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Abstract. Using a criterion of Johnson-Rees [9] we give a list of all four

and six dimensional flat Kähler manifolds. We calculate their R–cohomology,

including the Hodge numbers. As a corollary, we classify all flat complex

manifolds of dimension 3 whose holonomy groups are subgroups of SUð3Þ.
Moreover, we define a family of flat Kähler manifolds which are generalizations of

the oriented Hantzsche-Wendt Riemannian manifolds [14].

1. Introduction.

We shall present a complete list of flat manifolds of R-dimension 4 and 6

which have a complex Kähler structure of dimension 2 and 3 correspondingly. We

compare it with the classification of hyperelliptic varietes of low dimensions.

Moreover, we shall calculate the real cohomology of such objects, including their

Hodge numbers. Hence we obtain the flat Kähler manifolds with holonomy groups

enclosed in the special unitary group. Inspired by the recently introduced and in

the meantime well studied class of generalized Hantzsche-Wendt manifolds we

define an infinite family of complex flat Kähler manifolds, compute their Hodge

numbers and answer positively the question about the existence of a spin

structure on such a manifold. This work is an extended and modified version of

[16].

Let us introduce the basic definitions and conventions. A closed flat

Riemannian manifold M is isometric to one of the form M ¼ �nEðnÞ=OðnÞ where
EðnÞ ¼ OðnÞnRn is the group of Euclidean motions of Rn and � is a cocompact,

discrete and torsion free subgroup of EðnÞ. From the Bieberbach theorems it is

well known that (cf. [1]) �1ðMÞ ¼ � and the subgroup T of � consisting of all pure

translations is of finite index and the quotient group �=T is isomorphic to

holonomy group of M. Hence we have a short exact sequence of groups
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0 ! T ! � ! H ! 0;

where T is a torsion free maximal abelian group Zn. Conjugation inside �, the

above short exact sequence defines a faithful (cf. [1]) holonomy representation

’ : H ! GLðn;ZÞ. We shall call such a group � a Bieberbach group.

Now, let us assume that n is an even number. We say that ’ is essentially

complex if there exist a real vector space isomorphism i : Rn ! C
n
2 and a

representation �C : H ! GLðn2 ;CÞ such that the following diagram commutes for

each h 2 H:

Equivalently, this means that there exist a ’–invariant linear map t : Rn ! Rn,

such that t2 ¼ �id, (see [10, part 3]). In [9, Theorem 3.1] the following is proved.

THEOREM 1.1. The following conditions on the group � � EðnÞ are

equivalent

(i) � is the fundamental group of Kähler flat manifold,

(ii) � is a Bieberbach group and its holonomy representation is essentially

complex,

(iii) � is a discrete cocompact torsion-free subgroup of Uðn2ÞnC
n
2 .

The following characterization of an essentially complex representation is given in

([9, Proposition 3.2], [10, Proposition 3.1]).

PROPOSITION 1.2. Let H be a finite group and ’ : H ! GLðm;RÞ be some

representation. Then ’ is essentially complex if and only if m is even and each

R-irreducible summand of ’ which is also C-irreducible occurs with even

multiplicity.

DEFINITION 1.3 ([12, p. 495]). A hyperelliptic variety is a complex

projective variety, not isomorphic to an abelian variety, but admitting an abelian

variety as a finite covering.

It is proved in [10] that the class of fundamental groups of complex flat

manifolds (with exception of the complex torus) and hyperelliptic varieties

coincide. However, in dimension three there are nonalgebraic Kähler flat manifolds.
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An example of such manifold is given in [12, p. 495, p. 501 Remark 3.9].

In the next part, using the above results, we shall give a list of the Kähler flat

manifolds of R-dimension 4 and 6.

2. Kähler flat manifolds in low dimensions.

Before we start our investigation of Kähler flat manifolds in low dimensions,

we first prove a lemma providing constraints on the possible holonomy groups of

such manifolds.

LEMMA 2.1. Let Zk
2 be the holonomy group of an n-dimensional, complex

flat Kähler manifold. Then k � n� 1.

