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Abstract. In the homotopy theory of a 2-category with zeros and having a
suspension functor we establish various composition properties of box brackets,
including new formulae involving 2-sided matrix Toda brackets and classical
Toda brackets. We are lead to define and study a new secondary homotopy
operation called the box quartet operation. In the topological category this
operation satisfies two triviality properties, one of which may be viewed as the
foundation upon which an important classical mod zero result on Toda brackets
rests. New insights and computations in the homotopy groups of spheres are
obtained.

Introduction.

In his seminal 1962 book Composition Methods in Homotopy Groups of
Spheres [16], Toda computed the homotopy groups of spheres through the 19-stem.
His techniques involved use of the Toda bracket (or secondary composition)
operation; this is a secondary homotopy operation {a, 8,7} defined for any triple
composite o ela g that satisfies co 8>~ 0 and o~y >~ 0. Subsequently
composition methods have been widely used and various extensions of the Toda
bracket have been considered, such as matrix Toda brackets and long Toda
brackets for example.

A recent trend has been the development of Toda bracket type operations in
settings other than the topological category. For example the theory for an
abstract 2-category with zeros has been explored in [2], [4], and [5], and that for a
bicategory in [3]. Indeed new operations of Toda bracket type have emerged, of
which the box bracket [5] and the 2-sided matrix Toda bracket [4] seem quite
useful, and new formulae have been found. In fact it is to be noted that an early
appearance’ of the box bracket, but in a dual formulation under the name “ladder
Toda bracket” and for use in study of Hopf algebra structure, occurs in the work
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of Zabrodsky [17].

In the present paper we begin in Section 1 by providing some additional
fundamental results relating box brackets and 2-sided matrix Toda brackets in a
2-category with zeros. Key results obtained are stated in Theorems 1.2 and 1.5. In
particular, new formulae among classical Toda brackets are proven. In Theo-
rem 1.8 an equality is established which shows that a box bracket under double
sided composition decomposes into a sum of 2-sided matrix Toda brackets. In
Section 2 we establish some lemmas that are crucial to the remainder of the paper.

Now in [16] Toda devoted Chapter I to a succinct survey of the basic
properties of the Toda bracket, including various composition properties. The
statement of these latter may be facilitated by reference to an n-fold composite of
maps

an [P ai
o—> .- —>e0—>0

for which all pair composites a; o ;41 are null homotopic. For length n = 3, the
definition of the Toda bracket {ay, ag, s} itself is obtained. For length n = 4, the
very important formula (Proposition 1.4 of [16] or Theorem 4.3 i) of [15])

—Q1 © {042,0537 a4} - {ala g, 0[3} o EOL4

arises. For length n = 5, Toda gives a more complicated result (Proposition 1.5 of
[16] or Theorem 4.3 ii) of [15]) which states in rough form that

{{051701% O‘B}, EO[4, EOL5} + {ah {O‘27053a 044}, EO[5} + {0117042, {0637064,015}} =0

whenever defined. While many properties from [16] already have received
attention in the abstract setting this last has not. One purpose of this paper is to
examine this last result of Toda from the point of view of a new operation called
the box quartet operation, and, in Theorem 4.15, this result of Toda is generalized
to a formula involving two matrix Toda brackets and a box bracket in place of the
three inner Toda brackets in the formula quoted above. Toda also proved
fundamental formulae which give relations between coextensions and Toda
brackets (Proposition1.8 of [16]) and extensions and Toda brackets (Proposi-
tion 1.9 of [16]). These results of Toda are described precisely making use of the
homotopies and extended to formulae involving matrix Toda brackets and box
brackets in Propositions 4.5, 4.10 and 4.12, which are crucial to completing the
proof of Theorem 4.15.

The box quartet operation is defined in Section 3 below; it may be regarded as
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an operation that in a certain sense increases stem dimension by 2. Significantly
its definition may be given in any 2-category possessing zeros and a suspension
functor.

We provide examples in the topological category Jop, to show that indeed
the box quartet operation may be nontrivial (see Proposition 5.1). Furthermore in
Jop, we show that the box quartet operation satisfies a triviality axiom in the
form of the following theorem (see Theorem4.13).

TRIVIALITY THEOREM.  In Jop, let

w g T
w c B R *
ol
* A X Y Vv

be a homotopy commutative diagram in which all horizontal pair composites are
null homotopic. Suppose o € {r,g,w} and o € {v,s,a}. Then the box quartet
operation 2 C w(X*W, V) of this diagram is defined and moreover o € 9.

Obviously such a result may be formulated in the general 2-categorical
context but we succeed in showing its validity only in Jop,. Even there the proof
is not immediate. Our approach uses a modified theory of extensions and
coextensions and it is the lack of such in the general 2-category case that restricts
our proof to Jop,. Moreover difficulties with homotopy coherence arise and must
be handled with care. We remark that what seems to be needed for the Triviality
Theorem to be valid in the general case is some assumption of 3-dimensional
structure as yet unidentified.

Box quartet operations in Jop, offer a very natural setting for consideration
and clarification of Toda’s result in Proposition 1.5 of [16]. As previously stated,
we prove an extension of Toda’s result in our Theorem 4.15, the proof of which is
similar to our proof of the Triviality Theorem. In Section 5 and Section 6 we offer
some sample computations in Jop,. However it is not our intention to make
extensive computations in this paper. Encouragingly we find our techniques
capable of yielding new insights (see Proposition 6.1).

For two sets A and B, the symbol A ~ B means that A and B have a common
element.
1. Lemmas on 2-sided matrix Toda brackets.

In this section we work in a 2-category % with zeros. We refer to Section 4 of
[4] for the definition and basic properties of the 2-sided matrix Toda bracket in



510 H. J. MARCUM and N. ODA

such a setting. The two notations

will be used interchangeably to denote the 2-sided matrix Toda bracket. We recall
that by definition

{s, b,g7w}c;z{<g(0:W—>Y)
a f

consists of all composite 2-morphisms of the form
—(sob)K+sFw+ H(fow):o=0:W =Y

for homotopies H: 0 = soa, F:ao f = bogand K: 0 = gow. Here we remark
that @ (0: W — Y') denotes the automorphism group in & of all self homotopies
of the zero morphism o: W — Y. The indeterminacy of the 2-sided matrix Toda
bracket is established in Proposition4.8 of [4].

In order to state Theorem 1.2 below we fix the following homotopy
commutative diagram of 1-morphisms in %.

W —

f

a

(1.1)

k

|
|

V<—HX<—2"W

i

c q

THEOREM 1.2. (1) In diagram (1.1) suppose that gow ~ o0 and goc =~ o.
Then

) w%clsp
{gop,a,fow} ~TTI |  kory  |mob

R?P7Q

as subsets of Az(0: W — Q).
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n diagram (1.1) suppose that gow >~ o0, goc~ o0 andpoao f >~ 0. Then
2) In diag 1.1 that g d Th
{gop.a, fow} ~qgof{pob,gwt+{gckoflow.

(3) In diagram (1.1) suppose that gow ~ o0, goc~o0, poaoc f~o0,qop=>=o0
and fow=>~o. Then

go{pob,gwy=—{q.c ko flow.
PROOF.
(1) Select homotopies K: 0= gow, F:aof=bog, L:cok= poa and
H: 0= qgoc. Consider the composite homotopy
0 := (qop)[-bK + Fw] + [qL + HE|(fow) = — (qopob) K + q[pF + L f]w + H (ko fow).
The first expression identifies 6 as an element of {go p, a, f o w} while the second

expression identifies # as an element of {q, pob ' g 9 £ w} . Hence these two
c o,

operations have 6 as a common element.
(2) For, when poao f ~ o then

{q,pob, g »w}:fIO{pob,gw}Jr{qan’fof}ow
¢ kof

by Proposition4.5(1) of [4] and so the result follows from Part (1).
(3) Note that {gop,a, fow} ={1,} since gop ~ o0 and fow =~ o. Thus

1, € qo{pob,gw}+{gckoflow
by Part (2). Consequently
go{pob,gw}~—{qc ko f}ow.
Now there exist elements p and ( so that
{pob,gw}=poboFy(o: W —B)+p+s(0:C— P)ow
and

{g,c,ko f} =qods(0:C - P)+(+ F4(0: R— Q)oko f
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(see Proposition 8.2 of [2]). Because gopob~o and ko fow ~ o it follows that
go{pob,g,w} and —{q,¢c,ko f} ow both are cosets of the same subgroup in
Ag(o: W — Q), namely go o4(0: C — P)ow. But then, as they possess an
element in common, these cosets must be equal, as claimed. (I

The following proposition is readily established; its proof is omitted.

