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Abstract. We study ineffability, the Shelah property, and indescribability of
Pκλ when cf(λ) < κ. We prove that if λ is a strong limit cardinal with cf(λ) < κ
then the ineffable ideal, the Shelah ideal, and the completely ineffable ideal over
Pκλ are the same, and that it can be precipitous. Furthermore we show that Π1

1-

indescribability of Pκλ is much stronger than ineffability if 2λ = λ<κ.

1. Introduction.

Combinatorial principles for a cardinal, ineffability, and weak compactness
were studied thoroughly in Baumgartner [4]. First we review some definitions:

Definition 1.1. For a regular uncountable cardinal κ,

(1) κ is weakly compact if, for all 〈aα : α < κ〉 with aα ⊆ α, there exists A ⊆ κ

such that {α < κ : A ∩ β = aα ∩ β} is unbounded in κ for all β < κ,
(2) κ is ineffable (respectively almost ineffable) if, for all 〈aα : α < κ〉 with

aα ⊆ α, there exists A ⊆ κ such that {α < κ : A ∩ α = aα} is stationary in
κ (respectively unbounded in κ).

The definition of ineffability and almost ineffability is due to Jensen and
Kunen. Weak compactness originated from the study of compactness of infini-
taly logic (see section 4 in Kanamori [18]). The above combinatorial definition (1)
was found by Baumgartner [4]. Afterward ineffability was translated into Pκλ-
structures by Jech [13], where κ is a regular uncountable cardinal, λ ≥ κ is a
cardinal, and Pκλ = {x ⊆ λ : |x| < κ}. Carr [8] defined the Shelah property, mild
ineffability, and indescribability of Pκλ as a generalization of weak compactness
of a cardinal. These properties of Pκλ have been widely studied when cf(λ) ≥ κ,
and it has been shown that ineffability, almost ineffability, and the Shelah property
form a proper hierarchy. For instance, if κ is almost κ+-ineffable then there are
stationary many α < κ such that α is α+-Shelah.
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On the other hand, Abe [3] showed that ineffability of Pκλ coincides with
almost ineffability if 2λ = λ<κ. Hence the above mentioned hierarchy can be
collapsed if cf(λ) < κ. We will investigate ineffability, the Shelah property, and
indescribability of Pκλ when cf(λ) < κ.

We know λ<κ is the size of Pκλ. We also try to decide the size of Pκλ

under weaker assumptions than before. Solovay [20] proved λ<κ = λ+ if κ is
λ-(super)compact and cf(λ) < κ, where λ+ denotes the minimal cardinal greater
than λ, and Johnson [15] showed that λ<κ = λ holds if κ is λ-Shelah and cf(λ) ≥ κ.
We extend this to the following:

Theorem 1.2.

(1) If κ is mildly λ-ineffable and cf(λ) ≥ κ, then λ<κ = λ, and
(2) if κ is λ-Shelah and cf(λ) < κ then λ<κ = λ+.

The following theorem can be seen as an extension of a theorem of Abe in [3].
This shows that ineffability, the Shelah property, and complete ineffability of Pκλ

can be the same when cf(λ) < κ, and the corresponding ideals can be precipitous.
This contrasts with the fact that the completely ineffable ideal is not precipitous
if cf(λ) ≥ κ.

Theorem 1.3. Assume λ is a strong limit cardinal with cf(λ) < κ. Then

(1) NShκλ = NAInκλ = NInκλ = NCInκλ, and
(2) if κ is λ-ineffable and µ > λ is a Woodin cardinal, then, in V Col(λ+,<µ), κ

remains λ-ineffable and NShκλ =NAInκλ =NInκλ =NCInκλ is precipitous.

NShκλ, NAInκλ, NInκλ, and NCInκλ are ideals corresponding to the Shelah
property, almost ineffability, ineffability, and complete ineffability respectively. To
prove Theorem 1.2, we give a simple characterization of NInκλ. Using this, we have
the consistency of the statement that cf(λ) < κ and κ is completely λ-ineffable
but not mildly λ<κ-ineffable.

Baumgartner defined indescribability of Pκλ and Carr [8] showed that Π1
1-

indescribability is equivalent to the Shelah property if cf(λ) ≥ κ. The next
theorem shows that, if cf(λ) < κ, this equivalence can be false. Moreover Π1

1-
indescribability can be much stronger than ineffability.

Theorem 1.4. Assume 2λ = λ<κ. Then NInκλ ⊆ Πκλ holds, and if κ is
λ-ineffable then NInκλ ( Πκλ.

Πκλ is the ideal corresponding to Π1
1-indescribability.

Part (2) of Theorem 1.2 and Theorem 1.4 are answers to questions of Abe in
[2].
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2. Preliminaries.

We refer the reader to Kanamori [18] for general background and basic
notation. Throughout this paper, κ denotes an inaccessible cardinal and λ

denotes a cardinal equal to or greater than κ. In fact, the properties mentioned
in this paper imply the inaccessibility of κ.

Recall that Pκλ = {x ⊆ λ : |x| < κ}.
In this paper, an ideal (respectively a filter) over Pκλ means a κ-complete

fine ideal (respectively filter) over Pκλ. That is, I ⊆ P(Pκλ) is called an ideal
over Pκλ if the following hold:

(1) ∀X ∈ I∀Y ⊆ X (Y ∈ I),
(2) ∀γ < κ∀{Xξ : ξ < γ} ⊆ I (

⋃
ξ<γ Xξ ∈ I),

(3) ∀a ∈ Pκλ ({x ∈ Pκλ : a * x} ∈ I).

For an ideal I over Pκλ, I∗ denotes the dual filter of I, and I+ = P(Pκλ) \ I.
An element of I+ is called an I-positive set. For X ∈ I+, let I|X = {Y ⊆ Pκλ :
Y ∩X ∈ I}. I|X is the restriction of I to X.

An ideal I over Pκλ is called normal if for every X ∈ I+ and function
f : X → Pκλ with ∀x ∈ X (f(x) ∈ x), there exists α < λ such that {x ∈ X :
f(x) = α} ∈ I+. In a trivial sense, the non-proper ideal is normal.

For a set X ⊆ Pκλ, X is unbounded if ∀x ∈ Pκλ∃y ∈ X (x ⊆ y). X is closed
if for every γ < κ and ⊆-increasing sequence 〈xξ : ξ < γ〉 in X,

⋃
ξ<γ xξ ∈ X.

A closed and unbounded set is called club. A set S ⊆ Pκλ is stationary if S

intersects any club set.
The following fact is well-known:

Fact 2.1. For X ⊆ Pκλ, the following are equivalent:

(1) X is stationary in Pκλ,
(2) for every f : λ × λ → λ, there exists x ∈ X such that x ∩ κ ∈ κ and

f“(x× x) ⊆ x, and
(3) for every f : λ× λ → Pκλ, there exists x ∈ X such that

⋃
f“(x× x) ⊆ x.

The non-stationary ideal over Pκλ, NSκλ, is the set of all X ⊆ Pκλ such
that X is non-stationary in Pκλ.

Fact 2.2. NSκλ is the minimal normal ideal over Pκλ.

Definition 2.3. For x, y ∈ Pκλ, we define x < y if x ⊆ y and |x| < |y ∩ κ|.
For X ⊆ Pκλ, a function f : X → Pκλ is said to be <-regressive if f(x) < x for
every x ∈ X with x ∩ κ 6= ∅.