PROOF. Let ’ : Zk
2 ! GLð2n;RÞ denote the realization of the holonomy

representation. Then, seen as a Zk
2-module, R2n can be written as a direct sum

R2n ¼ V l1
1 � V l2

2 � � � � � V lm
m ;

where each Vi is an R-irreducible Zk
2-module and Vi and Vj are not equivalent if

i 6¼ j. Of course, as a vector space, each of the Vi ¼ R and the corresponding

representation Zk
2 ! GLðRÞ has its image lying inside f1;�1g ¼� Z2. Note that

the R-irreducible components are also C-irreducible and hence all li are even

numbers (Proposition 1.2).

It follows that, because the holonomy representation ’ is faithful, m must be

at least k. We can also exclude the case where m ¼ k. For if m ¼ k, the case where

Vi is the trivial module does not occur. It follows that we can find for any i an

element ai 2 Zk
2 acting as �1 on Vi and as þ1 on the other components. This

would imply that the element a1a2 � � � am acts as �1 on the total space, which is

impossible. So we have that kþ 1 � m.

Finally, as each of li is even, we have that the real dimension of the manifold

is at least 2m or the complex dimension n � m, which finishes the proof. �

LEMMA 2.2. In complex dimension 2, the only groups appearing as a

holonomy group of a Kähler flat manifold are 1, Z2, Z3, Z4 and Z6. In fact there

are exactly eight Kähler flat manifolds in dimension 2.

PROOF. Looking at the classification (cf. [2], [3] and [6]) of flat manifolds in

real dimension 4, one sees that the groups occuring as a holonomy group of a 4-

dimensional flat manifold are

1; Z2; Z
2
2; Z

3
2; Z3; Z6; Z2 � Z6; Z4; Z2 � Z4; D8; D6; Z2 �D6;
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where Dn is a finite dihedral group of order n. As all of the groups

Z2
2; Z

3
2; Z2 � Z6;Z2 � Z4; D8 and Z2 �D6 contain a subgroup which is isomor-

phic to Z2
2, we deduce from Lemma 2.1 that those groups cannot occur as the

holonomy group of a 2-dimensional Kähler flat manifold.

There are three flat manifolds in dimension 4 having D6 as their holonomy

group. It is however easy to see that all of them have first Betti number one, so

that we can exclude this group too. For the rest of the possible holonomy groups,

there are flat manifolds supporting a Kähler structure. Going through the list of

all such groups, we find the following table of 2 dimensional Kähler flat manifolds.

holonomy CARAT symbols

1 15.1.1

Z2 18.1.1; 18.1.2

Z3 35.1.1; 35.1.2

Z4 25.1.2; 27.1.1

Z6 70.1.1

�

In the case of R-dimension 6 we have more cases.

LEMMA 2.3. The following finite groups occur as holonomy groups of a

three-dimensional Kähler flat manifold: 1, Zn, for n ¼ 2; 3; 4; 5; 6; 8; 10; 12,

Z2 � Z2, Z2 � Z4, Z3 � Z3, Z6 � Z2, Z4 � Z4, Z6 � Z3;Z6 � Z4;Z6 � Z6; D8.

PROOF. In [6], [3] a list of all holonomy groups of six-dimensional flat

manifolds is given. We use the notation of [3].

We shall now go through the list of all finite groups appearing as the

holonomy group of a 6-dimensional flat manifold. We first remark that all the

groups

½64; 250	; ½32; 47	; ½32; 46	; ½32; 36	; ½32; 33	; ½24; 11	;Z2 � ½16; 9	; ½16; 9	;

Z2 �D8;Z2 � Z2 �D8;Z4 �D8;Z2 � Z2 �A4;Z2 � A4;

Z2
2 � Z4;Z

3
2 � Z4;Z

3
2 � Z3;Z

4
2 � Z3;Z

n
2 ; n ¼ 3; 4; 5;

have a group ðZ2Þ3 as a subgroup, hence by Lemma 2.1 they can be eliminated.

