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Extremal functions for capacities
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Abstract. The extremal function ¢k for the variational 2-capacity cap(K)
of a compact subset K of the Royden harmonic boundary 6 R of an open Riemann
surface R relative to an end W of R, referred to as the capacitary function of K, is
characterized as the Dirichlet finite harmonic function A on W vanishing
continuously on the relative boundary OW of W satisfying the following three
properties: the normal derivative measure xdh of h exists on 6 R with *dh = 0 on
6R; xdh =0 on 6R\ K; h =1 quasieverywhere on K. As a simple application of
the above characterization, we will show the validity of the following inequality

hm(K) £ k- cap(K)?

for every compact subset K of 6R, where hm(K) is the harmonic measure of K
calculated at a fixed point a in W and k is a constant depending only upon the
triple (R, W,a).

The Dirichlet space L?*(R) on an open Riemann surface R is the real linear space
of functions f € W'llof(R) with finite Dirichlet integral D(f; R) := [, df Axdf of f
taken over R (cf. e.g. [3]). Recall that every function f in L'?(R)NC(R) is
[—00, +00]-valued continuous on the Royden compactification R* of R and the
extended function will be denoted by the same notation f. The PWB (i.e. Perron-
Wiener-Brelot) solution on R with continuous boundary values ¢ on the Royden
boundary yR := R*\ R is denoted by Hf as usual. Then the Royden harmonic
boundary 6R is nothing but the set of regular points ¢ in R so that
lim, ., Hf(z) = () for every ¢ € C(yR). Recall a Royden theorem (cf. [7]) that
6R # () if and only if R is hyperbolic (i.e. nonparabolic) characterized by the
existence of the Green kernel G(-,-; R) on R. Based upon this result, to avoid the
trivial case of R = () from our standpoint, we always assume the hyperbolicity of
R throughout this paper. Let W be an analytic end of R in the sense that W is a
subregion (i.e. connected and open subset) of R such that R\ W (W being the
closure of W taken in R*) is an analytic subregion of R, i.e. a relatively compact
subregion of R whose relative boundary consists of a finite number of mutually
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disjoint analytic Jordan (i.e. simple and closed) curves. Thus W is bounded by the
relative boundary 0W of W and the Royden boundary R which is identical with
the ideal boundary W \ (W U0W) of W. For ¢ € C(yR) we extend it to (yR) U
(OW) by setting ¢ =0 on OW and consider the PWB solution HK on W with
boundary data ¢ so extended as described above. Then the set of regular points
for these solutions HE is (OW) U (6R) and hence H:ZV vanishes continuously on
OW. For fundamentals related to Royden compactifications R* we refer to e.g. [7]
(see also [2], [5], etc.).

In addition to the Dirichlet integrals D(f; R) we also consider the mutual
Dirichlet integrals D(f, g; R) := [, df A *dgof f and gin L'?(R) taken over R. We
occasionally write D(f) and D(f,g) for D(f; R) and D(f, g; R) omitting R if the
integrating domain R is well understood. Let HD(W;0W) be the class of
harmonic functions v on W vanishing continuously on 0W with finite Dirichlet
integrals D(u; W). Recall that the real linear space HD(W; 0W) with D(-,; W) as
its inner product forms a Hilbert space. It has the reproducing kernel given by the
Bergman kernel

B(z,w; W) := N(z,w; W) — G(z,w; W),

where N(z,w; W) is the Neumann kernel on W with vanishing continuous
boundary values on OW as the function of z and G(z, w; W) is the Green kernel on
W. Since B(z,w;W) is separately harmonic on (WUIW) x (WUOW), it is
jointly harmonic on (W UOW) x (W UJOW) by the Hartogs theorem in the
harmonic version (cf. [4]) and in particular z — B(z, z; W) is continuous on W U
OW so that kg :=sup..pB(z 2 W)/? < 400 for any compact subset
E C WUOW. In view of the reproducing property of B(z, w; W), we have u(z) =
D(u, B(-,z;W); W) for every we€ HD(W;0W) and z€ W UOW, the Schwarz
inequality implies that |u(z)| < B(z, z; W)?D(u; W)'/? since D(B(-, z;W); W) =
D(B(-, W), B(-, 2, W); W) = B(z,z; W) so that