PROPOSITION 1.3.  In the diagram

let gow>~o0,a0 f~bogandsoa~o.
(1) If a ~ o then

TL ¢ w =so{b,g,wt+ glo: A—Y)o fouw.

(2) If g ~ o then

g
W —

. C B
_[L £ W, =sobodg(o: W — B)+ {s,a, f} ow.
A—>X

—>Y
S

Next we fix a diagram of 1-morphisms in ¢

u w g9

U w (&
/|
A

|s (1.4)

a S v

satisfying ao f ~bog.

THEOREM 1.5.
(1) (“The 343 Lemma”) In diagram (1.4) above suppose that gowou ~ o,
sobogow=~o andvosoa~o. Then {vos,bogwou} and

vo{sob,gow,u}l+{v,s0a,fow}ou
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each contain

wou g
. U—>C—B
s e

A—>= X —>V
a vos

as a subset. In particular the relation
{vos,bogwou} ~vo{sob,gow,u}+{v,s0a, fow}ou

1s valid.
(2) In diagram (1.4) suppose that gowowu ~ o0 and soa ~ o. Then

{vos,bogwou}l ~vo{sob,gow,u}+ Fy(0: A—V)o fowou.
(3) In diagram (1.4) suppose that vo soa >~ o0 and gow ~ o. Then

{vos,bogwou} ~vosoboddy(o: U— B)+{v,s0a,fow}ou.
PrROOF. It is always the case that

wou g9
) v 0B
L i Vo C{vos,bog,wou}

A—> X —>V
a V05§

and that
) v o p . v wlp
_['L f¢1 \Lb C_[.L f0w¢ V@ob
A—> X —>V A—>Y —>V
a vVOSs soa v
If sobogow =~ o then
u gow

. U—>W>—B
T fowy y sob =vo{sobgowut+{v,s0a,fow}lou

A—>Y —>V
soa v

by Proposition4.5(1) of [4]. This establishes Part (1) of the theorem.
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If soa ~ o then

gow
U—>w>=B

_tL fowy | s0b =vo{sobgow,ut+ Fg(o: A—V)o fowou

A—>Y —V
soa v

by Proposition 1.3(1). This establishes part (2) of the theorem.
If gow ~ o then

. vtew % g
T fowy y sob =vosobody(o: U — B)+{v,s0a,fow}ou

A—>Y —>V
soa v

by Proposition 1.3(2). This establishes Part (3) of the theorem. O
REMARK 1.6. In Theorem 1.5(1) the conclusion
{vos,bogwoul ~vo{sobgowu} +{vsoa fow}ou

also may be obtained by applying Theorem 1.2(2) to the diagram:

gow
U*>W*>B
o b
C4>X
ok
A*>Y*>V

The next result, in the topological case, was given in Proposition 1.7 of [1]; in
the 2-category case, it was given in Proposition 4.7 of [4].

PROPOSITION 1.7 (““The 333 Lemma’’).  Suppose given 1-morphisms

w a p q
W—C—A—X—>P—Q
with all 3-fold composites null homotopic. Then the inclusion

{gop,a,fow} Cqo{p,ao fw}+{gpoa,flow

is valid.
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PROOF. We note that the diagram

w f a

w C A
lA\L
A

satisfies the hypotheses of the 343 Lemma (Theorem 1.5(1) above). Moreover the
equality

X
e
X P Q

a p q

fow a
W—>A—>X

{gop.a, fowy="T1L Wy yix
A—> X —Q
a qop

holds. Thus the inclusion claimed in the proposition is valid. O
PROPOSITION 1.8.  In the homotopy commutative diagram

w g s
c B D
fl i/b \Ld
A b'e Y
a S v
let all horizontal pair composites be null homotopic. Then the equality

B—>D d b
¢b ‘Ld Ow:{v, 7rag}ow+vo{87 7g7w}
X > v s b a f

w

PROOF. Let homotopies K:0=rog, G:sob=dor, F:aof=bog,
H:0=so0a, T:0=gow and R: 0= wvos be given. Then a straightforward
argument, using the Interchange Law together with the equalities o7 =1, and
—Ro = 1,, yields the following equation.
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v(—dK + Gg+ sF + H f)w
=(—(vod)K +vGg+ R(bo g))w+ v(—(s0b)T + sFw+ H(f ow))

Here
g r
C —==B—=D
—dK +Gg+sF+Hfe [L1| ry o |d
A—=X-—>VY
—(vod)K+ng+R(bog)€{v,d,g7g}
s
(SOb)T+SFw+H(fOU})€{57b7'?.7w}
a

and thus the first equality is obtained.
For the last statement of the proposition, observe that since v o d ~ 0 we have

{v, d, Z, g} = {v, d, Z} o g by Proposition 4.5(3) of [4], and since fow ~o
s s

we have {S, b , ? , w} =so {b , ? , w} by Proposition 4.5(2) of [4]. Hence the
a a

conclusion follows, for gow ~ 0 and vo s ~ o. O

EXAMPLE 1.9. Consider a composite of 1-morphisms in ¢

w g b s v
W—>C—>B—>X—>Y —>Z7

with all pairwise composites null homotopic. Then always vo {s,b, g} ow = {1,}.
To see this, form the following homotopy commutative diagram

w g9

b

S v

w

Z

and apply Proposition 1.8. After suitable identifications the equality

—vo{s,bglow
=[vo{o,0,9} +{v,8,b}oglow+wvolso{b g, w}+{s,0,0}0u]
:{10}
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results.

2. Lemmas on box brackets.

LEMMA 2.1.  Let the diagram

w g T
w C B R
M F G
h = = b = Yy
U A X Y

be homotopy commutative with homotopies as shown. Also assume that all
horizontal pair composites are null homotopic with the following specific
homotopies assigned.

K:o0=gow, S:o0=aou, T:0=r1r0g, H:0=s0a

Define elements

w%oeLlp
a:=—bK+Fw+aM+She [T1[ ny Ve

U—>A-—>X

and

g r

C>B—>R
Bi=—yT'+Gg+sF+Hfe LT[ r{ v v

A=>X—>Y

Then the equality
sa = y(—rK + Tw) 4+ fw — (—sS + Hu)h

is valid. Note that each individual summand in this decomposition is an element of
Fg(o: W —=Y).

PROOF. The Interchange Law may be applied to the diagram

o yor
i RN
w ft-K B G Y

gow sob
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to obtain the equality
—(yor)K +G(gow) =Go— (sob)K = —(sob)K
since Go = 1,. Similarly (soa)M + H(uo h) = H(f o w). Hence we have

y(—rK 4+ Tw) + pw — (—sS + Hu)h

=y(—rK +Tw) + (—yT + Gg+ sF + Hf)w — (—sS + Hu)h

=—(yor)K+yTw—yTw+ G(gow) + sFw + H(f ow) — H(uo h) 4+ sSh
=—(yor)K+G(gow)+sFw+ H(fow)— H(uoh)+sSh
=—(sob)K +sFw+ (soa)M + H(uoh) — H(uo h) + sSh
= —(s0b)K + sFw+ (soa)M + sSh
= s(—bK + Fw+ aM + Sh)
= sa
as claimed. O

COROLLARY 2.2. (1) In Lemma 2.1, if {s,a,u}oh={1,} =yo{r, g w}
then

cL
CLIL £y
A

as subsets of Ag(0: W —=Y).
(2) In Lemma 2.1, if 1, € {s,a,u} o h and 1, € yo {r, g, w} then

cipin wcip
CLO{ ry 4o yv Jow ~ so[ LT[ ny Vi b

as subsets of A4(0: W —Y).