Moreover the finite groups

Z2 � ½80; 52	; ½80; 52	; ½32; 31	; ½16; 11	;Z2 �D10; D10;Z6 �D8;Z3 �D8;
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Z2 � ðZ2
3 o Z2Þ;Z2

3 o Z2;Z3 o Z8;Z3 � ðZ3 o Z4Þ;Z2 � ðZ3 o Z4Þ;

Z3 o Z4;Z3 �Q8; Q8;Z2 � Z4 � A4;Z6 � A4;Z3 �A4;Z
3
2 � A4;

Z3 � S4;Z2 � S4; D
2
6;Z2 � Z4 �D6;Z4 �D6;Z

3
2 �D6;Z3 �D8;

Z6 �D8;Z2 � Z8;Z2 � Z10;Z2 � Z4 � Z6;Z4 � A4;Z2 �D24

only occur as holonomy groups of flat manifolds with first Betti number one. By

Proposition 1.2 these can be eliminated too.

Let M ¼� Z6 be any faithful D6-module which is essentialy complex and

where the D6-sublattice MD6 is of rank 2. Then using similar methods as in the

proof of Proposition 1 in [15, p. 192] and properties of the group H2ðD6;ZÞ we can
show that any cocycle � 2 H2ðD6;MÞ is mapped to zero by homomorphism

resD6

hxi : H
2ðD6;MÞ ! H2ðhxi;MÞ, where x is an element of order three. Hence we

can eliminate the groups:

D6;Z2 �D6;Z3 �D6; D24; S4;Z6 �D6;Z2 � Z2 �D6:

There exists one Kähler flat manifold with holonomy group D8 and first Betti

number equal to zero. It has in CARAT notations symbol 207.1.1. As a subgroup

of Eð6Þ, it is generated by the following elements

ðI; ð0; 0; 1; 0; 0; 0ÞÞ; ðI; ð0; 0; 0; 1; 0; 0ÞÞ; ðI; ð0; 0; 0; 0; 1; 0ÞÞ;

ðI; ð0; 0; 0; 0; 0; 1ÞÞ; ðA1; ð1=2; 0; 0; 0; 1=4; 0ÞÞ; ðA2; ð0; 1=2; 0; 0; 0; 0ÞÞ;

where I denotes identity 6� 6 matrix and

A1 ¼

1 0 0 0 0 0

0 0 0 �1 0 0

0 0 �1 0 0 0

0 �1 0 0 0 0

0 0 0 0 �1 0

0 0 0 0 0 �1

2
6666666664

3
7777777775
; A2 ¼

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 �1 0 0

0 0 0 0 �1 0

0 0 0 0 0 �1

2
6666666664

3
7777777775
:

Moreover it is known [7] that any flat manifold with holonomy group D6 has a non

zero first Betti number.

The group A4 has one absolutely irreducible faithful representation of rank 3.
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Hence, by Proposition 1 it cannot be on our list (there are no 6-dimensional flat

manifolds with holonomy group A4 and with first Betti number 0).

Let us now consider the group of order sixteen which is refered to as ½16; 10	 in
the notations of [3] and which we have not yet considered. It is the holonomy

group of 31 Bieberbach groups of rank 6 with non trivial center. We can prove

that all of them have the first Betti number one (cf. [15, Lemma 1, p. 194]).

Moreover it is also the holonomy group of 3 Bieberbach groups of rank 6 with

trivial center. In this case it is easy to see, for example from elementary

representation theory, that the conditions of Proposition 1 are not satisfied. By an

analogous procedure we can eliminate the groups ½16; 8	; ½16; 13	 and D16

completing the proof. �

Finally, we have:

THEOREM 2.4. There are 174 3-dimensional Kähler flat manifolds.

PROOF. We shall use the results about the holonomy groups proved in

Lemma 2.3 and the list of six dimensional Bieberbach group from CARAT, [6],

[3]. To prepare the final list we shall use mainly Proposition 1.2. �

Let us present a final table.

holonomy number CARAT symbols and �1

1 1 �1 = 6, 170.1.1

Z2 5 �1 = 2, 174.1.1, 174.1.2,

�1 = 4, 173.1.1, 173.1.2, 173.1.3

Z3 4 �1 = 2, 291.1.1, 291.1.2,

�1 = 4, 311.1.1, 311.1.2

Z4 22 �1 = 2, 202.1.1, 202.1.2, 225.1.1, 225.1.10, 225.1.11,

225.1.12 (2 groups), 225.1.13, 225.1.2, 225.1.3,

225.1.4 (2 groups), 225.1.5, 225.1.6 (2 groups),

225.1.7 (2 groups), 225.1.8, (2 groups), 225.1.9 ,

�1 = 4, 219.1.1, 219.1.2

Z5 2 �1 = 2, 626.1.1, 626,1,2

Z6 14 �1 = 2, 1611.1.1, 318.1.1, 318.1.2, 318.1.3, 318.1.5,

319.1.1, 319.1.2, 319.1.3, 319.1.5, 404.1.1,

404.1.2, 404.1.3, 404.1.4,

�1 = 4, 1694.1.1

Continued on the next page.
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Continued.

