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Extremal functions for capacities

By Mitsuru NAKAI

(Received Apr. 14, 2008)

Abstract. The extremal function cK for the variational 2-capacity capðKÞ
of a compact subset K of the Royden harmonic boundary �R of an open Riemann

surface R relative to an end W of R, referred to as the capacitary function of K, is

characterized as the Dirichlet finite harmonic function h on W vanishing

continuously on the relative boundary @W of W satisfying the following three

properties: the normal derivative measure �dh of h exists on �R with �dh = 0 on

�R; �dh ¼ 0 on �R nK; h ¼ 1 quasieverywhere on K. As a simple application of

the above characterization, we will show the validity of the following inequality

hmðKÞ 5 � � capðKÞ1=2

for every compact subset K of �R, where hmðKÞ is the harmonic measure of K

calculated at a fixed point a in W and � is a constant depending only upon the

triple ðR;W; aÞ.

The Dirichlet space L1;2ðRÞ on an open Riemann surface R is the real linear space

of functions f 2 W 1;2
loc ðRÞ with finite Dirichlet integral Dðf ;RÞ :¼

R
R df ^ �df of f

taken over R (cf. e.g. [3]). Recall that every function f in L1;2ðRÞ \ CðRÞ is

½�1;þ1�-valued continuous on the Royden compactification R� of R and the

extended function will be denoted by the same notation f . The PWB (i.e. Perron-

Wiener-Brelot) solution on R with continuous boundary values ’ on the Royden

boundary �R :¼ R� nR is denoted by HR
’ as usual. Then the Royden harmonic

boundary �R is nothing but the set of regular points � in �R so that

limz!� H
R
’ ðzÞ ¼ ’ð�Þ for every ’ 2 Cð�RÞ. Recall a Royden theorem (cf. [7]) that

�R 6¼ ; if and only if R is hyperbolic (i.e. nonparabolic) characterized by the

existence of the Green kernel Gð�; �;RÞ on R. Based upon this result, to avoid the

trivial case of �R ¼ ; from our standpoint, we always assume the hyperbolicity of

R throughout this paper. Let W be an analytic end of R in the sense that W is a

subregion (i.e. connected and open subset) of R such that R nW (W being the

closure of W taken in R�) is an analytic subregion of R, i.e. a relatively compact

subregion of R whose relative boundary consists of a finite number of mutually
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disjoint analytic Jordan (i.e. simple and closed) curves. Thus W is bounded by the

relative boundary @W of W and the Royden boundary �R which is identical with

the ideal boundary W n ðW [ @W Þ of W . For ’ 2 Cð�RÞ we extend it to ð�RÞ [
ð@WÞ by setting ’ ¼ 0 on @W and consider the PWB solution HW

’ on W with

boundary data ’ so extended as described above. Then the set of regular points

for these solutions HW
’ is ð@W Þ [ ð�RÞ and hence HW

’ vanishes continuously on

@W . For fundamentals related to Royden compactifications R� we refer to e.g. [7]

(see also [2], [5], etc.).

In addition to the Dirichlet integrals Dðf ;RÞ we also consider the mutual

Dirichlet integrals Dðf; g;RÞ :¼
R
R df ^ �dg of f and g in L1;2ðRÞ taken over R. We

occasionally write DðfÞ and Dðf; gÞ for Dðf;RÞ and Dðf; g;RÞ omitting R if the

integrating domain R is well understood. Let HDðW ; @WÞ be the class of

harmonic functions u on W vanishing continuously on @W with finite Dirichlet

integrals Dðu;W Þ. Recall that the real linear space HDðW ; @W Þ with Dð�; �;W Þ as
its inner product forms a Hilbert space. It has the reproducing kernel given by the

Bergman kernel

Bðz; w;W Þ :¼ Nðz; w;W Þ �Gðz; w;W Þ;

where Nðz; w;W Þ is the Neumann kernel on W with vanishing continuous

boundary values on @W as the function of z and Gðz; w;W Þ is the Green kernel on

W . Since Bðz; w;W Þ is separately harmonic on ðW [ @W Þ � ðW [ @W Þ, it is

jointly harmonic on ðW [ @WÞ � ðW [ @W Þ by the Hartogs theorem in the

harmonic version (cf. [4]) and in particular z 7! Bðz; z;W Þ is continuous on W [
@W so that kE :¼ supz2E Bðz; z;W Þ1=2 < þ1 for any compact subset