PROOF.
(1) For, in this case, always fw = sa in Lemma 2.1. Alternatively this part
follows from Corollary 3.2 of [4]; it is also a consequence of Theorem 4.4 of [5].
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(2) Since 1, € {s,a,u} o h the homotopies S: 0 = aouand H: 0 = soamay
be selected so that (—sS+ Hu)h =1, in Fy(o: W —Y). Similarly, since
1, € yo {r,g,w} the homotopies T: 0= rog and K: 0= gow may be selected
so that y(—rK + Tw) =1, in Z¢(0: W — Y). Hence we will have sao = fw. This
implies that Part (2) holds. d

LEMMA 2.3. Let

be a homotopy commutative diagram of 1-morphisms in €. If qoi ~ o then the
relation

w%els
Loe LI my  ypoc b
U—=>A—>X

holds.

PROOF. Note that gow~qgoitoh>~0 and aocu=>~boqgoi>~o; thus the
box bracket

w g9
W —=C—=B

Bi= T nf  ywoe o
U — A?X

is well-defined. By our hypotheses we may select homotopies L:ioh = cow,
R:aop=boq, M:u=poi, N:qoc=g¢g, and K:qoi= 0. Define new
homotopies by

H:=Nw+qL—-Kh:0=gow
G:=—aM —-Ri—bK:0=aou
F:=pL+ Mh:uoh=pocow

T:=bN+ Rc:aopoc=bog.
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Observe that Tw+ aF = b(Nw + qL) + (Ri + aM)h by the Interchange Law.
Next consider the element § := —bH + Tw + aF + Gh. Plainly 0 is an element of
2. On the other hand we may write

0 =b[—H + Nw+ qL] + [Ri + aM + Glh = bKh — bKh = 1,.
Therefore 1, € A. O

3. The box quartet operation.

In this section % is to be a 2-category with zeros that has a suspension functor
Y : % — ¥ in the sense of Definition 1.4 of [4]. Recall that such a ¥ is a 2-functor
and that for any pair (W, X) of objects of & there is a bijection

d: dy(o0: W — X) - HE(EW, X)

given by

where H% designates the associated homotopy category of € and [ ] is used to
denote homotopy class. Consequently H&' (YW, X) receives a group structure by
means of the bijection d. In particular

Heqn = e + py
B, =0
Pg ™ —pig
and
s 2 5 0 fig

Hiep = g © Xp

where s: X - Y and p: P — W.
We fix a homotopy commutative diagram
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|

in which all horizontal pair composites are null homotopic. This allows us to

w g T z

R z
iy l/k (3.1)
Y v

S

consider three box brackets, namely

w g9 g9 T T z

W—=C—=B C—=B—R B—>R—>Z
CLI ny yr o |, T £y Yo v |, T oy Yy sk

UgAgX A XY XpYv

which we denote &7, I', and % respectively.

DEFINITION 3.2. A triple of elements («,7,5) € & x I' x # will be said to
be coherent if yw = sa and vy = g. These conditions imply the homotopy
relations g, 0 Xw ~ sou, and vo u, ~ ugo Mg respectively. Consequently the
diagram

Sw Xg
W — XC —> ¥B

b | [ |

will be homotopy commutative in 4. We let (,, 5 denote the box bracket of this
diagram and define

9 = U{‘@(‘Wﬂ) | (a,7,8) € @ x T x # is a coherent triple}.

Note that 2 is a subset of &y(o: EW — V) = HE(X*W,V). We call this
operation the box quartet operation. We will say that 2 is defined if it is
nonempty, and is trivial if it contains 1,.

NOTE. Originally we considered using quaternary boz bracket rather than box
quartet operation for the name of the operation 2. However forthcoming work on
long box brackets convinces us that the name quaternary box bracket should be
reserved for an operation that raises stem dimension by 3 (that is, with values in
H% (33W,V)). The operation & raises stem dimension by 2 (that is, has values in
H%(22W,V)). We note that in Jop, another operation that raises stem
dimension by 2 is the quaternary Toda bracket (for which see [13], Section 5 of
[4] or [3]) but the two operations should not be confused. The box quartet
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operation is defined in the 2-category setting starting with a “quartet” of boxes;
on the other hand, the quaternary Toda bracket has been defined only in Jop, and
arises from a 4-fold composite of maps with all pair composites null homotopic.

REMARK 3.3. If the strong edge conditions
yO{T,g,’w} = {10} = {Saaau} oh
ko {z,r,g} = {10} = {v,s,a} of

are satisfied in diagram (3.1) then by Corollary 2.2(1) the equations so &/ =T" o w
and vo ' = %o g respectively are valid. Thus in this case at least one coherent
triple of elements (a,~, ) must exist, for T' # (). Hence 2 will be defined.

PROPOSITION 3.4.  Assume that the strong edge conditions of Remark 3.3
are satisfied for diagram (3.1). Also assume that

w g9 T z

W —==C—=>B B—>R—>Z
loeso LT[ ny Vi and 1, € [T ]| »y Vv k& |og.

UragX XYV

Then a coherent triple of elements (a,v,5) € o x T x B exists satisfying the
conditions 50l = 0= iy 0 Xw and vo i, = 0 = pugo Xg. Consequently the in-
clusion

{.uﬂa ng Ew} - {Ua Hrys Ew} + {Uv S, NJ(M} cy
is valid. (For a related result in Jop,, see Theorem4.15 below.)

PRrROOF. By hypothesis we may select elements

w%cZp
a=—-bK+ Fw+aM +She [T]| ny Vi | =
U—>A-—>X
and
T z
B—>R>Z
B=—-kP+Nr+vG+Lbe [Tl oy v |k | =%
XY >V

such that
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$(=bK 4+ Fw+aM + Sh) =1, € H¢(o: W =Y)

(3.5)
(=kP+ Nr+vG+ Lb)g=1,€ d4(0: C - V).

Further we select arbitrary homotopies T: 0 = rogand H: 0 = so a and define

ctpLn
yi=—yT'+Gg+sF+Hfe [T r{ o {v |=T.
AT X

The relations (3.5) imply that s o y, = 0 and pg o g = o. It remains to verify that
sa =~vyw and [Bg=1vy. Now by the strong edge conditions we have
y(—rK +Tw) =1, since yo{r,g,w}={1,}, and (—sS+ Hu)h=1, since
{s,a,u} o h={1,}. Applying Lemma 2.1 we conclude that sa = yw. Similarly,
by the strong edge conditions, we have k(—zT + Pg) = 1, and (—vH + La)f = 1,,
so, by another application of Lemma 2.1, we may conclude that Bg = v.

Finally the last statement of the proposition holds because by definition
D(anyp C Z while the equality

@(a,'y,ﬂ) = {:U‘ﬁa EQ, Ew} - {Uv Horyy Ew} + {U, S, /ufa}
is valid by Proposition 3.3(3) of [5]. O

DEFINITION 3.6. We will say that diagram (3.1) satisfies the inner weak
edge conditions if the following conditions hold:

{S,G,U}Oh:{lg}, L)Eyo{?“,g,U)}
kO{Z7T7g}:{1O}7 106 {v,s,a}Of

It satisfies the outer weak edge conditions if the following conditions hold:

106 {s,a,u}Oh, yo{rmgaw}:{lo}
10€kO{Z,T,g}, {U3S’a}of:{]‘0}
Plainly the strong edge conditions imply the weak ones.

PROPOSITION 3.7.  If diagram (3.1) satisfies either the inner or outer weak
edge conditions of Definition 3.6 then Z is defined.

PROOF. Let us assume that the inner weak edge conditions hold. Then since
1, € yo {r,g,w} there exist homotopies T: 0 = rog and K: 0 = gow such that
y(—rK +Tw) =1, in F4(o: W —Y). And since 1, € {v,s,a}o f there exist
homotopies L:o=vos and H:o0= soa such that (—vH + La)f =1, in
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Hy(o: C — V). We further select arbitrary homotopies as follows.

M:uoh= fow G:sob=yor P:o=zor

F:aof=bog N:voy=koz S:0=aou
These homotopies allow us to define the required homotopies; namely, we set

a:=—-bK+Fw+aM + Sh € o
vi=—yI'+Gg+sF+Hfel
0 :=—kP+ Nr+vG+ Lb € A.

Now we have y(—rK + Tw) = 1, and (—sS + Hu)h = 1, (this latter relation holds
since (—sS + Hu)h € {s,a,u} o h = {1,}). Thus by Lemma 2.1 we may conclude
that sa =~vw in Fg(o: W —Y). A similar argument shows that vy = (g in
A y(o: C — V). Hence («,, ) is a coherent triple and thus 2 is defined.