Z8 1 �1 = 2, 468.1.1

Z10 1 �1 = 2, 7093.1.1

Z12 6 �1 = 2, 359.1.1, 359.1.3, 359.1.4,

361.1.1, 361.1.2, 554.1.1

Z2 � Z2 33 �1 = 0, 185.1 (4 groups),

�1 = 2, 186.1 (29 groups)

Z2 � Z4 45 �1 = 2, 257.1 (19 groups), 1135.1 (26 groups)

Z3 � Z3 13 �1 = 2, 405.1.1 (5 groups), 405.1.2 (3 groups),

405.1.3 (3 groups), 405.1.4, 405.1.5

Z6 � Z2 7 �1 = 2, 1732.1 (5 groups), 2701.1 (2 groups)

Z4 � Z4 8 �1 = 2, 1264.1 (8 groups)

Z6 � Z3 6 �1 = 2, 2719.1 (2 groups), 2720.1 (4 groups)

Z6 � Z4 4 �1 = 2, 1920.1 (4 groups)

Z6 � Z6 1 �1 = 2, 2752.1

D8 1 �1 = 0, 207.1.1

It is interesting to compare the above classification with the classification of

the hyperelliptic varieties, [12]. There is crucial difference. It is the case of the

group D8 which is not present on the list in [12, Theorem 6.1].

Lemma 2.3 should be also compared with [17]. The main theorem of this

work contains a list of possible finite quotients G=G0 where G is cocompact group

of affine transformations acting freely and properly discontinuously on C3, and G0

is its normal subgroup consisting of translations. In fact, it is a list of holonomy

groups of Kähler flat manifolds and contains all groups occuring in Lemma 2.3. It

contains also the dihedral group D8 of order 8.

We want to say that the methods in [12] and [17] are different from ours.

Finally we would like to mention that in [10] it has been observed that using

‘‘the double’’ construction it is possible to construct for any finite group G, a

Kähler flat manifold with holonomy group G.

3. The Hodge diamond for Kähler flat manifolds.

In this section we shall show how to compute the real cohomology and Hodge

numbers for any flat Kähler manifold. We shall explicitely list all possible Hodge

diamonds up to complex dimension 3. We shall continue this study in the next

section where we shall be dealing with a general class of flat Kähler manifolds in

arbitrary high dimensions.
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Any flat Kähler complex n-dimensional manifold M is a quotient of the form

T 2n=H, where T 2n is a real 2n-dimensional torus and H � UðnÞ is a finite group.

From the standard observations we have:

Hp:qðMÞ ¼ ð�p;qðCn � ðCnÞ
ÞÞH;

where H
;
 denotes the Hodge cohomology. Recall that �p;qðCn � ðCnÞ
Þ is the

vector space with basis elements

dzi1 ^ dzi2 ^ � � � ^ dzip ^ d�zj1 ^ d�zj2 ^ � � � ^ d�zjq ; 1 � i1 < i2 < � � � < ip � n; ð1Þ
1 � j1 < j2 < � � � < jq � n

on which the action of H is induced by the holonomy representation H ! UðnÞ.
For a given flat manifold M, such a representation is unique up to conjugation in

GLð2n;RÞ, however, sometimes it is not unique up to conjugation in GLðn;CÞ.
When this is the case, such a flat Riemannian manifold M carries different kinds

of complex structures, with possibly different Hodge numbers. For example, we

will see that every complex 3-dimensional Kähler flat manifold with �1 ¼ 2 and

�2 ¼ 5 has two different complex structures leading to different Hodge numbers,

(see the example below). We can also calculate the Betti numbers directly from

the holonomy representation G ! GLð2n;RÞ, using the equation:

�iðMÞ ¼ dimð�iðR2nÞÞG. Let us present the table of Kähler flat manifolds from

Section 2 with their Betti numbers.1

�1 �2 �3 Holonomy CARAT symbol

0 3 8 Z2 � Z2 185.1

0 2 6 D8 207.1

2 3 4 Z4 225.1

Z5 all

Z6 318.1, 319.1, 404.1

Z8 all

Z10 all

Z12 all

Z2 � Z2 186.1

Z2 � Z4 all

Continued on the next page.