An ideal I over Pκλ is strongly normal if the following condition is satisfied:
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For every X ∈ I+ and <-regressive function f : X → Pκλ, there exists
y ∈ Pκλ such that {x ∈ X : f(x) = y} ∈ I+.

The non-proper ideal is trivially strongly normal.
For x ∈ Pκλ, we denote the set {y ∈ Pκλ : y < x} by Px∩κx. If x ∩ κ is a

regular cardinal, then properties of Pκλ correspond to the properties of Px∩κx.
For example, X ⊆ Px∩κx is stationary if for all f : x × x → Px∩κx there exists
y ∈ X such that

⋃
f“(y × y) ⊆ y.

For f : Pκλ → Pκλ, we let Cf = {x ∈ Pκλ : f“Px∩κx ⊆ Px∩κx}.

Definition 2.4. WNSκλ = {X ⊆ Pκλ : ∃f : Pκλ → Pκλ (Cf ∩X = ∅)}.

Fact 2.5 (Carr-Levinski-Pelletier [10]).

(1) WNSκλ is the minimal strongly normal ideal over Pκλ.
(2) WNSκλ is a proper ideal if and only if κ is Mahlo.
(3) {x ∈ Pκλ : x ∩ κ is inaccessible and x is < x ∩ κ-closed } ∈ WNS∗κλ.
(4) If π : Pκλ → λ is a bijection, then WNSκλ = NSκλ|{x ∈ Pκλ : π“Px∩κx

= x}.

Fix a bijection π : Pκλ → λ<κ. We define e : Pκλ → Pκλ<κ by e(x)
= π“Px∩κx. We say that e is a canonical map from Pκλ to Pκλ<κ. Note that
a canonical map does not depend on the choice of π in the following sense: Let
π′ be another bijection and e′ a canonical map induced by π′. Then {x ∈ Pκλ :
e(x) = e′(x)} ∈ WNS∗κλ.

Fact 2.6 (Abe [1]).

(1) {x ∈ Pκλ : e(x) ∩ λ = x} ∈ WNS∗κλ.
(2) {x ∈ Pκλ<κ : e(x ∩ λ) = x} ∈ WNS∗κλ<κ .
(3) For X ⊆ Pκλ, X ∈ WNSκλ if and only if e“X ∈ WNSκλ<κ .

Ineffability and the Shelah property of Pκλ are defined in the following.

Definition 2.7 (Carr [8], [9], Jech [13]). Let X be a subset of Pκλ.

(1) X is ineffable (respectively almost ineffable) if, for all 〈ax : x ∈ X〉 with
ax ⊆ x, there exists A ⊆ λ such that {x ∈ X : A ∩ x = ax} is stationary
(respectively unbounded).

(2) X has the Shelah property, or simply X is Shelah if, for all 〈fx : x ∈ X〉 with
fx : x → x, there exists f : λ → λ such that, for all y ∈ Pκλ, the set
{x ∈ X : f |y = fx|y} is unbounded.

(3) X is mildly ineffable if, for all 〈ax : x ∈ X〉 with ax ⊆ x, there exists A ⊆ λ

such that, for all y ∈ Pκλ, the set {x ∈ X : A ∩ y = ax ∩ y} is unbounded.
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We say that κ is λ-ineffable (almost λ-ineffable, λ-Shelah, mildly λ-ineffable respec-
tively) if Pκλ is ineffable (almost ineffable, Shelah, mildly ineffable respectively).

Notice that the Shelah property implies mildly ineffability,
NInκλ (respectively NAInκλ, NShκλ) is the set of all X ⊆ Pκλ such that X

is not ineffable (respectively almost ineffable, Shelah).

Fact 2.8 (Carr [8], [9]).

(1) κ is weakly compact ⇐⇒ κ is κ-Shelah ⇐⇒ κ is mildly κ-ineffable.
(2) κ is ineffable (respectively almost ineffable) ⇐⇒ κ is κ-ineffable (respec-

tively almost κ-ineffable).
(3) NShκλ, NAInκλ, and NInκλ are normal ideals over Pκλ. Moreover these

are strongly normal if cf(λ) ≥ κ.
(4) If κ is mildly λ-ineffable, then, for X ⊆ Pκλ, X is mildly ineffable if and

only if X is unbounded.

Fact 2.9 (Carr [9]). For X ⊆ Pκλ, X is ineffable (almost ineffable) if and
only if, for all 〈fx : x ∈ X〉 with fx : x → x, there exists f : λ → λ such that
{x ∈ X : f |x = fx} is stationary (unbounded). Hence NShκλ ⊆ NAInκλ ⊆ NInκλ

holds.

The next fact follows from the normality of NShκλ and a standard coding
argument.

Fact 2.10. For X ⊆ Pκλ, X is Shelah if and only if, for any 〈fx : x ∈ X〉
with fx : x → x and 〈gx : x ∈ X〉 with gx : x → x, there exists f : λ → λ

and g : λ → λ such that {x ∈ X : f |y = fx|y, g|y = gx|y} is unbounded for all
y ∈ Pκλ.

For an infinite set X, let [X]ω be the set of all x ⊆ X such that |x| = ω.
F : [X]ω → X is called an ω-Jonsson function for X if the following holds: There
is no Y ( X such that F“[Y ]ω ⊆ Y and |Y | = |X|. It is well-known that every
infinite set X has an ω-Jonsson function for X (see Erdös-Hajnal [11]).

Fact 2.11 (Abe [2], Johnson [16]). Let µ be a cardinal with µ ≤ λ.

(1) If F : [µ]ω → µ is an ω-Jonsson function for µ, then {x ∈ Pκλ : F“[x ∩ µ]ω

⊆ x ∩ µ and F |[x ∩ µ]ω is ω-Jonsson for x ∩ µ} ∈ NSh∗κλ.
(2) If µ is regular, then {x ∈ Pκλ : ot(x ∩ µ) is regular} ∈ NSh∗κλ, where ot(x)

denotes the order type of x.

3. Basic properties of ineffabilities.

In this section, we will show some basic properties of ineffabilities of Pκλ.
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First we prove the strong normality of NShκλ, NAInκλ, and NInκλ without
the condition that cf(λ) ≥ κ.

Proposition 3.1. NShκλ, NAInκλ, and NInκλ are strongly normal ideals.

Proof. We will only show the strong normality of NShκλ. The others can
be verified by a similar argument. Let X ∈ NSh+

κλ and let g : X → Pκλ be
a <-regressive function. By the normality of NShκλ, we may assume that there
exists µ < κ such that ot(g(x)) = µ for all x ∈ X. Furthermore we may assume
µ ⊆ x for all x ∈ X. For each x ∈ X, let hx : µ → x be an increasing enumerating
map of g(x).

Let Xa = {x ∈ X : g(x) = a}. Suppose Xa ∈ NShκλ for all a ∈ Pκλ. For
each a ∈ Pκλ, let 〈fa

x : x ∈ Xa〉 be a counterexample to the Shelah property of Xa.
Consider the sequences 〈fg(x)

x : x ∈ X〉 and 〈hx : x ∈ X〉. By the Shelah property
of X, there exist f : λ → λ and h : µ → λ such that {x ∈ X : f |y = f

g(x)
x |y,

h|y = hx|y} is unbounded for all y ∈ Pκλ. Let b = h“µ ∈ Pκλ. We will prove that
{x ∈ Xb : f |y = f b

x|y} is unbounded for all y ∈ Pκλ, which is a contradiction. Let
y ∈ Pκλ. We may assume that µ ⊆ y. Then {x ∈ X : f |y = f

g(x)
x |y, h|y = hx|y}

is unbounded. Let x ∈ X be such that y ⊆ x, h|y = hx|y, and f |y = f
g(x)
x |y. Since

µ ⊆ y, we have h = h|y = hx|y = hx, and this means that g(x) = b. Therefore
f |y = f

g(x)
x |y = f b

x|y holds. ¤

Next we show a variation of (UP)κλX in Carr [8] from mild ineffability. We
will use this in the next section.