The proof that & is defined when the outer weak edge conditions hold is
similar; we omit the details. ([l

4. The box quartet operation in Jop.,.

In this section we consider special features of the topological box quartet
operation.

We recall that Jop, denotes the 2-category whose objects, 1-morphisms and
2-morphisms are based topological spaces, based maps and track classes of based
homotopies respectively. We shall continue to use the notation o: X — Y to
denote a zero map in Jop, (as in a general 2-category with zeros) but for the
homotopy class of the zero map we permit ourselves to use either o or 0 (the latter
in accordance with usual practice in Jop,). The 2-morphisms in Jop, take the
form

{F}: f=¢g:X—-Y

where {F} denotes track class with representative homotopy F': f = g. However
as is customary we often work directly with the topological homotopies
themselves. This causes some slight conflict with notational usage in previous
sections but is easily understood in context. Of course the usual suspension XX of
a space X also constitutes a suspension functor in the 2-categorical sense.

It will be convenient to utilize the double mapping cylinder functor .# on
Jop,. Recall that if A<LC—Q>B is a cotriad of maps then by construction of the
double mapping cylinder .Z(f,g) there is a homotopy pushout square
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g
——> B

C
fi L |, (4.1)
A0 #(f.9)

with homotopy D, referred to as the defining homotopy of 4 (f,g), given by
D(e,t) = [e,t) € A (f,g) force Cand 0 <t < 1.

There is an obvious quotient map k: #(f,g) — XC.
Now if

c B
fl e lb (4.2)
A—sx

is a homotopy commutative square with homotopy F' then we may define a map
wp: A(f,g9) — X by setting pplz,t] = F(x,t) forx € C,0 <t <1, with upoiy =

a and pp oi; = b. The homotopy class of up depends only on the track class of F.
Thus a well-defined function

homﬂop*(ao fabog) - W(%(fvg)aX)’ {F} = WFy = [/’LFL

is obtained, where homgz,, (ao f,bog) denotes the set of all track classes
aof=bog If A= {+} and B = {*} in (4.2) then we have

%(fag) = EC, homﬂap*(ao f;bog) = JZ/y(,p*(OZ C¢— X)a
and this function becomes the bijection
d: A g, (0: C — X) = w(XC, X)

involved in the definition of the suspension functor ¥ in Jop,. These observations
are made to point out that the usage of the notation up for double mapping
cylinders is consistent with its usuage for the suspension functor.

As a special case of a double mapping cylinder let us recall that the diagram

g
E——

C B
i%iig

— #(o0,9) :=Cy
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defines the mapping cone C, of g. Thus (in this paper) a mapping cone always has
vertex at parameter ¢ = 0.

Next suppose given W-“>C—B with null homotopy K : 0 = gow. Then
extension and coextension in the classical sense with respect to this data are given
as follows. The coextension (x: XW — C, of w is defined by

[w(z), 2t], 0
T, t| =
Kl { HK(x,2-2t), 1

IN
IA

t
t

= ol

IN
IN

and the extension ug: C, — B of g is defined by uglz,t] = K(z,t) for x € W,
0 <t < 1. The homotopy classes of (x and ux depend only on the track class of K.
Note that the relations

ko(g ~XYw: XW — XC
(4.3)
pgoil =g:C — B

are valid. Also there is a homotopy commutative square

K
Cp —>SW

we| e (4.4)
B——>C

> g9

which is a homotopy pushout, as follows from Lemma 3.3 of [6].
In the following proposition, the result of Proposition 1.9 of [16] is described
precisely making use of the homotopies involved.

PROPOSITION 4.5.  Consider maps W-“~C—?>B-">R and suppose null
homotopies K: 0= gow and T : 0 = ro g are given. Then the square

w
“H—r{K}+{T}w

r
[

is homotopy commutative. Of course the track —r{ K} + {T}w is just an element of
the Toda bracket {r, g, w} C o/ 75, (0: W — R). If moreover the homotopies K and
T satisfy —r{K} + {T}w =1, then r o ux = o up to homotopy.

PROOF. We consider the diagram
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K
w —>= XW

—Cx

Q

-9
51

=
=
o<

|

which is homotopy commutative by (4.3) and (4.4). Furthermore we see that
H—r{K}+{T}w = M1 © (x up to homotopy, as indicated in the following diagram.

S

* < W —> % »

i I

* <—— (C —> B

NS

This establishes the homotopy commutativity of the square in the proposition.
For the last statement in the proposition we note that p_,.(xy 47y, = p1, = 0 and
hence the relation roux =0 must hold up to homotopy by homotopy
commutativity of the square. (I

Qe
e
=

g H—r{K}+{T}w

N~
=
S5

We modify and extend the classical definitions above to obtain the
coextension construction:

o

/_\ coext(M,K
=K - > M (iYof,g)

7w g \ BW oo
W——>0—>8 i,{ (4.6)
M Sw
=
W S
U——A
and the extension construction:
g
C ——B
F . ext(S,F)
fl = lb M of,g) = X
U—%s 4

—ex ™ iHCT/ (4.7)
AN s A @

Here inc: A — # (i} o f,g) denotes the composite Ai>Cu£>///(i1f o f,g). Ob-
serve that each construction requires a pair of homotopies as defining data, as
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indicated above on the left in each instance. Now for the explicit definitions, we let
ext(S, F) arise from the square

g
—_—

c B
, F
iyof l = \Lb
Hs
Cy —> X
with homotopy F' (recall that the equality pgoil =a: A — X holds by (4.3)
above) while coext(M,K) is induced functorially under the double mapping
cylinder functor .Z as follows.

h
* U w * p317%
—-D,, —-M —-K
— — e A coext(M,K)
u w
Cu A c B A (iof.g
A O (i¥ors)

We remark that while we often regard coext(M, K) and ext(S, F) as maps, they
really are well-defined only up to homotopy; of course their homotopy classes
depend only on the track classes of the homotopies involved.

REMARK 4.8. By definition elements of the box bracket

welp
CLI{ ay Vb | CAgop, (00 W — X)
U—>A—>X

have form
0=—b{K}+{F}w+a{M}+ {S}h

for homotopies S:0=aou, K:o0=gow, M:uoh= fow and F:ao f=
bo g. We recall from Proposition 6.3 of [5] that under the group isomorphism

d: A g (0: W — X) - HI0p, (EW,X) :=n(EW, X)

the homotopy class d(6) is represented by the extension-coextension composite

coext(M,K)

ext(S,F
SW ——— A (i{ o f,g) e h,
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Also note that our practice is to use the same symbol to denote both the box
bracket and its image in 7(XW, X) under d. In context this abuse of notation is
easily understood.

PROPOSITION 4.9.  For the data in diagram (4.6) above the relation

g
E——

2 c B
Vi Via C w(SW, A (iYof, g))
Tf A = M(i}fof,g)

nc

[coext(M,K) € [ 11| n

S <=

is valid.
PROOF. Consider the homotopy commutative diagram:

w g
W—(C—>B

| If ls

? — #(iYof,9)

mc
Because (inc) o u = iy 0¥ o u with % o 4 null homotopic, the box bracket of this
diagram is defined. Let D: iy o (i o f) = 41 o g be the defining homotopy for the
double mapping cylinder .#(ifof, g). Then the composite track

L= —iy{K} + {D}w+ inc{M} + is{Dy}h € & 7 (0: W — M (i}of, g))

defines an element of this box bracket. Moreover [coext(M, K)] € d(.£) is valid.
This latter follows directly from the definition above of coext(M, K) as a class
functorially induced by the functor .#. Thus the proposition holds. (]

In the following proposition, we generalize Proposition1.8 of [16] to a
formula involving the box bracket.