1Note that �4 ¼ �2; �5 ¼ �1; �6 ¼ �0 ¼ 1, moreover as the Euler characteristic of such a manifold

is 0, we also have the relation �3 ¼ 2� 2�1 þ 2�2.
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Continued.

Z3 � Z3 all

Z6 � Z2 all

Z4 � Z4 all

Z6 � Z3 all

Z6 � Z4 all

Z6 � Z6 all

2 5 8 Z3 291.1

Z4 202.1

Z6 1611.1

2 7 12 Z2 174.1

4 7 8 Z2 173.1

Z3 311.1

Z4 219.1

Z6 1694.1

6 15 20 1 170.1.1 (M ¼ T 6)

Below we present some calculations of the Hodge numbers fhp;qg, for some of

the manifolds above. The case �1 ¼ 0 and holonomy Z2 � Z2 is also being

considered in the next section. As we are working in complex dimension 3, we

have that p; q 2 f0; 1; 2; 3g.

EXAMPLE. To illustrate several possibilities, we consider as an example

what happens in case the holonomy group G is isomorphic to Z6. If t denotes the

generator of Z6, we can distinguish, up to conjugation inside GLð3;CÞ, 4

possibilities for the representation Z6 ! Uð3Þ given by the following possible

images for t:

t 7!
1 0 0

0 z 0

0 0 w

0
B@

1
CA;

1 0 0

0 z 0

0 0 z

0
B@

1
CA;

1 0 0

0 z 0

0 0 �z

0
B@

1
CA; or

1 0 0

0 1 0

0 0 z

0
B@

1
CA;

where z denotes a primitive 6-th root of unity and 1 6¼ w denotes a non-primitive

6-th root of unity. One can easily check that the second and third possibility,

when regarded as representations in GLð6;RÞ, are conjugate to each other.

When we make these computations for all possible holonomy groups, we find

the following table of Hodge diamonds, where in the case of manifolds with �1 ¼ 2

and �2 ¼ 5, there are always 2 possibilities, depending on a choice of complex

structure.
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Manifold with �1 ¼ 6 (T 6):

1

3 3

3 9 3

1 9 9 1

3 9 3

3 3

1

Manifolds with �1 ¼ 2 and �2 ¼ 3:

1

1 1

0 3 0

0 2 2 0

0 3 0

1 1

1

Manifolds with �1 ¼ 2 and �2 ¼ 5:

1 1

1 1 1 1

0 5 0 1 3 1

0 4 4 0 or 1 3 3 1

0 5 0 1 3 1

1 1 1 1

1 1

Manifolds with �1 ¼ 2 and �2 ¼ 7:

1

1 1

1 5 1

1 5 5 1

1 5 1

1 1

1

Manifolds with �1 ¼ 4:

1

2 2

1 5 1

0 4 4 0

1 5 1

2 2

1

Manifold with holonomy Z2 � Z2:

1

0 0

0 3 0

1 3 3 1

0 3 0

0 0

1

Manifolds with holonomy D8:

1

0 0

0 2 0

1 2 2 1

0 2 0

0 0

1

In the same way we can compute the Hodge diamond of all hyperelliptic

surfaces in which case we always find:

372 K. DEKIMPE, M. HAŁENDA and A. SZCZEPAŃSKI



1

1 1

0 2 0

1 1

1

A Calabi-Yau manifold is a Kähler manifold with holonomy group contained

in SUðnÞ.
There are also other definitions of Calabi-Yau manifolds. In [11] the author

mentions five non-equivalent definitions. For example one definition requires that

such a manifold be projective. Moreover there are two definitions which are not

interesting in case of flat manifolds: the first defines Calabi-Yau manifolds as

Ricci-flat Kähler manifolds, while the second requires that the holonomy group be

the full SUðnÞ. These two definitions are out of our interest, since any flat

manifold is Ricci-flat and the holonomy group of a flat manifold is always finite.

