0
2ð Þx‘0 :
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Use the same technique as in Case 6. We find that

c‘c
�1
0 ¼ A�

1
2½‘2ð

i2k2

i�j�i�ik2Þþi‘	

for any 0 � ‘ � p� 1. The details are left to the reader.

Now consider �ð�Þ. The matrix determined by g is

ai bj� ai2

a b� ai

 !
¼

i �j� i2

1 �� i

 !
2 PGLð2;FpÞ:

Hence �ð�Þ is the map x 7! ðixþ �j� i2Þ=ðxþ �� iÞ.
We will determine the preimage of �1. It may happen that gð�0Þ ¼ �1 or

gð�tÞ ¼ �1 for some 1 � t � p� 1.

Case 7.1: Suppose that gð�0Þ ¼ �1.

From gð
P

‘ x‘Þ ¼ axt0 for some 0 � t0 � p� 1 and some a 2 C n f0g, we find

that

c �
X

0�‘0�p�1

X
0�‘�p�1

�
‘þi ‘0�k‘
2ð Þ

� �
x‘0 ¼ axt0

where 
‘ ¼
1

2
½‘2ði2k2i�j � i� ik2Þ þ i‘	.

Hence

X
0�‘�p�1

�
‘þi ‘0�k‘
2ð Þ ¼ 0

for any ‘0 6� t0 (mod p).

This will imply j � i� ik2 (mod p). The verification is omitted.

Case 7.2: Suppose that gð�tÞ ¼ �1 for some 1 � t � p� 1.

From gð
P

‘ �
t ‘

2ð Þx‘Þ ¼ axt0 for some 0 � t0 � p� 1 and some a 2 C n f0g, we
find that

c �
X

0�‘0�p�1

X
0�‘�p�1

�
‘þt ‘
2ð Þþi ‘0�k‘

2ð Þ
� �

x‘0 ¼ axt0

where 
‘ is same as in the previous case.

It follows that
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X
0�‘�p�1

�
‘þt ‘
2ð Þþi ‘0�k‘

2ð Þ ¼ 0

for any ‘0 6� t0 (mod p).

Note that

X
0�‘�p�1

�
‘þt ‘
2ð Þþi ‘0�k‘

2ð Þ ¼
X

0�‘�p�1

�
‘þt ‘
2ð Þþi½ ‘0

2ð Þþ �k‘
2ð Þ�k‘‘0	

¼ �i
‘0
2ð Þ X

0�‘�p�1

�
1
2½‘2ð

i2k2

i�j�iþtÞþ‘ði�tþik�2ik‘0Þ	

is never zero by Lemma 4.6, provided that i2k2

i�j
� iþ t 6� 0 (mod p).

We conclude that i2k2

i�j � iþ t � 0 (mod p).

Combine the results of Case 7.1 and Case 7.2. We find gð�tÞ ¼ �1 with

t ¼ i� i2k2

i�j . Hence � ¼ ði� jÞ�1i2k2.

7. Proof of Theorem 2.6 and Theorem 2.7.

PROOF OF THEOREM 2.6 (1).

The ‘‘determinants’’ of the fractional linear transformation in (i) � (vii) of

(E) in Theorem 2.5 belong to F
2
p . Thus these elements may be adjusted to

become elements in PSLð2;FpÞ.

Because of Theorem 2.6(1) it is important to know the subgroups in

PSLð2;FpÞ.

THEOREM 7.1 ([Hu, 8.27 Hauptsatz, p.213]). A subgroup of PSLð2;FpÞ is

isomorphic to one of the following groups,

(i) a cyclic group of order m, where m is a divisor of p; ðp� 1Þ=2 or ðpþ 1Þ=2,
(ii) a dihedral group of order 2m, where m is a divisor of ðp� 1Þ=2 or

ðpþ 1Þ=2,
(iii) the alternating group A4,

(iv) the symmetric group S4 if p2 � 1 (mod 16),

(v) the alternating group A5 if p ¼ 5 or p2 � 1 (mod 5),

(vi) a semi-direct product of a cyclic group of order p with a cyclic group of

order m, where m is a divisor of p� 1,

(vii) the group PSLð2;FpÞ itself.

PROOF OF THEOREM 2.7.

(1) It is routine to verify that �1��
�1
1 ¼ � , �1��

�1
1 ¼ �� , �2��

�1
2 ¼ ��1,
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�2��
�1
2 ¼ � , �3��

�1
3 ¼ �h

�1
, �3��

�1
3 ¼ �h. In the notation of Theorem 2.6(2), we find

that

�ð�1Þ ¼
1 1

0 1

 !
; �ð�2Þ ¼

0 1

�1 0

 !
; �ð�3Þ ¼

h�1 0

0 h

 !
:

Thus �ð�iÞ 2 SLð2;FpÞ for i ¼ 1; 2; 3. Clearly �ð�iÞ ¼ �0�ð�iÞ by Lemma 5.3.

Since every matrix in SLð2;FpÞ can be brought to a diagonal matrix by the

row operations and the column operations, it follows that SLð2;FpÞ is generated
by �ð�1Þ;�ð�2Þ;�ð�3Þ. Thus �ðG0Þ ¼ PSLð2;FpÞ.

Note that �p�1 belongs to the cyclic subgroup generated by �3. It follows that

the order of G0 is 2p3 � jPSLð2;FpÞj ¼ p4ðp2 � 1Þ. Obviously G0 is primitive.

(2) Since �ðGÞ � �ðG0Þ, hence G � G0. The proof of the remaining part will

be delayed till we finish the proof of Theorem 2.6.

PROOF OF THEOREM 2.6 (2) AND (3).

By Theorem 2.7(2), G � G0. Hence �ðGÞ � �ðG0Þ. In the proof of Theorem

2.6(1) we have found that �ðG0Þ ¼ h�ð�iÞ : i ¼ 1; 2; 3i � SLð2;FpÞ and �ð�iÞ ¼
�0�ð�iÞ. Hence the same conclusions are valid for all elements of G. Note that �p�1

is not in the kernel of �. Apply Lemma 4.3 to show that Kerð�Þ ¼ D.

LEMMA 7.2. Keep the assumptions and notation in Theorem 2.7. If G1; G2

are primitive subgroups of G0 containing D such that �ðG1Þ and �ðG2Þ are

conjugate to each other in SLð2;FpÞ, then G1 is conjugate to G2 in G0. In

particular, they are equivalent in SLðp;CÞ.

PROOF. Suppose that �ðG2Þ ¼ g0�ðG1Þg0�1 for some g0 2 SLð2;FpÞ. Choose
a preimage g 2 G0 of g0. Then G2 ¼ gG1g

�1. �

LEMMA 7.3. Keep the assumptions and notation in Theorem 2.5. If �ðGÞ is
isomorphic to a cyclic group of order m with m dividing pðp� 1Þ=2 or the semi-

direct product in (vi) of Theorem 7.1, then G is not a primitive group.

