doi: 10.2969/jmsj/06120379 # Some remarks on CM-triviality By Ikuo Yoneda (Received Dec. 23, 2007) (Revised May 4, 2008) **Abstract.** We show that any rosy CM-trivial theory has weak canonical bases, and CM-triviality in the real sort is equivalent to CM-triviality with geometric elimination of imaginaries. We also show that CM-triviality is equivalent to the modularity in O-minimal theories with elimination of imaginaries. #### 1. Introduction. CM-triviality is a geometric notion of the forking independence relation. It is introduced by Hrushovski [H] where he disproves Zilber's conjecture on strongly minimal sets. CM-triviality forbids a point-line-plane incident system. The usual definition for CM-triviality needs canonical bases of types. Since canonical bases do not necessarily exist in rosy theories as in Lemma 2.8 of [P1], from [H] we choose another definition for CM-triviality in rosy theories, which does not need canonical bases. In the next section we show that any CM-trivial rosy theory has weak canonical bases. In third section we investigate the geometric elimination of imaginaries by the strict independence relation in rosy theories. Many generic structures have CM-triviality and weak elimination of imaginaries as in [H], [B], [Y], [VY] and [E]. In fourth section we define CM-triviality in the real sort, and we show that CM-triviality in the real sort is equivalent to CM-triviality with geometric elimination of imaginaries in rosy theories. This gives a direct way to show CM-triviality of generic relational structures. We also show that onebasedness implies CM-triviality in rosy theories having weak canonical bases, and we refer to a one-based but non-CM-trivial O-minimal theory. It is known that infinite type-definable stable [P] or supersimple [N] fields give a witness for non-CM-triviality. In fifth section we check that the Nubling's proof works for superrosy fields of monomial U^p-rank. In Zariski geometries (which are strongly minimal structures having a generalized Zariski topology), CM-triviality is ²⁰⁰⁰ Mathematics Subject Classification. Primary 03C45, 03C64. Key Words and Phrases. CM-triviality, rosy theories, O-minimal theories, generic structures, geometric elimination of imaginaries. equivalent to one-basedness(=local modularity). In O-minimal theories, local modularity is a strictly strong notion to one-basedness(=CF-property) as in $[\mathbf{LP}]$. In the last section we show that CM-triviality is equivalent to the modularity in O-minimal theories with elimination of imaginaries, by using Peterzil-Starchenko's trichotomy theorem and Pillay's consideration to weak canonical bases in O-minimal theories. Nubling $[\mathbf{N}]$ shows that CM-triviality is preserved under reducts in finite U-rank theories. We show that CM-triviality is not preserved under reducts in O-minimal theories. As O-minimal theories are finite $\mathbf{U}^{\mathfrak{p}}$ -rank theories, CM-triviality is not preserved under reducts in finite $\mathbf{U}^{\mathfrak{p}}$ -rank theories. Our notation is standard. Let T be a complete L-theory, and let \mathscr{M} be the big model of T. We work in \mathscr{M}^{eq} , consisting of imaginary elements, which are classes of equivalence relations definable over the empty set. $\bar{a}, \bar{b}, \ldots \subset_{\omega} \mathscr{M}$ denote finite sequences in \mathscr{M}^{eq} . A, B, \ldots denote small subsets of \mathscr{M}^{eq} and AB denotes $A \cup B$. For $a \in \mathscr{M}^{eq}$ and $A \subset \mathscr{M}^{eq}$, we write $a \in \operatorname{dcl}^{eq}(A)$ if a is fixed by any automorphism fixing A pointwise. And we write $a \in \operatorname{acl}^{eq}(A)$ if the orbit of a by automorphisms fixing A pointwise is finite. We write $B \equiv_A C$ for $\operatorname{tp}(B/A) = \operatorname{tp}(C/A)$ in T^{eq} . For definitions and basic properties of rosy theories, we refer the reader to $[\mathbf{A}]$ and $[\mathbf{O}]$. The author would like to thank the referee for his/her kind comments. # 2. The existence of weak canonical bases in rosy CM-trivial theories. Following [A], recall that a ternary relation $* \bigcup_* *$ between small subsets of \mathscr{M}^{eq} is a *strict independence relation* if the following nine conditions hold. - (1) invariance: If $A \downarrow_{B} C$ and $ABC \equiv A'B'C'$, then $A' \downarrow_{B'} C'$. - (2) monotonicity: If $A \downarrow_B C$, $A' \subseteq A$ and $C' \subseteq C$, then $A' \downarrow_B C'$. - (3) (right) base monotonicity: If $A \bigcup_B D$ and $B \subseteq C \subseteq D$, then $A \bigcup_C D$. - (4) (left) transitivity: If $B \subseteq C \subseteq D$, $D \downarrow_C A$ and $C \downarrow_B A$, then $D \downarrow_B A$. - (5) (left) normality: $A \bigcup_{B} C$ implies $AB \bigcup_{B} C$. - (6) extension: If $A \downarrow_B C$ and $C \subseteq D$, then there exists $A'(\equiv_{BC} A)$ such that $A' \downarrow_B D$. - (7) (left) finite character: If $\bar{a} \downarrow_B C$ for each $\bar{a} \subset_\omega A$, then $A \downarrow_B C$. - (8) local character: For any A there is a cardinal $\kappa(A)$ such that, for any B there exists $B_0 \subseteq B$ with $|B_0| < \kappa(A)$ and $A \bigcup_{B_0} B$. - (9) anti-reflexivity: $A \bigcup_{B} A$ implies $A \subseteq \operatorname{acl}^{eq}(B)$. Note that (1)-(8) imply symmetry : $A \bigcup_B C \Leftrightarrow B \bigcup_A C$. (Theorem 1.14 in [A]) REMARK 2.1. Let $A, B, C, A', B', C' \subset \mathcal{M}^{eq}$ be such that $\operatorname{acl}^{eq}(A') = \operatorname{acl}^{eq}(A), \operatorname{acl}^{eq}(B') = \operatorname{acl}^{eq}(B), \operatorname{acl}^{eq}(C') = \operatorname{acl}^{eq}(C)$. Then $A \downarrow_B C \Leftrightarrow A' \downarrow_{B'} C'$. PROOF. Suppose $A \downarrow_B C$. By symmetry and normality, we may assume $B \subseteq C, B' \subseteq C'$. By local character and base monotonicity, for any A, D, we have $A \downarrow_D D$. By extension and invariance, we have $A \downarrow_D \operatorname{acl}^{\operatorname{eq}}(D)$. So, by symmetry and transitivity, we have $A \downarrow_{B'} \operatorname{acl}^{\operatorname{eq}}(C')$. By monotonicity again, we see $A \downarrow_B C'$. By symmetry, we also see $A' \downarrow_{B'} C'$. We say that T is rosy if there exists a strict independence relation on \mathscr{M}^{eq} . And we say that an algebraically closed set C is the \bigcup -weak canonical base of $\operatorname{tp}(\bar{a}/B)$ if C is the smallest algebraically closed subset of $\operatorname{acl}^{eq}(B)$ with $\bar{a} \bigcup_C B$. As in $[\mathbf{A}]$, wcb \bigcup (\bar{a}/B) denotes the \bigcup -weak canonical base of $\operatorname{tp}(\bar{a}/B)$ if it exists. We also say that a rosy theory T has the \bigcup -weak canonical bases if there exists the \bigcup -weak canonical base for each type. FACT 2.2. Let \bigcup be a strict independence relation on \mathscr{M}^{eq} . - (1) Any type has the \bigcup -weak canonical base if and only if \bigcup has the eq-intersection property: $\bar{a} \bigcup_A B$ and $\bar{a} \bigcup_B A$ imply $\bar{a} \bigcup_{A \cap B} AB$ for any $\bar{a}, A, B \subset \mathscr{M}^{eq}$ such that $A = \operatorname{acl}^{eq}(A)$ and $B = \operatorname{acl}^{eq}(B)$. (Theorem 3.20 in $[\mathbf{A}]$) Suppose that \bigcup is a strict independence relation on eq-structures. For now, we do not assume the existence of \bigcup -weak canonical bases, we choose the definition for CM-triviality as follows. DEFINITION 2.3. We say that a rosy theory T is CM-trivial with respect to \bigcup if $\bar{a} \bigcup_A B$ implies $\bar{a} \bigcup_{A \cap \operatorname{acl}^{\operatorname{eq}}(\bar{a},B)} B$ for any $\bar{a},A,B \subset \mathscr{M}^{\operatorname{eq}}$ such that $A = \operatorname{acl}^{\operatorname{eq}}(A)$ and $B = \operatorname{acl}^{\operatorname{eq}}(B)$. Theorem 2.4. If T is CM-trivial with respect to \bigcup , then T has the \bigcup -weak canonical bases, and \bigcup coincides with the thorn independence relation. PROOF. To apply Fact 2.2, we show that $\bar{a} \, igsqcup_A B$ and $\bar{a} \, igsqcup_B A$ with $A = \operatorname{acl^{eq}}(A)$ and $B = \operatorname{acl^{eq}}(B)$ imply $\bar{a} \, igsqcup_{A \cap B} AB$. By CM-triviality, we have $\bar{a} \, igsqcup_{\operatorname{acl^{eq}}(\bar{a},B) \cap A} B$. By $\bar{a} \, igsqcup_B A$ and anti-reflexivity, we see $\operatorname{acl^{eq}}(\bar{a},B) \cap AB = B$. As $A \cap B \subseteq A \cap \operatorname{acl^{eq}}(\bar{a},B) \subseteq AB \cap \operatorname{acl^{eq}}(\bar{a},B) = B$, we see $$\operatorname{acl}^{\operatorname{eq}}(\bar{a}, B) \cap A = A \cap B.$$ By $\bar{a} \downarrow_{\operatorname{acl}^{\operatorname{eq}}(\bar{a},B) \cap A} B$ and $\bar{a} \downarrow_{B} A$, we see $\bar{a} \downarrow_{A \cap B} AB$. REMARK 2.5. Let T be a rosy theory with a strict independence relation \bigcup . The following are equivalent. - (1) T is CM-trivial with respect to \bigcup . - (2) T has the \downarrow -weak canonical bases and $\operatorname{wcb}_{\downarrow}(\bar{a}/A) \subseteq \operatorname{wcb}_{\downarrow}(\bar{a}/B)$ holds for any $\bar{a}, A, B \subset \mathscr{M}^{\operatorname{eq}}$ such that $\operatorname{acl}^{\operatorname{eq}}(\bar{a}, A) \cap B = A$ with $A = \operatorname{acl}^{\operatorname{eq}}(A)$ and $B = \operatorname{acl}^{\operatorname{eq}}(B)$. #### PROOF. - $(1) \Rightarrow (2) \colon \text{ Suppose that } \operatorname{acl}^{\operatorname{eq}}(\bar{a},A) \cap B = A \text{ with } A = \operatorname{acl}^{\operatorname{eq}}(A) \text{ and } B = \operatorname{acl}^{\operatorname{eq}}(B). \text{ By Theorem 2.4, } T \text{ has weak canonical bases, so let } D := \operatorname{wcb}_{\bigcup}(\bar{a}/B). \text{ Then } \bar{a} \bigcup_{D} A \text{ follows from } \bar{a} \bigcup_{D} A \text{ and } A \subseteq B. \text{ By CM-triviality, we see } \bar{a} \bigcup_{\operatorname{acl}^{\operatorname{eq}}(\bar{a},A) \cap D} A. \text{ As } D \subseteq B \text{ and } \operatorname{acl}^{\operatorname{eq}}(\bar{a},A) \cap B = A, \text{ we have } \operatorname{acl}^{\operatorname{eq}}(\bar{a},A) \cap D = A \cap D. \text{ So, we have } \operatorname{wcb}_{\bigcup}(\bar{a}/A) \subseteq A \cap D \subseteq D = \operatorname{wcb}_{\bigcup}(\bar{a}/B).