sup [u(2)| < ks Dl W)'? (1)

for every w € HD(W;0W) and for any compact subset E C W U OW. As one of
direct consequences of (1) we see that not only a strongly but also a weakly
convergent sequence (uy),>; to w in the Hilbert space HD(W;0W) is locally
uniformly convergent to uw on W UAW. In fact, replacing u, by u, — u, suppose
(un),>, converges to zero weakly in HD(W;0W). Then, first, (D(un; W)),>; is a
bounded sequence as a result of weak convergence of (u,),~, and a fortiori (1)
assures that (u,),>, is locally uniformly bounded on W UOW. Since u,(z) =



Extremal functions for capacities 347

D(uy, B(-, z;W); W) yields the pointwise convergence of (uy),»; to zero on
W UOW, the Montel theorem in the harmonic version implies the required
conclusion.

From the view point of the classification theory of Riemann surfaces, our
primary concern is not about the space HD(W;0W) but the space HD(R) of
harmonic functions u on the whole surface R with finite Dirichlet integrals
D(u; R) < 400 taken over R. However, since D(c; R) =0 for every constant
function c on R, the space HD(R) with D(-,-; R) as its inner product is only a pre-
Hilbert space and not Hilbert space. To compensate this drawback, one
traditional way is to consider dHD(R) = {du:u € HD(R)} with (du,dv):=
D(u,v; R) as its inner product. Then it certainly forms a Hilbert space but, on the
other hand, we are loosing so much because the important subspace R of real
numbers disappears. Therefore, instead, we consider HD(W;0W) in place of
HD(R). Our justification of doing this lies in the following two points: first, there
is a linear bijection T': HD(W;0W) — HD(R) characterized by Tu|6R = u|6R so
that HD(R) and HD(W;0W) are identical at least from the view point of linear
structures; second, HD(Wy;0W;) and HD(W,;0W3) are bicontinuously linear
isomorphic as Hilbert spaces by the mapping Ty ! o T} where T : HD(Wj; OW,) —
HD(R) (j=1,2) are T considered above so that the choice of the end W is
immaterial.

Let K be any compact subset of §R. We now consider the capacity of K, or
more precisely the variational 2-capacity of K, denoted by cap(K) relative to an
end W given by

cap(K) := fei}}fm D(f; R), (2)

where 7(K) is the class of functions f € L'*(R) N C(R) such that f > 1 on K and
f < 0on R\ W. Starting from the capacities cap(K) for compact subsets K C R,
we define as usual the outer (inner, resp.) capacity cap*(X) (cap,(X), resp.) for
general subset X C 6R and then define the capacity cap(X) for general subset
X C OR, if X is capacitable in the sense that cap*(X) = cap,(X), by the common
value cap*(X) = cap,(X). Here recall the Choquet theorem that analytic subsets
(and, in particular, Borel subsets) of §R are capacitable so that cap(K) in the
general sense coincides with the original capacity cap(K) given by (2) for compact
subsets K C R since cap(K) is seen to be a Choquet capacity (cf. e.g. [3]). A
subset X C 6R is said to have capacity zero if cap®(X) = 0. In this case X is
capacitable and cap(X) = 0 so that cap(K) = 0 for every compact subset K C X
and vice versa. We also say that a general set X C 0R is polar if X is of capacity
zero. A subset X C 6R which is not polar is said to be nonpolar. A property on 6R
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is said to hold quasieverywhere (abbreviated as q.e.) on R if it holds on R except
for a polar subset of 6 R. We can also consider cap(K) for compact subsets K C vR
in exactly the same fashion as above but as is easily seen we have cap(K) = 0 for
every K C yR\ 6R so that after all cap(yR \ 6R) = 0. This is the reason why we
confine ourselves to stay on 6 R in considering the capacity cap(X) only for subsets
X of 6R.