PROOF. We may assume that �ðGÞ is nontrivial. If �ðGÞ is a subgroup of a

cyclic group of order p or ðp� 1Þ=2, it is conjugate to a cyclic group with generator

of the form
1 1
0 1

� �
or

a 0

0 a�1

� �
for some a 2 Fp n f0g. Apply Part (ii) of (E) in

Theorem 2.5. The group G is equivalent to a monomial group.

Now suppose �ðGÞ is isomorphic to the semi-direct product in (vi) of

Theorem 7.1. Without loss of generality we may assume that the generator of the
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cyclic subgroup of order p in �ðGÞ is of the form 1 1
0 1

� �
. It is routine to verify that

�ðGÞ is a triangular matrix group in PSLð2;FpÞ. Apply Part (ii) of (E) in Theorem

2.5 to show that G is a monomial group. �

LEMMA 7.4. If � is a subgroup of SLð2;FpÞ and �0ð�Þ ¼ PSLð2;FpÞ, where
�0 : SLð2;FpÞ ! PSLð2;FpÞ is the canonical projection, then � ¼ SLð2;FpÞ.

PROOF.

Case 1: �I2 ¼ �1 0
0 �1

� �
2 �.

Clearly we have � ¼ SLð2;FpÞ.
Case 2: �I2 ¼ �1 0

0 �1

� �
=2 �.

Since � is an index two subgroup in SLð2;FpÞ, it is a normal subgroup. Thus

SLð2;FpÞ is a direct product of � and �I2.

On the other hand, � has an element of order two; call it �. Note that � and

�I2 are conjugate in GLð2;FpÞ. Since �I2 is in the center of GLð2;FpÞ, it follows
that � ¼ �I2. A contradiction. �

PROOF OF THEOREM 2.7 (2) (continued).

Suppose p4 is a divisor of jGj. Then p divides the order of �ðGÞ. By Theorem

7.1 and Lemma 7.3 we find that �ðGÞ ¼ PSLð2;FpÞ. By Theorem 2.6

�0ð�ðGÞÞ ¼ PSLð2;FpÞ. Thus �ðGÞ ¼ SLð2;FpÞ by Lemma 7.4. It follows that

G ¼ G0.

If p4 doesn’t divide jGj, then the order of �ðGÞ ¼� G=D is relatively prime to

that of D. Hence this group extension splits by Schur-Zassenhaus Theorem [Suz,

Theorem 8.10, p.235]. �

By Theorem 2.7(2) it remains to find subgroups in SLð2;FpÞ whose orders are
relatively prime to p. It is a special case of Dickson’s Theorem [Suz, Theorem

6.17, p.404], [Hu, p.213]. We record it as the following theorem.

THEOREM 7.5. Let p be an odd prime number, q ¼ pf for some positive

integer f, and � be a subgroup of SLð2;FqÞ such that the order of � is relatively

prime to p. Then � is isomorphic to one of the following groups,

(i) a cyclic group of order m, where m is a divisor of q � 1 or q þ 1,

(ii) a group of order 4m generated by x; y with relation xm ¼ y2 and

y�1xy ¼ x�1, where m � 2 and is a divisor of ðq � 1Þ=2 or ðq þ 1Þ=2,
(iii) the group SLð2;F3Þ if p 6¼ 3,

(iv) the group cS4 if q2 � 1 (mod 16), where cS4 is the representation group of

the symmetric group of degree 4 in which the transpositions correspond to the
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elements of order 4;

(v) the group SLð2;F5Þ if q2 � 1 (mod 5).

The group in (ii) will be called a binary dihedral group of order 4m.

8. Subgroups of SLð2;FqÞ.

In this section we will find explicit generators of all the subgroups (up to

conjugation in SLð2;FqÞ) in Theorem 7.5. We emphasize that q is an odd prime

power.

First we give an isomorphism of SUð2;Fq2Þ onto SLð2;FqÞ.

DEFINITION 8.1. For any a 2 Fq2 , write �a ¼ aq, the conjugate of a. We

define SUð2;Fq2Þ by

SUð2;Fq2Þ ¼
a b

��b �a

 !
2 SLð2;Fq2Þ : a; b 2 Fq2

( )
:

LEMMA 8.2. Let 
 2 Fq2 n Fq be any element such that 
�
 ¼ �1. Define a

group homomorphism � by

� : SUð2;Fq2Þ �! SLð2;FqÞ

a b

��b �a

 !
7!

1 


�
 1

 !
a b

��b �a

 !
1 


�
 1

 !�1

:

Then � is an isomorphism.

REMARKS. The existence of 
 is ensured by the fact that the norm map

from F

q2 to F


q is surjective and the preimage of �1 is not contained in Fq.

PROOF. The map � is well-defined because it is routine to verify that each

entry of �ðAÞ, where A 2 SUð2;Fq2Þ is invariant under the conjugation map on

Fq2 . Since SLð2;FqÞ and SUð2;Fq2Þ have the same order and � is injective, thus �

is an isomorphism. See [Hu, 8.8 Hilfssatz, p.194] for a somewhat different

proof. �

Recall several facts about SLð2;FqÞ.

LEMMA 8.3 ([Suz, (6.23), p.410]).

(1) There exist an element A1 of order q � 1 and an element A2 of order q þ 1

in SLð2;FqÞ;
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(2) Any cyclic subgroup of SLð2;FqÞ with order relatively prime to q is

conjugate to a subgroup of hA1i or hA2i;
(3) If q 6¼ 3 (resp. q ¼ 3 and i ¼ 2), the normalizer of Ai in SLð2;FqÞ is a

binary dihedral group of order 2ðq þ ð�1ÞiÞ defined in Theorem 7.5(ii). In

particular, all binary dihedral groups of order 2ðq þ 1Þ (resp. of order 2ðq � 1Þ with
q > 3) are conjugate in SLð2;FqÞ.

LEMMA 8.4 ([Suz, (6.19), p.407]). Let x be a non-scalar matrix of SLð2;FqÞ.
(1) x2 is a scalar matrix if and only if the trace of x is 0.

(2) x3 is the identity matrix if and only if the trace of x is �1.

LEMMA 8.5. Let m � 2 be an integer, and � ¼ hx; y : xm ¼ y2; y�1xy ¼ x�1i
be a binary dihedral group of order 4m. Let n � 2 be a divisor of m.

(1) If �0 is a non-abelian subgroup of � with order 4n, then it is isomorphic to a

binary dihedral group of order 4n.

(2) There are at most two conjugacy classes for binary dihedral groups of

order 4n contained in �. There are precisely two such conjugacy classes if and only

if m=n is even.

PROOF. Let �0 be a non-abelian subgroup with order 4n contained in �.

Since �0 is not contained in hxi, �0 contains an element u outside hxi. Hence

u ¼ xky for some k. Note that the order of u is 4. Clearly � ¼ hx; ui with

u�1xu ¼ x�1.