E � W [ @W . In view of the reproducing property of Bðz; w;W Þ, we have uðzÞ ¼
Dðu;Bð�; z;W Þ;WÞ for every u 2 HDðW ; @W Þ and z 2 W [ @W , the Schwarz

inequality implies that juðzÞj 5 Bðz; z;W Þ1=2Dðu;W Þ1=2 since DðBð�; z;W Þ;WÞ ¼
DðBð�; z;W Þ; Bð�; z;W Þ;WÞ ¼ Bðz; z;W Þ so that

sup
E

juðzÞj 5 kE �Dðu;W Þ1=2 ð1Þ

for every u 2 HDðW ; @W Þ and for any compact subset E � W [ @W . As one of

direct consequences of (1) we see that not only a strongly but also a weakly

convergent sequence ðunÞn=1 to u in the Hilbert space HDðW ; @W Þ is locally

uniformly convergent to u on W [ @W . In fact, replacing un by un � u, suppose

ðunÞn=1 converges to zero weakly in HDðW ; @W Þ. Then, first, ðDðun;WÞÞn=1 is a

bounded sequence as a result of weak convergence of ðunÞn=1 and a fortiori (1)

assures that ðunÞn=1 is locally uniformly bounded on W [ @W . Since unðzÞ ¼

346 M. NAKAI



Dðun;Bð�; z;W Þ;WÞ yields the pointwise convergence of ðunÞn=1 to zero on

W [ @W , the Montel theorem in the harmonic version implies the required

conclusion.

From the view point of the classification theory of Riemann surfaces, our

primary concern is not about the space HDðW ; @WÞ but the space HDðRÞ of

harmonic functions u on the whole surface R with finite Dirichlet integrals

Dðu;RÞ < þ1 taken over R. However, since Dðc;RÞ ¼ 0 for every constant

function c on R, the space HDðRÞ with Dð�; �;RÞ as its inner product is only a pre-

Hilbert space and not Hilbert space. To compensate this drawback, one

traditional way is to consider dHDðRÞ ¼ fdu : u 2 HDðRÞg with ðdu; dvÞ :¼
Dðu; v;RÞ as its inner product. Then it certainly forms a Hilbert space but, on the

other hand, we are loosing so much because the important subspace R of real

numbers disappears. Therefore, instead, we consider HDðW ; @WÞ in place of

HDðRÞ. Our justification of doing this lies in the following two points: first, there

is a linear bijection T : HDðW ; @W Þ ! HDðRÞ characterized by Tuj�R ¼ uj�R so

that HDðRÞ and HDðW ; @W Þ are identical at least from the view point of linear

structures; second, HDðW1; @W1Þ and HDðW2; @W2Þ are bicontinuously linear

isomorphic as Hilbert spaces by the mapping T�1
2 � T1 where Tj : HDðWj; @WjÞ !

HDðRÞ ðj ¼ 1; 2Þ are T considered above so that the choice of the end W is

immaterial.

Let K be any compact subset of �R. We now consider the capacity of K, or

more precisely the variational 2-capacity of K, denoted by capðKÞ relative to an

end W given by

capðKÞ :¼ inf
f2V ðKÞ

Dðf ;RÞ; ð2Þ

where V ðKÞ is the class of functions f 2 L1;2ðRÞ \ CðRÞ such that f = 1 on K and

f 5 0 on R nW . Starting from the capacities capðKÞ for compact subsets K � �R,

we define as usual the outer (inner, resp.) capacity cap�ðXÞ (cap�ðXÞ, resp.) for

general subset X � �R and then define the capacity capðXÞ for general subset

X � �R, if X is capacitable in the sense that cap�ðXÞ ¼ cap�ðXÞ, by the common

value cap�ðXÞ ¼ cap�ðXÞ. Here recall the Choquet theorem that analytic subsets

(and, in particular, Borel subsets) of �R are capacitable so that capðKÞ in the

general sense coincides with the original capacity capðKÞ given by (2) for compact

subsets K � �R since capðKÞ is seen to be a Choquet capacity (cf. e.g. [3]). A

subset X � �R is said to have capacity zero if cap�ðXÞ ¼ 0. In this case X is

capacitable and capðXÞ ¼ 0 so that capðKÞ ¼ 0 for every compact subset K � X

and vice versa. We also say that a general set X � �R is polar if X is of capacity

zero. A subset X � �R which is not polar is said to be nonpolar. A property on �R
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is said to hold quasieverywhere (abbreviated as q.e.) on �R if it holds on �R except

for a polar subset of �R. We can also consider capðKÞ for compact subsets K � �R

in exactly the same fashion as above but as is easily seen we have capðKÞ ¼ 0 for

every K � �R n �R so that after all capð�R n �RÞ ¼ 0. This is the reason why we

confine ourselves to stay on �R in considering the capacity capðXÞ only for subsets

X of �R.