Let #(K) be the set of u € HD(W;0W) such that 0 S u < lon Wandu =1
on the compact subset K of éR so that we can view #(K) C ¥ (K) by setting
u=0on Ry:=R\W for every u € HD(W;dW). Observe that g := max{min{f,
1},0} € ¥(K) along with any f € ¥ (K) and D(g; R) < D(f; R). By the Royden
decomposition (cf. e.g. [7]) of g on W, there is a unique u € HD(W;0W) with
u=g=1on K and D(u; R) £ D(g; R). Therefore for any f € ¥ (K) there is a
u € W(K)C ¥(K) such that D(u; W)= D(u; R) £ D(f;R). This implies the
following relation

cap(K) = uei;/lsz) D(u; W). (3)

As remarked above hereafter we simply denote by D(u) and D(u,v) for D(u; W)
and D(u,v; W) omitting W as far as it is clear that the integration is taken over
W. Observe that #(K) is a convex subset of the Hilbert space HD(W; OW) whose
norm D(-)"/? satisfies the parallelogram law: D(u+ v) + D(u —v) = 2(D(u) +
D(v)). This assures the following important property. Any sequence (u;),»; in
# (K) is said to be a minimal sequence if D(u;) — cap(K) (i — oo). We denote

by #(K) the closure of #(K) in HD(W;0W). Clearly #(K) is also a convex
subset of HD(W;0W) along with # (K).

PROPOSITION 4. Any minimal sequence (u;);>, in #(K) is a Cauchy
sequence in HD(W;0W) and the limit function u :=lim;_ u; € #(K) does not
depend on the choice of minimal sequences in W (K) so that u is the unique
function in W (K) with D(u) = cap(K).

PROOF.  Let (u;),>, be a minimal sequence in #/(K). By the parallelogram
law we see that

Dl ~ 1) =2(D(w) + Dlw) ~ 4D ( “ )

for every ¢ and j. Since the convex combination (u; +u;)/2 € #(K), we have
D((u; +u;)/2) 2 cap(K) and both of D(u;) and D(u;) tend to cap(K) as ¢ and j
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tend to co. Hence
D(wi — u;) < 2(D(us) + D(u)) — 4eap(K) — 0 (i, j — o0).

Thus any minimal sequence (u;);>, is a Cauchy sequence in HD(W;9W). We set

u = lim; . u; € #(K). Choose another minimal sequence (v;),», and put
v :=lim;_, v;. For any real number ¢, u; + t(u; — v;) € ¥ (K) and w; + t(u; — v;)
converges to u+ t(u —v) as i — oo so that D(u; + t(u; — v;)) = D(u) and then
D(u + t(u —v)) 2 D(u). Hence

2D(u,u — v)t + D(u —v)t* = 0

for every t, which implies that D(u,u — v) = 0. Changing the roles of u and v, we
also have D(v,v — u) = 0 and thus we can conclude that D(u — v) = 0. This shows
that u = v on W, as desired. [l

We have thus seen that the extremum problem

cap(K) = igf, D)= min_D(w) (5)

has a unique solution u € #(K) with D(u) = cap(K). We will denote this
extremal function by cx and call it as the capacitary function for K C 6R. Hence

cx € W(K) C HD(W;0W) and

cap(K) = D(ckg) = min D(u) = inf D(u). (6)
ue (K) ueW (K)

The purpose of this paper is to characterize cx as the solution of a certain
mixed boundary value problem and the following assertion will play a decisive
role for the aim. As usual for a class % of functions on a space X we set
Ft={feF . fz00n X}.

