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Abstract. We show that any rosy CM-trivial theory has weak canonical
bases, and CM-triviality in the real sort is equivalent to CM-triviality with
geometric elimination of imaginaries. We also show that CM-triviality is
equivalent to the modularity in O-minimal theories with elimination of
imaginaries.

1. Introduction.

CM-triviality is a geometric notion of the forking independence relation. It is
introduced by Hrushovski [H] where he disproves Zilber’s conjecture on strongly
minimal sets. CM-triviality forbids a point-line-plane incident system. The usual
definition for CM-triviality needs canonical bases of types. Since canonical bases
do not necessarily exist in rosy theories as in Lemma 2.8 of [P1], from [H] we
choose another definition for CM-triviality in rosy theories, which does not need
canonical bases. In the next section we show that any CM-trivial rosy theory has
weak canonical bases. In third section we investigate the geometric elimination of
imaginaries by the strict independence relation in rosy theories. Many generic
structures have CM-triviality and weak elimination of imaginaries as in [H],[B],
[Y],[VY] and [E]. In fourth section we define CM-triviality in the real sort, and we
show that CM-triviality in the real sort is equivalent to CM-triviality with
geometric elimination of imaginaries in rosy theories. This gives a direct way to
show CM-triviality of generic relational structures. We also show that one-
basedness implies CM-triviality in rosy theories having weak canonical bases, and
we refer to a one-based but non-CM-trivial O-minimal theory. It is known that
infinite type-definable stable [P] or supersimple [N] fields give a witness for non-
CM-triviality. In fifth section we check that the Nubling’s proof works for
superrosy fields of monomial UP-rank. In Zariski geometries (which are strongly
minimal structures having a generalized Zariski topology), CM-triviality is
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equivalent to one-basedness(=local modularity). In O-minimal theories, local
modularity is a strictly strong notion to one-basedness(=CF-property) as in [LP].
In the last section we show that CM-triviality is equivalent to the modularity in
O-minimal theories with elimination of imaginaries, by using Peterzil-Starchen-
ko’s trichotomy theorem and Pillay’s consideration to weak canonical bases in O-
minimal theories. Nubling [N] shows that CM-triviality is preserved under
reducts in finite U-rank theories. We show that CM-triviality is not preserved
under reducts in O-minimal theories. As O-minimal theories are finite UP-rank
theories, CM-triviality is not preserved under reducts in finite UP-rank theories.

Our notation is standard. Let T be a complete L-theory, and let .# be the big
model of T. We work in .#°!, consisting of imaginary elements, which are classes
of equivalence relations definable over the empty set. a,b, ... C, .# denote finite
sequences in .#°. A, B, ... denote small subsets of .Z°! and AB denotes AU B.
For a € #° and A C 4, we write a € dcl*l(A) if a is fixed by any auto-
morphism fixing A pointwise. And we write a € acl®l(A) if the orbit of a by
automorphisms fixing A pointwise is finite. We write B=4 C for tp(B/A) =
tp(C/A) in T*L. For definitions and basic properties of rosy theories, we refer the
reader to [A] and [O]. The author would like to thank the referee for his/her kind
comments.

2. The existence of weak canonical bases in rosy CM-trivial
theories.

Following [A], recall that a ternary relation * | x between small subsets of

A is a strict independence relation if the following nine conditions hold.

) invariance: If A | ,C and ABC = A'B'C’, then A’ | ,C".

) monotonicity: If A | ,C, A" C A and C' C C, then A" | ,C".

) (right) base monotonicity: If A | ;D and BC C C D, then A | D.

4) (left) transitivity: If BC C C D, D | ,Aand C | 5A, then D | S A.

) (left) normality: A | ,C implies AB | ,C.

) extension: If A | ,C and C C D, then there exists A’'(=pc A) such that

A" | ,D.

(7) (left) finite character: If @ | ,C for each a C, A, then A | ,C.

(8) local character: For any A there is a cardinal x(A) such that, for any B
there exists By C B with |By| < x(A) and A | ; B.

(9) anti-reflexivity: A | ;A implies A C acl*(B).