Let W ðKÞ be the set of u 2 HDðW ; @WÞ such that 0 5 u 5 1 on W and u ¼ 1

on the compact subset K of �R so that we can view W ðKÞ � V ðKÞ by setting

u ¼ 0 on R0 :¼ R nW for every u 2 HDðW ; @WÞ. Observe that g :¼ maxfminff;
1g; 0g 2 V ðKÞ along with any f 2 V ðKÞ and Dðg;RÞ 5 Dðf;RÞ. By the Royden

decomposition (cf. e.g. [7]) of g on W , there is a unique u 2 HDðW ; @W Þ with

u ¼ g ¼ 1 on K and Dðu;RÞ 5 Dðg;RÞ. Therefore for any f 2 V ðKÞ there is a

u 2 W ðKÞ � V ðKÞ such that Dðu;W Þ ¼ Dðu;RÞ 5 Dðf;RÞ. This implies the

following relation

capðKÞ ¼ inf
u2W ðKÞ

Dðu;W Þ: ð3Þ

As remarked above hereafter we simply denote by DðuÞ and Dðu; vÞ for Dðu;W Þ
and Dðu; v;W Þ omitting W as far as it is clear that the integration is taken over

W . Observe that W ðKÞ is a convex subset of the Hilbert space HDðW ; @W Þ whose
norm Dð�Þ1=2 satisfies the parallelogram law: Dðuþ vÞ þDðu� vÞ ¼ 2ðDðuÞ þ
DðvÞÞ. This assures the following important property. Any sequence ðuiÞi=1 in

W ðKÞ is said to be a minimal sequence if DðuiÞ ! capðKÞ ði ! 1Þ. We denote

by W ðKÞ the closure of W ðKÞ in HDðW ; @W Þ. Clearly W ðKÞ is also a convex

subset of HDðW ; @W Þ along with W ðKÞ.

PROPOSITION 4. Any minimal sequence ðuiÞi=1 in W ðKÞ is a Cauchy

sequence in HDðW ; @W Þ and the limit function u :¼ limi!1 ui 2 W ðKÞ does not

depend on the choice of minimal sequences in W ðKÞ so that u is the unique

function in W ðKÞ with DðuÞ ¼ capðKÞ.

PROOF. Let ðujÞj=1 be a minimal sequence in W ðKÞ. By the parallelogram

law we see that

Dðui � ujÞ ¼ 2 DðuiÞ þDðujÞ
� �

� 4D
ui þ uj

2

� �

for every i and j. Since the convex combination ðui þ ujÞ=2 2 W ðKÞ, we have

Dððui þ ujÞ=2Þ = capðKÞ and both of DðuiÞ and DðujÞ tend to capðKÞ as i and j
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tend to 1. Hence

Dðui � ujÞ 5 2 DðuiÞ þDðujÞ
� �

� 4capðKÞ ! 0 ði; j ! 1Þ:

Thus any minimal sequence ðuiÞi=1 is a Cauchy sequence in HDðW ; @W Þ. We set

u :¼ limi!1 ui 2 W ðKÞ. Choose another minimal sequence ðviÞi=1 and put

v :¼ limi!1 vi. For any real number t, ui þ tðui � viÞ 2 V ðKÞ and ui þ tðui � viÞ
converges to uþ tðu� vÞ as i ! 1 so that Dðui þ tðui � viÞÞ = DðuÞ and then

Dðuþ tðu� vÞÞ = DðuÞ. Hence

2Dðu; u� vÞtþDðu� vÞt2 = 0

for every t, which implies that Dðu; u� vÞ ¼ 0. Changing the roles of u and v, we

also have Dðv; v� uÞ ¼ 0 and thus we can conclude that Dðu� vÞ ¼ 0. This shows

that u ¼ v on W , as desired. �

We have thus seen that the extremum problem

capðKÞ ¼ inf
u2W ðKÞ

DðuÞ ¼ min
u2W ðKÞ

DðuÞ ð5Þ

has a unique solution u 2 W ðKÞ with DðuÞ ¼ capðKÞ. We will denote this

extremal function by cK and call it as the capacitary function for K � �R. Hence

cK 2 W ðKÞ � HDðW ; @W Þ and

capðKÞ ¼ DðcKÞ ¼ min
u2W ðKÞ

DðuÞ ¼ inf
u2W ðKÞ

DðuÞ: ð6Þ

The purpose of this paper is to characterize cK as the solution of a certain

mixed boundary value problem and the following assertion will play a decisive

role for the aim. As usual for a class F of functions on a space X we set

Fþ :¼ ff 2 F : f = 0 on Xg.

PROPOSITION 7 (Fundamental Lemma). For an arbitrarily given compact

subset K � �R and an arbitrarily given positive number " > 0 there exists an h" 2
W ðKÞ such that

Dðw; h";W Þ = 0 ð8Þ

for every w 2 HDðW ; @W Þþ and
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Dðh";W Þ < capðKÞ þ ": ð9Þ