$ - $(2){\Rightarrow}(1){:} \text{ Suppose that } \bar{a} \, {\downarrow}_A B \text{ with } A = \operatorname{acl^{eq}}(A) \text{ and } B = \operatorname{acl^{eq}}(B). \text{ Put } C := \operatorname{acl^{eq}}(AB) \cap \operatorname{acl^{eq}}(\bar{a},B). \text{ Then we have } B \subseteq C \text{ and } \bar{a} \, {\downarrow}_A C. \text{ As } \operatorname{acl^{eq}}(\bar{a},C) \subseteq \operatorname{acl^{eq}}(\bar{a},AB) \cap \operatorname{acl^{eq}}(\bar{a},B) \text{ and } \operatorname{acl^{eq}}(CA) \subseteq \operatorname{acl^{eq}}(AB) \cap \operatorname{acl^{eq}}(\bar{a},AB), \text{ we see } C = \operatorname{acl^{eq}}(\bar{a},C) \cap \operatorname{acl^{eq}}(CA). \text{ By our assumption, we have } \operatorname{wcb}_{\downarrow}(\bar{a}/C) \subseteq \operatorname{wcb}_{\downarrow}(\bar{a}/C) \subseteq \operatorname{acl^{eq}}(\bar{a},B) \cap A, \text{ we see } \bar{a} \, {\downarrow}_{\operatorname{acl^{eq}}(\bar{a},B) \cap A} C. \text{ As } B \subseteq C, \text{ we have } \bar{a} \, {\downarrow}_{\operatorname{acl^{eq}}(\bar{a},B) \cap A} B.$ #### 3. Geometric elimination of imaginaries in rosy theories. We say that T has geometric elimination of imaginaries (T has GEI) if for any $e \in \mathscr{M}^{eq}$, there exists $\bar{b} \subset_{\omega} \mathscr{M}$ such that $e \in \operatorname{acl}^{eq}(\bar{b})$ and $\bar{b} \in \operatorname{acl}^{eq}(e)$. Let \bigcup be a strict independence relation on $\mathscr{M}^{\mathrm{eq}}$. We say that \bigcup has the intersection property if $\bar{a} \bigcup_A B$ and $\bar{a} \bigcup_B A$ imply $\bar{a} \bigcup_{A \cap B} AB$ for any $\bar{a}, A, B \subset \mathscr{M}$ with $A = \mathrm{acl}(A)$ and $B = \mathrm{acl}(B)$. Lemma 3.1. If T has a strict independence relation having the intersection property, then T has GEI. PROOF. Fix $e = \bar{a}_E \in \mathcal{M}^{eq}$. Take $\bar{b}, \bar{c} \models \operatorname{tp}(\bar{a}/e)$ such that $\bar{b}, \bar{c}, \bar{a}$ are \downarrow -independent over e. As $e = \bar{b}_E = \bar{c}_E$ and $\bar{a} \downarrow_e \bar{b}\bar{c}$, we have $\bar{a} \downarrow_b \bar{b}\bar{c}$ and $\bar{a} \downarrow_{\bar{c}} \bar{b}\bar{c}$. Let $A = \operatorname{acl}(\bar{b}) \cap \operatorname{acl}(\bar{c})$. Then $\bar{a} \downarrow_A \bar{b}\bar{c}$ by the intersection property of \downarrow . By $e \in \operatorname{dcl}^{eq}(\bar{a}) \cap \operatorname{dcl}^{eq}(\bar{b}\bar{c})$ and anti-reflexivity, $e \in \operatorname{acl}^{eq}(A)$. On the other hand, $A \subset \operatorname{acl}^{eq}(e)$ follows from $\bar{b} \downarrow_e \bar{c}$ and anti-reflexivity. Lemma 3.2. If T has GEI, then we have $$\operatorname{acl}^{\operatorname{eq}}(A) \cap \operatorname{acl}^{\operatorname{eq}}(B) = \operatorname{acl}^{\operatorname{eq}}(A \cap B)$$ for any $A, B \subset \mathcal{M}$ such that $A = \operatorname{acl}(A)$ and $B = \operatorname{acl}(B)$. PROOF. Let $e \in \operatorname{acl}^{\operatorname{eq}}(A) \cap \operatorname{acl}^{\operatorname{eq}}(B)$. By GEI, there exists $\bar{a} \subset_{\omega} \mathcal{M}$ such that $e \in \operatorname{acl}^{\operatorname{eq}}(\bar{a})$ and $\bar{a} \in \operatorname{acl}^{\operatorname{eq}}(e)$. As $\bar{a} \in \operatorname{acl}^{\operatorname{eq}}(A)$ and $\bar{a} \in \operatorname{acl}^{\operatorname{eq}}(B)$, we see $\bar{a} \subseteq A \cap B$. Thus, $e \in \operatorname{acl}^{\operatorname{eq}}(A \cap B)$. Lemma 3.3. If \bigcup has the intersection property, then it has the eq-intersection property. PROOF. Suppose that $\bar{a} \downarrow_A B$ and $\bar{a} \downarrow_B A$ with $A = \operatorname{acl^{eq}}(A)$ and $B = \operatorname{acl^{eq}}(B)$. By 3.1, there exist $\bar{a}', A' = \operatorname{acl}(A'), B' = \operatorname{acl}(B') \subseteq \mathscr{M}$ such that $\operatorname{acl^{eq}}(\bar{a}') = \operatorname{acl^{eq}}(\bar{a}), \operatorname{acl^{eq}}(A') = \operatorname{acl^{eq}}(A), \operatorname{acl^{eq}}(B') = \operatorname{acl^{eq}}(B)$. By remark 2.1, we have $\bar{a}' \downarrow_{A'} B'$ and $\bar{a}' \downarrow_{B'} A'$. So we see $\bar{a}' \downarrow_{A' \cap B'} A' B'$ by the intersection property. Since $A \cap B = \operatorname{acl^{eq}}(A' \cap B')$ holds by Lemma 3.2, we see $\bar{a} \downarrow_{A \cap B} AB$ by remark 2.1. Proposition 3.4. The following are equivalent. - (1) T has GEI and a strict independence relation having the eq-intersection property. - (2) T has a strict independence relation having the intersection property. - (3) T has a strict independence relation having weak canonical bases in the real sort: weak canonical bases are interalgebraic with real elements. PROOF. (1) \Rightarrow (2) follows from remark 2.1 and Lemma 3.2. (2) \Rightarrow (1) follows from Lemma 3.1 and 3.3. (1) \Rightarrow (3) and (3) \Rightarrow (2) are clear. Remark 3.5. - (1) Let T be a simple theory with elimination of hyperimaginaries. As the forking independence relation in T has the eq-intersection property, by Fact 2.2, we see that T has GEI iff the forking independence relation in T has the intersection property. - (2) In rosy theories, GEI does not necessarily imply the intersection property: Let $T = \operatorname{Th}(\mathbf{R}, +, <, \pi|_{(-1,1)}(*))$, where $\pi|_{(-1,1)}(x) := \pi x$ for $x \in (-1,1)$. Then T is an o-minimal theory with elimination of imaginaries. Take $a, b, c \in \mathcal{M}$ be such that $a, b, c > \mathbf{R}$, |a b| < 1, |a c| < 1 and $\dim(a, b, c) = 3$. Then $\dim(a, \pi a/b, \pi b, c, \pi c) = \dim(a, \pi a/b, \pi b) = \dim(a, \pi a/c, \pi c) = 1 < 2 = \dim(a, \pi a)$ and $\operatorname{acl}(b, \pi b) \cap \operatorname{acl}(c, \pi c) = \operatorname{acl}(\emptyset)$. As $\operatorname{U}^{\mathfrak{p}}(*) = \dim(*)$ in O-minimal theories by $[\mathbf{O}]$, the thorn independence relation in T does not have the intersection property. ### 4. CM-triviality in the real sort. DEFINITION 4.1. We say that T is CM-trivial in the real sort with respect to \bigcup if $\bar{a} \bigcup_A B$ implies $\bar{a} \bigcup_{A \cap \operatorname{acl}(\bar{a},B)} B$ for any $\bar{a},A,B \subset \mathscr{M}$ such that $A = \operatorname{acl}(A)$ and $B = \operatorname{acl}(B)$. Theorem 4.2. The following are equivalent. - (1) T is CM-trivial with respect to \downarrow and has GEI. - (2) T is CM-trivial in the real sort with respect to \(\). PROOF. $(1)\Rightarrow(2)$: Clear. $(2)\Rightarrow(1)$: By working in \mathscr{M} and replacing acl^{eq} with acl in the proof of Theorem 2.4, we see that \bigcup has the intersection property. By Lemma 3.1, GEI follows. #### Remark 4.3. - (1) Let T be the theory of a rosy relational structure with a closure operator cl(*) and a strict independence relation || such that - $\operatorname{cl}(\operatorname{acl}(A)) = \operatorname{acl}(A)$ and $\operatorname{cl}(\operatorname{cl}(A) \cap \operatorname{cl}(B)) = \operatorname{cl}(A) \cap \operatorname{cl}(B)$, - $A \bigcup_{A \cap B} B \Leftrightarrow "AB = \operatorname{cl}(AB)$ and $R^{AB} = R^A \cup R^B$ for any predicate R" for any algebraically closed sets $A, B \subset \mathcal{M}$. Then T is CM-trivial: By Theorem 4.2, we have only to show CM-triviality in the real sort. Suppose that $\bar{a} \downarrow_A B$. Let $C = \operatorname{acl}(\bar{a}, A), D = \operatorname{acl}(AB)$. As $C \downarrow_A B$ and $C \cap B = A$, $\operatorname{cl}(CB) = CB$ and $R^{CB} = R^C \cup R^B$ for any predicate R. Let $E = \operatorname{acl}(\bar{a}, B)$. Then $\operatorname{cl}(CB \cap E) = CB \cap E$ and $R^{CB \cap E} = R^{C \cap E} \cup R^{B \cap E}$ for any predicate R. So, we see $C \cap E \downarrow_{A \cap E} B \cap E$. As $\bar{a} \subset C \cap E, B \subset B \cap E$, $\bar{a} \downarrow_{A \cap \operatorname{acl}(\bar{a}, B)} B$ follows. (2) CM-triviality does not imply CM-triviality in the real sort. In [E], Evans gave an ω -categorical CM-trivial structure \mathfrak{C} , defined below, of SU-rank one without weak elimination of imaginaries. Here, we show that $\mathfrak C$ does not have GEI: Let M be the ω -categorical SU-rank two generic structure M (a countable binary graph with a predimension $\delta(A) = 2|A| - |R^A|$) constructed by Evans such that no triangles, no squres in M, and points and adjacent pairs of points are closed in M, and $\mathrm{cl}(*) = \mathrm{acl}(*)$ in M. Fix $a \in M$. Let C, D be the sets of vertices at distance 1,2 from a. Let $\mathfrak C$ be the canonical structure on C such that $\mathrm{Aut}(\mathfrak C)$ is homeomorphic to $\mathrm{Aut}(M/a)$. As $\mathfrak C$ and (M,a) are biinterpretable, $\mathfrak C$ is of SU-rank one and CM-trivial. Let $c \in C, d \in D$ be such that $M \models R(a,c) \land R(c,d)$. As no triangles and squares in M, we have $\operatorname{acl}(a,d) \cap C = \operatorname{cl}(a,d) \cap C = \{c\}$. If $\mathfrak C$ had GEI, then, as $d \in \mathfrak C^{\operatorname{eq}}$, we could find $\bar c \subset_\omega C$ such that $d \in \operatorname{acl}(a,\bar c)$ and $\bar c \in \operatorname{acl}(a,d)$ in the sense of M. As $\operatorname{acl}(a,d) \cap C = \{c\}$, $\bar c$ must be the singleton c. Since $\operatorname{cl}(a,c) = \operatorname{acl}(a,c) \operatorname{acl}(a,c$ $\{a,c\}$ in M, so $d \notin \operatorname{acl}(a,c)$ in M, a contradiction. By Theorem 4.2, \mathfrak{C} is CM-trivial but not CM-trivial in the real sort. #### Remark 4.4. - (1) In rosy theories having weak canonical bases, we define one-basedness as usual: $\operatorname{wcb}(a/A) \subset \operatorname{acl}^{\operatorname{eq}}(a)$ holds for any $a, A \subset \mathcal{M}$ with $A = \operatorname{acl}^{\operatorname{eq}}(A)$. By Remark 2.5, we see that one-basedness implies CM-triviality: As $\operatorname{wcb}(\bar{a}/B) \subseteq \operatorname{acl}^{\operatorname{eq}}(\bar{a}) \cap$ $B \subseteq A \subseteq B$, we have $\operatorname{wcb}(\bar{a}/B) = \operatorname{wcb}(\bar{a}/A)$. - (2) There exists a one-based but non-CM-trivial rosy theory: Let T = $Th(\mathbf{R}, +, <, \pi|_{(-1,1)}(*))$. T is an O-minimal theory with CF-property and elimination of imaginaries. As in [P1], CF-property is equivalent to one-basedness in O-minimal theories. By Remark 3.5 (2) and Theorem 4.2, T is not CM-trivial. #### Non-CM-triviality of superrosy fields of monomial rank. **5**. Let \(\) be the thorn independence relation. We show that CM-triviality is equivalent to non-2-ampleness in rosy theories. We also show that superrosy fields of monomial U^p-rank are 2-ample. It is unknown whether any superrosy (nonsupersimple) field of infinite U^p-rank exists. Any supersimple field has monomial $SU(=U^{\mathfrak{p}})$ -rank. It is also unknown whether any superrosy field has monomial U^p-rank. Definition 5.1. A rosy theory T is n-ample if after naming some parameters, there exist $A_0, A_1, \ldots, A_n \subset \mathcal{M}^{eq}$ such that - (1) $\operatorname{acl}^{eq}(A_{< r}A_r) \cap \operatorname{acl}^{eq}(A_{< r}A_{r+1}) = \operatorname{acl}^{eq}(A_{< r})$ for any $r \le n 1$. - (2) $A_{r+1} \downarrow_{A_r} A_{\leq r}$ for any $r \leq n-1$. where $A_{\leq r} = A_0 A_1 \dots A_r$ and $A_{< r} = A_0 A_1 \dots A_{r-1}$. LEMMA 5.2. Let T be rosy. Then the following are equivalent. - $\begin{array}{ll} (1) \ \ For \ any \ A_0, A_1, A_2 \subset \mathscr{M}^{\mathrm{eq}}, \ A_2 \bigcup_{A_1} A_0 \ \ implies \ A_2 \bigcup_{\mathrm{acl^{eq}}(A_1) \cap \mathrm{acl^{eq}}(A_2A_0)} A_0. \\ (2) \ \ For \quad \ \ any \quad \ \ A_0, A_1, A_2, B \subset \mathscr{M}^{\mathrm{eq}}, \quad \ \ \mathrm{acl^{eq}}(BA_0) \cap \mathrm{acl^{eq}}(BA_1) = \mathrm{acl^{eq}}(B), \end{array}$ - $\operatorname{acl}^{\operatorname{eq}}(BA_0A_1) \cap \operatorname{acl}^{\operatorname{eq}}(BA_0A_2) = \operatorname{acl}^{\operatorname{eq}}(BA_0) \quad and \quad A_2 \downarrow_{\operatorname{acl}^{\operatorname{eq}}(BA_1)} A_0 \quad imply$ $A_2 \downarrow_{B} A_0$. Thus CM-triviality is equivalent to non-2-ampleness without assuming the existence of weak canonical bases. Proof. - (1) \Rightarrow (2): We have $A_2 \downarrow_{{\rm acl}^{\rm eq}(BA_1)} A_0 B$ by $A_2 \downarrow_{{\rm acl}^{\rm eq}(BA_1)} A_0$. By (1), we see $A_2 \downarrow_{{\rm acl}^{\rm eq}(BA_1) \cap {\rm acl}^{\rm eq}(BA_0A_2)} A_0 B$. On the other hand, we have $\operatorname{acl}^{\operatorname{eq}}(BA_1) \cap \operatorname{acl}^{\operatorname{eq}}(BA_2A_0) \subseteq \operatorname{acl}^{\operatorname{eq}}(BA_1) \cap \operatorname{acl}^{\operatorname{eq}}(BA_0) = \operatorname{acl}^{\operatorname{eq}}(B)$. Thus we see $A_2 \bigcup_B A_0$. $$(2)\Rightarrow(1)$$: Put $B=\operatorname{acl}^{\operatorname{eq}}(A_1)\cap\operatorname{acl}^{\operatorname{eq}}(A_0A_2)\subset\operatorname{acl}^{\operatorname{eq}}(A_1)$. Claim 1. We have $\operatorname{acl}^{eq}(BA_0) \cap \operatorname{acl}^{eq}(BA_1) = \operatorname{acl}^{eq}(B)(=B)$ and $\operatorname{acl}^{eq}(BA_0A_1) \cap \operatorname{acl}^{eq}(BA_0A_2) = \operatorname{acl}^{eq}(BA_0)$. By the definition of B, we see $\operatorname{acl}^{\operatorname{eq}}(BA_0) \subseteq \operatorname{acl}^{\operatorname{eq}}(A_0A_1) \cap \operatorname{acl}^{\operatorname{eq}}(A_0A_2) \subseteq \operatorname{acl}^{\operatorname{eq}}(BA_0)$, so $\operatorname{acl}^{\operatorname{eq}}(BA_0A_1) \cap \operatorname{acl}^{\operatorname{eq}}(BA_0A_2) = \operatorname{acl}^{\operatorname{eq}}(BA_0)$ follows. $$\operatorname{acl}^{\operatorname{eq}}(B) \subseteq \operatorname{acl}^{\operatorname{eq}}(BA_0) \cap \operatorname{acl}^{\operatorname{eq}}(BA_1)$$ $$= \operatorname{acl}^{\operatorname{eq}}(BA_0) \cap \operatorname{acl}^{\operatorname{eq}}(A_1)$$ $$\subseteq \operatorname{acl}^{\operatorname{eq}}(A_0A_1) \cap \operatorname{acl}^{\operatorname{eq}}(A_0A_2) \cap \operatorname{acl}^{\operatorname{eq}}(A_1)$$ $$\subseteq \operatorname{acl}^{\operatorname{eq}}(A_0A_1) \cap \operatorname{acl}^{\operatorname{eq}}(B) \subseteq \operatorname{acl}^{\operatorname{eq}}(B)$$ By $$A_2 \downarrow_{BA_1} A_0$$ and (2), $A_2 \downarrow_B A_0$ follows. From now on, we check that any superrosy field of monomial U^p-rank is not CM-trivial (=2-ample) by following the Nubling's proof for *n*-ampleness of supersimple field. As the Nubling's proof works for superrosy field of monomial U^p-rank, any superrosy field of monomial U^p-rank is *n*-ample for any $n < \omega$. Let F be an infinite superrosy field. We say that $a_0, a_1, \ldots, a_i, \ldots \in F$ are independent generics over A if $U^{\mathfrak{p}}(a_0/A) = U^{\mathfrak{p}}(a_1/A) = \cdots = U^{\mathfrak{p}}(a_i/A) = \cdots = U^{\mathfrak{p}}(F)$ and $a_0, a_1, \ldots, a_i, \ldots$ are thorn independent over A. FACT 5.3. Let F be an infinite superrosy field. - (1) Let $a, b, c \in F$ be independent generics over A. Then bc, a, c are independent generics over A and a + bc, a, c are independent generics over A. - (2) Let $a_1, \ldots, a_i, \ldots, b, c_1, \ldots, c_i, \ldots \in F$ be independent generics over A. Then $a_1 + bc_1, \ldots, a_i + bc_i, \ldots, c_1, \ldots, c_i, \ldots$ are independent generics over A. PROOF. We may assume $A = \emptyset$. - (1) Since bc and b are interdefinable oner c, we see $U^{\mathfrak{p}}(F) \geq U^{\mathfrak{p}}(bc) \geq U^{\mathfrak{p}}(bc/c, a) = U^{\mathfrak{p}}(b/c, a) = U^{\mathfrak{p}}(F)$. As a + bc and bc are interdefinable over a, we also see that $U^{\mathfrak{p}}(F) \geq U^{\mathfrak{p}}(a + bc) \geq U^{\mathfrak{p}}(a + bc/a, c) = U^{\mathfrak{p}}(bc/a, c) = U^{\mathfrak{p}}(F)$. - (2) By (1), we have only to show $a_{i+1} + bc_{i+1}, c_{i+1} \perp a_0 + bc_0, \ldots, a_i + bc_i, c_0 \ldots, c_i$. As $a_{i+1}, c_{i+1} \perp_b a_0, \ldots, a_i, c_0, \ldots, c_i$, we have $a_{i+1} + bc_{i+1}, c_{i+1} \perp_b a_0 + bc_0, \ldots, a_i + bc_i, c_0, \ldots, c_i$. Since $U^{\mathfrak{p}}(a_{i+1} + bc_{i+1}/b, c_{i+1}) = U^{\mathfrak{p}}(a_{i+1}/b, c_{i+1}) = U^{\mathfrak{p}}(F)$, we have $a_{i+1} + bc_{i+1} \perp b, c_{i+1}$. As $b \perp c_{i+1}$, we see $a_{i+1} + bc_{i+1}, c_{i+1} \perp b$. So we see the conclusion. Let F be a superrosy field. To get a witness for non-CM-triviality, we define a plane \mathbf{P} in F^3 , a line \mathbf{l} on \mathbf{P} , and a point \mathbf{p} on \mathbf{l} as follows. Let $a_0^{0,0}, a_1^{0,0}, a_2^{0,0}$ be independent generics. Put $\mathbf{P} = \{(x_1, x_2, x_3) \in F^3 : a_0^{0,0} + a_1^{0,0}x_1 + a_2^{0,0}x_2 = x_3\}$. We consider $A_0 := \{a_0^{0,0}, a_1^{0,0}, a_2^{0,0}\}$ as parameters for \mathbf{P} . Let $a_0^{1,0}, a_1^{1,0}$ be independent generics over previous elements. Put $B_1^{1,0} = \{(x_1, x_2, x_3) \in F^3 : a_0^{1,0} + a_1^{1,0} x_1 = x_2\}$ and Put $\mathbf{l} = \mathbf{P} \cap B_1^{1,0}$. Then $(x_1, x_2, x_3) \in \mathbf{l}$ iff $(a_0^{0,0} + a_2^{0,0} a_0^{1,0}) + (a_1^{0,0} + a_2^{0,0} a_1^{1,0}) x_1 = x_3$. Put $a_0^{1,1} := a_0^{0,0} + a_2^{0,0} a_0^{1,0}$ and $a_1^{1,1} := a_1^{0,0} + a_2^{0,0} a_1^{1,0}$. Let $B_1^{1,1} = \{(x_1, x_2, x_3) \in F^3 : a_0^{1,1} + a_1^{1,1} x_1 = x_3\}$. Then $\mathbf{l} = B_1^{1,0} \cap B_1^{1,1}$ and we consider $A_1 := \{a_0^{1,0}, a_1^{1,0}, a_0^{1,1}, a_1^{1,1}\}$ as parameters for \mathbf{l} . Let $a_0^{2,0}$ be generic over previous elements. Put $B_2^{2,0}:=\{(x_1,x_2,x_3)\in F^3:a_0^{2,0}=x_1\}$ and $B_2^{2,1}:=B_2^{2,0}\cap B_1^{1,0}$ and $B_2^{2,2}:=B_2^{2,0}\cap B_1^{1,1}$. Then $(x_1,x_2,x_3)\in B_2^{2,1}$ iff $a_0^{2,1}:=a_0^{1,0}+a_1^{1,0}a_0^{2,0}=x_2$, and $(x_1,x_2,x_3)\in B_2^{2,2}$ iff $a_0^{2,2}:=a_0^{1,1}+a_1^{1,1}a_0^{2,0}=x_3$. Let $\mathbf{p} := B_2^{2,0} \cap B_2^{2,1} \cap B_2^{2,2} = B_2^{2,0} \cap \mathbf{l}$ and we consider $A_2 = \{a_0^{2,0}, a_0^{2,1}, a_0^{2,2}\}$ as parameters for \mathbf{p} . Now we have the following lemma. (Here, we need not to assume that F is of monomial U^p-rank.) Lemma 5.4. - (1) $\operatorname{dcl^{eq}}(A_1, A_2) = \operatorname{dcl^{eq}}(A_1, a_0^{2,0}).$ (2) $\operatorname{dcl^{eq}}(A_0, A_1) = \operatorname{dcl^{eq}}(A_0, a_0^{1,0}, a_1^{1,0}).$ - $\begin{array}{ll} (3) & A_2 \bigcup_{A_1} A_0 \\ (4) & a_0^{2,2} \in \operatorname{dcl}^{\operatorname{eq}}(A_0, a_0^{2,0}, a_0^{2,1}) \text{ and } a_0^{0.0} \in \operatorname{dcl}^{\operatorname{eq}}(a_1^{0,0}, a_2^{0,0}, A_2). \end{array}$ - (5) $A_0 \not | A_2$. PROOF. (1),(2) are clear. (3) follows from $a_0^{2,0} \perp A_0, A_1$. (4) follows from $$\begin{split} a_0^{2,2} &= a_0^{1,1} + a_1^{1,1} a_0^{2,0} \\ &= (a_0^{0,0} + a_2^{0,0} a_0^{1,0}) + (a_1^{0,0} + a_2^{0,0} a_1^{1,0}) a_0^{2,0} \\ &= a_0^{0,0} + a_2^{0,0} (a_0^{1,0} + a_1^{1,0} a_0^{2,0}) + a_1^{0,0} a_0^{2,0} \\ &= a_0^{0,0} + a_2^{0,0} a_0^{2,1} + a_1^{0,0} a_0^{2,0} \end{split}$$ (5): If we had $A_0 \downarrow A_2$, then $a_0^{0,0} \downarrow_{a_1^{0,0}, a_2^{0,0}} A_2$, so $a_0^{0,0} \in \operatorname{acl}^{\operatorname{eq}}(a_1^{0,0}, a_2^{0,0})$ would hold. PROPOSITION 5.5. If F has a monomial $U^{\mathfrak{p}}$ -rank, then we have - (1) $\operatorname{acl}^{\operatorname{eq}}(A_0) \cap \operatorname{acl}^{\operatorname{eq}}(A_1) = \operatorname{acl}^{\operatorname{eq}}(\emptyset).$ - (2) $\operatorname{acl}^{\operatorname{eq}}(A_0 A_1) \cap \operatorname{acl}^{\operatorname{eq}}(A_0 A_2) = \operatorname{acl}^{\operatorname{eq}}(A_0).