Note that (1)-(8) imply symmetry : A | ,C < B | ,C.
(Theorem 1.14 in [A])
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REMARK 2.1. Let A,B,C,A',B,C' C.#°" be such that acl®(4’)=
acl®(A), acl®)(B') = acl!(B),acl®(C") = acl®)(C). Then A | ,C = A" | ,C".

PROOF. Suppose A | ,C. By symmetry and normality, we may assume
B C C,B C (' By local character and base monotonicity, for any A, D, we have
A | ,D. By extension and invariance, we have A | ,acl®!(D). So, by symmetry
and transitivity, we have A | ,acl/(C"). By monotonicity again, we see A | ,C".
By symmetry, we also see A" | ,C". O

We say that T is rosy if there exists a strict independence relation on .#°%.
And we say that an algebraically closed set C is the | -weak canonical base of
tp(a/B) if C'is the smallest algebraically closed subset of acl®(B) with @ | ,B. As
in [A], web (a/B) denotes the | -weak canonical base of tp(a/B) if it exists. We
also say that a rosy theory T has the | -weak canonical bases if there exists the
| -weak canonical base for each type.

FACT 2.2.  Let | be a strict independence relation on .
(1) Any type has the | -weak canonical base if and only if
L has the eq-intersection property:a | ,Banda | ;A implya | , ,AB for
any a, A, B C A such that A = acl*'(A) and B = acl®!(B). (Theorem 3.20
in [A])
(2) If | has the eq-intersection property, then | coincides with the thorn
independence relation. (Theorem 3.3 in [A])

Suppose that | is a strict independence relation on eg-structures. For now,
we do not assume the existence of | -weak canonical bases, we choose the
definition for CM-triviality as follows.

DEFINITION 2.3. We say that a rosy theory T is CM-trivial with respect to
L ifa | ,Bimplies d\LAmach(@B)B for any a, A, B C . such that A = acl®i(A)
and B = acl®d(B).

THEOREM 2.4.  If T is CM-trivial with respect to | , then T has the | -weak
canonical bases, and | coincides with the thorn independence relation.

PROOF. To apply Fact 2.2, we show that a | ,B and a | A with A =
acll(A) and B=acl®(B) imply a |, ,AB. By CM-triviality, we have
dJ/aCIQQ(ayB)mAB. By a | zA and anti-reflexivity, we see acll(a, B)N AB = B. As
ANBC Anacl®(a,B) C ABnacl®(a, B) = B, we see

acl*(a, B)N A= AnNB.
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By &Laclcq(&7B>mAB and a | ,A, weseea | , ,AB. O

REMARK 2.5. Let T be a rosy theory with a strict independence relation | .
The following are equivalent.
(1) T is CM-trivial with respect to | .
(2) T has the | -weak canonical bases and web | (a/A) C wcb | (a/B) holds for
any a,A, B C .# such that acl*(a,A)N B=A with A =acl*(4) and
B = acl®Y(B).

PROOF.

(1)=(2): Suppose that acl®d(a,A)NB=A with A=acl®(4) and
B =acl®y(B). By Theorem 2.4, T has weak canonical bases, so let D :=
wcb | (a/B). Then a | A follows from a | ,A and A C B. By CM-triviality, we
see C_L\La‘clc‘l(d,A)ﬂDA' As DC B and acl®(a,A)NnB= A, we have acl®(a,A) N
D = AND. So, we have web (a/A) C AND C D = wcb (a/B).

(2)=(1): Suppose that a | ,B with A =acl®/(A) and B = acl®(B). Put
C = acl®(AB) Nacl*(a, B). Then we have BC C and a | ,C. As acl*(a,C) C
acll(a, AB) Nacl®(a, B) and acl®d(CA) C acl*(AB) Nacl*‘(a, AB), we see C =
acl*l(a, C) Nacl®(CA). By our assumption, we have wcb | (a/C) C wcb| (a/
CA) = wcb (a/A). Aswcb (a/C) CCNA=acl™(a, B)N A, weseea |
C. As BC C, we have diaclc%’B)m B.

acld(a, B)NA
A

3. Geometric elimination of imaginaries in rosy theories.

We say that T has geometric elimination of imaginaries (T has GEI) if for any
e € M, there exists b C, .# such that e € acl®!(b) and b € acl®(e).