Let v be an element in �0 n hui of maximal order. Note that the order of v

must be even. Furthermore we may assume that v ¼ xi with i ¼ m=n. For, if

v ¼ xiu then xi 2 �0 and we may replace xiu by xi. It is not difficult to show that

�0 ¼ hv; ui and is a binary dihedral group of order 4n.

For any integers j and t, note that xj�0x�j ¼ hv; x2jui ¼ hv; vtx2jui ¼
hv; xtiþ2jui. In particular, if i ¼ m=n is odd, then �0 is conjugate to hv; yi.
Similarly, if m=n is even, then �0 is conjugate either to hv; yi or hv; xyi; it is not

difficult to see that hv; yi is not conjugate to hv; xyi in �. �

DEFINITION 8.6. We will define several elements in Fq2 , which will be used

in the remaining part of this section. Let � be a fixed generator of F

q2 . Define


 ¼ �ðq�1Þ=2; � ¼ �qþ1 and � ¼ �ðq
2�1Þ=4. Note that 
 satisfies the assumption in

Lemma 8.2 and � is a square root of �1. We will choose � 2 Fq2 n Fq such that

� �� ¼ 1=2, which is possible because the norm map from F

q2 to F


q is surjective.

DEFINITION 8.7. We will define some matrices in SLð2;FqÞ by
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~z ¼
0 �1

1 0

 !
; ~x ¼

��1 0

0 �

 !
; ~y ¼

1 
�1 � 



�1 � 
 
�2 þ 
2 � 1

 !
:

Note that ~y is equal to

1 


�
 1

 !

2 0

0 
�2

 !
1 


�
 1

 !�1

;

which is the pull-back of some matrix of SUð2;Fq2Þ by Lemma 8.2.

Now we will describe conjugacy classes of subgroups in Theorem 7.5.

PROPOSITION 8.8. The case of cyclic groups.

Any abelian subgroups of SLð2;FqÞ of order relatively prime to q are cyclic

groups. Moreover, a cyclic subgroup of SLð2;FqÞ of order m dividing q � 1 (resp.

q þ 1) is conjugate to the subgroup h~xki, where q � 1 ¼ mk (resp. h~yki, where

q þ 1 ¼ mk).

PROOF. Apply Theorem 7.5 and Lemma 8.3. �

THEOREM 8.9. The case of binary dihedral groups.

(1) The groups h~x; ~zi and h~y; ~zi are binary dihedral groups of order 2ðq � 1Þ (if
q 6¼ 3) and 2ðq þ 1Þ respectively. Every binary dihedral group of SLð2;FqÞ with

order 2ðq � 1Þ (if q 6¼ 3) or 2ðq þ 1Þ is conjugate to h~x; ~zi or h~y; ~zi.
(2) Assume that q 6¼ 3. Let n � 4 be an even divisor of q � 1 and write

q � 1 ¼ nk. If k is odd, every binary dihedral group in SLð2;FqÞ with order 2n is

conjugate to h~xk; ~zi. If k is even, h~xk; ~zi and h~xk; ~x~zi are two non-conjugate binary

dihedral groups of order 2n; every binary dihedral group of order 2n is conjugate to

one of them.

(3) Let n � 4 be an even divisor of q þ 1 and write q þ 1 ¼ nk. If k is odd, every

binary dihedral group in SLð2;FqÞ with order 2n is conjugate to h~yk; ~zi. If k is even,

h~yk; ~zi and h~yk; ~y~zi are two non-conjugate binary dihedral groups of order 2n; every

binary dihedral group of order 2n is conjugate to one of them.

PROOF. (1) follows from Lemma 8.3. (2) and (3) follow from Lemma 8.5

because every binary dihedral group of order 2m can be enlarged to a binary

dihedral group of order 2ðq � 1Þ or 2ðq þ 1Þ by Lemma 8.3. �

DEFINITION 8.10. For i ¼ 0; 1, we will define elements ai, bi, ui, wi, si,

Some primitive linear groups of prime degree 1051



ti 2 Fq.

If q � 1 (mod 4), define

ai ¼
�i

4
� ��i; bi ¼ ��

�i

4
þ ��i

� �
where i ¼ 0; 1.

If q � 3 (mod 4), define

ai ¼
�2
�ð�2
2i þ �2q
�2iÞ þ ð1� 
2Þð�2
2i � �2q
�2iÞ

1þ 
2
;

bi ¼
2
ð�2
2i � �2q
�2iÞ þ �ð1� 
2Þð�2
2i þ �2q
�2iÞ

1þ 
2

where i ¼ 0; 1.

After ai; bi have been defined, we define ui; wi; si; ti by

ui ¼
bi � ai � 1

2
; wi ¼

bi þ ai � 1

2
;

siðai � biÞ ¼ tiðai þ biÞ

where s2i þ t2i ¼ �1.

THEOREM 8.11. The case of SLð2;F3Þ if p 6¼ 3, and cS4 if q2 � 1 (mod 16).

We define matrices Ei; Li 2 SLð2;FqÞ by

Ei ¼
ui wi

wi þ 1 �1� ui

 !
; Li ¼

si ti

ti �si

 !

where i ¼ 0; 1.

(1) Assume that q 6¼ 3.

The subgroups h~z; E0i and h~z; E1i are not conjugate in SLð2;FpÞ if and only if

q2 � 1 (mod 16); both of these two groups are isomorphic to SLð2;F3Þ. Any

subgroup of SLð2;FpÞ, which is isomorphic to SLð2;F3Þ, is conjugate to h~z; E0i or
h~z; E1i.

(2) Assume q2 � 1 (mod 16).

The subgroups h~z; E0; L0i and h~z; E1; L1i are not conjugate in SLð2;FpÞ; both
of them are isomorphic to cS4. Any subgroup of SLð2;FpÞ, which is isomorphic to

1052 M.-C. KANG, J.-P. ZHANG, J.-Y. SHI, Y. YU and S. S. T. YAU



cS4, is conjugate to h~z; E0; L0i or h~z; E1; L1i.

PROOF. For brevity we will write � ¼ SLð2;FqÞ and denote a quaternion

group of order 8 by Q8.

Step 1: We will determine conjugacy classes of subgroups in �, which are

isomorphic to Q8.

Note that any subgroup in �, which is isomorphic to Q8, is conjugate to

h~z;Mi, where ~z is defined in Definition 8.7, M is a matrix of order 4 such that

~z2 ¼ M2;M�1~zM ¼ ~z�1. By Lemma 8.4 M has the form

M ¼
a b

c �a

 !

where a2 þ bc ¼ �1.

Apply the relation M�1~zM ¼ ~z�1. We find that b ¼ c.