PROOF. We can find a p 2 W ðKÞ such that DðpÞ < capðKÞ þ "=2. By the

Sard theorem that the set of critical values of p is of Lebesgue measure zero, or

rather at the present two dimensional analytic case by the fact that the set of

critical points of p is discrete, we can find a real number � > 1 enough close to 1

such that Dð�pÞ < capðKÞ þ "=2 and the open subset G :¼ fz 2 W : �pðzÞ > 1g
has the relative boundary @G consisting of a countable number of mutually

disjoint open analytic arcs without end points in W not accumulating in W . Let F

be the closure of G taken in R� so that F ¼ f� 2 W [ ð�RÞ : �pð�Þ = 1g and

F � K. We consider one more function q :¼ minf�p; 1g. Fix an analytic regular

exhaustion ðRiÞi=0 of R with R nW ¼ R0, i.e. each Ri ði = 0Þ is an analytic

subregion of R with the complement R nRi each component of which is relatively

noncompact, Ri � Riþ1 ði = 0Þ and R ¼ [i=0Ri. Then set Wi :¼ W \ Ri ði = 1Þ.
Note that R0 \ F ¼ ;. We put �i :¼ ð@GÞ \Wi and �i :¼ ð@WiÞ n ðF [ @W Þ so

that @ðWi n F Þ ¼ �i [ �i [ @W for every i = 1. We define a continuous function ui

on Wi for each i = 1 as follows. First uiðzÞ ¼ 1 for z 2 Wi \ F . On Wi n F we

require that ui be given as the harmonic function on Wi n F having the following

mixed boundary condition: uij@W ¼ 0; uij�i ¼ 1, and �duij�i ¼ 0.

One of simple ways to construct such a harmonic function ui on Wi n F is as

follows. Recall that the double R̂i of the analytic subregion Ri along its relative

boundary @Ri is the closed Riemann surface characterized by the following 4

conditions: i) Ri [ @Ri is embedded into R̂i; ii) the embedding map in i) is

conformal on Ri; iii) each component of the image of @Ri under the embedding

map in i) is an analytic curve in R̂i; iv) there exists an anticonformal selfmapping

� : R̂i ! R̂i such that � � � is the identity mapping on R̂i and �j@Ri is the identity

mapping on @Ri. Hence

R̂i ¼ Ri [ ð@RiÞ [ �ðRiÞ:

Roughly speaking the double R̂i of Ri along @Ri is a symmetric extension of Ri

across @Ri and easily constructed based upon the reflection principle (cf. e.g. [1]).

We can now consider the double Ŵi of Wi formed only along @Ri which is nothing

but the subregion Ŵi :¼ R̂i n ðR0 [ �ðR0ÞÞ of R̂i so that

Ŵi ¼ Wi [ ð@RiÞ [ �ðWiÞ

considered in R̂i. Let F̂ :¼ ðF \WiÞ [ �ðF \WiÞ, �̂ :¼ �i [ �ð�iÞ, � ¼ @Ri n F ¼
�i in Ŵi, !̂ ¼ ð@W Þ [ �ð@W Þ, and S :¼ Ŵi n F̂ . Then S is a subregion of Ri with
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@S ¼ !̂ [ �̂, which is regular in the sense that every point in @S is regular with

respect to the Dirichlet problem on S with respect to @S. Consider the boundary

data ’ 2 Cð@SÞ such that ’j!̂ ¼ 0 and ’j�̂ ¼ 1. The function ûi :¼ HS
’ is then

harmonic on S with the boundary values 1 on �̂ ¼ �i [ �ð�iÞ and 0 on

!̂ ¼ ð@W Þ [ �ð@W Þ. Observe that ûi � � is also harmonic on S and having the

boundary values 1 on �̂ and 0 on !̂ and thus ûi � � ¼ HS
’ . Therefore ûi � � ¼ ûi on

S so that ûi is symmetric about � and then the outer normal derivative @ûi=@n ¼
0 on � with respect to the region Wi n F (and also with respect to �ðWi n F Þ).
Since �dûi ¼ ð@ûi=@nÞds ¼ 0 on � with the line element ds on �. Then ui :¼
ûijðWi n F Þ is the required one.

For the time being we view R0 :¼ R n F as the whole basic surface, W 0
i :¼

Wi n F as an end of R0. But R0
i :¼ Ri n F is not relatively compact in R0 and hence

ðR0
iÞi=0 is not an exhaustion of R0 but still exhausts R0. The same is true of

W 0
i :¼ Wi n F . We denote by D0ð�Þ and D0ð�; �Þ for Dð�;W n F Þ and Dð�; �;W n F Þ;

D0
ið�Þ and D0

ið�; �Þ for Dð�;Wi n F Þ and Dð�; �;Wi n F Þ. Then we can consider

HDðW 0; @W 0Þ viewing R0 as the whole basic surface, and similarly, viewing R0
i as

the whole surface so that W 0
i as an end of R0

i, we can also consider HDðW 0
i ; @W

0
iÞ.