Recall that a filter over Pκλ means a κ-complete fine filter.
For a regular uncountable cardinal θ, Hθ denotes the set of all x such that

|TC(x)| < θ where TC(x) is the minimal transitive set containing x. It is known
that Hθ is a model of ZFC−Power Set Axiom.

Proposition 3.2. Let θ be a sufficiently large regular cardinal, and let N

be any expansion of 〈Hθ,∈, κ, λ〉. Let X ⊆ Pκλ and M ≺ N be such that X ∈ M

and |M | = λ ⊆ M . Then X is mildly ineffable if and only if there exists a proper
filter F over Pκλ such that X ∈ F and F is an M -ultrafilter. Here “F is an M -
ultrafilter” means that, for all X ∈ M ∩P(Pκλ), either X ∈ F or Pκλ \X ∈ F .

Proof. Assume X is mildly ineffable. We will construct an M -ultrafilter.
Let 〈Xα : α < λ〉 be an enumeration of P(Pκλ) ∩ M . For each x ∈ X, let
ax = {α ∈ x : x ∈ Xα}. Then, by the mild ineffability of X, there exists A ⊆ λ

such that {x ∈ X : ax ∩ y = A ∩ y} is unbounded for all y ∈ Pκλ. Let F be the
filter over Pκλ generated by {X ∩ ⋂

α∈y Xα : y ∈ PκA}, that is Y ∈ F if and
only if X ∩⋂

α∈y Xα ⊆ Y for some y ∈ PκA. It is clear that F is a κ-complete
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filter over Pκλ and X ∈ F . Notice that Xα ∈ F for all α ∈ A. We check that F

is a proper fine filter and an M -ultrafilter.

Fineness. Let α < λ. Since α ∈ λ ⊆ M , there exists β < λ such that
Xβ = {x ∈ Pκλ : α ∈ x}. Take x ∈ X such that α, β ∈ x and A∩{β} = ax∩{β}.
Since α ∈ x, we have x ∈ Xβ , so β ∈ ax and β ∈ A.

Properness. It is enough to show that X ∩⋂
α∈y Xα 6= ∅ for all y ∈ PκA.

For y ∈ PκA, we can pick x ∈ X such that y ⊆ x and ax ∩ y = A ∩ y = y. Then
x ∈ ⋂

α∈ax
Xα ⊆

⋂
α∈y Xα, thus X ∩⋂

α∈y Xα 6= ∅.
Now we check that F is an M -ultrafilter. Let Y ∈ P(Pκλ)∩M . Then there

are α, β < λ such that Xα = Y and Xβ = Pκλ \ Y . Take x ∈ Pκλ such that
α, β ∈ x and A∩ {α, β} = ax ∩ {α, β}. Then either x ∈ Xα or x ∈ Xβ hold, hence
we have α ∈ ax or β ∈ ax. Thus α ∈ A or β ∈ A.

To show the converse, assume that there exists a proper M -ultrafilter F . By
the elementarity of M , it is enough to show that, for all 〈ax : x ∈ Pκλ〉 ∈ M with
ax ⊆ x, there exists A ⊆ λ such that {x ∈ X : ax∩y = A∩y} is unbounded for all
y ∈ Pκλ. Fix 〈ax : x ∈ Pκλ〉 ∈ M . Since λ ⊆ M and F is an M -ultrafilter with
X ∈ F , for each α < λ, either {x ∈ X : α ∈ ax} ∈ F or {x ∈ Pκλ : α /∈ ax} ∈ F .
Let A = {α < λ : {x ∈ X : α ∈ ax} ∈ F}. Then it is not hard to see that
{x ∈ X : ax ∩ y = A ∩ y} ∈ F , so the set is unbounded for all y ∈ Pκλ. ¤

4. The Shelah property, mild ineffability, and the size of Pκλ.

Johnson [16] showed that λ<κ = λ holds if κ is λ-Shelah and cf(λ) ≥ κ. We
see that the same result holds for mild ineffability, and moreover λ<κ = λ+ holds
if κ is λ-Shelah and cf(λ) < κ.

Proposition 4.1. Assume κ is mildly λ-ineffable and cf(λ) ≥ κ. Then
λ<κ = λ.

Proof. Mild ineffability is downward closed, that is, if Pκλ is mildly inef-
fable and κ ≤ λ′ < λ then Pκλ′ is mildly ineffable. Thus it is enough to prove the
case when λ is regular. We will show that there exists an unbounded subset X of
Pκλ such that |X| = λ. If this can be shown, then Pκλ =

⋃{P(x) : x ∈ X},
which proves λ<κ ≤ λ · κ<κ = λ.

Let θ be a sufficiently large regular cardinal. Let M ≺ 〈Hθ,∈, κ, λ〉 be such
that λ ⊆ M and |M | = λ. Then, by Proposition 3.2, we can find a proper κ-
complete fine M -ultrafilter F over Pκλ. M is not transitive, but we can take an
ultrapower M by F in the usual way. Moreover it is not hard to see that ÃLoś’s
theorem holds between M and Ult(M, F ): For any formula ϕ and f1, . . . fn ∈ M

∩PκλM , {x ∈ Pκλ : M ² ϕ(f1(x), . . . , fn(x))} ∈ F if and only if Ult(M, F )
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² ϕ([f1], . . . , [fn]), where [f ] is an equivalence class of f . Since F is κ-complete in
V , Ult(M, F ) is well-founded. Let N be the transitive collapse of Ult(M, F ). Now
we identify N with Ult(M, F ). Let j : M → N be the corresponding elementary
embedding. Since F is fine, we have that j“λ ⊆ [fid], where fid is the identity
map on Pκλ. Furthermore F is κ-complete and |[fid]|N < j(κ), hence the critical
point of j is κ. Since sup(j“λ) ≤ sup([fid]) and {x ∈ Pκλ : sup(x) < λ} ∈ F , we
have sup(j“λ) < j(λ). Notice that we do not require that j“λ ∈ N , but we have
j“x ∈ N for all x ∈ Pκλ ∩M .

We check that j“λ is < κ-closed, that is, for all c ⊆ j“λ, sup(c) ∈ j“λ if
ot(c) < κ. Let α < λ be the minimal ordinal such that sup(c) ≤ j(α). Then
sup(c) = sup(j“α). Hence cf(α) < κ. Take d ∈ M such that ot(d) = cf(α) and
d is unbounded in α. Then j(α) = sup(j(d)) = sup(j“d) = sup(j“α) = sup(c).
Therefore we have sup(c) ∈ j“λ.

Now take an arbitrary stationary subset S of {α < λ : cf(α) < κ} with S ∈ M .

Claim 4.2. j(S) ∩ sup(j“λ) is stationary in sup(j“λ) in V .