Step 2: For the group h~z;Mi constructed in Step 1, we will find a matrix E

such that the order of E is 3 and h~z;M;Ei is isomorphic to SLð2;F3Þ. In

particular, h~z;Mi is a normal subgroup of h~z;M;Ei.
Choose any elements a; b 2 Fq satisfying a2 þ b2 ¼ �1. Define u ¼

ðb� a� 1Þ=2; w ¼ ðbþ a� 1Þ=2. Then uð1þ uÞ þ wðwþ 1Þ ¼ �1. (We will ex-

plain later the reason why we choose u; w in this way.) Define E by

E ¼
u w

wþ 1 �1� u

 !
: ð8:1Þ

Then E 2 SLð2;FqÞ is a matrix of order 3 by Lemma 8.4.

Define

y ¼ E�1~zE ¼
1þ uþ w w� u

w� u �1� u� w

 !
:

Substituting the relations u ¼ ðb� a� 1Þ=2; w ¼ ðbþ a� 1Þ=2 into entries of

the above matrix, we get

1þ uþ w w� u

w� u �1� u� w

 !
¼

b a

a �b

 !
:

Moreover, it is routine to verify that E�1yE ¼ ~zy. In fact, starting from a

matrix E defined by (8.1) (u; w : undetermined coefficients) and defining y by
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requiring y ¼ E�1~zE and E�1yE ¼ ~zy, we are led to the equation uð1þ uÞ þ
wðwþ 1Þ ¼ �1. To solve this equation, we may choose u ¼ ðb� a� 1Þ=2; w ¼
ðbþ a� 1Þ=2.

We conclude that h~z; yi is isomorphic to Q8 (by Step 1) and h~z; Ei is

isomorphic to SLð2;F3Þ.
Step 3: If q2 � 1 (mod 16), then 2 is a square in Fq.

Write q ¼ pf for some positive integer f . If f is an even integer, since Fp2 is

the unique quadratic extension of the prime field, the equation X2 � 2 is reducible

in Fp2 ½X	. Now assume that f is an odd integer. It follows that q � p (mod 8).

Since q2 � 1 (mod 16), it is necessary that p � 1 or �1 (mod 8). Thus 2 is a square

in Fp by the quadratic reciprocity law.

Step 4: If q2 � 1 (mod 16), we will find a matrix L such that L2 ¼ �I2 and

h~z; E; Li ¼� cS4. In particular h~z; yi is normal in h~z; E; Li.
By Lemma 8.4 and Step 1, choose L to be

L ¼
s t

t �s

 !

where s; t are any elements in Fq satisfying s2 þ t2 ¼ �1. We require furthermore

that sða� bÞ ¼ tðaþ bÞ; be careful that, if a ¼ b, choose s2 ¼ �1; t ¼ 0; if a ¼ �b,

choose s ¼ 0; t2 ¼ �1. (This is possible: If a ¼ b or �b, plugging in the relation

a2 þ b2 ¼ �1, we get 2a2 ¼ �1. Since 2 is a square in Fq by Step 3, so is �1.)

It is easy to verify that L�1EL ¼ E�1; L�1~zL ¼ ~z�1; L�1yL ¼ y~z. Thus

h~z; E; Li ¼� cS4.

Step 5: For a finite group �, denote by O2ð�Þ the maximal normal 2-subgroup

of �. Consider two subgroups Tjðj ¼ 0; 1Þ in � which are isomorphic to SLð2; 3Þ
(resp. cS4). We will prove that T0 and T1 are conjugate in � if and only if O2ðT0Þ
and O2ðT1Þ are conjugate in �. Thus the conjugation problem in � for subgroups

isomorphic to SLð2; 3Þ (resp.cS4) is equivalent to that for subgroups isomorphic to

Q8 because the maximal normal 2-subgroup of SLð2; 3Þ (resp.cS4) is isomorphic to

Q8.

It suffices to show that, if O2ðT0Þ and O2ðT1Þ are conjugate in �, then T0 and

T1 are conjugate in �.

Consider the normalizer of O2ðTiÞ in � for i ¼ 0; 1. Since O2ðTiÞ is isomorphic

to Q8 and the normalizer contains Ti and is a subgroup of �, we find that, by

Theorem 7.5, this subgroup is either isomorphic to cS4 if q2 � 1 (mod 16), or

isomorphic to SLð2; 3Þ otherwise. It follows that either Ti equals to the normalizer

of O2ðTiÞ in � or Ti is an index 2 subgroup of the normalizer of O2ðTiÞ in �. The
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latter possibility occurs only when q2 � 1 (mod 16). However, the group cS4 has

only one subgroup of index 2. Thus, if O2ðTiÞ are conjugate in � for i ¼ 0; 1, then

the normalizer of O2ðTiÞ in � are conjugate and therefore Ti are conjugate.

Step 6: We will solve the conjugation problem for subgroups isomorphic to

Q8. In fact, we will exhibit two such subgroups which are possibly non-conjugate

and prove that (i) � has at most two conjugacy classes of subgroups isomorphic to

Q8, and (ii) � has precisely two conjugacy classes of such subgroups if and only if

q2 � 1 (mod 16).

Case 1: q � 1 (mod 4).

Recall the definitions of �; �; � � � in Definition 8.6 and ~z; ~x; � � � in Definition 8.7.

Note that ~z; ~x 2 �. Define a matrix y 2 � by

y ¼
� 0

0 ��1

 !
:

A subgroup of �, which is isomorphic to Q8, is conjugate to hy; ~z~xii for some i.

The conjugation by ~x repeatedly will reduce these subgroups to at most two

conjugacy classes : hy; ~zi and hy; ~z~xi. Note that both hy; ~zi and hy; ~z~xi are binary

dihedral groups. By Theorem 8.9(2), these two subgroups are not conjugate in � if

and only if q � 1 � 0 (mod 8), i.e. q2 � 1 (mod 16).

Case 2: q � 3 (mod 4).

Imitate the proof of the above case and construct the subgroups hy; ~zi and

hy; ~z�xi in SUð2;Fq2Þ, where

�x ¼

2 0

0 
2q

 !
:

Note that the conjugation by �x is still an inner automorphism of SUð2;Fq2Þ.
Thus there are at most two conjugacy classes in SUð2;Fq2Þ : hy; ~zi and hy; ~z�xi. Pull
back these information from SUð2;Fq2Þ to � by Lemma 8.2. Apply Theorem 8.9

(3). We find that these two subgroups are not conjugate in � if and only if

q þ 1 � 0 (mod 8), i.e. q2 � 1 (mod 16).

Step 7: We will construct explicitly the conjugacy classes of subgroups

isomorphic to SLð2; 3Þ or cS4. Because of Step 5, we will construct conjugacy

classes of subgroups isomorphic to Q8 with the form in Step 1.

First we solve the question for the case q � 1 (mod 4). The remaining case

will be solved in Step 8.