PROPOSITION 4.10. In Jop, let the diagram

w g T
C B
— A —> X
u a

w

|

be homotopy commutative with all horizontal pair composites null homotopic. Let
homotopies K: 0 = gow and T : 0 = r o g be given satisfying —r{K} + {T}w =1,

R
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in o g5 (0: W — R). Let homotopies M:uoh= fow, F:aof="Dbog and
H: o= aou be selected arbitrarily and set

wiceilp
a:=—-b{K}+{Flw+a{M}+{H}he LTI ny |Ff b
U—>A—>X

Additionally assume that {inc,a,u}oXh =0 in =(EW, #(iob,r)) (or
equivalently require {inc,a,u}oh ={1,} in o g, (0: W — A (ifodb,1))) where
inc: X — #(i{ob,r) is the inclusion map. Then the square

Yw
SW ——— =C
ual \Lcoemt(F,T)
X —> M (i}ob,r)
mc
is homotopy commutative.

PROOF. We consider the 3-box diagram

w g T
w c B R
hl/ J{f \Lb \Lil
U A X — M (i ob,r)
u a inc

which is homotopy commutative with all horizontal pair composites null
homotopic. Let D:iyoifob= (inc)ob=-i;or be the defining homotopy for
the double mapping cylinder .#Z(i{ob,r). We also have the homotopy
i0Dy: 0 = (inc) o a with D, : 0 = if o a the defining homotopy for the mapping
cone C,. By hypothesis, homotopies K: 0= gow and T: o= rog satisfying
—r{K} + {T}w =1, are given. Then by Lemma 2.1

(inc)a = (=ir{T} + {D}g + (inc){F'} +io{Da} flw
since iy (—r{K} + {T}w) = 41(1,) = 1, and
(—(inc)H + ip{ D, }u)h € {inc,a,u} o h = {1,}

in @ 7, (0: W — #(i§ob,r)). But by Proposition4.9 we know that
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CiB$~R
—ii{T} + {D}g + (inc){F} +io{Da}f € CLI| £} {o bir
A?Xﬁ%(i‘fobr)

defines coext(F,T). Thus (inc) o p, = coext(F,T) o Yw up to homotopy and the
proposition is established. O

PROPOSITION 4.11.  In the diagram in Jop,

L>C‘>B
o

—_— a

u
— A

- |

— a
—

/

S

let homotopies be given as indicated. If the square containing L is a homotopy
pushout then the square

A (h,w) —§> M (poh,bow)

| ls

A ——— #(oa,b)
[2eYeteY

is also a homotopy pushout where & is the evident map and 0 by definition
represents the class functorially induced under the double mapping cylinder functor

M as follows.

v <L < g A (poh,bow)
—L —F

ui :ui == iw il . J{e

A< —A=<_—C ) B M (aoa,b)

PROOF. We apply Lemma 2.1 of [7] and observe that it is only necessary to
identify .#(« o a,b) as the homotopy colimit of the diagram:

NN
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Now this homotopy colimit may be constructed by taking successive homotopy
pushouts. Thus, in view of our hypothesis that the square containing L is a
homotopy pushout, the result is immediate. (I

In the following proposition, we generalize Proposition1.9 of [16] to a
formula involving the matrix Toda bracket.

PROPOSITION 4.12.  In Jop, let the diagram
B R—> *
N
A X Y v

a S v

e

be homotopy commutative with all horizontal pair composites null homotopic.
Suppose in particular that the homotopies H: 0 = soa and L: 0 = vo s satisfy
—v{H}+{Lla=1,in o g, (0: A= V). IfG: sob= yorisany homotopy then
there exists an element

B e {v, v, Z} C Dgop. (00 B— V)2 7(SB,V)
S

so that the square

M (i%ob,r) —>= B

ext(H,G)\L l#,@
Y

—_—V
v

is homotopy commutative.

PROOF. Alsolet K: 0 = voybe an arbitrary homotopy. Form the diagram

BHRH*
ite| < ly
Caﬂ‘$y

*

— Cuy

from which, by Proposition4.11, a homotopy pushout square
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M (i]ob,r) - o B

ewt(H,G)\L l/e

Y W ./Z(’L‘;H Oy,o)
is obtained. Next, recalling the definition of 6 from Proposition4.11, we have the
following induced maps

i$ob
* Ca B * XB
‘L K <_:G 0
r
HH ~
Cug Y R * A (5 H oy,0)

H
i X—K/
\_}2 ln
v
€ 1% 14
where ¢ exists since vo puy = o by Proposition4.5. We note that 7o iy o0} = v.

Also
(K} + (G} + (D, i 0 b) = —{K}r+ v{G} + ([ Dy, }i)b

with e{D,,}i{ being a homotopy o= vos. Clearly in its latter form this

composite track class implies that 7 o 6 represents an element 3 of{v LY Z } and
s

consequently the proposition is established. O

THEOREM 4.13. In Jop, let
w g T
w c B R *
oo
* A 5 X Y 14

be a homotopy commutative diagram in which all horizontal pair composites are
null homotopic. Suppose o € {r,g,w} and o € {v,s,a}. Then the box quartet
operation 9 C w(X2W, V) of this diagram is defined and moreover o € 9.

PROOF. The inner weak edge conditions clearly hold in this diagram so by
Proposition 3.7 its associated box quartet operation & is defined.

Since o € {r, g, w} we may select homotopies K: 0= gowand T:0=ro0g
satisfying —r{K} + {T}w =1,. Since o € {v,s,a} we may select homotopies
H:0=soaand L: 0= vossothat —v{H} + {L}a=1,. Also let
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F:ao0f=b0og,G:sob=yor, M:0o= fowand N:o=wvoy

be arbitrary homotopies. Set
:—b{K}+{F}w+a{M}€{ *;Jc w}
a g

Next we observe that the following homotopy commutative diagram may be
constructed.

sw—"Y s so 0 o sp
coext(F,T) \L /
Ha M (i3 0b,r) 1p (4.14)
% lewt(H,G)
X y 1%

For, by Proposition4.10, (inc) o p, ~ coext(F,T) o Yw, and by Proposition 4.12,

there exists an element 3 € {v, v, 7(;} such that v o ext(H,G) =~ pgo k. Also the
s

relations o coext(F',T) ~ ¥g and ext(H,G) o inc = s hold. Hence diagram (4.14)

is homotopy commutative. Furthermore, by Remark 4.8, setting

~v:=ext(H,G) o coext(F,T)

T
—

B—>R
W’ yv | Thus (a,v, ) is a
- X >Y

9
—

defines an element of the box bracket [ ] |

::»-eQ

coherent triple and accordingly the box bracket

Sw
XW = 2C —> YB

@(a,'y,ﬂ) = [l:] HQ\L \LF"’Y ¢//‘5

X —Y —V
S v

is a subset of Z. But plainly the composite ko (inc) is null homotopic. By
Lemma 2.3 this latter fact implies that o € 9,3 C Z as asserted. (]

We are now in a position to prove a theorem which generalizes Proposi-
tion 1.5 of [16].

THEOREM 4.15. In Jop, let
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w g T
w C B R *
Lol
* A X Y 14

be a homotopy commutative diagram where all horizontal pair composites

are null homotopic. Assume {r,g,w} =o, {v,s,a} =0, 0 € so { b , }qc , w} and
a

o€ {v, v, Z} o0 Xg. Then there exists a coherent triple of elements
S

(a,%ﬂ)e{b 9 w}x[l:] fj Jjb ij x{v,i{ﬂ“}

a’ f’ A>X—>Y b
with the property that pugo¥g=o0, vo iy =0, fiy 0 Xw = 0, $0 lig = 0 and
o€ {Mﬁv Yg, Xw} — {v, Hys Yw} + {v, 8, o}

in T(X*W, V).