Proof of the Claim 4.2. Let C be a <κ-club subset of sup(j“λ). Since
j“λ is also < κ-closed, we may assume that C ⊆ j“λ. Let D = j−1“C. Then
D is unbounded in λ. Thus there exists α ∈ S such that D ∩ α is unbounded in
α. Since α ∈ M , we can take an unbounded subset b of α such that b ∈ M and
ot(b) = cf(α). Then j(α) = sup j(b) = sup(j“b) = sup(j“α). D ∩ α is unbounded
in α, hence j“(D ∩ α) = j“D ∩ j(α) is unbounded in j(α). Since j“D ⊆ C, we
have j(α) ∈ C. Hence we have j(α) ∈ j(S) ∩ C. ¤

Now fix pairwise disjoint stationary subsets 〈Sα : α < λ〉 of {β < λ : cf(β)
< κ} with 〈Sα : α < λ〉 ∈ M . For β < λ with ω < cf(β) < κ, let cβ = {α < β :
Sα ∩ β is stationary in β}. Since the Sα’s are pairwise disjoint, we have |cβ |
≤ cf(β) < κ. Now let X = {cβ : β < λ, ω < cf(β) < κ}. Then X is a subset of
Pκλ with |X| = λ. Finally we show that X is unbounded to complete the proof.

Let f be a function on Pκλ such that f ∈ M and [f ] = sup(j“λ). Since
j“λ ⊆ [fid], [fid]∩ [f ] is unbounded in [f ]. Because |[fid]|N < j(κ), cfN ([f ]) < j(κ)
and so {x ∈ Pκλ : cf(f(x)) < κ} ∈ F . Take an arbitrary y ∈ Pκλ. Let α ∈ y.
By Claim 4.2, j(Sα) ∩ sup(j“λ) is stationary. Hence {x ∈ Pκλ : Sα ∩ f(x) is
stationary in f(x)} ∈ F . By the κ-completeness of F , we have {x ∈ Pκλ : ∀α
∈ y (Sα ∩ f(x) is stationary in f(x)), cf(f(x)) < κ} ∈ F . Therefore we can take
x ∈ Pκλ such that ω < cf(f(x)) < κ and y ⊆ cf(x) ∈ X. This shows X is
unbounded. ¤

The proof of the above proposition shows that a simultaneous stationary
reflection principle of {α < λ : cf(α) < κ} follows from mild λ-ineffability. The
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following is an extension of Johnson’s result [15]:

Proposition 4.3. Assume λ is regular and κ is mildly λ-ineffable. Let
δ < κ and 〈Sα : α < δ〉 be stationary subsets of {β < λ : cf(β) < κ}. Then, for
every γ < κ, there exists β < λ such that γ < cf(β) and Sα ∩ β is stationary in β

for all α < δ.

Now we prove that the Shelah property of Pκλ with cf(λ) < κ implies that
λ<κ = λ+.

Proposition 4.4. Assume κ is λ-Shelah and cf(λ) < κ. Then λ<κ = λ+.

Proof. This proof is based on an argument of Tryba [21]. First we
introduce a notion of scale. Fix an increasing sequence of regular cardinals
〈λi : i < cf(λ)〉 which converges to λ. We denote Πi<cf(λ)λi by Πλi. For f, g ∈ Πλi,
let f <∗ g if and only if {i < cf(λ) : f(i) ≥ g(i)} is bounded in cf(λ). We say that
〈fξ : ξ < λ+〉 is a scale for Πλi if the following hold:

(1) fξ ∈ Πλi for all ξ < λ+,
(2) for ξ < η < λ+, fξ <∗ fη, and
(3) for all f ∈ Πλi, there exists ξ < λ+ such that f <∗ fξ.

It is a basic fact of Shelah’s PCF-theory that there exists a sequence of regular
cardinals 〈λi : i < cf(λ)〉 and a scale 〈fξ : ξ < λ+〉 for Πλi (see Burke-Magidor [6]
or Shelah [19]).

Now fix an increasing sequence of regular cardinals 〈λi : i < cf(λ)〉 which con-
verges to λ and a scale 〈fα : α < λ+〉 for Πλi. For each λi, fix an ω-Jonsson
function hi : [λi]ω → λi. Let e : Pκλ → Pκλ<κ be a canonical map. Let
X ⊆ Pκλ be the set of all x ∈ Pκλ such that:

• x ∩ κ is an inaccessible > cf(λ),
• ot(x ∩ λi) is regular for all i < cf(λ),
• hi|[x ∩ λi]ω is ω-Jonsson for x ∩ λi, and
• e(x) ∩ λ = x.

By Fact 2.6, 2.11, and Proposition 3.1, we have X ∈ NSh∗κλ. We consider the
set e“X = {e(x) : x ∈ X}. Note that this set is a WNSκλ<κ -positive set,
so it is stationary in Pκλ<κ. Fix a sufficiently large regular cardinal θ and
let C = {M ∩ λ<κ : M ≺ 〈Hθ,∈〉, |M | < κ, M ∩ λ<κ ∈ e“X, {{λi : i

< cf(λ)}, 〈fα : α < λ+〉, π, e} ⊆ M and M ∩ λ<κ is σ-closed }. Then C is sta-
tionary in Pκλ<κ. Note that if M ∩ λ<κ ∈ C then M ∩ λ ∈ X. Moreover by the
definition of e, we have that [M ∩ λ]<M∩κ ⊆ M .

The following claim assures that {x ∩ λ+ : x ∈ C} is an unbounded subset of
Pκλ+ with size λ+, which completes the proof.
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Claim 4.5. Let M ∩ λ<κ ∈ C and M ′ ∩ λ<κ ∈ C. If sup(M ∩ λ+)
= sup(M ′ ∩ λ+), then M ∩ λ+ = M ′ ∩ λ+.

Proof of the Claim 4.5. Let M ∩ λ<κ, M ′ ∩ λ<κ ∈ C be such that
sup(M ∩ λ+) = sup(M ′ ∩ λ+). Let N = M ∩ M ′. Note that sup(N ∩ λ+)
= sup(M ∩ λ+) and N ∩ λi is closed under hi.

Subclaim 4.6. If M ∩ λ = N ∩ λ, then M ∩ λ+ = N ∩ λ+.

Proof of the Subclaim 4.6. Choose any α ∈ (M ∩ λ+) \ λ. We have
β ∈ N ∩ λ+ such that α < β. Let τ ∈ N be a bijection from λ to β. Since α < β

and τ ∈ M , there exists δ ∈ M ∩λ = N ∩λ such that π(δ) = α, hence α ∈ N ∩λ+.
¤

We show M ∩ λ = N ∩ λ. To show this, we need the following claim.

Subclaim 4.7. {i < cf(λ) : sup(N ∩λi) < sup(M ∩λi)} is bounded in cf(λ).

Proof of the Subclaim 4.7. Assume otherwise. Then define f ∈ Πλi

by f(i) ∈ (M ∩ λi) \ sup(N ∩ λi) if sup(N ∩ λi) < sup(M ∩ λi) and f(i) = 0
otherwise. Then f ∈ M since M ∩λ is closed under <(M ∩κ)-sequences. Because
〈fα : α < λ〉 is a scale for Πλi, there exists α ∈ M ∩λ+ such that f <∗ fα, that is,
{i < cf(λ) : f(i) ≥ fα(i)} is bounded in cf(λ). Since sup(M ∩λ+) = sup(N ∩λ+),
there exists β ∈ N ∩ λ+ such that α < β. f < fα ≤∗ fβ , so we can take i < cf(λ)
such that f(i) ∈ (M ∩ λi) \ sup(N ∩ λi) and f(i) < fβ(i). However fβ ∈ N , hence
fβ(i) ∈ N ∩ λi. This is a contradiction. ¤

We return to the proof of the Claim. Let i < cf(λ) be such that sup(M ∩ λi)
= sup(N ∩ λi). Since ot(M ∩ λi) is regular, ot(N ∩ λi) is regular. Thus |M ∩ λi|
= |N ∩ λi|. Since hi|[M ∩λi]ω is ω-Jonsson and N ∩λi is closed under hi, we have
M ∩λi = N ∩λi. There are unboundedly many such i, hence M ∩λ = N ∩λ. We
can show that M ′ ∩ λ = N ∩ λ by the same argument. Thus M ∩ λ+ = M ′ ∩ λ+.