Define
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S ¼
1 ��=2

�� 1=2

 !
:

Then

S�1~zS ¼
� 0

0 ��1

 !
:

Now define y0 ¼ S~zS�1 and y1 ¼ S~x~zS�1. Then

yi ¼
��ð�i=4þ ��iÞ �i=4� ��i

�i=4� ��i �ð�i=4þ ��iÞ

 !
:

Clearly h~z; yii ¼� Q8. Corresponding to yi we can construct Ei and Li as in

Step 2 and Step 4 so that h~z; Eii ¼� SLð2; 3Þ; h~z; Ei; Lii ¼� cS4.

Step 8: The case q � 3 (mod 4).

We will construct similar groups in SUð2;Fq2Þ and pull back the information

by Lemma 8.2. Explicitly define

T ¼
� ����

��� ��

 !
2 SUð2;Fq2Þ

where � is defined in Definition 8.6.

It is straightforward to check that

T�1~zT ¼
� 0

0 ��1

 !
:

Define

y0i ¼
0 
2i

�
�2i 0

 !
:

We find that hT�1~zT ; y0ii ¼� Q8.

Define
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yi ¼
1 


�
 1

 !
Ty0iT

�1
1 


�
 1

 !�1

:

It is easy to find that

yi ¼
bi ai

ai �bi

 !

where, for i ¼ 0; 1,

bi ¼
2
ð�2
2i � �2q
�2iÞ þ �ð1� 
2Þð�2
2i þ �2q
�2iÞ

1þ 
2
;

ai ¼
�2
�ð�2
2i þ �2q
�2iÞ þ ð1� 
2Þð�2
2i � �2q
�2iÞ

1þ 
2
:

These subgroups h~z; yii are isomorphic to Q8. Once they are constructed, we

may find the corresponding Ei and Li as in Step 7. �

DEFINITION 8.12. Assume that q2 � 1 (mod 5). Recall the definition of �; 


in Definition 8.6.

If q � 1 (mod 5), define u ¼ ð�2ðq�1Þ=5 � 1Þ�1.

If q � �1 (mod 5), define 
 ¼ 
2ðqþ1Þ=5, u ¼ ð
2 � 1Þ�1, and w0 2 Fq2 satisfies

w0 �w0 ¼ 1� u�u; such an element w0 does exist because the norm map from F

q2 to

F

q is surjective.

THEOREM 8.13. The case of SLð2;F5Þ.
(1) Assume that q � 1 (mod 5).

Define matrices B;E1; E2 2 SLð2;FqÞ by

B ¼
�ðq�1Þ=5 0

0 ��ðq�1Þ=5

 !
; Ei ¼

u ��i

��ið1þ uþ u2Þ �1� u

 !

where i ¼ 0; 1.

Then hB;E0i and hB;E1i are not conjugate in SLð2;FqÞ; both of them are

isomorphic to SLð2;F5Þ. Moreover, any subgroup of SLð2;FqÞ, which is isomorphic

to SLð2;F5Þ, is conjugate to hB;E0i or hB;E1i.
(2) Assume that q � �1 (mod 5).

Define matrices B;E1; E2 2 SLð2;FqÞ by
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B ¼
1


ð1þ 
2Þ

2 þ 
2 
ð1� 
2Þ

ð1� 
2Þ 1þ 
2
2

 !
; Ei ¼

1

1þ 
2

�
 �


�� �	

 !

where

�
 ¼ u� 
2ðuþ 1Þ þ 
ð
2iw0 � 
�2iw0qÞ;
�
 ¼ �
ð1þ 2uÞ þ 
2iw0 þ 
2�2iw0q;

�� ¼ �
ð1þ 2uÞ � 
2iþ2w0 � 
�2iw0q;

�	 ¼ �1� uþ 
2u� 
ð
2iw0 � 
�2iw0qÞ:

Then hB;E0i and hB;E1i are not conjugate in SLð2;FqÞ; both of them are

isomorphic to SLð2;F5Þ. Moreover, any subgroup of SLð2;FqÞ, which is isomorphic

to SLð2;F5Þ, is conjugate to hB;E0i or hB;E1i.

PROOF. Denote � ¼ SLð2;FqÞ.
Step 1: Recall a standard result about SLð2;F5Þ (see [Suz, Example 4,

p.176]): If K is a group defined by K ¼ hx; y : x5 ¼ y3 ¼ 1, where ðxyÞ2 is a central

element of order 2i, then there is a surjection from K onto SLð2;F5Þ.
In particular, if we can find elements x; y 2 � such that x5 ¼ y3 ¼ 1 and

ðxyÞ2 ¼ �I2, by Theorem 7.1 and Theorem 7.5, the subgroup hx; yi is isomorphic

to SLð2;F5Þ or �. Since �=h�I2i is a simple group (remember q2 � 1 (mod 5)),

hx; yi is isomorphic to SLð2;F5Þ.
We will consider the case q � 1 (mod 5) first and discuss the case q � �1

(mod 5) later.

Define a ¼ �ðq�1Þ=5 and

B ¼
a 0

0 a�1

 !
:

We will find matrix X 2 � such that X 6¼ I2 and

ðBXÞ2 ¼
�1 0

0 �1

 !
; X3 ¼ 1: ð8:2Þ

Step 2: By Lemma 8.4 any matrix of order 3 is of the form
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u w

v �1� u

 !

where u; w; v 2 Fq with uð1þ uÞ þ wv ¼ �1.

Define u ¼ ða2 � 1Þ�1; w 2 Fq n f 0g; v ¼ �w�1ð1þ uþ u2Þ and

E ¼
u w

v �1� u

 !
:

Then E is a solution of Equation (8.2), i.e. ðBEÞ2 ¼ �I2 and E3 ¼ I2. In fact,

it is obtained as follows.

For any matrix X 2 � with the form

X ¼
u w

v �1� u

 !
;

consider BX. Note that

ðBXÞ2 ¼
a2u2 þ vw a2uw� wð1þ uÞ

uv� a�2vð1þ uÞ vwþ a�2ð1þ uÞ2

 !
:

Hence ðBXÞ2 ¼ �I2 if and only if a2u2 þ vw ¼ �1; wða2u� ð1þ uÞÞ ¼ vðu�
a�2ð1þ uÞÞ ¼ 0 and a�2ð1þ uÞ2 þ vw ¼ �1.

We claim that vw 6¼ 0. Otherwise, uð1þ uÞ ¼ �1 and a2 ¼ �u�2. It follows

that u is of order 3 in Fq and a6 ¼ u�6 ¼ 1, which is contradictory to the fact that

the order of a is 5.

Hence a2u� ð1þ uÞ ¼ 0; u ¼ ða2 � 1Þ�1 and v ¼ �w�1ð1þ uþ u2Þ, which is

the reason why we define the matrix E. Moreover, from the above discussion,

Equation (8.2) has exactly q � 1 solutions in � with w an arbitrary element in

Fq n f 0g. Any subgroup of �, which is isomorphic to SLð2;F5Þ, is conjugate to

hB;Ei for some w 2 Fq n f 0g.
Step 3: We will consider the question of conjugacy classes.