Let | be a strict independence relation on .#Z°. We say that | has the
intersection property ifa | ,Band a | ;A imply a | , ,AB for any a, A, B C ./
with A = acl(A) and B = acl(B).

LEMMA 3.1. IfT has a strict independence relation having the intersection
property, then T has GEL

PROOF. Fix e =ag € 4. Take b,c=tp(a/e) such that b,¢,a are | -in-
dependent over e. As e =bp = ¢p and a | be, we have a | ;b¢ and a | be. Let
A =acl(b)Nacl(¢). Then a | ,bc by the intersection property of |. By
e € dcl®l(a) Ndcl®(bé) and anti-reflexivity, e € acl*(A). On the other hand,
A C acl®(e) follows from b L ¢ and anti-reflexivity. O

LEMMA 3.2.  IfT has GEI, then we have
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acl®(A) Nacl®(B) = acl®(AN B)

for any A, B C M such that A = acl(A) and B = acl(B).

PROOF. Let e € acl®*‘(A) N acl®!(B). By GEI, there exists a C,, .# such that
e € acl®(a) and a € acl®i(e). As a € acl*(A) and a € acl®(B), we see a C AN B.
Thus, e € acl®y(AN B). O

LEMMA 3.3.  If | has the intersection property, then it has the eq-inter-
section property.

PROOF. Suppose that a | ,B and a | pA with A=acl(A) and
B =acl®(B). By 3.1, there exist a',A’ =acl(4'),B = acl(B') C .# such that
acl®d(a’) = acl®d(a), acl®l(A4") = acl®d(A), acl®Y(B') = acl®(B). By remark 2.1, we
havea | , B and @ | ,A'. Soweseead | , ,A B by the intersection property.
Since AN B = acl/(A"N B') holds by Lemma 3.2, we see a | , ,AB by remark
2.1. (]

PROPOSITION 3.4.  The following are equivalent.
(1) T has GEI and a strict independence relation having the eq-intersection
property.
(2) T has a strict independence relation having the intersection property.
(3) T has a strict independence relation having weak canonical bases in the real
sort : weak canonical bases are interalgebraic with real elements.

PROOF. (1)=(2) follows from remark 2.1 and Lemma 3.2. (2)=(1) follows
from Lemma 3.1 and 3.3. (1)=(3) and (3)=-(2) are clear. O

REMARK 3.5.

(1) Let T be a simple theory with elimination of hyperimaginaries. As the
forking independence relation in 7" has the eq-intersection property, by Fact 2.2,
we see that T has GEI iff the forking independence relation in T has the
intersection property.

(2) In rosy theories, GEI does not necessarily imply the intersection property:
Let T' = Th(R, +, <,7|(_y5)(*)), where 7| _; ;)(2) := 7z for z € (—1,1). Then T is
an o-minimal theory with elimination of imaginaries. Take a,b,c € .# be such
that a,b,¢c > R, |a — b| < 1,]a — ¢| < 1 and dim(a, b, ¢) = 3. Then dim(a, 7ra/b, 7b, c,
m¢) = dim(a, wa/b, 7b) = dim(a, wa/c,mc) = 1 < 2 = dim(a,7a) and acl(b,wb) N
acl(c, mc) = acl(P). As UP(x) = dim(x) in O-minimal theories by [O], the thorn
independence relation in T' does not have the intersection property.
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4. CM-triviality in the real sort.

DEFINITION 4.1.  We say that T'is C M-trivial in the real sort with respect to
L ifa | ,Bimplies a\LAﬁacl(é,B)B for any a, A, B C .4 such that A = acl(A4) and
B = acl(B).

THEOREM 4.2.  The following are equivalent.
(1) T is CM-trivial with respect to | and has GEL.
(2) T is CM-trivial in the real sort with respect to | .

PROOF. (1)=(2): Clear. (2)=(1): By working in .# and replacing acl®
with acl in the proof of Theorem 2.4, we see that | has the intersection property.
By Lemma 3.1, GEI follows. (]

REMARK 4.3.