¤

The following question is natural, but the author cannot answer:

Question 1. Does λ<κ = λ+ follow from κ is mildly λ-ineffable and cf(λ)
< κ?

Of course λ<κ = λ+ follows from mild ineffability of Pκλ<κ when cf(λ) < κ.
Unfortunately, however, mild ineffability of Pκλ does not always lift up to that
of Pκλ<κ. (See the next section.)
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5. The equivalence of the Shelah property and ineffability.

Abe [3] showed that ineffability and almost ineffability of Pκλ are equivalent
if 2λ = λ<κ. We will see that if λ is strong limit and cf(λ) < κ then ineffability
and the Shelah property are equivalent. First we will check that such equivalence
is impossible if cf(λ) ≥ κ. Proposition 5.1 (3) was proved in Abe [3]. We present
here a simple proof.

Proposition 5.1. Let X be a subset of Pκλ.

(1) If X is Shelah, then {x ∈ X : X ∩Px∩κx is not Shelah in Px∩κx} has the
Shelah property.

(2) If X is almost ineffable, then {x ∈ X : X ∩Px∩κx is not almost ineffable
in Px∩κx} is almost ineffable.

(3) If X is ineffable, then {x ∈ X : X ∩Px∩κx is not ineffable in Px∩κx} is
ineffable.

Proof. We will only show (3). (1) and (2) can be proved by a similar
argument. Suppose X ⊆ Pκλ is ineffable. We may assume that x∩κ is inaccessible
for all x ∈ X. Let Y = {x ∈ X : X ∩Px∩κx is not ineffable in Px∩κx}.

Let D = Pκλ ∪ {λ}. Then the relation < on Pκλ can be extended to D

by identifying λ as the maximal element of D with respect to the relation <.
We consider Pκλ as Pλ∩κλ. Note that the relation < on D is well-founded.
To show that Y is ineffable, we prove, by using induction on <, that, for any
x ∈ D ∩ (X ∪ {λ}), Y ∩Px∩κx is ineffable in Px∩κx if X ∩Px∩κx is ineffable.
This is sufficient to show the proposition. Let x ∈ X∪{λ} and assume this claim is
verified for all y ∈ X with y < x. Suppose X∩Px∩κx is ineffable but Y ∩Px∩κx is
not ineffable. Let 〈az : z ∈ Y ∩Px∩κx〉 be a sequence which witnesses Y ∩Px∩κx

is not ineffable. Since X ∩ Px∩κx is ineffable but Y ∩ Px∩κx is not ineffable,
Z = (X \ Y ) ∩ Px∩κx is ineffable. For each y ∈ Z, X ∩ Py∩κy is ineffable in
Py∩κy. Hence Y ∩Py∩κy is ineffable by the induction hypothesis. Hence we can
apply the ineffability of Y ∩ Py∩κy to 〈az : z ∈ Y ∩ Py∩κy〉. So there exists
by ⊆ y such that {z ∈ Y ∩Py∩κy : by ∩ z = az} is stationary in Py∩κy. Since
Z is ineffable, there exists B ⊆ x such that {y ∈ Z : B ∩ y = by} is stationary in
Px∩κx. We check that {z ∈ Y ∩Px∩κx : az = B ∩ z} is stationary, which is a
contradiction. Take f : x × x → x. We want to find z ∈ Y ∩ Px∩κx such that
B ∩ z = az, z ∩ κ ∈ κ, and f“(z× z) ⊆ z. Since {y ∈ Z : B ∩ y = by} is stationary
in Px∩κx, there exists y ∈ Z such that B ∩ y = by and f“(y × y) ⊆ y. Because
{z ∈ Y ∩Py∩κy : by ∩z = az} is stationary in Py∩κy, we can take z ∈ Y ∩Py∩κy

such that az = by ∩ z = B ∩ z, z ∩ κ ∈ κ, and f“(z × z) ⊆ z. This completes the
proof. ¤



946 T. Usuba

Corollary 5.2. Assume cf(λ) ≥ κ.

(1) If κ is λ-Shelah, then NShκλ ( NAInκλ.
(2) If κ is almost λ-ineffable, then NAInκλ ( NInκλ.

Proof.

(1). By Abe [3], {x ∈ Pκλ : x ∩ κ is x-Shelah} ∈ NAIn∗κλ. Hence by
Proposition 5.1, {x ∈ Pκλ : x ∩ κ is not x-Shelah} is Shelah but not almost
ineffable.

(2). By Kamo [17], {x ∈ Pκλ : x ∩ κ is almost x-ineffable} ∈ NIn∗κλ. So
{x ∈ Pκλ : x ∩ κ is not almost x-ineffable} is almost ineffable but not ineffable.

¤

Proposition 5.3. Assume λ is a strong limit cardinal with cf(λ) < κ

(so 2λ = λ<κ holds). Let 〈Ax : x ∈ Pκλ〉 be an enumeration of P(λ) and X

= {x ∈ Pκλ : ∀a ⊆ x∃y < x (a = Ay ∩ x)}. Then NShκλ = NInκλ = NAInκλ

= WNSκλ|X. In particular the following are equivalent :

(1) κ is λ-Shelah.
(2) κ is almost λ-ineffable.
(3) κ is λ-ineffable.
(4) X ∈ WNS+

κλ.

Proof. Since WNSκλ ⊆ NShκλ ⊆ NAInκλ ⊆ NInκλ, it is enough to show
that X ∈ NSh∗κλ and NInκλ ⊆ WNSκλ|X. First we show that X ∈ NSh∗κλ. Let
〈Bξ : ξ < λ〉 be an enumeration of all bounded subsets of λ. First we claim that
Z = {x ∈ Pκλ : ∀a ⊆ x (a is bounded in λ → ∃ξ ∈ x(a = Bξ ∩ x))} ∈ NSh∗κλ.
Assume otherwise, then by the normality of NShκλ, there exists α < λ such that
Y = {x ∈ Pκλ : ∃a ⊆ x ∩ α∀ξ ∈ x(a 6= Bξ ∩ x)} ∈ NSh+

κλ. For each x ∈ Y , let
ax ⊆ x∩α be a witness to x ∈ Y . Let fx : x∩α → 2 be the characteristic function
of ax and gx : x → x a function such that gx(β) ∈ ax4(Bβ ∩x) for each β ∈ x. By
the Shelah property of Z, there exist f : α → 2 and g : λ → λ such that {x ∈ Y :
fx|y = f |y and gx|y = g|y} is unbounded for all y ∈ Pκλ. Let B = f−1“{1}.
B ⊆ α, so B = Bξ for some ξ < λ. Take y ∈ Pκλ such that ξ ∈ y and y is
closed under g. Take x ∈ Y such that y < x, fx|y = f |y, and gx|y = g|y. Then
Bξ∩x 6= ax because ξ ∈ y ⊆ x. Since f |x is the characteristic function of Bξ∩x, fx

is that of ax, and gx(ξ) ∈ ax4(Bξ ∩ x), we have fx(gx(ξ)) 6= f(gx(ξ)). Since ξ ∈ y

and y is closed under g, we have gx(ξ) = g(ξ) ∈ y. But then fx(g(ξ)) = f(g(ξ)),
which is a contradiction.