For any b 2 Fq n f 0g, note that

b 0

0 b�1

 !
u w

v �1� u

 !
b�1 0

0 b

 !
¼

u b2w

b�2v �1� u

 !
:
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Thus any subgroup of �, which is isomorphic to SLð2;F5Þ, is conjugate to

hB;E0i or hB;E1i, where Ei is defined by

Ei ¼
u ��i

��ið1þ uþ u2Þ �1� u

 !

where u ¼ ð�2ðq�1Þ=5 � 1Þ�1.

Step 4: We claim that hB;E0i is not conjugate to hB;E1i in �.

If not, find x 2 � such that hB;E1ix ¼ hB;E0i, where hB;E1ix denotes

x�1 � hB;E1i � x.
There is an element t 2 hB;E0i such that hBix ¼ hBit. Hence

xt�1 2 N�ðhBiÞ ¼ h~x; ~zi, where N�ðhBiÞ denotes the normalizer of hBi in �.

Since N�ðhBiÞ \ hB;E0i ¼ NhB;E0iðhBiÞ is of order 20, there is an element s in

hB;E0i of order 4 such that s�1 ~xs ¼ ~x�1 and h~x; ~zi ¼ h~x; si, where s is of the form

s ¼
0 �‘

���‘ 0

 !
:

We conclude that there are exactly ðq � 1Þ=10 subgroups of hB;E0i, which are

conjugate to h~x; ~zi; moreover, there are exactly five solutions X to Equation (8.2)

in each of hB;E0i~x
n

, where n is any integer. For example, the five solutions in

hB;E0i are B�jE0B
j, with j ¼ 0; 1; 2; 3; 4.

Since xt�1 ¼ ~xn0
si

0
, and hB;E0i ¼ hB;E1ix ¼ hB;E1i~x

n0 si
0
t. Thus hB;E0i ¼

hB;E1i~x
n0

contains at least ten solutions of Equation (8.2), which is a contra-

diction.

Step 5: Now we consider the case q � �1 (mod 5).

We may apply similar arguments in SUð2; q2Þ. Thus we will simply exhibit

the two non-conjugating classes in SLð2;FqÞ.
As before, we work in SUð2; q2Þ first. Define 
 ¼ 
2ðqþ1Þ=5; u ¼ ð
2 � 1Þ�1.

Note that 
qþ1 ¼ 1 and uþ uq ¼ ð
2 � 1Þ�1 þ ð
�2 � 1Þ�1 ¼ �1. Define

B0 ¼

 0

0 
q

 !
:

All the solutions X 2 SU ð2; q2Þ (where X 6¼ I2) to the following equation
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ðB0XÞ2 ¼
�1 0

0 �1

 !
; X3 ¼ 1

has the form

X ¼
u w

wq uq

 !

with uuq þ wwq ¼ 1.

There are exactly q þ 1 of them. Choose any w0 satisfying w0w0q ¼ 1� uuq and

define

E0
i ¼

u w0
2i

�ðw0
2iÞq uq

 !

where i ¼ 0; 1. Thus both hB0; E0
0i and hB0; E0

1i are isomorphic to SLð2; 5Þ.
Now we define

B ¼
1 


�
 1

 !

 0

0 
q

 !
1 


�
 1

 !�1

and

Ei ¼
1 


�
 1

 !
u 
2iw0

�ð
2iw0Þq uq

 !
1 


�
 1

 !�1

:

It is routine to verify that

B ¼ 1


ð1þ 
2Þ

2 þ 
2 
ð1� 
2Þ

ð1� 
2Þ 1þ 
2
2

 !
; Ei ¼

1

1þ 
2

�
 �


�� �	

 !

where
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�
 ¼ u� 
2ðuþ 1Þ þ 
ð
2iw0 � 
�2iw0qÞ;
�
 ¼ �
ð1þ 2uÞ þ 
2iw0 þ 
2�2iw0q;

�� ¼ �
ð1þ 2uÞ � 
2iþ2w0 � 
�2iw0q;

�	 ¼ �1� uþ 
2u� 
ð
2iw0 � 
�2iw0qÞ: �

Summary.

Because of Lemma 7.2 and Lemma 7.3, we find that any finite primitive

subgroup in SLðp;CÞ containing a non-trivial monomial normal subgroup H so

that H has a non-scalar diagonal matrix is equivalent to a group G such that �ðGÞ
is conjugate to SLð2;FpÞ, or a cyclic subgroup of order m, where m � 3 and m is a

divisor of q þ 1, or a group of type (ii)–(v) in Theorem 7.5. The generators of these

subgroups of SLð2;FpÞ (up to conjugation) may be found in Proposition 8.8,

Theorem 8.9, Theorem 8.11 and Theorem 8.13. Once these subgroups are

obtained, we may apply Theorem 2.5.

In the Appendix the reader will find a list of generators of these subgroups

when p ¼ 5 or 7. The following example provides a brief account of our method in

the case p � 7.

EXAMPLE 8.14. Subgroups in SLð3;CÞ. The conjugacy classes for �ðGÞ are:
a cyclic group of order 4, a binary dihedral group of order 8, or the group SLð2;F3Þ
itself. Thus we recover Theorem 1.2, i.e. Blichfeldt’s Theorem.

Subgroups in SLð5;CÞ. The conjugacy classes for �ðGÞ are: cyclic groups of

order 3 or 6, binary dihedral groups of order 8 or 12, or a group isomorphic to

SLð2;F3Þ, or the group SLð2;F5Þ itself. Thus we obtain in total six non-equivalent

primitive subgroups of this type. This provides an explicit description of Brauer’s

Theorem, i.e. Theorem 1.3(1).

Subgroups in SLð7;CÞ. The conjugacy classes for �ðGÞ are: cyclic groups of

order 4 or 8, binary dihedral groups of order 8 (two non-conjugating subgroups),

12 or 16, or two non-conjugate subgroups isomorphic to SLð2;F3Þ, or two non-

conjugate subgroups isomorphic to cS4, or the group SLð2;F7Þ itself. Thus we

obtain in total eleven non-equivalent primitive subgroups of this type. This

provides an explicit description of Wales’s Theorem, i.e. Theorem 1.3(2).

Appendix.

For the convenience of the reader, in this appendix we will provide a

complete list of non-conjugate finite subgroups of SLðp;CÞ containing a non-

trivial monomial normal subgroup together when p ¼ 5 or 7 (see Theorem A.3 and

Theorem A.6).
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LEMMA A.1. Let p ¼ 5 or 7, and � ¼ e2�
ffiffiffiffiffi
�1

p
=p. Define the Vandermonde

matrix T ¼ ðaijÞ0�i;j�p�1 2 GLðp;CÞ by defining aij ¼ �ij. If p ¼ 5, then

detðT Þ ¼ �ð
ffiffiffi
5

p
Þ5. If p ¼ 7, then detðT Þ ¼ ð

ffiffiffi
7

p
Þ7 �

ffiffiffiffiffiffiffi
�1

p
.