$ PROOF. Let $U^{\mathfrak{p}}(F) = \omega^{\alpha} k =: \beta$, where α is an ordinal and k is a natural number. (1): By Fact 5.3, A_1 consists of independent generics. CLAIM 2. $$U^{\mathfrak{p}}(A_0/A_1) \geq \beta$$. A_0, A_1 and $A_0, a_0^{1,0}, a_1^{1,0}$ are interdefinable. So, we have $\beta 5 = U^{\mathfrak{p}}(A_0 A_1) \leq U^{\mathfrak{p}}(A_0/A_1) \oplus U^{\mathfrak{p}}(A_1) = U^{\mathfrak{p}}(A_0/A_1) \oplus \beta 4$. The claim follows. CLAIM 3. Take $A'_0 \equiv_{\operatorname{acl}^{eq}(A_1)} A_0$ with $A'_0 \downarrow_{A_1} A_0$. Then $A'_0 \downarrow A_0$. $$U^{\mathfrak{p}}(A'_{0}A_{0}A_{1}) \geq U^{\mathfrak{p}}(A'_{0}A_{0}/A_{1}) + U^{\mathfrak{p}}(A_{1})$$ $$= (U^{\mathfrak{p}}(A'_{0}/A_{1}) \oplus U^{\mathfrak{p}}(A_{0}/A_{1})) + \beta 4$$ $$\geq \beta 6$$ As $a_i^{1,1} = a_i^{0,0} + a_2^{0,0} a_i^{1,0} = a_i^{\prime0,0} + a_2^{\prime0,0} a_i^{1,0}$, we have $$a_i^{1,0} = \frac{a_i^{0,0} - a_i'^{0,0}}{a_2'^{0,0} - a_2^{0,0}} \in \operatorname{dcl}^{\operatorname{eq}}(A_0' A_0),$$ so we have $A_1 \subseteq \operatorname{acl}^{eq}(A_0'A_0)$. $$\beta 6 \leq U^{\mathfrak{p}}(A'_{0}A_{0}A_{1})$$ $$= U^{\mathfrak{p}}(A'_{0}A_{0})$$ $$< \beta 6$$ As $U^{\mathfrak{p}}(A_0) = U^{\mathfrak{p}}(A'_0) = \beta 3$, we see the claim. As $\operatorname{acl}^{\operatorname{eq}}(A_0) \cap \operatorname{acl}^{\operatorname{eq}}(A_1) = \operatorname{acl}^{\operatorname{eq}}(A'_0) \cap \operatorname{acl}^{\operatorname{eq}}(A_1) \subseteq \operatorname{acl}^{\operatorname{eq}}(A_0) \cap \operatorname{acl}^{\operatorname{eq}}(A'_0)$ and $A'_0 \bigcup A_0$, we see the conclusion. (2): As A_1 and $a_0^{1,0}, a_1^{1,0}$ are interdefinable over A_0 by Lemma 5.4 (2), and A_2 and $a_0^{2,0}, a_0^{2,1}$ are interdefinable over A_0 by Lemma 5.4 (4), working over $\operatorname{acl}^{\operatorname{eq}}(A_0)$, we need to prove $\operatorname{acl}^{\operatorname{eq}}(a_0^{1,0}, a_1^{1,0}) \cap \operatorname{acl}^{\operatorname{eq}}(a_0^{2,0}, a_0^{2,1}) = \operatorname{acl}^{\operatorname{eq}}(\emptyset)$. Note that $\operatorname{U}^{\operatorname{\mathfrak{p}}}(a_0^{2,0}, a_0^{2,1}) = \beta 2$ over $\operatorname{acl}^{\operatorname{eq}}(A_0)$ by Fact 5.3(2). The rest is similar to (1): The rest is similar to (1): $\text{As } a_0^{2,1} \in \operatorname{dcl}^{\operatorname{eq}}(a_0^{1,0}, a_1^{1,0}, a_0^{2,0}), \ \mathsf{U}^{\mathfrak{p}}(a_0^{1,0}, a_1^{1,0}, a_0^{2,0}, a_0^{2,1}) = \beta 3 \text{ follows.} \\ \text{As } \beta 3 = \mathsf{U}^{\mathfrak{p}}(a_0^{1,0}, a_1^{1,0}, a_0^{2,0}, a_0^{2,1}) \leq \mathsf{U}^{\mathfrak{p}}(a_0^{1,0}, a_1^{1,0}/a_0^{2,0}, a_0^{2,1}) \oplus \mathsf{U}^{\mathfrak{p}}(a_0^{2,0}, a_0^{2,1}) \\ = \mathsf{U}^{\mathfrak{p}}(a_0^{1,0}, a_1^{1,0}/a_0^{2,0}, a_0^{2,1}) \oplus \beta 2, \ \text{we have } \mathsf{U}^{\mathfrak{p}}(a_0^{1,0}, a_1^{1,0}/a_0^{2,0}, a_0^{2,1}) \geq \beta. \\ \text{Take } a_0'^{1,0}, a_1'^{1,0} \equiv_{\operatorname{acl}^{\operatorname{eq}}(a_0^{2,0}, a_0^{2,1})} a_0^{1,0}, a_1^{1,0} \ \text{with } a_0'^{1,0}, a_1'^{1,0} \downarrow_{\operatorname{acl}^{\operatorname{eq}}(a_0^{2,0}, a_0^{2,1})} a_0^{1,0}, a_1^{1,0}. \\ \text{We have} \\ \mathsf{U}^{\mathfrak{p}}(a_0'^{1,0}, a_1'^{1,0}, a_0^{1,0}, a_1^{1,0}, a_0^{2,0}, a_0^{2,1}) \geq \mathsf{U}^{\mathfrak{p}}(a_0'^{1,0}, a_1'^{1,0}, a_0^{1,0}, a_1^{1,0}/a_0^{2,0}, a_0^{2,1}) + \mathsf{U}^{\mathfrak{p}}(a_0^{2,0}, a_0^{2,1}) \\ \mathsf{U}^{\mathfrak{p}}(a_0'^{1,0}, a_1'^{1,0}, a_0^{1,0}, a_1^{1,0}, a_0^{2,0}, a_0^{2,1}) \geq \mathsf{U}^{\mathfrak{p}}(a_0'^{1,0}, a_1'^{1,0}, a_0^{1,0}, a_1^{1,0}/a_0^{2,0}, a_0^{2,1}) + \mathsf{U}^{\mathfrak{p}}(a_0'^{2,0}, a_0'^{2,0}) \\ \mathsf{U}^{\mathfrak{p}}(a_0'^{1,0}, a_1'^{1,0}, a_0^{1,0}, a_1^{1,0}, a_0^{2,0}, a_0^{2,1}) \geq \mathsf{U}^{\mathfrak{p}}(a_0'^{1,0}, a_1'^{1,0}, a_0^{1,0}, a_1^{1,0}/a_0', a_0'^{2,0}, a_0'^{2,1}) \\ \mathsf{U}^{\mathfrak{p}}(a_0'^{1,0}, a_1'^{1,0}, a_0'^{1,0}, a_0'$ $$\begin{array}{l} \mathbf{U}^{\mathfrak{p}}(a_{0}^{\prime 1,0},a_{1}^{\prime 1,0},a_{0}^{1,0},a_{1}^{1,0},a_{0}^{2,0},a_{0}^{2,1}) \geq \mathbf{U}^{\mathfrak{p}}(a_{0}^{\prime 1,0},a_{1}^{\prime 1,0},a_{0}^{1,0},a_{1}^{1,0}/a_{0}^{2,0},a_{0}^{2,1}) + \mathbf{U}^{\mathfrak{p}}(a_{0}^{2,0},a_{0}^{2,1}) \\ = (\mathbf{U}^{\mathfrak{p}}(a_{0}^{1,0},a_{1}^{1,0}/a_{0}^{2,0},a_{0}^{2,1}) \oplus \mathbf{U}^{\mathfrak{p}}(a_{0}^{\prime 1,0},a_{1}^{\prime 1,0}/a_{0}^{2,0},a_{0}^{2,1})) + \beta 2 \geq \beta 4. \\ \mathrm{As}\ a_{0}^{2,1} = a_{0}^{1,0} + a_{1}^{1,0}a_{0}^{2,0} = a_{0}^{\prime 1,0} + a_{1}^{\prime 1,0}a_{0}^{2,0} \text{ and} \end{array}$$ $$a_0^{2,0} = \frac{a_0^{1,0} - a_0^{\prime 1,0}}{a_1^{\prime 1,0} - a_1^{1,0}} \in \operatorname{dcl}^{\operatorname{eq}}(a_0^{\prime 1,0}, a_1^{\prime 1,0}, a_0^{1,0}, a_1^{1,0}),$$ we have $a_0^{2,0}, a_0^{2,1} \in \operatorname{dcl}(a_0'^{1,0}, a_1'^{1,0}, a_0^{1,0}, a_1^{1,0})$. So we see $\operatorname{U}^{\mathfrak{p}}(a_0'^{1,0}, a_1'^{1,0}, a_0^{1,0}, a_1^{1,0}) = \beta 4$ and $a_0'^{1,0}, a_1'^{1,0} \downarrow a_0^{1,0}, a_1^{1,0}$. $$\begin{array}{c} \text{Therefore we have } \operatorname{acl^{eq}}(a_0^{1,0},a_1^{1,0}) \cap \operatorname{acl}(a_0^{2,0},a_0^{2,1}) = \operatorname{acl^{eq}}(a_0'^{1,0},a_1'^{1,0}) \cap \operatorname{acl}(a_0^{2,0},a_0^{2,1}) \subseteq \operatorname{acl^{eq}}(a_0^{1,0},a_1^{1,0}) \cap \operatorname{acl}(a_0'^{1,0},a_1'^{1,0}) = \operatorname{acl^{eq}}(\emptyset). \end{array}$$ Theorem 5.6. Let T be a rosy theory. If T interprets a superrosy