(1) Let T be the theory of a rosy relational structure with a closure operator
cl(*) and a strict independence relation | such that

e cl(acl(A)) = acl(4) and cl(cl(A) Ncl(B)) = cl(A) Ncl(B),

o Al ,.zB® “AB=cl(AB) and RAB = RAU R® for any predicate R” for

any algebraically closed sets A, B C .#.

Then T is CM-trivial: By Theorem 4.2, we have only to show CM-triviality in the
real sort. Suppose that a | ,B. Let C = acl(a, A), D = acl(AB). As C' | ,B and
CNB=A, cl(CB)=CB and R‘® = R°CUR" for any predicate R. Let F =
acl(a, B). Then cl(CBNE) = CBNE and RCPE = RCNE U RBOE for any predi-
cate R. So, we see CNE | , .BNE. AsacCNE,BC BNE, &\J/Amad(&BB

,B)
follows.

(2) CM-triviality does not imply CM-triviality in the real sort.

In [E], Evans gave an w-categorical CM-trivial structure €, defined below, of
SU-rank one without weak elimination of imaginaries.

Here, we show that € does not have GEI: Let M be the w-categorical SU-rank
two generic structure M (a countable binary graph with a predimension §(A4) =
2|A| — |RA|) constructed by Evans such that no triangles, no squres in M, and
points and adjacent pairs of points are closed in M, and cl(x) = acl(x) in M. Fix
a € M. Let C,D be the sets of vertices at distance 1,2 from a. Let € be the
canonical structure on C such that Aut(€) is homeomorphic to Aut(M/a). As €
and (M, a) are biinterpretable, € is of SU-rank one and CM-trivial.

Let ce€ C,d € D be such that M}=R(a,c) A R(c,d). As no triangles and
squares in M, we have acl(a,d) N C = cl(a,d) N C = {c}. If € had GEI, then, as
d € €%, we could find ¢ C,, C such that d € acl(a, ¢) and ¢ € acl(a, d) in the sense of
M. As acl(a,d) N C' = {c}, ¢ must be the singleton ¢. Since cl(a, c) = acl(a,c) =



Some remarks on CM-triviality 385

{a,c} in M, so d & acl(a,c) in M, a contradiction.
By Theorem 4.2, € is CM-trivial but not CM-trivial in the real sort.

REMARK 4.4.

(1) In rosy theories having weak canonical bases, we define one-basedness as
usual: web(a/A) C acl®(a) holds for any a, A C .# with A = acl®l(A). By Remark
2.5, we see that one-basedness implies CM-triviality: As wcb(a/B) C acl®(a) N
B C A C B, we have wcb(a/B) = web(a/A).

(2) There exists a one-based but non-CM-trivial rosy theory: Let T =
Th(R,+, <, 7r|(7171)(*)). T is an O-minimal theory with CF-property and
elimination of imaginaries. As in [P1], CF-property is equivalent to one-basedness
in O-minimal theories. By Remark 3.5 (2) and Theorem 4.2, T' is not CM-trivial.

5. Non-CM-triviality of superrosy fields of monomial rank.

Let | be the thorn independence relation. We show that CM-triviality is
equivalent to non-2-ampleness in rosy theories. We also show that superrosy fields
of monomial UP-rank are 2-ample. It is unknown whether any superrosy (non-
supersimple) field of infinite UP-rank exists. Any supersimple field has monomial
SU(= UP)-rank. It is also unknown whether any superrosy field has monomial
UP-rank.

DEFINITION 5.1. A rosy theory T is m-ample if after naming some
parameters, there exist Ag, Ay,..., A, C .#° such that
(1) acl®(A.A4,) Nacl®(AL, A1) = acl®(A.,) for any r <n — 1.
(2) A [, A<y forany r <n —1.
(3) Au L Ao
where A<, = ApA;1... A, and A, = ApA; ... A1

LEMMA 5.2. Let T be rosy. Then the following are equivalent.
(1) For any Ay, Ay, Ay C A, Ay J/AlAU implies Ay J/acl°q(A1)macl°q(A2Ao)A0‘
(2) For any Ay, A1, A, BC A%, acl®(BAy) Nacl®(BA;) = acl®(B),
acl(BAgA1) N acl®d(BAyAy) = acl®d(BAg) and As | Ay imply
As | Ao