PROOF. Omitted. �

DEFINITION A.2. We will define matrices in SLð5;CÞ, which will be used in

Theorem A.3. Let � ¼ e2�
ffiffiffiffiffi
�1

p
=5. Define

� ¼

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0BBBBBBB@

1CCCCCCCA; � ¼

1 0 0 0 0

0 � 0 0 0

0 0 �2 0 0

0 0 0 �3 0

0 0 0 0 �4

0BBBBBBBB@

1CCCCCCCCA
;

�1 ¼

1 0 0 0 0

0 1 0 0 0

0 0 � 0 0

0 0 0 �3 0

0 0 0 0 �

0BBBBBBB@

1CCCCCCCA; �2 ¼ �
1ffiffiffi
5

p

1 1 1 1 1

1 � �2 �3 �4

1 �2 �4 � �3

1 �3 � �4 �2

1 �4 �3 �2 �

0BBBBBBBB@

1CCCCCCCCA
;

�3 ¼ �

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1

0 0 1 0 0

0BBBBBBB@

1CCCCCCCA; �4 ¼
1ffiffiffi
5

p

1 �2 �4 � �3

1 1 1 1 1

�2 1 �3 � �4

� �2 �3 �4 1

�2 � 1 �4 �3

0BBBBBBBB@

1CCCCCCCCA
;

�5 ¼
1ffiffiffi
5

p

1 1 �3 �4 �3

1 �2 �2 1 �

�4 �3 1 1 �3

�2 �3 �2 �4 �4

�4 �2 �3 �2 �4

0BBBBBBBB@

1CCCCCCCCA
:
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THEOREM A.3. Let D ¼ h�; �i � SLð5;CÞ where �; �; �i are defined in

Definition A.2. If G � SLð5;CÞ is a finite primitive group containing a non-trivial

monomial normal subgroup, then G is conjugate to exactly one group in the

following list,

G1 ¼ hD; �24i;
G2 ¼ hD; �4i;
G3 ¼ hD; �2; �3i;
G4 ¼ hD; �2; �4i;
G5 ¼ hD; �2; �5i;
G6 ¼ hD; �1; �2; �3i:

PROOF.

Step 1: By Proposition 2.3 we may assume that G contains a non-scalar

diagonal matrix.

Step 2: Apply Theorem 2.5 and Theorem 2.6. We may assume that there is a

group homomorphism � : G ! SLð2;F5Þ such that Kerð�Þ ¼ D. It remains to

find �ðGÞ. Note that the conjugacy class of G in SLðp;CÞ depends only on the

conjugacy class of �ðGÞ in SLð2;F5Þ by Lemma 7.2.

Step 3: By Theorem 2.7, if 54
�� jGj, then G is conjugate to G0 ¼ hD; �1; �2; �3i

which is G6 in our list. Thus we may assume that 54 6
�� jGj from now on.

Since jDj ¼ 53, it follows that 56
�� j�ðGÞj. Now we may use Theorem 7.5 and

Lemma 7.3 to determine the structure of �ðGÞ.
Step 4: It is not difficult to see that �ðGÞ is conjugate to one of the subgroups

of SLð2;F5Þ described in Example 8.14.

Step 5: If �ðGÞ is a cyclic group of order 3 or 6, apply Proposition 8.8. We

may assume that �ðGÞ ¼ hey2i or heyi (in the notation of Proposition 8.8).

Recall the construction of ey in Definition 8.6 and Definition 8.7. We choose


 2 F25 such that F25 ¼ F5ð
Þ, 
2 þ 3
þ 4 ¼ 0. Note that 
 ¼ �2 for some � 2
F25 with F


25 ¼ h�i. It follows that � ¼ � ¼ 2 2 F5. Thus we find that

ex ¼
3 0

0 2

 !
; ey ¼

1 3

3 0

 !
:

Since ey corresponds to the fractional linear transformation x 7! ðxþ 3Þ=ð3xÞ, it
follows that g : �1 7! �2 7! �0 where �ðgÞ ¼ ey. Apply Theorem 2.5(E) (vi) to

find an explicit form of g by taking k ¼ 1 (mod 5). Thus g is the matrix �4. (Note

that the matrix
ffiffiffi
5

p
�4 can be transformed to the Vandermonde matrix in Lemma
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A.1 by successive elementary row and column operations. Thus we may find its

determinant.)

Hence we get the groups G1 and G2 in the list.

Step 6: If �ðGÞ is a binary dihedral group of order 8 or 12, apply Theorem 8.9.

Thus �ðGÞ is conjugate to hex; ezi or hey; ezi.
Note that the matrix ex 2 SLð2;F5Þ is given in Step 5 while ez is given in

Definition 8.7. Let g1; g2 2 G such that �ðg1Þ ¼ ez, �ðg2Þ ¼ ex.
Since ez corresponds to the fractional linear transformation x 7! �1=x, we find

that g1 : �1 7! �0 7! �1. Hence we may apply Theorem 2.5(E) (iii) by taking

k ¼ 1 (mod 5). Thus, up to an element in D, we may assume that g1 is �2.

Similarly g2 : �1 7! �1, �0 7! �0, �1 7! �4. Thus we apply Theorem 2.5(E) (i)

by taking k ¼ 2 (mod 5). We get g2 ¼ �3.

Step 7: If �ðGÞ is isomorphic to SLð2;F3Þ, apply Theorem 8.11. Since 52 6¼ 1

(mod 16), the group hez; E0i and hez; E1i in Theorem 8.11 are conjugate. Hence it

suffices to find hez; E0i.
By Definition 8.10, since � ¼ 2 2 F5 (by Step 5), we find a0 ¼ 3, b0 ¼ 0. Hence

u0 ¼ 3, w0 ¼ 1. By Theorem 8.11, we get

E0 ¼
3 1

2 1

 !
2 SLð2;F5Þ:

Let g 2 G satisfying �ðgÞ ¼ E0. Then g : �1 7! �4 7! �2. Apply Theorem

2.5(E) (vii) with i ¼ 4, j ¼ 2 and k ¼ 2 (mod 5). Thus we may choose g ¼ �5. �

DEFINITION A.4. We will consider the case p ¼ 7.

We will determine the parameters 
; �; �; . . . in Definition 8.6 and Definition

8.10 first.

Choose 
 2 F49 satisfying 
2 þ 
� 1 ¼ 0. Define � ¼ 2þ 3
 2 F49. It is

routine to verify that F

49 ¼ h�i and 
 ¼ �3.

Define � ¼ �8 ¼ 3 2 F7. � ¼ �12 ¼ 2� 3
 2 F49. Choose " ¼ 4þ 
 so that

"" ¼ 1=2. By Definition 8.10, we find that a0 ¼ 4, b0 ¼ 5, a1 ¼ 3, b1 ¼ 5. Hence

u0 ¼ 0, w0 ¼ 4, u1 ¼ 4, w1 ¼ 0. Thus we may choose s0 ¼ 3, t0 ¼ 2, s1 ¼ 2, t1 ¼ 3.