PROPOSITION 7 (Fundamental Lemma). For an arbitrarily given compact
subset K C OR and an arbitrarily given positive number € > 0 there exists an h. €
W (K) such that

Dlw, he; W) 2 0 (8)

for every w € HD(W;0W)" and
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D(he; W) < cap(K) + ¢. (9)

PROOF. We can find a p € #(K) such that D(p) < cap(K) + /2. By the
Sard theorem that the set of critical values of p is of Lebesgue measure zero, or
rather at the present two dimensional analytic case by the fact that the set of
critical points of p is discrete, we can find a real number 7 > 1 enough close to 1
such that D(rp) < cap(K) +¢/2 and the open subset G :={z€ W : 7mp(z) > 1}
has the relative boundary OG consisting of a countable number of mutually
disjoint open analytic arcs without end points in W not accumulating in W. Let F’
be the closure of G taken in R* so that F={(€ WU (vR):7mp(¢) = 1} and
F D K. We consider one more function ¢ := min{rp,1}. Fix an analytic regular
exhaustion (R;);», of R with R\ W = Ry, i.e. each R; (i 20) is an analytic
subregion of R with the complement R \ R; each component of which is relatively
noncompact, R; C Rix1 (i 2 0) and R = U>oR;. Then set W; :=WNR; (i 2 1).
Note that RyNF = 0. We put «; := (0G)NW; and ; := (OW;) \ (FUOIW) s
that O(W; \ F) = o; U 5; UOW for every i = 1. We define a continuous function u;
on W; for each i > 1 as follows. First u;(z) =1 for z€ W, N F. On W; \ F we
require that u; be given as the harmonic function on W; \ F having the following
mixed boundary condition: w;|0W = 0, u;|a; = 1, and *du;|8; = 0.

One of simple ways to construct such a harmonic function u; on W; \ F' is as
follows. Recall that the double R; of the analytic subregion R; along its relative
boundary OR; is the closed Riemann surface characterized by the following 4
conditions: i) R; UAR; is embedded into Ry; ii) the embedding map in i) is
conformal on R;; iii) each component of the image of OR; under the embedding
map. in i) is an analytic curve in R;; iv) there exists an anticonformal selfmapping
o : R; — R; such that o o o is the identity mapping on R; and o|OR; is the identity
mapping on 0R;. Hence

R; = R; U (dR;) Ua(Ry).
Roughly speaking the double R; of R; along OR; is a symmetric extension of R;
across OR; and easily constructed based upon the reflection principle (cf. e.g. [1]).
We can now consider the double W; of W; formed only along OR; which is nothing
but the subregion W; := R; \ (Ry U o(Rp)) of R; so that

Wi = W; U (8R;) U o(W))

considered in R;. Let F:= (FNW;)Uo(FNW;), & :=a; Uo(a,), B=0R; \ F =
B in W, &= (W)U a(dW), and S := W; \ F. Then S is a subregion of R; with
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0S8 = @ U &, which is regular in the sense that every point in 95 is regular with
respect to the Dirichlet problem on S with respect to 3S. Consider the boundary
data ¢ € C(9S) such that ¢|w =0 and ¢|d@ = 1. The function 4; := H3 is then
harmonic on S with the boundary values 1 on &= ;Uo(a;) and 0 on
W= (OW)Uc(0W). Observe that ; oo is also harmonic on S and having the
boundary values 1 on & and 0 on w and thus 4; o 0 = Hg Therefore 4; o o0 = 1; on
S so that 4; is symmetric about 8 and then the outer normal derivative 94;/0n =
0 on @ with respect to the region W;\ F' (and also with respect to o(W; \ F)).
Since *dd; = (0u;/On)ds =0 on B with the line element ds on (. Then wu; :=
;| (W; \ F) is the required one.

For the time being we view R’ := R\ F as the whole basic surface, W/ :=
W; \ F as an end of R'. But R} := R; \ F is not relatively compact in R’ and hence
(R});>o is not an exhaustion of R’ but still exhausts R'. The same is true of
W!:=W; \ F. We denote by D'(:) and D'(-,-) for D(; W \ F) and D(-, ;W \ F);
Di(-) and Di(-,-) for D(;W;\ F) and D(-,-;W;\ F). Then we can consider
HD(W';0W') viewing R’ as the whole basic surface, and similarly, viewing R, as
the whole surface so that W/ as an end of R}, we can also consider HD(W/; 0W}).
Recall that ¢ = min{7p,1}. Then