Thus CM-triviality is equivalent to non-2-ampleness without assuming the
existence of weak canonical bases.

acl®(BA;)

PROOF.
(1)=(2): We have Ay |

)AOB by A, \Lad“‘(BAl)AO'
By (1), we see Ay |

)AOB. On the other hand, we have

acl®(BA;
acl®(BA;)Nacl®(BAyAs
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acl®l(BA;) Nacl®(BAsAp) C acl®(BA;) Nacl®(BAy) = acl®(B). Thus we see
Ay | Ao

(2)=(1): Put B = acl®(A;) Nacl®(AgAs2) C acl®l(4;).

CLAIM 1. We have acl®(BAy) Nacl®(BA;) = acl®(B)(= B) and
aCleq(BAoAl) N aCleq(BAoAQ) = aCleq(BAo).

By the definition of B, we see acl®/(BAj) C acl®(ApA;) Nacl®(Ag4s) C
acl®(BAy), so acl*(BAyA;) Nacl®(BAyAs) = acl®(BAy) follows.

acl®(B) C acl®(BAp) Nacl®(BA)
acl®(BAy) Nacl®(A;)
(
(

N

acl®(ApA;) Nacl®(ApAs) Nacl®d(4,)
acl®l(ApA4;) Nacl®(B) C acl®Y(B)

N

By A; | gy Ao and (2), Ay | p Ao follows. 0

From now on, we check that any superrosy field of monomial UP-rank is not
CM-trivial (=2-ample) by following the Nubling’s proof for n-ampleness of
supersimple field. As the Nubling’s proof works for superrosy field of monomial
UP-rank, any superrosy field of monomial UP-rank is n-ample for any n < w.

Let F' be an infinite superrosy field. We say that ag,a1,...,a;,... € F are
independent generics over A if UP(ag/A) =UP(a;/A)=---=UP(a;/A)=--- =
UP(F) and ag, ai,-..,a;,... are thorn independent over A.

FACT 5.3. Let F be an infinite superrosy field.
(1) Leta,b,c € F be independent generics over A. Then be,a, c are independent
generics over A and a + be, a, ¢ are independent generics over A.
(2) Letay,...,a;,...,b,¢c1,...,¢,... € F be independent generics over A. Then
a1 +bey,...a;+be, ... c1,. .., ¢, ... are independent generics over A.

PROOF. We may assume A = ().
(1) Since bc and b are interdefinable oner ¢, we see UP(F') > UP(bc) > UP(bc/c,a) =
UP(b/c,a) = UP(F). As a+ bc and be are interdefinable over a, we also see that
UP(F) > UP(a+ be) > UP(a+ be/a,c) = UP(be/a, c) = UP(F).

(2) By (1), we have only to show

ir1 + bciv1, Civ1 J/(lo + beg, ..., a; + bei e, G
As ajt1,¢iv1 400, - - - s Co, - - -, Ciy We have

ir1 + bciv1, Civ1 \Lbao + beg, - . ., a; + beg, co, - - - G
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Since UP(a;41 + bciy1/b, civ1) = UP(aiy1/b, cip1) = UP(F), we have
Aj4+1 + bC’H-l\J_/ b, Cit1- As b\LCi-‘rh we see a1 + bCi_H, Ci+1 \Lb
So we see the conclusion. O

Let F be a superrosy field. To get a witness for non-CM-triviality, we define a
plane P in F3, a line 1 on P, and a point p on 1 as follows.

Let a0 ,cz(lm,a2 be independent generlcs Put P = {(x1,22,73) € F3: O +
a¥zy + a)’zy = x3}. We consider Ag := {a)’,al’,a)’} as parameters for P

1, 1, . . . 1
Let aOO,al0 be mdependent generics over previous elements. Put By e

xl,xg,x3 e 3 al’ +ab fEl—IQ andPutl—PﬁB10 Then (x1, z9, 3 Gllff
1

(0 +ay’a 10)+( +a3°a}°)xlffc3 Put a(l)lif ay’ + a3’y and ap' =

°+ 80 %0- Let Bllf{(wbm,?%)GFS +a1 '#; = x3}. Then l*BlUO

o L0 11
B and we consider A; := {ao a3, Gy ,a1 } as parameters for 1.