Recall that q ¼ minf�p; 1g. Then

D0
iðui � q; uiÞ ¼

Z
�i[�i[@W

ðui � qÞ � dui ¼ 0

since ui � q ¼ 0 on �i [ @W and �dui ¼ 0 on �i and thus D0
iðuiÞ ¼ D0

iðq; uiÞ. By the

Schwarz inequality, D0
iðuiÞ ¼ D0

iðui; qÞ 5 D0
iðuiÞ1=2D0

iðqÞ
1=2 and hence

D0
iðuiÞ 5 D0

iðqÞ 5 Dð�p;W Þ < capðKÞ þ
"

2
ð10Þ

for every i 2 N , the set of positive integers. Let i < j. Similarly as above

D0
iðuj � ui;uiÞ ¼

Z
�i[�i[@W

ðuj � uiÞ � dui ¼ 0

and thus D0
iðuj; uiÞ ¼ D0

iðuiÞ. This implies that

D0
iðujÞ �D0

iðuiÞ ¼ D0
iðuj � uiÞ = 0:

Hence D0
jðujÞ = D0

iðujÞ = D0
iðuiÞ and the sequence ðD0

iðuiÞÞi=1 is increasing and

bounded by (10) so that it is convergent. Therefore

Extremal functions for capacities 351



lim
i<j;i!1

D0
iðui � ujÞ ¼ 0: ð11Þ

This in particular shows that ðuiÞi=i0
is a Cauchy sequence in the Hilbert space

HDðW 0
i0
; @W 0

i0
Þ for every fixed i0 2 N and we can find a u 2 HDðW 0; @W 0Þ such

that

lim
i!1

D0
iðui � uÞ ¼ 0

and in particular

u ¼ lim
i!1

ui ð12Þ

locally uniformly on W 0 ¼ W n F by virtue of (1). However, since 0 5 ui 5 1 on Wi

and the boundary values of positive harmonic functions ui on @W are zero and

also the boundary values of positive harmonic functions 1� ui on ð@F Þ \Wi ¼
ð@GÞ \Wi are zero, the boundary Harnack inequality assures that the conver-

gence in (12) is in fact locally uniform on ðW n F Þ \ R ¼ ðW n F Þ [ @W [ @F .

Hence u 2 HDðW n F Þ \ CðW n F Þ with uj@W ¼ 0 and uj@F ¼ 1. We extend u to

R by u ¼ 0 on R0 and u ¼ 1 on G. Then u 2 CðRÞ. By (10) and (11) we can

conclude that

Dðu;W Þ 5 capðKÞ þ
	

2
: ð13Þ

Take an arbitrary w 2 HDðW ; @WÞþ and we compute Dðw; u;W Þ. Observe

that wj@W ¼ 0 and �duij�i ¼ 0 so that

Dðw; ui;Wi n F Þ ¼
Z
�i[�i[@W

w � dui ¼
Z
�i

w � dui:

Since 0 < ui < 1 on Wi n F and uij�i ¼ 1, we see that the outer normal derivative

@ui=@n = 0 with respect to Wi n F and thus �duij�i = 0. Hence w � dui = 0 on �i

and Dðw; ui;Wi n F Þ = 0. Then, in view of (11) and ujF ¼ 1, we have

Dðw; u;W Þ ¼ lim
i!1

Dðw; u;WiÞ

¼ lim
i!1

Dðw; u;Wi n F Þ ¼ lim
i!1

Dðw; ui;Wi n F Þ = 0;

that is, we have seen that
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Dðw; u;W Þ = 0 ð14Þ

for every w 2 HDðW ; @W Þþ.
We are now in the final stage to construct the required h" 2 W ðKÞ with (8)

and (9). We apply the Royden decomposition theorem (cf. [7]) to the function u,

which belongs to L1;2ðRÞ \ CðRÞ. Let h" be the harmonic part and g be the

potential part of u considered on W :

u ¼ h" þ g; ð15Þ

where h" 2 HDðW ; @W Þ \ ½L1;2ðRÞ \ CðRÞ� with h"jR0 ¼ 0 and g 2 L1;2ðRÞ \ CðRÞ
with gjR0 [ �R ¼ 0 and satisfies

Dðv; g;W Þ ¼ 0 ð16Þ

for every v 2 HDðW ; @W Þ so that

Dðu;W Þ ¼ Dðh";W Þ þDðg;W Þ: ð17Þ

By the above (17) and (13) we deduce

Dðh";W Þ 5 Dðu;W Þ 	 capðKÞ þ
"

2
< capðKÞ þ ";

which shows that h" satisfies (9). Next take any w 2 HDðW ; @WÞþ and observe by

(15) and (16) that

Dðu; w;W Þ �Dðh"; w;W Þ ¼ Dðg; w;W Þ ¼ 0:

Then we deduce by (14) that

Dðw; h";W Þ ¼ Dðh"; w;W Þ ¼ Dðu; w;W Þ = 0;

which shows the validity of (8). �

A function u 2 HDðW ; @W Þ is said to have the normal derivative measure

�du on �R supported by �R if �du is a Radon measure on �R (in general signed)

whose support is contained in �R such that
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Dðv; u;W Þ ¼
Z
�R

v � du ð18Þ

holds for every v 2 HDðW ; @RÞ (cf. e.g. [5]). A necessary and sufficient condition

for a u 2 HDðW ; @W Þ to have �du on �R is

sup
v2HDðW ;@WÞnf0g

jDðv; u;W Þj= sup
W

jvj < þ1

but a simple sufficient condition easy to use is that

Dðv; u;WÞ = 0

for every v 2 HDðW ; @W Þþ. If R is a compact bordered surface with analytic

border @R and u 2 HDðW ; @W Þ \ C1ðW [ @RÞ, then the conjugate differential

�du of du on @R takes the form �du ¼ ð@u=@nÞds, where @u=@n is the directional

derivative of u on the border @R, to the direction of the outer normal with respect

to W and ds the line element on @R, and the Stokes formula yields that

Dðv; u;WÞ ¼
Z
@R

v � du

for every v 2 HDðW;@W Þ \ C1ðW [ @RÞ. Appealing to this analogy we employ

the impressive notation �du though it superfacially has nothing to do with the

exterior differential calculus and the term normal derivative measure in the above

definition (18). We now show that the capacitary function satisfies a certain

mixed boundary condition described below which will turn out to be the

characterizing property for the capacitary function later.

THEOREM 19. The capacitary function cK on an end W of an open Riemann

surface R for the capacity capðKÞ of any compact subset K of the Royden

harmonic boundary �R of R relative to the end W of R has the following four

properties: first, cK 2 HDðW ; @W Þ; second, cK has the nonnegative normal

derivative measure �dcK = 0 on �R; third, �dcK ¼ 0 on �R nK; fourth and lastly,

cK ¼ 1 quasieverywhere on K.

PROOF. For each i 2 N we take the vi :¼ h1=ðiþkÞ in Proposition 7 for

sufficiently large fixed k 2 N . Then by (9) we have

capðKÞ 5 Dðvi;W Þ 5 capðKÞ þ 1=i
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for every i 2 N and thus ðviÞi=1 is a minimal sequence in W ðKÞ. Thus by

Proposition 4, Dðvi � cK ;W Þ ! 0 ði ! 1Þ and, by virtue of (1), vi ! cK ði ! 1Þ
locally uniformly on W [ @W . Thus cK 2 W ðKÞ and in particular cK 2 HDðW ;

@WÞ so that the first property for cK is shown.

For any w 2 HDðW ; @W Þþ, (8) implies Dðw; vi;WÞ = 0 for every i 2 N and

therefore

Dðw; cK ;W Þ ¼ lim
i!1

ðw; vi;W Þ = 0: ð20Þ

Set A :¼ HDðW ; @WÞj�R and let 
 : HDðW ; @W Þ ! A be the restriction map-

ping. By the definition of the harmonic boundary �R and the maximum principle

related to �R (cf. [7]), 
 : HDðW ; @W Þ ! A and its inverse 
�1 : A !HDðW ; @W Þ
are bijective, order-preserving, and linear isomorphisms. Then the functional

’ 7! Dð
�1’; cK ;WÞ

on A is linear and, by (20), positive. Since A is dense in Cð�RÞ, the Risz

representation theorem assures the existence of a positive Borel measure � on �R

such that

Dð
�1’; cK ;W Þ ¼
Z
�R

’d�

for every ’ 2 A ¼ 
ðHDðW ; @W ÞÞ, or equivalently,

Dðw; cK ;WÞ ¼
Z
�R

wd� ð21Þ

for every w 2 HDðW ; @W Þ. In view of (18), we see, by compareing (18) and (21),

the existence of �dcK ¼ d� = 0 on �R. Thus we have shown that the second

property of cK stated in the theorem is valid.

Choose any g 2 HDðW ; @W Þ vanishing on K. For any t 2 R, the real number

field, vi þ tg 2 V ðKÞ for every i 2 N so that Dðvi þ tg;WÞ = capðKÞ and by

making i ! 1 we deduce DðcK þ tg;W Þ = capðKÞ. Since DðcK ;W Þ ¼ capðKÞ, we
conclude that

2Dðg; cK ;W ÞtþDðg;W Þt2 = 0

for every t 2 R. Thus we see that Dðg; cK ;W Þ ¼ 0 and a fortiori
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Z
�R

g � dcK ¼ 0

for every g 2 HDðW ; @W Þ with gjK ¼ 0. This shows, since �dcK = 0 on �R, that

the support of the measure �dcK is contained in K, i.e. �dcK ¼ 0 on �R nK,

proving the validity of the third property of cK .