D;(ui_%ui):/ (wi—q)*xdu; =0
a; UB;UoOW

since u; — ¢ = 0 on a; U OW and *du; = 0 on §; and thus D)(u;) = D}(q, u;). By the
Schwarz inequality, D}(w;) = D}(u;,q) < D,’L.(ui)l/zD,’i(q)l/2 and hence

Dj(us) £ Di(q) £ D(rpi W) < eap(K) + (10)
for every i € N, the set of positive integers. Let 4 < j. Similarly as above
D;(uj—ul-;ui):/ (uj — w;) * du; = 0
@, UBUIW
and thus Dj(u;, ;) = D;(u;). This implies that
Dj(uj) — D(ui) = Dj(uj —u;) 2 0.

Hence D(u;) 2 Di(u;) 2 Di(u;) and the sequence (Dj(u;));>; is increasing and
bounded by (10) so that it is convergent. Therefore
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lim Df(u; —uj) =0. (11)

i<j,i—00

This in particular shows that (u,;)@io is a Cauchy sequence in the Hilbert space
HD(W; ;0W; ) for every fixed 49 € N and we can find a u € HD(W’;0W’) such
that

lim D (u; —u) =0

1—00
and in particular

u = lim u; (12)

1—00

locally uniformly on W' = W \ F by virtue of (1). However, since 0 < u; < 1on W;
and the boundary values of positive harmonic functions u; on W are zero and
also the boundary values of positive harmonic functions 1 —u; on (OF)NW,; =
(0G) N W, are zero, the boundary Harnack inequality assures that the conver-
gence in (12) is in fact locally uniform on (W\F)NR= (W \ F)UOW UOF.
Hence u € HD(W\ F)NC(W \ F) with u|0W = 0 and u|0F = 1. We extend u to
Rby u=0on Ry and u=1 on G. Then u € C(R). By (10) and (11) we can
conclude that

D(u; W) < cap(K) + % (13)

Take an arbitrary w € HD(W;0W)" and we compute D(w,u; W). Observe
that w|OW = 0 and *du;|3; = 0 so that

D(w,uq;;I/V,;\F):/ w*dui:/ w * du;.

o;UBUOW

Since 0 < u; < 1 on W; \ F and u;|a; = 1, we see that the outer normal derivative
Ou;/On = 0 with respect to W; \ F and thus *du;|a; = 0. Hence w * du; = 0 on o
and D(w,u;; W; \ F) 2 0. Then, in view of (11) and u|F' = 1, we have

D(w,u; W) = lim D(w, u; W;)

= lim D(w,u; W; \ F) = lim D(w,u;; W; \ F) 2 0,

1—00

that is, we have seen that
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D(w,u; W) 20 (14)

for every w € HD(W; W)™,

We are now in the final stage to construct the required h. € #(K) with (8)
and (9). We apply the Royden decomposition theorem (cf. [7]) to the function u,
which belongs to L'Y?(R)NC(R). Let h. be the harmonic part and g be the
potential part of u considered on W:

u=h.+g, (15)

where h. € HD(W;0W) N [LY%(R) N C(R)] with h.|Ry = 0 and g € L**(R) N C(R)
with g|Ry U8R = 0 and satisfies

D(v,g; W) =0 (16)
for every v € HD(W;0W) so that
D(u; W) = D(he; W) + D(g; W). (17)
By the above (17) and (13) we deduce

D(he; W) < D(u; W) < cap(K) + % < cap(K) +e,

which shows that h. satisfies (9). Next take any w € HD(W;dW)" and observe by
(15) and (16) that

D(u, w; W) = D(he,w; W) = D(g,w; W) = 0.
Then we deduce by (14) that
D(w,h; W) = D(heyw; W) = D(u,w; W) 2 0,

which shows the validity of (8). O

A function w € HD(W;0W) is said to have the normal derivative measure
*du on R supported by 6R if xdu is a Radon measure on vR (in general signed)
whose support is contained in §R such that