Let ag‘o be generic over previous elements. Put B20 = {(z1,29,23) € F?:

al’ =z} and BY' .= B5'n B and By? := By’ n B} Then(xl,xg,x3)eB21 iff

81 10, 10720 5 29 11, 11,20
ay =ay +a; ay” =, and (1,22, 23) € By iff ay” == ay” +ay ay” = x3.

Let p:= By N BY' N By” = By" N1 and we consider Ay = {a;", a0, at”} as
parameters for p.

Now we have the following lemma. (Here, we need not to assume that F is of
monomial UP-rank.)

LEMMA 5.4.
(1) del*d(Ay, Ag) = del*I(A;, 2-0).
(2) del®d(Ag, Ay) = del®d(Ag, ay”, a;”).
(3) Ay J/A Ag
(4) a 22 € dcleq(Ao,ao ,agl) and aoo € dcleq(a1 ,a2 ,Ag)
(5)

5 AU LA
PROOF. (1),(2) are clear. (3) follows from ag’o L Ao, 4. (4) follows from

@2 = a4l
0,0,,1.0 00 1,0y 20
(ag” + ay’ay”) + () + a3 ’a;")ay

00 , 0, 1020y 00 20
ay” + ay" (" + ayay") + oy

_ 00 21 , 00 20
= a" +ay’ay’ + a}ay
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(5): If we had Ay | Ay, then ay° \Larl).oﬁag,oAQ, so ay’ € acl*(a)’, ad") would
hold. ]

PROPOSITION 5.5.  If F has a monomial UP-rank, then we have

(1) acl®(Ap) Nacl®(A;) = acl®d(D).
(2) acl®i(ApA;) Nacl®(AgAs) = acl®l(Ap).

PROOF. Let UP(F) =w"k =: 3, where « is an ordinal and k is a natural
number.
(1): By Fact 5.3, A; consists of independent generics.

CLamm 2. UP(Ay/A;) > 3.

Ay, A; and Ao,aé’o,ai’o are interdefinable. So, we have (5= UP(4p4;) <
UP(Ag/A1) @ UP(A;) = UP(Ay/A;) @ B4. The claim follows.

CLAIM 3. Take A6 Sacld(4,) Ay with A6 \J-/AIAO' Then A6 \LAO

UP(AjApAr) > UP(ALA/Ar) + TUP(4))
= (UP(Ay/A1) & UP(Ao/Ar)) + B4
> 36
As a}’l = a?’o + ag’oa}’o = af]"o + a'zo"oag’o, we have
1,0 a?,o - ;0’0 eds Al
a;” = m € dcl*(AjAo),

so we have A; C acl®(AjAy).

66 < UP(AjApA))
= UP(Aj4)
< 36

As UP(Ag) = UP(A]) = 3, we see the claim.

As acl®(Ap) Nacl®(A;) = acl®(Af) Nacl®(A;) C acl®(A4y) Nacl®(4]) and
Afy 1 Ao, we see the conclusion.

(2): As A; and a(l)’o, a;” are interdefinable over Ay by Lemma 5.4 (2), and A, and
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ar’ al! are interdefinable over Ay by Lemma 5.4 (4), working over acl® q(AO)

need to prove acl®!(ay”, a;%) Nacl®(ag?, ap') = acl®d(P). Note that UP(a)", ap 1) =
B2 over acl®(Ag) by Fact 5.3(2).