Second we show that X ∈ NSh∗κλ. Fix an increasing sequence 〈λi : i < cf(λ)〉
which converges to λ. Assume X /∈ NSh∗κλ. Then Z ′ = {x ∈ Z : {λi : i

< cf(λ)} ⊆ x and ∃a ⊆ x∀y < x (a 6= Ay ∩ x)} ∈ NSh+
κλ. For each x ∈ Z ′,
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let ax ⊆ x be a witness to x ∈ Z ′. For x ∈ Z ′ and i < cf(λ), take ξx
i ∈ x such

that ax ∩ λi = Aξx
i
∩ x. Then, by the strong normality of NShκλ, there exists

〈ξi : i < cf(λ)〉 such that {x ∈ Z ′ : ∀i < cf(λ) (ξx
i = ξi)} ∈ NSh+

κλ. Note that if
i < j < cf(λ), then Aξi

= Aξj
∩ λi. Thus we can define A ⊆ λ by A∩ λi = Aξi

for
all i < cf(λ). Take y ∈ Pκλ such that A = Ay. It is easy to see that for x ∈ Z ′,
ax = Ay ∩ x if ξx

i = ξi for all i < cf(λ), which is a contradiction. Thus we have
X ∈ NSh∗κλ.

Last we show that NInκλ ⊆ WNSκλ|X. Let W ∈ (WNSκλ|X)+. We may
assume W ⊆ X. We claim that W is ineffable. To see this, take an arbitrary
sequence 〈ax : x ∈ W 〉 such that ax ⊆ x for all x ∈ W . By the definition of X,
for each x ∈ W there exists yx < x such that ax = Ayx

∩ x. Since W ∈ WNS+
κλ,

there exists y ∈ Pκλ such that W ′ = {x ∈ W : yx = y} ∈ WNS+
κλ. Then W ′ is

stationary and it is clear that ax = Ay ∩ x for all x ∈ W ′. ¤

Remark. If we replace “λ is strong limit” by “2λ = λ<κ” in the as-
sumption of the previous proposition, then we can obtain that NAInκλ = NInκλ

= WNSκλ|X. The proof that X ∈ NAIn∗κλ is easy, so we omit it.

Corollary 5.4. Assume 2λ = λ<κ. For any Y ∈ NIn+
κλ (= NAIn+

κλ) and
〈ax : x ∈ Y 〉 with ax ⊆ x, there exists A ⊆ λ such that {x ∈ Y : A ∩ x = ax}
∈ NIn+

κλ.

Proof. By the above remark, NInκλ = NAInκλ = WNSκλ|X holds, where
X is as in Proposition 5.3. We can argue as in the proof of NInκλ ⊆ WNSκλ|X in
Proposition 5.3. ¤

Next we turn to completely ineffability of Pκλ.

Definition 5.5. Let I be an ideal over Pκλ. W is called an I-partition if
the following hold:

(1) W ⊆ I+,
(2) ∀Y ∈ I+∃Z ∈ W (Y ∩ Z ∈ I+), and
(3) ∀Y, Z ∈ W (Y 6= Z ⇒ Y ∩ Z ∈ I).

Let µ and ν be cardinals. An ideal I over Pκλ is called (µ, ν)-distributive if,
for every X ∈ I+ and every 〈Wα : α < µ〉 where each Wα is an I-partition with
|Wα| ≤ ν, there exists Y ∈ (I|X)+ such that Y satisfies the following:

For every α < µ, there exists Z ∈ Wα such that Y \ Z ∈ I.

Fact 5.6 (Johnson [16]). Let I be an ideal over Pκλ. Then the following
are equivalent:

(1) I is normal and (λ, λ)-distributive.
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(2) For all X ∈ I+ and 〈ax : x ∈ X〉 with ax ⊆ x, there exists A ⊆ λ such that
{x ∈ X : A ∩ x = ax} ∈ I+.

We say that X ⊆ Pκλ is completely ineffable if there exists a proper (λ, λ)-
distributive normal ideal I such that X ∈ I+, and that κ is completely λ-ineffable
if Pκλ is completely ineffable. Let NCInκλ = {X ⊆ Pκλ : X is not completely
ineffable}. Then NCInκλ is the minimal normal (λ, λ)-distributive ideal and, equiv-
alently, is the minimal normal ideal which satisfies (2) of the above fact. Clearly
NInκλ ⊆ NCInκλ holds.

Proposition 5.7. Assume cf(λ) ≥ κ and κ is λ-ineffable. Then NInκλ

( NCInκλ.

Proof. By Kamo [17], {x ∈ Pκλ : x ∩ κ is x-ineffable} ∈ NCIn∗κλ. Hence
the assertion follows from Proposition 5.1. ¤

The next proposition can be easily verified by using Corollary 5.4 and Fact
5.6.

Proposition 5.8. Assume 2λ = λ<κ. Then NInκλ = NCInκλ holds. Thus
κ is λ-ineffable if and only if κ is completely λ-ineffable under the assumption
2λ = λ<κ.

Now we show the preservation of ineffability under certain forcing methods.
For a poset P and an ordinal α, Γα(P ) denotes the following 2-player game:

Player I : p0 p1 · · · pω+1 · · ·
Player II : q0 q1 · · · qω qω+1 · · ·

Player I and II choose elements of P alternately such that p0 ≥ q0 ≥ p1 ≥ q1 ≥ · · · .
At limit stage η, only Player II moves and Player II chooses a lower bound qη of
{qξ : ξ < η}. Player II wins if this game can be continued to length α, that is,
Player II can choose qβ for all β < α. A poset P is α-strategically closed if Player
II has a winning strategy in Γα(P ). It is well-known that α-strategically closed
posets add no new < α-sequences.

Proposition 5.9. Assume λ is a strong limit cardinal with cf(λ) < κ. If κ is
λ-ineffable (equivalently, λ-Shelah, almost λ-ineffable, or completely λ-ineffable),
then °P “κ is λ-ineffable” for every λ+-strategically closed poset P .

Proof. By Proposition 4.4, we have 2λ = λ<κ = λ+. Let 〈Ax : x ∈ Pκλ〉
be an enumeration of P(λ) and define X as in Proposition 5.3. Then NInκλ
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= WNSκλ|X.
Since λ+-strategically closed forcing adds no new subsets of λ, 〈Ax : x ∈ Pκλ〉

remains an enumeration of P(λ) in V P . Thus it is enough to show that X

∈ WNS+
κλ in V P . Let p ∈ P , and let ḟ be a P -name such that p °“ḟ : Pκλ →

Pκλ”. Let 〈xα : α < λ+〉 be an enumeration of Pκλ. Using the λ+-strategic
closedness of P , we construct 〈yα ∈ Pκλ : α < λ+〉 and a descending sequence
〈pα ∈ P : α < λ+〉 such that p0 ≤ p and pα °“ḟ(xα) = yα” for all α < λ+.
Now define g : Pκλ → Pκλ by g(xα) = yα. Since X ∈ WNS+

κλ, there exists
x ∈ X such that g“Px∩κx ⊆ Px∩κx. Take a sufficiently large β < λ+ such that
Px∩κx ⊆ {xα : α < β}. Then pβ °“ḟ |Px∩κx = g|Px∩κx”. Hence we conclude
that pβ °“x ∈ X ∩ Cḟ .” ¤

By Proposition 5.9, we have the following corollary:

Corollary 5.10. Assume λ is a strong limit cardinal with cf(λ) < κ and
κ is λ-ineffable. Then there exists a poset which preserves all cofinalities and
forces that κ remains completely λ-ineffable and {α < λ+ : cf(α) < κ} has a
non-reflecting stationary subset.