field of monomial $U^{\mathfrak{p}}$ -rank, then T is not CM-trivial. PROOF. If T interprets a superrosy field of monomial U^p-rank, then T has a witness for non-CM-triviality by Lemma 5.4 and Proposition 5.5. #### 6. CM-triviality in O-minimal theories. We begin with the following facts on O-minimal theories. FACT 6.1. Let T be O-minimal. - (1) (Peterzil-Starchenko, [PS]) T is not one-based iff T has a definable real closed field of dimension 1 on some interval. - (2) (Onshuus, [O]) In O-minimal theories, the thorn independence relation coincides with the independence relation defined by dimension. From now on, we work in O-minimal theories with elimination of imaginaries. (Any O-minimal theory having a group-operation eliminates imaginaries by definable choice.) Note that $dcl = acl^{eq}$. In [**P1**], Pillay defines one-basedness in O-minimal theories by the germs of definable functions as follows. Let $f(\bar{x}, \bar{y})$ be an \emptyset -definable function and let \bar{a} be such that $\dim(\bar{a}) = |\bar{a}| = |\bar{x}|$. Let $E_{f,\bar{a}}$ be an \bar{a} -definable equivalence relation defined by $E_{f,\bar{a}}(\bar{b}_1,\bar{b}_2) \Leftrightarrow either$ there exists an open neighborhood U of \bar{a} such that $f(\bar{x},\bar{b}_1), f(\bar{x},\bar{b}_2)$ are defined on U and $f(\bar{x},\bar{b}_1)|U=f(\bar{x},\bar{b}_2)|U$ or neither of $f(\bar{x},\bar{b}_1), f(\bar{x},\bar{b}_2)$ is defined on an open neiborhood of \bar{a} . An O-minimal theory is one-based (equivalent to CF-property, defined by Peterzil) if $\bar{b}_{E_{f,\bar{a}}} \in \operatorname{dcl}(\bar{a}, f(\bar{a},\bar{b}))$ holds for any \emptyset -definable function $f(\bar{x},\bar{y})$ and any \bar{a} and \bar{b} with $\dim(\bar{a}/\bar{b}) = |\bar{a}|$. FACT 6.2. (Pillay, $[\mathbf{P1}]$) If T has weak canonical bases, then one-basedness is equivalent to the modularity in T. Theorem 6.3. In O-minimal theories having elimination of imaginaries, CM-triviality is equivalent to the modularity. PROOF. Let T be a CM-trivial O-minimal theory with elimination of imaginaries. By Fact 6.1 and Theorem 5.6, T is one-based. By CM-triviality and Theorem 2.4, T has weak canonical bases, so it must be modular by Fact 6.2. Conversely, let T be a modular O-minimal theory with elimination of imaginaries. If $A_2 \downarrow_{A_1} A_0$, by modularity we have $A_2 \downarrow_{\operatorname{dcl}(A_2) \cap \operatorname{dcl}(A_1)} A_0 A_1$. As $\operatorname{dcl}(A_2) \cap \operatorname{dcl}(A_1) \subseteq \operatorname{dcl}(A_2 A_0) \cap \operatorname{dcl}(A_1) \subseteq \operatorname{dcl}(A_0 A_1)$, we have CM-triviality; $A_2 \downarrow_{\operatorname{dcl}(A_1) \cap \operatorname{dcl}(A_2 A_0)} A_0$. ### Remark 6.4. - (1) CM-triviality is not equivalent to one-basedness in O-minimal theories in general: Let $T = \text{Th}(\mathbf{R}, +, <, \pi(*)|(-1, 1))$, where $\pi(x) = \pi x \in \text{dcl}(x)$ for each $x \in (-1, 1)$. Example 4.5 in [LP] and [P1] show that T is one-based but non-locally modular and does not have weak canonical bases. So T is a non-CM-trivial one-based theory. - (2) Neither local modularity nor CM-triviality are preserved under reducts in O-minimal theories: Let $T' = \text{Th}(\mathbf{R}, +, <, \pi(*))$, where $\pi(x) = \pi x \in \text{dcl}(x)$ for each x. Then T' is locally modular and CM-trivial. But the reduct T of T' is non-locally modular and non-CM-trivial. ## References - [A] H. Adler, Explanation of independence, Ph.D thesis, Freiburg, 2005, arXiv:math.LO/ 0511616 v1, Nov. 2005. - [B] A. Baudisch, A new uncountably categorical groups, Trans. Amer. Math. Soc., 348 (1996), 3889–3940. - [E] D. Evans, ℵ₀-categorical structures with a predimension, Ann. Pure Appl. Logic, 116 (2002), 157–186. - [EPiPo] D. Evans, A. Pillay and B. Poizat, Le groupe dans le groupe, Algebra Logika, 29 (1990), 368–378. - [H] E. Hrushovski, A new strongly minimal set, Ann. Pure Appl. Logic, 62 (1993), 147–166. - [LP] J. Loveys and Y. Peterzil, Linear O-minimal structures, Israel J. Math., 81 (1993), 1–30. - [N] H. Nubling, Reducts and expansions of stable and simple theories, PhD thesis, the University of East Anglia. - [O] A. A. Onshuus, Properties and consequences of thorn-independence, J. Symbolic Logic, 71 (2006), 1–21. - [P] A. Pillay, The geometry of forking and groups of finite Morley rank, J. Symbolic Logic, 60 (1995), 1251–1259. - [P1] A. Pillay, Canonical bases in O-minimal and related structures, preprint, 2006. - [PS] Y. Peterzil and S. Starchenko, A trichotomy theorem for O-minimal structures, Proc. London Math. Soc. (3), 77 (1998), 481–523. - [Y] I. Yoneda, CM-triviality and generic structures, Arch. Math. Logic, 42 (2003), 423–433. - [VY] V. Verbovskiy and I. Yoneda, CM-triviality and relational structures, Ann. Pure Appl. Logic, 122 (2003), 175–194. #### Ikuo Yoneda Department of Mathematics Tokai University 1117 Kitakaname, Hiratsuka Kanagawa, 259-1292 Japan E-mail: ikuo.yoneda@s3.dion.ne.jp