We have:

PROPOSITION 3.1 ([11, Corollory 6.2.5]). Let M be a flat Kähler manifold of

complex dimension n with induced holonomy representation ’ : H ! UðnÞ. Then
hn;0 ¼ 1 if and only if ’ðHÞ � SUðnÞ.

PROOF. hn;0 is the dimension of ð�n;0ðCn � ðCnÞ
ÞH . Therefore, hn;0 is 1 if

and only if dz1 ^ dz2 ^ � � � ^ dzn is fixed under the action of any element h 2 H.

However as the action of h on this basis vector is given by

hðdz1 ^ dz2 ^ � � � ^ dznÞ ¼ Detð’ðhÞÞdz1 ^ dz2 ^ � � � ^ dzn;

we have that h fixes this basis vector if and only if Detð’ðhÞÞ ¼ 1. Therefore

hn;0 ¼ 1 , ’ðHÞ � SUðnÞ. �

COROLLARY 3.2. There are no Calabi-Yau hyperelliptic surfaces. In com-

plex dimension three, there are twelve Calabi-Yau flat Kähler manifolds with non-

trivial holonomy:

1. five manifolds with the first Betti number equal to zero, where four manifolds

have holonomy Z2 � Z2 and one has holonomy D8;

2. two manifolds with the first Betti number equal to 2 and holonomy Z2;

3. five manifolds with the following Betti numbers: �1 ¼ 2, �2 ¼ 5, where two

manifolds have holonomy Z3, two have holonomy Z4 and one has holonomy

Z6.
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4. Complex Hantzsche-Wendt manifolds.

The original Hantzsche-Wendt manifold is the unique flat manifold in

dimension 3 with vanishing first betti number, (cf. [8]). It is an orientable flat

manifold, with holonomy group Z2
2. Several generalizations were given: a

Hantzsche-Wendt manifold is an orientable flat manifold of dimension n and

with holonomy group Zn�1
2 , while a generalized Hantzsche Wendt manifold of

dimension n is a non-necessarily orientable manifold of dimension n with

holonomy group Zn�1
2 . In each dimension n � 2, there are generalized Hantzsche-

Wendt manifolds, while orientable Hantzsche-Wendt manifolds only occur in

each odd dimension n � 3. Remark that n is the minimal dimension in which a flat

manifold with holonomy Zn�1
2 exists. Lemma 2.1 shows that also in the complex

case we cannot expect to find a Kähler flat manifold with holonomy group Zn�1
2

below dimension n. For this reason we introduce analogously as in the real case a

concept of complex (generalized) Hantzsche-Wendt manifold.

DEFINITION 4.1. A flat Kähler n-manifold of holonomy Zn�1
2 is called a

complex generalized Hantzsche-Wendt manifold (abbreviated as complex GHW).

It will be called complex Hantzsche-Wendt manifold if, in addition the holonomy

representation Zn�1
2 ! UðnÞ has its image lying inside SUðnÞ (complex HW in

short).

LEMMA 4.2. For each n � 2, there exists a complex GHW of complex

dimension n. Complex HW only exist in odd dimensions and for each odd n � 3,

there exists a complex HW of dimension n.

PROOF. First we show that complex HW only exist in odd dimensions. Let

M be a complex HW of dimension n and with holonomy representation

’ : Zn�1
2 ! SUðnÞ. After conjugation inside GLðn;CÞ we may assume that the

image of ’ consists of diagonal n� n matrices with �1’s on the diagonal. As the

total subgroup of SUðnÞ consisting of diagonal matrices with �1’s on the diagonal

is isomorphic to Zn�1
2 and ’ is faithful, the image of ’ is completely determined.

Now, if n is even �In, minus the n� n-identity matrix belongs to SUðnÞ.
However, this would imply that �I2n belongs to the image of the real holonomy

representation Zn�1
2 ! GLð2n;RÞ, which is a contradiction. Therefore n has to be

odd.