354 M. NAKAI

D(v,u; W) = /(SRU * du (18)

holds for every v € HD(W;OR) (cf. e.g. [5]). A necessary and sufficient condition
for a u € HD(W;0W) to have xdu on éR is

sup | D(v, u; W)|/sup |[v] < 400
veHD(WdW)\{0} w

but a simple sufficient condition easy to use is that
D(v,u;W) 20

for every v € HD(W;0W)". If R is a compact bordered surface with analytic
border OR and u € HD(W;0W) N C*(W UJR), then the conjugate differential
«du of du on OR takes the form *du = (Ou/0n)ds, where du/dn is the directional
derivative of u on the border R, to the direction of the outer normal with respect
to W and ds the line element on OR, and the Stokes formula yields that

D(v,u;W)z/ v* du
OR

for every v € HD(W,0W) N CY(W UdR). Appealing to this analogy we employ
the impressive notation xdu though it superfacially has nothing to do with the
exterior differential calculus and the term normal derivative measure in the above
definition (18). We now show that the capacitary function satisfies a certain
mixed boundary condition described below which will turn out to be the
characterizing property for the capacitary function later.

THEOREM 19.  The capacitary function cx on an end W of an open Riemann
surface R for the capacity cap(K) of any compact subset K of the Royden
harmonic boundary SR of R relative to the end W of R has the following four
properties: first, cx € HD(W;0W); second, cx has the nonnegative normal
derivative measure xdcg 2 0 on 6R; third, *dcx = 0 on SR\ K; fourth and lastly,
cxg = 1 quasieverywhere on K.

PROOF. For each i € N we take the wv; := hy/;yy) in Proposition 7 for
sufficiently large fixed k € N. Then by (9) we have

cap(K) = D(v;; W) < cap(K) +1/i
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for every i € N and thus (v;);>; is a minimal sequence in #(K). Thus by
Proposition 4, D(v; — cx; W) — 0 (i — 00) and, by virtue of (1), v; — cx (i — oc)
locally uniformly on W UOW. Thus ¢k € #(K) and in particular cx € HD(W;
OW) so that the first property for ¢k is shown.

For any w € HD(W;0W)", (8) implies D(w, v;; W) = 0 for every i € N and
therefore

D(w, ex; W) = Tim (1w, 05 W) 2 0. (20)
Set A:= HD(W;0W)|6R and let p: HD(W;0W) — A be the restriction map-
ping. By the definition of the harmonic boundary 6 R and the maximum principle
related to 6R (cf. [7]), p: HD(W;0W) — A and its inverse p~! : A — HD(W;0W)
are bijective, order-preserving, and linear isomorphisms. Then the functional

¢ — D(p~ o, cx; W)

on A is linear and, by (20), positive. Since A is dense in C(6R), the Risz
representation theorem assures the existence of a positive Borel measure y on §R
such that

D(p™ ', cx; W) = / edp
OR

for every p € A= p(HD(W;0W)), or equivalently,

D(w, cg; W) = / wdp (21)
SR

for every w € HD(W;0W). In view of (18), we see, by compareing (18) and (21),

the existence of *dcx =du =0 on R. Thus we have shown that the second

property of cx stated in the theorem is valid.

Choose any g € HD(W; 0W) vanishing on K. For any ¢ € R, the real number
field, v; +tg € ¥ (K) for every i € N so that D(v; +tg;W) = cap(K) and by
making ¢ — oo we deduce D(cg + tg; W) 2 cap(K). Since D(cg; W) = cap(K), we
conclude that

2D(g, cx; W)t + D(g; W)t* Z 0

for every t € R. Thus we see that D(g,cx; W) =0 and a fortiori
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/ g*dCKZO
OR

for every g € HD(W;0W) with g|K = 0. This shows, since *dcgx = 0 on 6R, that
the support of the measure xdck is contained in K, i.e. #dcg =0 on 6R\ K,
proving the validity of the third property of cg.

