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Abstract. We prove that if ν and µ are arbitrary (signed) Borel measures (on
the unit circle) such that M+ν(x) = M+µ(x) for each x, where M+ is the one-sided
maximal operator (without modulus in the definition), then ν = µ. The proof is
constructive and it shows how ν can be recovered from M+ν in the unique way.

1. Introduction.

The Hardy-Littlewood maximal function

Mf(x) = sup
I3x

1
|I|

∫

I

|f(t)| dt

plays an important role in the field of Harmonic Analysis and Real Analysis.
Namely, the maximal functions are useful to estimate the various norms of dif-
ferent integral operators. The maximal operator is not linear, so we cannot use
Banach space techniques in its study. In particular, the surjectivity and injectivity
properties of the operator, first considered in [9], are difficult to handle. However,
the first partial result in the study of the uniqueness has been obtained in [1].
Namely, it was proved that one-sided maximal operator (without modulus sign in
the definition) on the unit circle is one-to-one. It should be mentioned that the
continuous character of the system of intervals with respect to which the supre-
mum is taken in the definition of the maximal function plays a crucial role in the
validity of this theorem. Otherwise, if we define the maximal function with re-
spect to some discrete system of partitions, like in the case of the dyadic maximal
function, the uniqueness property fails to hold in general (see [9]). Our arguments
in the present paper are rather elementary, however we need careful observations
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on the behavior of the maximal functions. In some sense, we propose a method of
reconstructing f from Mf . Although our method would not work in the higher
dimensional case, we think this should be a concern of our next study.

For a real locally integrable function f ∈ Lloc(R), let M+f denote the one-
sided maximal function,

M+f(x) = sup
y>x

1
y − x

∫ y

x

f(t)dt, x ∈ R. (1)

As it was mentioned, unlike the classical definition of the Hardy-Littlewood max-
imal function, we do not take the modulus of f in the right-hand side of (1) since
we deal with the uniqueness problem of the operator M+.

Let L(T ) ⊂ Lloc(R) be the class of 2π-periodic integrable (on T = [0, 2π))
functions. The following uniqueness theorem has been proved in [1].

Theorem A. Let f, g ∈ L(T ) and

M+f(x) = M+g(x) for each x ∈ R. (2)

Then

f(x) = g(x) for a.a. x ∈ R.

We consider periodic functions in Theorem A, which is equivalent to taking
the functions on the unit circle ∂D in the complex plane (∂D is naturally identified
with T ), because the theorem is correct only for finite measure spaces. Indeed,
if we consider just integrable functions on R, then M+f ≡ 0 for every negative
f ∈ L(R).

Theorem A has been generalized for the ergodic maximal functions. Let
(Tt)t∈Γ be an ergodic group of measure-preserving transformations on a finite mea-
sure space (X, S, P ), where Γ is either Z (the discrete case) or R (the continuous
case), and let

f∗(x) =





supb>0
1
b

∫ b

0
f(Ttx)dt in the continuous case,

supn>0
1
n

∑n−1
k=0 f(T kx) in the discrete case.

The following theorem has been proved for the continuous case in [2] and for the
discrete case in [3]. In the latter case another simple proof of the theorem has
been also proposed in [7].
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Theorem B. Let f, g ∈ L(X) and

f∗(x) = g∗(x) for a.a. x ∈ X (with respect to the measure P ). (3)

Then

f(x) = g(x) for a.a. x ∈ X.

One can find further motivations for proving Theorems A and B in the intro-
duction of [3].

In the discrete case Theorem B has been generalized for the two sided maximal
operator f 7→ supn,m≥0

1
n+m+1

∑m
k=−n f(T kx) in [4], while in the continuous case,

the proof of the uniqueness theorem has not yet been found even for the Hardy-
Littlewood maximal operator Mf(x) = supa<x<b

1
b−a

∫ b

a
f(t)dt on the real line.

It is natural to require in the ergodic case that the equality (3) holds almost
everywhere. One can slightly strengthen Theorem A in this direction since M+f =
M+g almost everywhere implies (2). This follows from the equality

M+f(x) = lim
δ→0+

ess inf
y∈(x,x+δ)

M+f(y),

which was proved in [2] (see Lemma 3 therein).

Theorem C. Let f, g ∈ L(T ) and

M+f(x) = M+g(x) for a.a. x ∈ R.

Then

f(x) = g(x) for a.a. x ∈ R.