DEFINITION A.5. We will define matrices in SLð7;CÞ which will be used in

Theorem A.6. Let � ¼ e2�
ffiffiffiffiffi
�1

p
=7 and c ¼ ð

ffiffiffi
7

p
e�
ffiffiffiffiffi
�1

p
=14Þ�1.

Define
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� ¼

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
; � ¼

1 0 0 0 0 0 0

0 � 0 0 0 0 0

0 0 �2 0 0 0 0

0 0 0 �3 0 0 0

0 0 0 0 �4 0 0

0 0 0 0 0 �5 0

0 0 0 0 0 0 �6

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
;

�1 ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 � 0 0 0 0

0 0 0 �3 0 0 0

0 0 0 0 �6 0 0

0 0 0 0 0 �3 0

0 0 0 0 0 0 �

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
; �2 ¼ c

1 1 1 1 1 1 1

1 � �2 �3 �4 �5 �6

1 �2 �4 �6 � �3 �5

1 �3 �6 �2 �5 � �4

1 �4 � �5 �2 �6 �3

1 �5 �3 � �6 �4 �2

1 �6 �5 �4 �3 �2 �

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
;

�3 ¼ �

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 1 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0

0 0 1 0 0 0 0

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
; �4 ¼ �c

1 �2 �6 �5 �6 �2 1

1 � �4 �2 �2 �4 �

� � �3 1 �6 1 �3

�3 �2 �3 �6 �4 �4 �6

�6 �4 �4 �6 �3 �2 �3

�3 1 �6 1 �3 � �

� �4 �2 �2 �4 � 1

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
;

�5 ¼ �c

1 �4 �5 �3 �5 �4 1

1 1 �4 �5 �3 �5 �4

1 �3 �3 1 � �6 �

1 �6 �2 �2 �6 1 �5

1 �2 � �4 �4 � �2

1 �5 1 �6 �2 �2 �6

1 � �6 � 1 �3 �3

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
; �6 ¼ �c

1 1 �2 �6 �5 �6 �2

1 �6 1 �3 � � �3

�4 �2 �2 �4 � 1 �

�5 �2 � �2 �5 �3 �3

�3 �6 �4 �4 �6 �3 �2

�5 1 �4 �3 �4 1 �5

�4 �5 � �6 �6 � �5

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
;
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�7 ¼ c

1 1 �2 �6 �5 �6 �2

1 �4 �3 �4 1 �5 �5

�5 �6 �2 1 1 �2 �6

� �6 �6 � �5 �4 �5

�2 �4 � 1 � �4 �2

� 1 � �4 �2 �2 �4

�5 � �6 �6 � �5 �4

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
; �8 ¼ �c

1 1 �4 �5 �3 �5 �4

1 �5 1 �6 �2 �2 �6

�3 �6 �6 �3 �4 �2 �4

�2 �3 � �3 �2 �5 �5

�4 �3 �6 �6 �3 �4 �2

�2 �6 1 �5 1 �6 �2

�3 �5 �4 1 1 �4 �5

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
:

THEOREM A.6. Let D ¼ h�; �i � SLð7;CÞ where �; �; �i are defined in

Definition A.5. If G � SLð7;CÞ is a finite primitive group containing a non-trivial

monomial normal subgroup, then G is conjugate to exactly one group in the

following list,

G1 ¼ hD; �24i;
G2 ¼ hD; �4i;
G3 ¼ hD; �2; �

2
4i;

G4 ¼ hD; �4�2; �
2
4i;

G5 ¼ hD; �2; �3i;
G6 ¼ hD; �2; �4i;
G7 ¼ hD; �2; �5i;
G8 ¼ hD; �2; �6i;
G9 ¼ hD; �2; �5; �7i;
G10 ¼ hD; �2; �6; �8i;
G11 ¼ hD; �1; �2; �3i:

PROOF. The proof is quite similar to that of Theorem A.3. Thus we will

outline the main steps only.

Step 1: Let � : G ! SLð2;F7Þ be the group homomorphism in Theorem 2.6.

If 74
��G, then G is conjugate to G0 ¼ hD; �1; �2; �3i by Theorem 2.7, which is G11 in

our list. Otherwise, �ðGÞ is conjugate to one of the subgroups of SLð2;F7Þ
described in Example 8.14.

Step 2: If �ðGÞ is a cyclic group of order 4 or 8, apply Proposition 8.8. We find

that �ðGÞ ¼ hey2i or heyi. Using the parameters described in Definition A.4, we find

that
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ex ¼
5 0

0 3

 !
; ey ¼

1 1

1 2

 !
; ez ¼ 0 �1

1 0

 !
; E0 ¼

0 4

5 �1

 !
;

E1 ¼
4 0

1 2

 !
; L0 ¼

3 2

2 �3

 !
; L1 ¼

2 3

3 �2

 !
:

If g 2 G satisfies that �ðgÞ ¼ ey, then G : �1 7! �1 7! �3. Apply Theorem 2.5(E)

(vii) with i ¼ 1, j ¼ 3, k ¼ 1 and 	 ¼ 3. We may assume that g ¼ �4 without loss of

generality. Hence we get G1 and G2.

Step 3: If �ðGÞ is a binary dihedral group of order 8 (there are two such

groups), 12 or 16, apply Theorem 8.9 and recall the matrices ex; ey; ez in Step 2. If g is

a preimage of ex, then g : �1 7! �1, �0 7! �0, �1 7! �4; apply Theorem 2.5(E)

(i) with k ¼ 3 (mod 7). We find g ¼ �3. For ez, apply Theorem 2.5(E) (iii) with

k ¼ 1 (mod 7); we get g ¼ �2. Thus we obtain G3; G4; G5; G6.

Step 4: If �ðGÞ is isomorphic to SLð2;F3Þ, apply Theorem 8.11. Let gi 2 G

correspond to Ei for i ¼ 0; 1. Since g0 : �1 7! �0 7! �3, we apply Theorem 2.5(E)

(iv) with i ¼ 3 and k ¼ 3 (mod 7). Thus we may take g0 ¼ �5. Similarly

g1 : �1 7! �4 7! �5; thus we apply Theorem 2.5(E) (vii) with i ¼ 4, j ¼ 5, k ¼ 2,

	 ¼ �1 (mod 7). We find g1 ¼ �6. Thus we get G7 and G8.

Step 5: If �ðGÞ is isomorphic tocS4, apply Theorem 8.11. Let gi correspond to

Li for i ¼ 0; 1. Since g0 : �1 $ �5, we apply Theorem 2.5(E) (v) with k ¼ 2 (mod

7). We get g0 ¼ �7. Similarly g1 : �1 $ �3. Apply Theorem 2.5(E) (v) with k ¼ 3

(mod 7). We get g1 ¼ �8. �
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Edition, Birkhäuser Boston, Inc., Boston, 2000.
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