We turn to the final property. By checking the construction of h. in
Proposition 7, we see that 0 < h, < 1. Hence 0 < v; <1 for every i € N. As cg is
the local uniform limit of v; on W U W, we see that 0 < ¢ <1 on W. Thus, in
particular, 0 £ ¢ <1 on K. The set

F,={Ce€K:cx(()£1-1/n} (n€N)
is compact and
F = {C c K: CK(g) < ].} = UpenFpn

is capacitable as an Fj-set. It is seen that cap(F},) T cap(F) (n ] o) (cf. e.g. [3])
so that we only have to derive a certain contradiction from the erroneous
assumption cap(F,) > 0 for some n in order to maintain that cap(F') = 0, which is
nothing but the statement cx =1 quasieverywhere on K. Since D(cp ;W) =
cap(Fy) > 0, we see that 0 < ¢y, < 1on W. Let (pi);>; ((¢i);>,, resp.) be a minimal
sequence in # (K) (#(F),), resp.). Then on letting ¢ — oo in

D(q;,cp,; W) :/ g; x dcp, :/ xdcp,
6R 6R

we conclude that
/ «dcg, = D(cg,; W) = cap(Fy,) > 0. (22)
6R

From D(p;,cp;W) = [;p*dcp, and D(ck,cp; W) = [sp ek * dep, it follows by
making ¢ — oo that

D(ck,cp; W) :/ xdcp, :/ ck * deg,
SR SR

so that, by noting 1 — cx 2 0 and *dcp, = 0 on 6R, we see that
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0:/ (1—cK)*ch”§/(1—cK)>kch”
SR

F,
1
= — | #dcp, =— xdcp,
nJF, N JsR
or, equivalently, [;,*dcp, < 0, which contradicts (22), and we are done. O

The following assertions are contained in the above proof. Namely, we have
the following result.

COROLLARY 23. The capacitary function cgx for cap(K) of a monpolar
compact subset K C 6R relative to an end W of R satisfies

O0<exg <1 (24)

on W and

cap(K):/(s *deg. (25)

We now come to the final stage to state and prove our main result of this
paper to characterize the capacitary function as a solution of a certain mixed
boundary value problem for the Laplace equation with boundary data on the
Royden harmonic boundary (see the announcement [6]).

THEOREM 26 (The main theorem). A function h is the capacitary function
cix for a compact subset K of the Royden harmonic boundary 6R of an open
Riemann surface R relative to an end W of R, i.e. h = ¢k, if and only if h satisfies
the following four conditions: first of all, h € HD(W;0W); second, h has the
normal derivative measure xdh = 0 on 8R; third, xdh =0 on R\ K; fourth and
lastly, h = 1 quasieverywhere on K.

PROOF. If h = ¢k, then, by Theorem 19, we can see that h satisfies the four
conditions stated in the theorem. Therefore we only have to show that a function
h on W coincides with cg if h satisfies the four conditions in the theorem. Hence,
on setting p = h — cx, we are to show that p = 0 on R. We also denote by ¢ either
h or ck so that ¢ also satisfies the four conditions in the theorem. Consider the set
F of points ¢ in K such that p({) # 0, or equivalently |p(¢)| # 0. Since F is covered
by the union of two sets F, (¢ =h,ck), where F, :={¢ € K : ¢(¢) # 1}. By the
assumption that cap(F;) = 0, we see that
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cap(F') = cap(Fj, U Fi,.) < cap(Fy) + cap(Fi,) =0,

i.e. F is of capacity zero. For each n € N we set F, :={( € K :|p({)| =2 1/n},
which is a compact subset of the compact set K since |p| € C(6R) C C(K). Clearly
F, C F, and, for any ¢ € F, we can find an n € N with ¢ € F, so that

F=|]F. (27)

nenN

For each n € N, we see that cap(F},) = 0 along with cap(F') = 0. Fix arbitrarily an
n € N. Then we can find a minimal sequence (v;),. 5 in #/(F,). We write D(-) and
D(-,-) for D(-; W) and D(-,-;W). We infer that

og/ *dq:/ v; * dq
Fy Fy

= D(v;,q) < D(v;)'"*D()"/* — cap(F,)"*D(¢)"* = 0

as ¢ — 0o. Hence we see that fF *dq = 0 for each n and therefore by (27) we
conclude that