PROOF. VVehaveoGSO{b7 ?,w}andoe{v, v, Z}oZgbyassump—
a s

tion. Hence we may select homotopies

M:0= fow F:aof=bog N:o=wvoy

K:o=gow G:sob=yor L:o=wvos

satisfying the conditions:

s(={K} +{F}lw+a{M}) =1,

(—{N}r +o{G} +{L}b)g =1,

(4.16)

Also we choose homotopies T:0=rog and H:o0=-soa arbitrarily. The
hypothesis {v,s,a} = o implies that —v{H} + {L}a = 1,. Hence by Lemma2.1
and by (4.16) we deduce that

v(=y{T} +{GYg+ s{F} + {H}f) = (-{N}r + o{G} + {L}b)g =
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We define tracks
a = —b{K}+{Flw+a{M} e {b, ?,w}
a o

and
Y= (T} +{CYg + s{Fy +{H}f e T | 1}
A

It follows that the relations s oy, = 0 and v o pu, = o are valid up to homotopy.
Now observe that the hypotheses of Proposition 4.10 hold for the diagram

|

and the homotopies M, F', K, and T ; this is due to the presence of the one-point
space in the lower left corner of the diagram and because {r, g,w} = o. Thus the
square

w g T
C B
oo

A—— X

a

R

_

Sw
W ——> =C
#Q\L \Lcoext(F,T)

X — A (ifob,r)
mc

is homotopy commutative. Next we consider the diagram
B R —>
o

A X Y

a S v

r
—_—

< <— %

with the homotopies H, L, G and N. Since {v,s,a} =0 we may apply
Proposition4.12 to obtain a homotopy commutative square

M (i%obr) —> B
e:rt(H,G)\L l/l‘ﬁ

Y4>v 14
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for some g € {v, v, Z} C Hgop-(0: B— V). (Note that we have not claimed
s

that 8 equals —{N}r +v{G} + {L}b.) Consequently we may form the following
homotopy commutative diagram

Sw g
W xC XB
coemt(F,T)l /
% M (i 0b,r) 2%}

y lewt(H’G)
X Y Vv
S

v

in which the triangles are homotopy commutative by (4.6) and (4.7). Furthermore
the relation p, = ext(H, G) o coext(F,T) holds since

v=-y{T} +{G}g+s{F} +{H}f

(see Remark 4.8). Thus (a, 7, () is a coherent triple. Moreover, since o (inc) = o,
it follows by Proposition2.3 that o € Z(,, ). Finally, because so u, =0 and
i~ 0 Xw = o, we have

Dianp) = {1p, 29, Zw} — {0, gy, Sw} + {v, 5, pta }

by Proposition 3.3(3) of [5]. This completes the proof of the theorem. O

COROLLARY 4.17 (cf. Proposition 1.5 of [16]). In Jop, let

NN

S v

be a homotopy commutative diagram in which all horizontal pair composites are
null homotopic. If o € so {b,g,w} and o € {v, s,b} 0 Xg then there exists a triple of
elements

(a,7,8) € {b,g,w} x {s,b,9} x {v,s,b}
such that pgo g =0, vo Uy =0, |1y 0 XW =0, 50 [ip, = 0 and

0 € {115, g, Sw} + {v, 1y, Sw} + {v, 5, 10}
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PROOF. The relations{b .9, w} = {b,g,w} and{v, o, Z} = {v, s,b} are
o' o s

valid by Proposition 8.3 of [2]. Thus we see that Theorem 4.15 is applicable to the
4-box diagram in the statement of this corollary. Also

CiB%*
[l:] \L ¢b \L :_{S,b,g}
* X?Y

—_—

by Proposition 3.1 of [5]. Therefore by Theorem 4.15 there is a triple of elements
(o, =, 8) € {b,g,w} x —{s,b, g} x {v,s,b}
such that
o€ {ug, X9, Xw} — {v, p—y, Zw} + {v, s, pta }.
Note that p_, = —pu,. Hence by Proposition4.18 below we have
—{v, p—y, Zw} = —{v, =y, Zw} = {v, py, Sw}

and the corollary is established. Il

PROPOSITION 4.18. In Jop, let W RS Yol ! Y —2>V be a composite

of maps with f o Xw =0 andvo f =o. Then —{v, f,Xw} = {v, — f, Zw}.

PROOF. Note that (—f)oXw= fo(—lgc)oXw= foXwo (—lgw) =0
and vo (—f) =vo fo(—1xc) =0 so that {v,—f,Xw} is also well-defined. We
recall that the Toda bracket satisfies the basic properties {«, 3,7} 06 C
{a, 8,706} and {«, 8,706} C {a, Bo~,0}. Using these properties we have

_{Ua fv E’lU} = {U, f7 EU)} o (_IEZW') C {U, f7 Ywo (_12W)}

= {?), f7 (7120) © E’U.)} - {Ua f © (7120)7 Z’UJ} = {Ua 7.](‘, Ew}
But then also {v,—f,¥w} = —(—{v,—f,Zw}) C —{v, = (= f), Zw} = —{v, f, Zw}
and consequently —{v, f, Xw} = {v, — f, Zw}, as claimed. O
5. Some computations in Jop,.

In this section we provide a few computations in Jop, for the purpose of
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illustrating basic aspects and points of the theory. We follow [16] for names of
elements in the homotopy groups of spheres. We begin by showing that the box

quartet operation may be nontrivial.

PROPOSITION 5.1.  Let n > 9. In Jop, the box quartet operation 2 for the

diagram

2Ln+8

Sn+8 Sn+8 * * *
\L ilggn-#l \L i i
* n+1 n+1 Sn Sn
3 2in41 s Tin 2in

is defined and satisfies

m

n _
Tp+10 =

9 — {nn O Up+1 + {20n o Vn+7}7 n=29,10
; Tin © Un+1, n > 11

Z/8® Z/2={ogovig} ®D{ngo o}, n=9

Z/A® Z/2 ={oovir} ®{moopn}, n=10
Z/2® Z/2={c110vs}®{miomz}, n=11
Z[2 = {ny o pns1}, n > 12.

In particular 9 is nontrivial.

PROOF. The value of 7!, |, is given in Theorem 7.3 of [16]. We observe that

the strong edge conditions hold, for
{2ty My 2tp41} 08041 = 772 080p+1 = 0.

Hence by Remark 3.3 the box quartet operation Z is defined.

In view of Proposition 5.2 below the following identifications are valid.

2Ln+8
Sn+8 > Sn/+8 —_ %

o = El:] ¢ ¢80"+1 ¢ = _{2Ln+1u 80n+17 2Ln+8} =0 (’I’L > 8)

* — Sn+1 —_ Sn+1
2tn41
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Sn+8 B m—

P = [T7]| Sl Lo
gnt+l —> gn+l —> gn
2ip41 Mn

= {777“ 2Ln+1; 80n+1}
= fn + {ngnn 05n+1} (n > 9)

* ——> k ——> X

#=T1T1| ¥ Vo =0 n>3)
s”“ﬁS"Q?S"

Hence all coherent triples for 2 are of the form (0,v,0) € & x ' x £ with
Y= HUp + TNy 0 Epg1 + yVi

for some integers x,y. For any such v we have

2tn49
gnt9 —> gn+9 — > x

@(o,w,o) = [l:] O\L ¢/"/ J/ = —{2Ln,’y,2bn+9}4

gn+1 T) Sn ?_ gn
n Ln

Now the indeterminacy of the Toda bracket {2¢y,7, 2,19} is seen to be

n n
205 0 Ty 10+ Tgq0 © 2nt10 =

{ {20,047}, n=29,10
n>11

)

by examination of the structure of 7., ;. Furthermore by Corollary 3.7 of [16] the
Toda bracket {2¢,,7, 2,19} contains the element o 7,9. But

3
Y O Mn+9 = HUn © Mn+9 + ITn © En41 © Mn+9 + Yv,, © Mn+9

2 3
= Nn O fpt1 + TN, © Enyo + YV, O Mg

and this last reduces to 7, o p,41 since 77721 ogna =0 (n > 9) by Proposition 5.2(1)
below and v, 0 1,43 =0 (n > 6) by (5.9) of [16]. Thus

M © fnt1 + {20n © Vn+7}7 n=9,10

D = {2p,7, 2L, =
{ ’Y +9} {nnoﬂn+1; TLZ 11
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Moreover by the structure of 7., ,, we see 1, 0 ji41 & {20, 0 vpy7} and thus

o¢ 9. O

PROPOSITION 5.2. (1) n? og,40 =0 forn > 9.
(2) {2tn,800,2tp7} =0 forn > 9.
(3) {nnv 2Ln+17 807L+1} = Hn + {l/i, Tn © En+1} f07“ n Z 9.

PROOF.
(1) We have n?oe,0 = 4(vy 0 0,43) for n>5 by (7.10) of [16]. Also the
relation vg o 019 = +209 o v follows from (7.19) of [16]. Hence

7’]3 o0& = 4(1/9 [e] 0'12) = :|:8(0'9 [¢] 1/16) = O

since og o V14 is an element of order 8 by Theorem 7.3 of [16].