Proof. Let P be the standard forcing notion which adds a non-reflecting
stationary subset of {α < λ+ : cf(α) < κ} (see Burgess [5]). This poset is λ+-
strategically closed, hence, by Lemma 5.9, κ is completely λ-ineffable in V P . ¤

Abe [3] proved that λ-ineffability does not imply λ<κ-ineffability if cf(λ) < κ.
We can improve Abe’s result to the following:

Corollary 5.11. Relative to a certain large cardinal assumption, it is con-
sistent that κ is completely λ-ineffable with cf(λ) < κ, but not mildly λ<κ-ineffable.

Proof. We suppose that κ is completely λ-ineffable with cf(λ) < κ and that
{α < λ+ : cf(α) < κ} has a non-reflecting stationary subset. This is consistent
by Corollary 5.10. By Proposition 4.4, λ<κ = λ+ holds. By Proposition 4.3, κ is
not mildly λ+-ineffable. Hence, in this model, κ is completely λ-ineffable but not
mildly λ<κ-ineffable. ¤

Now we investigate the precipitousness of NInκλ.

Definition 5.12. For an ideal I over Pκλ, I is said to be precipitous if,
for every X ∈ I+ and for every I-partitions 〈Wn : n < ω〉 such that ∀n ∈ ω∀Y
∈ Wn+1∃Z ∈ Wn (Y ⊆ Z), there exists a sequence 〈Xn : n < ω〉 such that Xn ∈ Wn

for all n < ω, X ⊇ X0 ⊇ X1 ⊇ · · · ⊇ Xn ⊇ · · · , and
⋂

n<ω Xn 6= ∅.

For an information about precipitousness, see section 22 in Jech [14].
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Fact 5.13 (Abe [3]). If cf(λ) ≥ κ, then NCInκλ is not precipitous.

Now assume κ is a Mahlo cardinal. Let e : Pκλ → Pκλ<κ be a canonical map
and X = {x ∈ Pκλ : x ∩ κ is inaccessible, e(x) ∩ λ = x}. Then X ∈ WNS∗κλ and
e“X ∈ WNS∗κλ<κ . For each Y ⊆ X, Y ∈ WNSκλ if and only if e“Y ∈ WNSκλ<κ .
Furthermore it is easy to see that e|X is a bijection from X to e“X. Using this,
we can easily verify the following lemma:

Lemma 5.14. Let κ be a Mahlo cardinal and let e : Pκλ → Pκλ<κ be a
canonical map. Then, for X ∈ WNS+

κλ, WNSκλ|X is precipitous if and only if
WNSκλ<κ |e“X is precipitous. In particular WNSκλ is precipitous if and only if
WNSκλ<κ is precipitous.

Proposition 5.15. Assume λ is a strong limit cardinal with cf(λ) < κ and
κ is λ-Shelah (and so is λ-ineffable, etc.). Let µ be a Woodin cardinal greater than
λ. Then °Col(λ+,<µ)“ NShκλ = NAInκλ = NInκλ = NCInκλ is precipitous”, where
Col(λ+, <µ) is the standard λ+-closed poset which collapses µ to λ++.

Proof. Let G be a (V, Col(λ+, < µ))-generic filter and work in V [G].
Col(λ+, < µ) is λ+-strategically closed. Hence κ is λ-Shelah, and NShκλ

= NAInκλ = NInκλ = NCInκλ = WNSκλ|X for some X in V [G]. It is well-
known that NSκλ+ is precipitous in V [G] (see Goldring [12]). Since (λ+)<κ = λ+,
WNSκλ+ = NSκλ+ |Y for some Y . Thus WNSκλ+ is also precipitous. By the
previous lemma, we have that WNSκλ is precipitous. Hence WNSκλ|X = NShκλ

= NAInκλ = NInκλ = NCInκλ is precipitous. ¤

Question 2. Can NShκλ, NAInκλ, and NInκλ be precipitous even if cf(λ)
≥ κ? Furthermore can these ideals be λ+-saturated?

6. Relationship between Π1
1-indescribability and ineffability.

The indescribability of Pκλ was introduced by Baumgartner and Carr
[8] as a generalization of the indescribability of a cardinal. First we explain
some basic notation. A sentence ϕ is a Π1

1-sentence if ϕ is of the form
∀X0∀X1 · · · ∀Xnψ(X0, X1, . . . , Xn), where X0, X1, . . . , Xn are type 2 variables,
and ψ(X0, X1, . . . , Xn) is a first order sentence with language {∈,=, X0, . . . , Xn}
where Xi is a unary predicate symbol. In the intended semantics, if D is the
domain of a structure, type 2 variables will range over P(D).

Definition 6.1. An uncountable cardinal κ is Π1
1-indescribable if, for any

R ⊆ Vκ and Π1
1-sentence ϕ over the structure 〈Vκ,∈, R〉 (that is, ϕ is a Π1

1-sentence
with language {∈,=, R}),
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〈Vκ,∈, R〉 ² ϕ ⇒ ∃α < κ(〈Vα,∈, R ∩ Vα〉 ² ϕ),

where Vα is the set of all sets with rank less than α.

Fact 6.2. An uncountable cardinal κ is weakly compact if and only if κ is
Π1

1-indescribable.

Baumgartner defined the following:

Definition 6.3. Let S be a set with κ ⊆ S. Define Vα(κ, S) by induction
on α ≤ κ in the following way:

• V0(κ, S) = S,
• Vα+1(κ, S) = Vα(κ, S) ∪Pκ(Vα(κ, S)), and
• Vα(κ, S) =

⋃
β<α Vβ(κ, S) if α is a limit ordinal.

For X ⊆ PκS, we say that X is Π1
1-indescribable if, for every R ⊆ Vκ(κ, S) and

Π1
1-sentence ϕ over the structure 〈Vκ(κ, S),∈, R〉, the following holds:

If 〈Vκ(κ, S),∈, R〉 ² ϕ, then there exists x ∈ X such that |x ∩ κ| = x ∩ κ and
ϕ reflects to x, that is,

〈Vx∩κ(x ∩ κ, x),∈, R ∩ Vx∩κ(x ∩ κ, x)〉 ² ϕ.

Let Πκλ be the set of all X ⊆ Pκλ such that X is not Π1
1-indescribable.

Fact 6.4 (Abe [2], Carr [8]).

(1) Πκλ is a strongly normal ideal over Pκλ.
(2) NShκλ ⊆ Πκλ.
(3) If cf(λ) ≥ κ, then NShκλ = Πκλ.

For further general background about indescribability of Pκλ, see Abe [2]
and Carr [8].

We will use the following combinatorial characterization of Π1
1-indescribability.

Fact 6.5 (Abe [2]). For X ⊆ Pκλ, the following are equivalent:

(1) X is Π1
1-indescribable.