/*dqzo (¢ = hycx).
F

Recall that *dg =0 on 6R\ K and p =0 on K \ F. A fortiori we deduce that

D(zw):/ p*dq:/p*dq:/p*dq:()
OR K F

for ¢ = h and ¢ = c¢x. Then
D(p) = D(p,p) = D(p,h — cx) = D(p,h) — D(p, cx) =0,

i.e. D(p; W) = 0 and with p|0W = 0 we can conclude that p = 0 on W, which was
to be proved. [l

There are many applications of the main theorem 26 (or the theorem 19)
expected, among which we state here the following simple and direct one
concerning the harmonic measure and the capacity on 6 R. The harmonic measure
hm (hmy, resp.) on vR supported by 6R relative to (R, a) ((W,a), resp.), a being a
reference point in R (W, resp.), is a Borel measure on vR such that
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H;z(a) = /53 fdhm (H}V(a) = /51?, fdhmg, resp.) (28)

for every f € C(6R). This has been an important tool in the application of the
Royden compactification theory to the classification theory of Riemann surfaces
(cf. e.g. [7]). For a fixed reference point a € W C R, there is a constant ¢ =
c¢(W,a) € [1,400) such that

1 ,a; W G(z,a; W
b imint CEEW) g EE G W)
c 2= z,a; R 2 (z,a; R)

A
—_

for every ¢ € yR. Based upon this inequality we see at once that

%hm( X) < hmo(X) < hm(X) (29)

for every Borel subset X C 6R. Observe that the Bergman kernel B(-,a; W) €
HD(W;0W) satisfies

D(Uv B('va; W)v W) - U(a) =20

for every v € HD(W;0W)" so that the normal derivative measure *dB(-,a; W) of
B(-,a; W) exists on §R. Hence, by (28), we see that

/ udhmy = u(a) = D(u, B(-,a; W); W) = / ux dB(-,a; W)
SR SR

for every u € HD(W;0W). Since HD(W;0W)|6 is uniformly dense in C(6R), we
can conclude that

dhmy = *dB(-,a; W) (30)

as measures on OR.

We now have two important measurements cap(K) and hm(K) for every
compact subset K of 6R. In many instances we are usually interested not in the
quantities cap(K) and hm(K) themselves but rather in the properties whether
they vanish or not. Concerning the relation between cap(K) and hm(K), we are
therefore satisfied in many cases with the standard knowledge that cap(K) =0
implies hm(K) = 0. In view of this, one step further, one naturally expect that if
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(cap(Ky)),en is a zero sequence, then (hm(K),)),.n is also a zero sequence, N
being the set of positive integers, and then one might wish to know the relation
between speeds of convergence of these two zero sequences above. The following
inequality contributes to this question.

FAcT 31. There is a positive constant k depending only upon the triple
(R,W,a) such that

hm(K) < & - cap(K)'/? (32)

for every compact subset K of 6R.

PROOF. Suppose first that cap(K)=0. Then there is a sequence
(tn)pen C #(K) such that D(u,; W) — 0 (n — o00) so that u,(a) — 0 (n — 00).
Observe that

hmy(K) = / dhmg < / updhmy = uy,(a) — 0 (n — 00),
K K

i.e. hmy(K) = 0 so that we have by (29) the relation hm(K) = 0. A fortiori (32) is
trivially true. Therefore, we have also obtained that a Borel subset X of 0R is of
harmonic measure zero if X is polar. Next we consider the case cap(K) > 0. Then
¢k = 1 hmg-a.e. on K and thus, by (30), we have

hmy (K) :/ dhmy :/ cxdhmyg :/ cx *dB(-,a; W)
K K K
= Dl(ex, B(-.a;W): W) < D(ex: W)''* - D(B(,a; W) W) 2.
From (29) and the above relation it follows that

1
~hm(K) < hmy(K) £ Bla,a; W)"/? - cap(K)"?,
C

which implies (32) with x := c¢B(a,a; W)/ O
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