(2) The indeterminacy of {2,807, 2ty17} is 2¢, 0 M g + 7, s © 20548 = 0 for
n > 9 by Theorem 7.1 of [16]. We remark that 209 = E*¢’ by (5.16) of [16]. Then
by Corollary 3.7 of [16] we have

{2Lg, 809, 2L16} = {2L9,4E2UI,2L16} = {2L9,4E2J/,2L15}1 B 4E20'/ O Mg = 0.

It follows that {2t,, 80, 2t,4+7} 2 0 and hence {2¢,, 80y, 2t,+7} = 0 for n > 9.
(3) By Theorem 7.1 of [16] ﬂZié = (Z/2)2 ={Upi1} @ {ens1} for n > 9. The
indeterminacy of {n,, 2tp+1,80,11} is

n+1 n _ - — 3
T © T 49 + Tpt2 © 80n42 = {7771, O Vpt1,Tn © €n+1} = {Vm Tn © €n+1}

for 277, =0 (n > 3) and 1, 0 V41 = 13 (n > 5) by (7.3) of [16]. Now it may be
deduced from Lemma 6.5 of [16] that p, € {n,, 2tn+1,80,41} for n > 8 (one must
recall that 80,1 = E"*0"). Hence, calculating the indeterminancies of the Toda
brackets for n > 9, we have

{nn72bn+17 80n+1} = HUn + {VS’N Tin © 5n+1}

as claimed. O

REMARK 5.3.  With respect to Proposition 5.1 it is interesting to note that
for the very similar diagram

2tn 8o,
Sn+8 18 Sn+8 11 Sn+1 * *
\L l/ \L2Ln+1 l/ l/
* % gnt1 Sn Sn

Nn 2Un,
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one has o € &. This is a consequence of Theorem 4.13 above. This example shows
the sensitivity in the value of & to the placement of the maps in the 4-box
diagram which defines 2.

PROPOSITION 5.4. In Jop, the box quartet operation 2 for the diagram

528 €20 520 Y17 S17 e g16 *
* % 59 56 53

is defined and trivial in
T = Z/4® (Z/2)° = {us} @ {v 086} ® {V o Tig 0 003} ® {e3 011}

PROOF. The value of 73, is given in Theorem2(a) of [12]. The 4-box
diagram in this proposition has been considered in part in Theorem 22 of [8].
Details given there show that the diagram is homotopy commutative and that all
horizontal pair composites are null homotopic. Since {14, 17,2} C Wég =0 by
Theorem 7.7 of [16] we readily see that this diagram satisfies the strong edge
conditions and hence by Theorem 4.13 its box quartet operation Z is defined and
trivial. (]

6. More about relations.

The value of a box quartet operation is determined by the relations and
values of those elements, Toda brackets and box brackets that occur in its
definition. Conversely when the value of a box quartet operation is known (or
even when the box quartet operation is known to be defined only) then
information may be extracted from the box quartet operation about the relations
and values of those elements, Toda brackets and box brackets. In this regard
Proposition 3.7, Theorem 4.13 and Theorem 4.15 are quite helpful. We illustrate
this observation by examining in detail the box quartet operation in Proposi-
tion 5.4.

Let 2 denote the box quartet operation for the 4-box diagram in
Proposition 5.4. By Theorem 22 of [8]

520 vz g7 me g16 {

r=[1] ¢ stg ¢l/600'9

VOO0
6°99 e 1/17} =6
* —> g9 ﬁ S6

Vg €9
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and by Theorem 23 of [8]

#= 1| =V {reoosy

Si7 E S16 —> %
_ {1/
59 —> g6 —> g3
Vg l//

V00 =
, V6°09 e | — 7,
Ve €9

Also

528 €20 520 vz g7
o = [11] | | yeo | ={eo 117,820}

* —> % —> g9

The indeterminacy of {eg, 117,20} is €9 0 mh¢ + 7y, 0 €91 = 0, for mh) = 0 and 7y, =
0 by Theorem 7.6 of [16]. Hence {eg, v17,620} C Ty, consists of a single element.
Now )y = Z/8 = {Ky} by page 48 of [11]. We note that

2{eg, 117,620} = {e9, 17,820} 0 2129 = €9 0 {117, €90, 228} C €9 © Wég =0

by Theorem 7.6 of [16]. Hence we may put {eg, 117,20} = 4aRy for z =0 or 1. By
Proposition 5.4 we know & is defined and we have shown that there is exactly one
coherent triple (4aRy,6,23) € & x I' x % to be considered in the definition of 2.
Consequently Z reduces to a single box bracket:

€21 vis
529 > g21 x> g18

9 = 11| a7y Vée Y@ | c 7l

59 > 55— 5°
6 4

In particular the relation &g 0 £9; = 5 0 (42RKg) must be valid. Furthermore we can
conclude that z =1 since it follows from Proposition6.2(2) below that
g6 0 €91 # 0. This yields the previously unrecorded relations gz o €91 = 415 0 Ry
and {eg, 17,690} = 4Kg. But note that in Proposition 6.2(2) below, we show
(independently of the present discussion) that the relation 5 o9 = 45 0 Rg
holds.

It might also be pointed out that the relation v/ o &g # 0 similarly implies
{V’, V6009 7716} #0 in my = Z/2={g;} and hence {V'7 V6009 7716} =3
Vg €9 Vg €9

(a fact previously obtained in Theorem 23 of [8]).
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PROPOSITION 6.1.  The relations g¢ 0 &2 = 4vg0Fg in my, {9, 17,820} =
4Rg in ﬂ'gg and

€21 vis
529 > g21 x> g18

oe [IJ]| 4mey Ve V& | Cmdy

59 ?SG —> g3
6 v

hold.

PROPOSITION 6.2.  The following relations hold in the 23-stem.
(1) 530618 :gg 0318 :6‘30?11 = E30M119K12 =T730&40K12 =2ain 71'%6.
(2) E506e90 =50V = €5 0E13 = 4Us 0 Ry = 13 0 K1y in Moy

(3) Vg OEly = 4V5 0 Ry m ﬂ'gg.

PROOF.
(1) By Lemma 6.4 of [16] and Proposition 17(4) of [8] we have

E30€18+E30T1g =230 (613 + V1) =E€30 0130125 = 0.

It follows that £30¢e5 =23 0vj5. We remark that m3; = Z/4 = {@} by Theo-
rem1.1(a) of [10] and that 2@ =mn30e40k12 by (3.1) of [10]. Moreover the
suspension homomorphism E* : 73 —9Ty3 (the 23-stem of the stable homotopy

groups of spheres) is a monomorphism. Then the relation 7, o £,.1 = g, for n > 6
by (10.23) of [16] implies that

E*(g30¢e13) =€oe=mnokoe=mnocok=E (n3oey0K2).

Hence we have Z3 0 €15 = 13 0 £4 © K13. We remark that 13 o e, = g5 o 911 by (7.5) of
[16].

(2) By Proposition3.1(2) of [12] the relation 4v; o Kg = 15 0 £ © K14 holds.
Moreover by Lemma 15.4 of [11], we have 4%s = 1% o k14 and hence

— — 3
4vs o Kg = 15 0 4 Kg = V§ © K14.

(3) We see that U5 0 £14 = U 0 114 © K15 = Vg 0 K15 = 4 0 Ky by Lemma 6.3 of
[16]. O

In the remainder of this section we give some additional basic relations which
involve the elements g, and which we feel are not easily proven. In particular, in
Proposition 6.6, we study Toda brackets of the type {e,, Vn+s,enr11} for n > 5 (cf.
Proposition 6.1). The proof of Proposition 6.6 gives a good example of the use of
Theorem 4.15 (actually, Corollary 4.17).
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PROPOSITION 6.3.  The following relations hold in the 22-stem.

(1) ﬁ/ O Vyg = 0 and {53, 2L18, V%B} = {53,21/18, 1/21} = €3 0K11 m 7TS5.

(2) {55, 2L20, V%O} = €50 K13 and {55, 21/20, 1/23} = €5 0K13 + {1/5 o ES} m 7Tg7.
(3) k7 oe9 =0’ 0F14 + €7 0 Kz in Thy.

PROOF.