In the present paper we consider the problem of generalization of Theorems A
and C for Borel measures. Let M (T ) denote the set of (signed) Borel measures
ν on ∂D. For notational convenience we assume that the one-sided maximal
functions M+ν of such measures are 2π-periodic functions on the real line defined
by

M+ν(x) = sup
y∈(x,x+2π]

ν[x, y)
y − x

, (4)
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where it is always naturally assumed that ν(B) = ν{eiθ : θ ∈ B}, whenever a
Borel measurable set B ⊂ [x, x + 2π) for some x ∈ R. At the same time, without
causing any confusion, we assume that ν(B) = ν(B ∩ T ), whenever B is a 2π-
periodic subset of R.

Remark 1. Since the weak (1,1) type inequality

m(T ∩ {M+ν > λ}) ≤ C

λ
|ν|(T ), λ > 0, (5)

holds for operator M+ (see [8]), where m stands for the Lebesgue measure on the
line, we have

M+ν(x) < ∞ for a.a. x ∈ R. (6)

As the following counter example shows, there exist ν, µ ∈ M (T ) such that
M+µ = M+ν almost everywhere (with respect to m) while µ 6= ν.

Example. Let δ{x} ∈ M (T ) be the Dirac measure concentrated at eix and
µ, ν ∈ M (T ) be defined by the equalities: ν = δ{0} = δ{2π} and µ = gdm− δ{π}+
δ{2π}, where g(eix) = π/(2π − x)2 for x ∈ (0, π) and g(eix) = 0 for x ∈ [π, 2π].
Then, for each x ∈ (0, 2π], we have

M+ν(x) =
1

2π − x
and M+µ(x) =

{ 1
2π−x for x 6= π,

1/4π for x = π.

Thus Theorem C cannot be generalized for Borel measures. Nevertheless, we
claim that the following generalization of Theorem A is valid.

Theorem 1. Let ν, µ ∈ M (T ) and

M+ν(x) = M+µ(x) for every x ∈ R. (7)

Then

µ = ν.

A general idea of proving Theorem 1 is similar to the one used for the proof
of Theorem A, but the details are much more involved.
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2. Some propositions concerning the operator M+.

Proposition 1. Let ν ∈ M (T ) and x ∈ R. We have the following rela-
tions:

(i) M+ν(x) ≤ lim inf
y→x−

M+ν(y);

(ii) ν{x} ≤ 0 ⇒ M+ν(x) ≤ lim inf
y→x+

M+ν(y);

(iii) ν{x} < 0 ⇒ M+ν(x) < lim inf
y→x+

M+ν(y).

Proof. Take arbitrary λ < M+ν(x) and find z > x such that ν[x, z)/(z −
x) > λ. There exists δ1 > 0 such that ν[y, z)/(z − y) > λ for each y ∈ (x− δ1, x].
Thus, M+ν(y) > λ for each y ∈ (x − δ1, x] and (i) follows. At the same time,
if ν{x} ≤ 0, then there exists δ2 > 0 such that ν[y, z)/(z − y) > λ for each
y ∈ [x, x + δ2). Consequently M+ν(y) > λ for each y ∈ [x, x + δ2) and (ii) follows.

For each z ∈ (x, x + 2π], we have

ν[x, z)
z − x

≤ ν(x, z)
z − x

− |ν{x}|
2π

= lim
y→x+

ν[y, z)
z − y

− |ν{x}|
2π

≤ lim inf
y→x+

M+ν(y)− |ν{x}|
2π

.

Thus (iii) holds. ¤

For λ ∈ R, let

Gλ = {x ∈ R : M+ν(x) > λ}. (8)

Obviously Gλ is a 2π-periodic set. Note that in general Gλ may not be open, but
Proposition 1(i) implies that it is always open from the left, i.e. for each x ∈ Gλ

there exists δ > 0 such that (x − δ, x] ⊂ Gλ. Hence each connected component
of Gλ has a form (a, b〉, where the angle “〉” here and always in similar situations
indicates that (a, b〉 is either (a, b] or (a, b) (this will be clear from the context). It
follows from Proposition 1(ii) that

b ∈ (a, b〉 =⇒ ν{b} > 0. (9)

Obviously

ν{x} > 0 =⇒ M+ν(x) = +∞. (10)
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The representation of Gλ as a union of disjoint connected components has the
form

Gλ = ∪∞n=1(an, bn〉, (11)

and if ν ∈ M (T ) and Gλ 6= R, then 0 < bn − an ≤ 2π for each n. At the same
time, if (a, b] is a connected component of Gλ, then b− a < 2π.