Now, given n we show that there exist a complex (G)HW of complex

dimension n. First of all, there exist a (real) GHW of real dimension n, which we

take to be orientable (HW) when n is odd, and where the fundamental group

�1ðMÞ satisfies a short exact sequence
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0 ! Zn ! �1ðMÞ ! Zn�1
2 ! 0:

Hence �1ðMÞ is given by a 2-cohomology class hfi 2 H2ðZn�1
2 ;ZnÞ. Now, consider

hfi � hfi 2 H2ðZn�1
2 ;ZnÞ �H2ðZn�1

2 ;ZnÞ ¼� H2ðZn�1
2 ;Z2nÞ:

This 2-cohomology class determines a Bieberbach group �0 and the direct sum of

modules Zn � Zn automatically statisfies the criterion of Proposition 1.2. There-

fore, �0 is the fundamental group of a complex GHW, which is a complex HW in

case n is odd. �

As the image of the representation Zn�1
2 ! SUðnÞ is fixed for a complex HW,

we are able to compute the Hodge diamonds for any complex HW and we prove:

THEOREM 4.3. Let n � 3 be an odd number and let M be a complex

Hantzsche-Wendt flat manifold of complex dimension n. Then it is Calabi-Yau and

has the following Betti numbers:

�1 ¼ �3 ¼ � � � ¼ �n�2 ¼ �nþ2 ¼ �2n�1 ¼ 0 and �n ¼ 2n;

�0 ¼
n

0

� �
; �2 ¼

n

1

� �
; . . .�2k ¼

n

k

� �
; . . .�2n ¼

n

n

� �
:

PROOF. We compute the Hodge diamond for these manifolds, from which

the result follows easily. As in the proof of Lemma 4.2 we may assume that the

representation ’ : Zn�1
2 ! SUðnÞ is diagonal and that the image consists of all

diagonal matrices with �1 on the diagonal (and of course with determinant 1).

Let us compute the upper left corner of the Hodge diamond, this is, the

entries hp;q with 0 � q � p � n. The other terms then follow by symmetry. As the

action of the holonomy group is diagonal, we have to look for those ðp; qÞ-forms

dzi1 ^ dzi2 ^ � � � ^ dzip ^ d�zj1 ^ d�zj2 ^ � � � ^ d�zjq ð2Þ

which are fixed under the action of the holonomy group. As a conclusion, we have

that hp;q ¼ ðnp Þ.
Summarizing all of the above situations, we find the following Hodge

diamond for a complex HW of complex dimension n:

Kähler flat manifolds 375



ðn0 Þ
0 0

0 ðn1 Þ 0

0 0 0 0

0 0 ðn2 Þ 0 0

� � � � � � � � � � � � � � � � � �
ðn0 Þ ðn1 Þ ðn2 Þ � � � � � � ð n

n�1Þ ðnnÞ
� � � � � � � � � � � � � � � � � �

0 0 ð n
n�2Þ 0 0

0 0 0 0

0 ð n
n�1Þ 0

0 0

ðn0 Þ

The rest of the theorem now follows easily, because �i ¼
P

pþq¼1 h
p;q. �

There are exactly four manifolds of this type in real dimension 6 (complex

dimension 3), cf. [16]. Of all 174 six dimensional flat manifolds admitting a

complex structure only five of them are having a first Betti number equal to zero

and four of them are complex HW.

In the real case, all generalized HW manifolds are having a holonomy

representation which is diagonalizable over Z. This does no longer hold in the

complex case.

PROPOSITION 4.4. Any complex Hantzsche-Wendt manifold has a spin

structure.

PROOF. (See also [13, Example 4.6].) Let M be a complex Hantzsche-

Wendt manifold of complex dimension n. There is a short exact sequence

0 ! Z2n ! �1ðMÞ ! ðZ2Þn�1 ! 0;

inducing a holonomy representation ’ : Zn�1
2 ! GLð2n;ZÞ. When we consider

R2n as a Zn�1
2 -module via ’, we have that R2n is the direct sum M �M of two

identical Zn�1
2 -modules, where the action on M is given via matrices belonging to

SOðnÞ. Hence it is enough to apply the definition of the spin structure for the

‘‘double’’ construction from the proof of the Theorem 1 of [4]. �
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