(1) We see E*(fi’ o van) = E2(f1") 0 vay = 2(; 0 vy C 275, = 0 by Lemma 12.4
of [16] and Theorem B of [9]. Since E”: 73, — 75, is a monomorphism, the
relation 11’ o v99 = 0 follows.

By Theorem B of [9] 73, = Z/2 = {e3 0 k11}. We observe that

g3 0 71'%% ={g30013} =0
by Proposition 5.15 of [16] and Proposition 17(4) of [8];
o 0 Vig = {113 0 012 0 Uy, M3 0Ey 0 g} =0
by Theorem 12.6, (7.20), Lemma 12.10, and (5.9) of [16];
Ty 0 1oy = {fi’ 0 19, V0 ig 0 0150 vsn} = 0

by Theorem 12.9 and (7.20) of [16]. Hence the Toda brackets {z3, 215, 1%} and
{23, 2118, 121 } have trivial indeterminacies. We see that

{&3, 2u1s, V%s} 0 795 = €3 © {2013, V%g, Toa} =E30¢€18
and

{€3,2v18, 191} 0 M5 = E3 0 {2018, 191, M} = Ez 0 €18
by (7.6) of [16]. Thus the result follows.

(2) We have to calculate the indeterminacies of the Toda brackets involved.
We have

= .20 5 2 = 2 = .2
€5 0 My + Mgy 0 Vyy = {€5 002, fi5 00140 V3, N50E50 V51 =0
by Theorem 12.6 of [16]. Also
= .20 5 = = =
€5 0 Myy + Moy O Voy = {Es 0 090, (50104, V50 pgo 0170V} = {V50 (s}

by Theorem 12.9 of [16] and Proposition 2.1(3) of Part II of [12].
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(3) By (6.1) of [16], Proposition 2.6(4) of [14] and Corollary 5(1) of [8], we
have

K7 0 €91 € K7 0 {121, 2L99, 1/52} C {7 021, 202, V§2}
= {0’ o V14 + &7, 2199, V%Q}
C {0’ 0 D14, 2099, 035} + {7, 202, 3}
and with the result of (1) we see also
0 0 E1y+ &7 0 k15 € 0 0 {V1s, 2099, 0} + {E7, 2002, V30 }
C {0 0 U4, 2099, V35 } + {E7, 2009, V3, }.

Examining the indeterminacies of the Toda brackets {0’ o7y4,2099,13,} and
{&7, 2192, v3,} we have

- 22 | = 22 7 2
00 V14 0Ty + E7 0 Mhg + T3 O V3
/= = / 2 2 / 2 = 2
= {U O V14 © 0922, E70022, 0 O [l14 O Vo3, 7 O 016 © Va3, E¢ O Vg3, 7770580V23}
=0

by Theorem 12.6 and Lemma 10.7 of [16], Proposition17(4) of [8], Proposi-
tion 2.2(4) of [14], and (7.20) and (12.4) of [16]. It follows that

K7 0 €91 = 0’ 0E14 + €7 0 K1s. O
PROPOSITION 6.4. 15 0e2 =0 and g5 0 B0 =0 in m;.
PROOF. By Lemma 12.10, (7.5), (7.3) and (7.13) of [16], we have
150G = 1)5 0660 V1g = €5 0113 0 U1y = €5 0 Vg = 0

which establishes the first statement. By (7.30), Proposition 2.5, Lemma 12.10
and (7.20) of [16] and the properties of the Whitehead product, we have

€50 B = g5 0 A(la7) = €50 [l13, i3] = [€5,€5] = [t5,15] © 53 =0
and this establishes the second statement. O

PROPOSITION 6.5.  In 7, the following relations hold.
(1) {{¥2, 2011, m11}, 113, €16} = {5,113, €16} and the indeterminacy of the Toda
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bracket is e5 o w3 + 7}, 0 €17 = {v5 0 Mg 0 g 0 718}
(2) {2, {201, m1,v12}, €16} = {V2 0 K11, v50ms 0 Py 0 018}
(3) {V§,2b11, {771171/12,615}} = {Vg © Iin}-

PROOF.
(1) We see that e5 € {v2,2u11,m11} by (7.6) of [16]. The indeterminacy of this
Toda bracket is

2 11 5 _ 2 2 mn _
V5 0Tz + Ty 0me = {V50miy, 0 oma} =0

as follows from Propositions 5.3 and 5.15, (5.9) and (7.4) of [16]. Hence we have
{V§,2L11,7711} = 5. The indeterminacy of {e5, 113,16} is
€50 Tys + o 0 e17 = {&5 0 E, 1/?) 0 €17, V50 g O €17, V50T 0Eq}
={vsomgougoois}
by Theorem 7.6 and (7.18) of [16], Proposition 2.13(7) of [14] and Proposition 5.8
above.
(2) Since {2u11,m1,v12} C ﬂé = 0 by Proposition 5.9 of [16], we have
{2, {2011, m1, 12}, €16} = V3 0 Toh + 7y 0 €17

= {Vg © K11, u§ ° 0?17 V5 01 © 552), Vs O g © €17, Vé ocir}
= {l/g O Ki1, V50 778 (e} M9 o 0'18}

by Theorems 10.3 and 7.6, Lemma 12.3 and (7.18) of [16], Proposition 7(2) of [8],

Proposition 2.13(7) of [14] and Proposition 6.4 above.

(3) We have {n11,12,€15} 2 v11 © 014 0 v21 = 0 by Theorem 12 of [8] and (7.20)
of [16]. The indeterminacy of the Toda bracket is

Mmio 7"%421 + 77%(15 oe1={mi o0, mioEl}={mob}

by Theorem 7.6 and Proposition5.9 of [16], and Proposition2.2(8) of [14]. It
follows that {mi1, 112,15} = {m1 0 0}. We see

{V§,2L11,7711 06} D {V§7 2t11,m1to B =e50FE0 =0

by Proposition 6.4 above. The indeterminacy of the first Toda bracket is
2
v

5

11 5 2 2 9 1 2
0 To5 + My 0 M2 0 BO = {v5 007y, V50 k11, 0 om0 B0} = {v5 ok}
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It follows that {l/2 2[,11, {7711, 1/127615}} = {l/g o ,‘{11}. O

5

PROPOSITION 6.6.  The following relations hold in the 20-stem.

(1) {es, 113,616} = Vi o kit + {vs 0ms 0 g 0 o1} in .

(2) {EG,V14,€17} = Zlg O K12 = 2% in Tgﬁ.

(3) {&ns Vnsss Ent11} = V2 0 Ko = 4K, in Ty, forn=7,8,9,10 and n > 14.

PROOF.
(1) By page 46 of [11] we have

My = (2/2)" = {vs 0 Tig} @ {3 0 k11 } & {5 075 0 g © 713}

By an application of Corollary 4.17 above (or Proposition 1.5 of [16]), we have the
following formula

0 € {{v3,2u1,m1},v13, €16} + {V3, {2011, M1, via}, €16} + {V2, 2011, {11, V12, €151}
This implies by Proposition 6.5 that
0 € {e5, 113,616} + {VZ 0 K11, V50180 g 0 T18 }-

Thus there exist integers x and y such that

{e5,v13,€16} D TVE 0 K11 + Y5 0 1) © g © T1s.
We see by Corollary 5(1) of [8] and Proposition 6.2(2) that

{e5, 113,616} 0 Va5 = €5 0 {v13, €16, Vu} = €5 0 E13 = 4v5 0 Rg.
On the other hand, we have
(szQ, O K11+ YUs5 ONg O g © O1g) O Vo5 = JJV?: 0 K14 = 4x V5 0 Rg.

It follows that 4x v5 0o Kg = 4v5 0 Kg # 0 and hence x = 1 (mod 2). Therefore

{es5, 13,616} = v§ oK1+ {vs0mg0pugoois)

(2) and (3): We see v50m9 =0 by (5.9) of [16]. Hence by Lemmas 15.3 and
15.4 of [11] we have

2 —/
{e6, Vs, €17} D V5 0 K12 = 2R,

2 —
{€ns Vnss, Ens11} DV, 0 Kpge = 4Ry, forn > 7.
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. . t e n+8 n . ‘e
The indeterminacy of the Toda bracket is €, o 7, 5y + 7., 1, © €412 Which is zero

for n =6,7,8,9,10 and n > 14 by Theorem 7.6 of [16]. O
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