We turn to the final property. By checking the construction of h	 in

Proposition 7, we see that 0 5 h" 5 1. Hence 0 5 vi 5 1 for every i 2 N . As cK is

the local uniform limit of vi on W [ @W , we see that 0 5 cK 5 1 on W . Thus, in

particular, 0 5 cK 5 1 on K. The set

Fn :¼ f� 2 K : cKð�Þ 5 1� 1=ng ðn 2 N Þ

is compact and

F :¼ f� 2 K : cKð�Þ < 1g ¼ [n2NFn

is capacitable as an F�-set. It is seen that capðFnÞ " capðF Þ ðn " 1Þ (cf. e.g. [3])
so that we only have to derive a certain contradiction from the erroneous

assumption capðFnÞ > 0 for some n in order to maintain that capðF Þ ¼ 0, which is

nothing but the statement cK ¼ 1 quasieverywhere on K. Since DðcFn
;W Þ ¼

capðFnÞ > 0, we see that 0 < cFn
< 1 on W . Let ðpiÞi=1 (ðqiÞi=1, resp.) be a minimal

sequence in W ðKÞ (W ðFnÞ, resp.). Then on letting i ! 1 in

Dðqi; cFn
;WÞ ¼

Z
�R

qi � dcFn
¼

Z
�R

�dcFn
;

we conclude that

Z
�R

�dcFn
¼ DðcFn

;W Þ ¼ capðFnÞ > 0: ð22Þ

From Dðpi; cFn
;W Þ ¼

R
�R �dcFn

and DðcK; cFn
;W Þ ¼

R
�R cK � dcFn

it follows by

making i ! 1 that

DðcK; cFn
;W Þ ¼

Z
�R

�dcFn
¼

Z
�R

cK � dcFn

so that, by noting 1� cK = 0 and �dcFn
= 0 on �R, we see that
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0 ¼
Z
�R

ð1� cKÞ � dcFn
=

Z
Fn

ð1� cKÞ � dcFn

=
1

n

Z
Fn

�dcFn
¼

1

n

Z
�R

�dcFn

or, equivalently,
R
�R �dcFn

5 0, which contradicts (22), and we are done. �

The following assertions are contained in the above proof. Namely, we have

the following result.

COROLLARY 23. The capacitary function cK for capðKÞ of a nonpolar

compact subset K � �R relative to an end W of R satisfies

0 < cK < 1 ð24Þ

on W and

capðKÞ ¼
Z
�R

�dcK: ð25Þ

We now come to the final stage to state and prove our main result of this

paper to characterize the capacitary function as a solution of a certain mixed

boundary value problem for the Laplace equation with boundary data on the

Royden harmonic boundary (see the announcement [6]).

THEOREM 26 (The main theorem). A function h is the capacitary function

cK for a compact subset K of the Royden harmonic boundary �R of an open

Riemann surface R relative to an end W of R, i.e. h ¼ cK, if and only if h satisfies

the following four conditions: first of all, h 2 HDðW ; @W Þ; second, h has the

normal derivative measure �dh = 0 on �R; third, �dh ¼ 0 on �R nK; fourth and

lastly, h ¼ 1 quasieverywhere on K.

PROOF. If h ¼ cK , then, by Theorem 19, we can see that h satisfies the four

conditions stated in the theorem. Therefore we only have to show that a function

h on W coincides with cK if h satisfies the four conditions in the theorem. Hence,

on setting p ¼ h� cK , we are to show that p 
 0 on R. We also denote by q either

h or cK so that q also satisfies the four conditions in the theorem. Consider the set

F of points � in K such that pð�Þ 6¼ 0, or equivalently jpð�Þj 6¼ 0. Since F is covered

by the union of two sets Fq ðq ¼ h; cKÞ, where Fq :¼ f� 2 K : qð�Þ 6¼ 1g. By the

assumption that capðFqÞ ¼ 0, we see that
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capðF Þ 5 capðFh [ FcK Þ 5 capðFhÞ þ capðFcK Þ ¼ 0;

i.e. F is of capacity zero. For each n 2 N we set Fn :¼ f� 2 K : jpð�Þj = 1=ng,
which is a compact subset of the compact set K since jpj 2 Cð�RÞ � CðKÞ. Clearly
Fn � F , and, for any � 2 F , we can find an n 2 N with � 2 Fn so that

F ¼
[
n2N

Fn: ð27Þ

For each n 2 N , we see that capðFnÞ ¼ 0 along with capðF Þ ¼ 0. Fix arbitrarily an

n 2 N . Then we can find a minimal sequence ðviÞi2N in W ðFnÞ. We write Dð�Þ and
Dð�; �Þ for Dð�;W Þ and Dð�; �;W Þ. We infer that

0 5

Z
Fn

�dq ¼
Z
Fn

vi � dq

¼ Dðvi; qÞ 5 DðviÞ1=2DðqÞ1=2 ! capðFnÞ1=2DðqÞ1=2 ¼ 0

as i ! 1. Hence we see that
R
Fn

�dq ¼ 0 for each n and therefore by (27) we

conclude that
Z
F

�dq ¼ 0 ðq ¼ h; cKÞ:

Recall that �dq ¼ 0 on �R nK and p ¼ 0 on K n F . A fortiori we deduce that

Dðp; qÞ ¼
Z
�R

p � dq ¼
Z
K

p � dq ¼
Z
F

p � dq ¼ 0

for q ¼ h and q ¼ cK . Then

DðpÞ ¼ Dðp; pÞ ¼ Dðp; h� cKÞ ¼ Dðp; hÞ �Dðp; cKÞ ¼ 0;

i.e. Dðp;W Þ ¼ 0 and with pj@W ¼ 0 we can conclude that p 
 0 on W , which was

to be proved. �

There are many applications of the main theorem 26 (or the theorem 19)

expected, among which we state here the following simple and direct one

concerning the harmonic measure and the capacity on �R. The harmonic measure

hm (hm0, resp.) on �R supported by �R relative to ðR; aÞ (ðW;aÞ, resp.), a being a

reference point in R (W , resp.), is a Borel measure on �R such that
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HR
f ðaÞ ¼

Z
�R

fdhm HW
f ðaÞ ¼

Z
�R

fdhm0; resp.

� �
ð28Þ

for every f 2 Cð�RÞ. This has been an important tool in the application of the

Royden compactification theory to the classification theory of Riemann surfaces

(cf. e.g. [7]). For a fixed reference point a 2 W � R, there is a constant c ¼
cðW;aÞ 2 ½1;þ1Þ such that

1

c
5 lim inf

z!�

Gðz; a;W Þ
Gðz; a;RÞ

5 lim sup
z!�

Gðz; a;W Þ
Gðz; a;RÞ

5 1

for every � 2 �R. Based upon this inequality we see at once that

1

c
hmðXÞ 5 hm0ðXÞ 5 hmðXÞ ð29Þ

for every Borel subset X � �R. Observe that the Bergman kernel Bð�; a;W Þ 2
HDðW ; @W Þ satisfies

Dðv;Bð�; a;W Þ;W Þ ¼ vðaÞ = 0

for every v 2 HDðW ; @W Þþ so that the normal derivative measure �dBð�; a;W Þ of
Bð�; a;W Þ exists on �R. Hence, by (28), we see that

Z
�R

udhm0 ¼ uðaÞ ¼ Dðu;Bð�; a;W Þ;W Þ ¼
Z
�R

u � dBð�; a;W Þ

for every u 2 HDðW ; @W Þ. Since HDðW ; @WÞj� is uniformly dense in Cð�RÞ, we
can conclude that

dhm0 ¼ �dBð�; a;W Þ ð30Þ

as measures on �R.

We now have two important measurements capðKÞ and hmðKÞ for every

compact subset K of �R. In many instances we are usually interested not in the

quantities capðKÞ and hmðKÞ themselves but rather in the properties whether

they vanish or not. Concerning the relation between capðKÞ and hmðKÞ, we are

therefore satisfied in many cases with the standard knowledge that capðKÞ ¼ 0

implies hmðKÞ ¼ 0. In view of this, one step further, one naturally expect that if
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ðcapðKnÞÞn2N is a zero sequence, then ðhmðKnÞÞn2N is also a zero sequence, N

being the set of positive integers, and then one might wish to know the relation

between speeds of convergence of these two zero sequences above. The following

inequality contributes to this question.

FACT 31. There is a positive constant � depending only upon the triple

ðR;W; aÞ such that

hmðKÞ 5 � � capðKÞ1=2 ð32Þ

for every compact subset K of �R.

PROOF. Suppose first that capðKÞ ¼ 0. Then there is a sequence

ðunÞn2N � W ðKÞ such that Dðun;W Þ ! 0 ðn ! 1Þ so that unðaÞ ! 0 ðn ! 1Þ.
Observe that

hm0ðKÞ ¼
Z
K

dhm0 5

Z
K

undhm0 ¼ unðaÞ ! 0 ðn ! 1Þ;

i.e. hm0ðKÞ ¼ 0 so that we have by (29) the relation hmðKÞ ¼ 0. A fortiori (32) is

trivially true. Therefore, we have also obtained that a Borel subset X of �R is of

harmonic measure zero if X is polar. Next we consider the case capðKÞ > 0. Then

cK ¼ 1 hm0-a.e. on K and thus, by (30), we have

hm0ðKÞ ¼
Z
K

dhm0 ¼
Z
K

cKdhm0 ¼
Z
K

cK � dBð�; a;W Þ

¼ DðcK;Bð�; a;WÞ;W Þ 5 DðcK ;W Þ1=2 �DðBð�; a;W Þ;W Þ1=2:

From (29) and the above relation it follows that

1

c
hmðKÞ 5 hm0ðKÞ 5 Bða; a;WÞ1=2 � capðKÞ1=2;

which implies (32) with � :¼ cBða; a;W Þ1=2. �
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