(2) e“X is Shelah in Pκλ<κ, where e is a canonical map from Pκλ to Pκλ<κ.
(3) For all 〈fx : x ∈ X〉 with fx : Px∩κx → Px∩κx, there exists f : Pκλ →

Pκλ such that {x ∈ X : f |Py∩κy = fx|Py∩κy} is unbounded for all
y ∈ Pκλ.

First we show that Π1
1-indescribability implies a reflection principle for
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WNSκλ-positive sets.

Lemma 6.6. Assume Pκλ is Π1
1-indescribable. Then, for each X ∈ WNS+

κλ,
{x ∈ Pκλ : x ∩ κ is regular, X ∩Px∩κx ∈ WNS+

x∩κ,x} ∈ Π∗κλ.

Proof. Assume otherwise. Then Y = {x ∈ Pκλ : x ∩ κ is regular and
X ∩Px∩κx ∈ WNSx∩κ,x} ∈ Π+

κλ. For each x ∈ Y , let fx : Px∩κx → Px∩κx be
a function which witnesses X ∩ Px∩κx ∈ WNSx∩κ,x. By Fact 6.5, we can take
f : Pκλ → Pκλ such that, for all y ∈ Pκλ, {x ∈ Y : f |Py∩κy = fx|Py∩κy} is
unbounded. Since X ∈ WNS+

κλ, there exists y ∈ X such that f“Py∩κy ⊆ Py∩κy.
Take x ∈ Y such that y < x and f |Py∩κy = fx|Py∩κy. Then y ∈ X ∩ Px∩κx

and fx“Py∩κy = f“Py∩κy ⊆ Py∩κy, thus y ∈ (X ∩ Px∩κx) ∩ Cfx . This is a
contradiction. ¤

We have another proof since “X ∈ WNS+
κλ” can be stated in a Π1

1-sentence
over 〈Vκ(κ, λ),∈, X〉. Also note that, for every X ∈ NS+

κλ, {x ∈ Pκλ : x ∩ κ is
regular, X ∩Px∩κx ∈ NS+

x∩κ,x} ∈ NSh∗κλ.
The next proposition shows that Π1

1-indescribability of Pκλ can be much
stronger than ineffability if cf(λ) < κ.

Proposition 6.7. Assume 2λ = λ<κ. Then the following hold :

(1) NInκλ ⊆ Πκλ. Hence κ is λ-ineffable if Pκλ is Π1
1-indescribable.

(2) If Y ⊆ Pκλ is ineffable, then {x ∈ Pκλ : Y ∩Px∩κx is ineffable} ∈ Π∗κλ.
(3) If κ is λ-ineffable, then NInκλ ( Πκλ.

Proof. Take X and 〈Ax : x ∈ Pκλ〉 as in Proposition 5.3.

(1). By the remark after Proposition 5.3, NInκλ = WNSκλ|X holds. Since
WNSκλ ⊆ NShκλ ⊆ Πκλ, it is enough to show that X ∈ Π∗κλ. Assume otherwise.
Then Y = {x ∈ Pκλ : ∃ax ⊆ x∀y < x (ax 6= Ay ∩ x)} ∈ Π+

κλ. For each x ∈ Y ,
let ax ⊆ x be a witness to x ∈ Y . Now define fx : x → 2 and gx : Px∩κx → x

as follows: fx is the characteristic function of ax and gx(y) ∈ ax4(Ay ∩ x). Then
there exist f : λ → 2 and g : Pκλ → λ such that {x ∈ Y : fx|y = f |y, gx|Py∩κy

= g|Py∩κy} is unbounded for all y ∈ Pκλ. Let A = f−1“{1}. Then A = Az for
some z ∈ Pκλ. Take y ∈ Pκλ such that z < y and g“Py∩κy ⊆ y. Then we can
find x ∈ Y such that y < x, f |y = fx|y, and gx|Py∩κy = g|Py∩κy. Since z < y

< x, ax 6= Az ∩ x. Since gx(z) = g(z), we have that g(z) ∈ ax4(Az ∩ x). However
g(z) ∈ y, thus f(g(z)) = fx(g(z)), which contradicts to g(z) ∈ ax4(Ax ∩ x).

(2). Let Z ⊆ Pκλ be ineffable. Since NInκλ = WNSκλ|X, we may assume
that Z ⊆ X. Let x ∈ X such that x ∩ κ is regular. By the definition of X,
〈Ay ∩ x : y < x〉 can be seen as an enumeration of P(x) which is indexed by
elements of Px∩κx. Let X ′ = {y ∈ Px∩κx : ∀a ⊆ y∃z < y (a = Az ∩ y)}.
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Then X ′ = X ∩Px∩κx. By the proof of Proposition 5.3, we see that, for x ∈ X

such that x∩ κ is regular, Z ∩Px∩κx is ineffable if Z ∩Px∩κx ∈ WNS+
x∩κ,x. It is

clear that {x ∈ X : x ∩ κ is regular, Z ∩Px∩κx ∈ WNS+
x∩κ,x} ∈ Π∗κλ by Lemma

6.6.
(3). By (2), it is enough to show that {x ∈ Pκλ : x ∩ κ is not x-ineffable}

∈ NIn+
κλ. This follows from Proposition 5.1. ¤

Assume λ = κ+ω, 2λ = λ<κ, and Pκλ is Π1
1-indescribable. Then {x ∈ Pκλ :

ot(x) = (x ∩ κ)+ω} ∈ Π∗κλ. By the above proposition, we have {x ∈ Pκλ : ot(x)
= x ∩ κ+ω and x ∩ κ is x-ineffable} ∈ Π∗κλ, thus we can show that {α < κ : α is
α+ω-ineffable} is stationary in κ. In particular, under GCH, if κ = min{α : α is
α+ω-ineffable}, then Pκκ+ω is not Π1

1-indescribable. Hence, the assumption that
cf(λ) ≥ κ in (3) of Fact 6.4 cannot be dropped.

Lemma 6.8. Let X ⊆ Pκλ be Π1
1-indescribable. Then {x ∈ X : X ∩Px∩κx

is not Π1
1-indescribable} is Π1

1-indescribable.

Proof. Let Y = {x ∈ X : X ∩ Px∩κx is not Π1
1-indescribable}, R

⊆ Vκ(κ, λ), and ϕ be a Π1
1-sentence such that 〈Vκ(κ, λ),∈, R〉 ² ϕ. We show

that there exists x ∈ Y such that ϕ reflects to x. Take x ∈ X such that x is a
<-minimal element of {y ∈ X : ϕ reflects to y}. Then ϕ holds in 〈Vx∩κ(x ∩ κ, x),
∈, R ∩ Vx∩κ(x ∩ κ, x)〉 but there is no y ∈ X ∩Px∩κx such that ϕ reflects to y by
the minimality of x. Hence x is an element of Y . ¤

As an immediate corollary, we have the following:

Corollary 6.9. Assume 2λ = λ<κ and Pκλ is Π1
1-indescribable. Then

{x ∈ Pκλ : x ∩ κ is x-ineffable but Px∩κx is not Π1
1-indescribable} ∈ Π+

κλ.

Thus, for instance, {α < κ : α is α+ω-ineffable but Pαα+ω is not Π1
1-

indescribable} is stationary in κ if Pκκ+ω is Π1
1-indescribable.

Question 3. In this paper, we frequently used the assumptions that “λ is
a strong limit cardinal” or “2λ = λ<κ”. Can we eliminate these assumptions?
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