The rest is similar to (1) :
As a) edcleq(ao 1,(?} 02,0202)1Up(a0 : }0, 1300, 2201) 2153 follows. .
Asﬂ3*Up( 1 oa )<Up(a071 0,0)@Up(0,a0)
—Up(a%o,al/l({ao @ )@ﬂQl[;zve have UP(/?% ’?110 ) 2 150 1,0
Take a ay a(l”‘(a(“]u, [Z)l) ay ,al with a, J-/acle“( 20 u)ao a0

We have

UP(al /110 aéo,aio, 20 a2y > U0, M, 620, a2 /a20, a21) + UP (a2, a2")

=(U (aéo,al /ao vao )@Up( 0’ /110 agovagl))"_ﬂQZﬂZL

21 _ 10, 10 20 _ /10 10 a2®
As ay' =ay" +a, ay” =a;" +ay and
al0 — g0
20 % — eq /1,0 710 10 10
O 10Edcl (ay”,ay" a5, ay"),
a a

2,0 n0 A0 10 10 10 10 10
we have a ,ao edcl( say,ay ,a1 ) So we see UP(ay™,a; ", ay",a,") = 4
no A0 | 10 10

and a,",a;" | ay a0y,
Therefore we have acl®(a)”,a;”) Nacl(ad’, al") = acl®(ay’, a/"") Nacl(ay?,
o1y Cacl(ay”, a;”) Nacl(a) ™, a)") = acl®d(p). O

THEOREM 5.6. Let T be a rosy theory. If T interprets a superrosy field of
monomial UP-rank, then T is not CM-trivial.

PROOF. If T interprets a superrosy field of monomial UP-rank, then T has a
witness for non-CM-triviality by Lemma 5.4 and Proposition 5.5. O

6. CM-triviality in O-minimal theories.

We begin with the following facts on O-minimal theories.

FACT 6.1. Let T be O-minimal.

(1) (Peterzil-Starchenko, [PS]) T is not one-based iff 7' has a definable real
closed field of dimension 1 on some interval.

(2) (Onshuus, [O]) In O-minimal theories, the thorn independence relation
coincides with the independence relation defined by dimension.

From now on, we work in O-minimal theories with elimination of imaginaries.
(Any O-minimal theory having a group-operation eliminates imaginaries by
definable choice.) Note that dcl = acl®. In [P1], Pillay defines one-basedness in O-
minimal theories by the germs of definable functions as follows. Let f(Z,y) be an
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(-definable function and let @ be such that dim(a) = |a| = |z|. Let E;z be an
a-definable equivalence relation defined by E; (b1, b)) < either there exists an
open neighborhood U of a such that f(z,b1), f(z,by) are defined on U and f(z, by )|
U = f(z,b2)|U orneither of f(z,b;), f(,b2) is defined on an open neiborhood of a.
An O-minimal theory is one-based (equivalent to CF-property, defined by
Peterzil) if 5EM € dcl(a, f(a,b)) holds for any (-definable function f(Z,%) and any
a and b with dim(a/b) = |a].

FACT 6.2. (Pillay, [P1]) If T has weak canonical bases, then one-basedness
is equivalent to the modularity in T.

THEOREM 6.3. In O-minimal theories having elimination of imaginaries,
CM-triviality is equivalent to the modularity.

PROOF. Let T be a CM-trivial O-minimal theory with elimination
of imaginaries. By Fact 6.1 and Theorem 5.6, T is one-based. By CM-triviality
and Theorem 2.4, T has weak canonical bases, so it must be modular by
Fact 6.2. Conversely, let T be a modular O-minimal theory with elimination of
imaginaries. If Aj J«A.AU’ by modularity we have Aj J/dcl(Ag)ﬂdcl(AQAoAl' As
del(A4z) Ndel(A4y) Cdel(AzAp) Ndel(Ay) C del(AgAy), we have CM-triviality;
142\deMA1ykkKA2A@140' 0

REMARK 6.4.

(1) CM-triviality is not equivalent to one-basedness in O-minimal theories in
general: Let T = Th(R,+, <,n(x)|(=1,1)), where w(x) =z € dcl(z) for each
x € (=1,1). Example 4.5 in [LP] and [P1] show that T is one-based but non-
locally modular and does not have weak canonical bases. So T is a non-CM-trivial
one-based theory.

(2) Neither local modularity nor CM-triviality are preserved under reducts in
O-minimal theories: Let T = Th(R,+, <,n(x)), where w(z) = mx € dcl(z) for
each x. Then T” is locally modular and CM-trivial. But the reduct T of T” is non-
locally modular and non-CM-trivial.
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