In the sequel we use some facts about the connected components of (11)
which were obtained in [5]. Namely, for arbitrary connected component (a, b〉 of
Gλ which is finite (b− a ≤ 2π), we have

ν(a, b〉 ≥ λ(b− a), (12)

ν[x, b〉 ≥ λ(b− x) for each x ∈ (a, b) (13)

and

ν〈b, y) ≤ λ(y − b) for each y ∈ (b, b + 2π), (14)

where 〈b, y) = (a, y) \ (a, b〉, (see, respectively, (11), (12) and (17), (18) in [5]).

Proposition 2. Let ν ∈ M (T ). We have

inf
x∈T

{M+ν(x)} =
ν(T )
2π

. (15)

Proof. Let

λmin = inf
x∈T

{M+ν(x)}. (16)

If we take y = x + 2π in the definition (4), it is clear that λmin ≥ ν(T )/2π. In
order to prove (15), we need to obtain the reverse inequality

λmin ≤ ν(T )
2π

. (17)

Consider two cases:
i) M+ν(x) > λmin for each x ∈ R. Then

∪∞n=1Gλn
= Gλmin = R (18)
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for each sequence {λn}∞n=1 ↘ λmin. For each λ > λmin, Gλ 6= R because
of (16). So that Gλ consists of the union of finite connected components
Gλ = ∪∞n=1(an, bn〉. Since ν(an, bn〉 ≥ λ(bn − an) for each n (see (12)), we have
ν(Gλ) ≥ λm(Gλ). Thus, by virtue of (18), we have ν(T ) = limn→∞ ν(Gλn) ≥
limn→∞ λnm(Gλn) = λmin · 2π and (17) is proved.

ii) There exists x0 ∈ T such that

M+ν(x0) = λmin. (19)

Then, for each y ∈ (x0 + 2π, x0 + 4π], we have

λmin = M+ν(x0) = M+ν(x0 + 2π) ≥ ν[x0 + 2π, y)
y − x0 − 2π

. (20)

Take any

λ < λmin (21)

and let us show that

ν[x0, x0 + 2π) ≥ λ · 2π. (22)

This establishes (17).
Let us first show that, for each x ∈ (x0, x0 + 2π),

ν[x, y) > λ(y − x) for some y ∈ (x, x0 + 2π]. (23)

Indeed, if

sup
y∈(x,x0+2π]

ν[x, y)
y − x

≤ λ, (24)

then

M+ν(x) = sup
y∈(x0+2π,x+2π]

ν[x, y)
y − x

, (25)

since we know that M+ν(x) ≥ λmin > λ and the relations (4) and (24) hold. But
when y ∈ (x0 + 2π, x + 2π], we have
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ν[x, y)
y − x

=
ν[x, x0 + 2π) + ν[x0 + 2π, y)
x0 + 2π − x + y − x0 − 2π

=
α + β(y)
γ + δ(y)

≤ α + λminδ(y)
γ + δ(y)

=: ϕ(y),

(26)

where α = ν[x, x0+2π), β(y) = ν[x0+2π, y), γ = x0+2π−x and δ(y) = y−x0−2π

and the inequality in (26) holds because of (20).
Taking y = x0 + 2π in (24), we get α ≤ λγ. Consequently α + λminδ(y) <

λmin(γ + δ(y)), by (21). Thus ϕ(y) < λmin for each y ∈ [x0 + 2π, x + 2π] and

sup
y∈[x0+2π,x+2π]

ϕ(y) < λmin (27)

since ϕ is a continuous function. By virtue of (25), (26) and (27), we get M+ν(x) <

λmin which is a contradiction, by (16). Hence (23) holds.
Define

x = sup{y ∈ (x0, x0 + 2π] : ν[x0, y) > λ(y − x0)} (28)

(because of (19) and (21), the set in (28) is not empty). The limiting argument
shows that

ν[x0, x) ≥ λ(x− x0). (29)

At the same time, if x < x0 + 2π, then

ν[x0, y) > λ(y − x0) for some y ∈ (x, x0 + 2π] (30)

since we can sum up (29) and (23). The relation (30) contradicts the definition (28)
of x being a supremum. Thus x = x0 + 2π and, by virtue of (29), the inequality
(22) holds. ¤

3. Some auxiliary lemmas.

Although the following two lemmas look very similar to the Riesz “rising sun”
lemma (see [6]) which was generalized for arbitrary Borel measures in [5], they
have not been obtained therein. Therefore we prove them in the present paper.

Lemma 1. Let ν ∈ M (T ) and let (a, b〉 ⊂ R be a finite (b − a ≤ 2π)
connected component of Gλ for some λ ∈ R (see (8)). If

M+ν(a) = λ, (31)
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then

ν[a, b〉 = λ(b− a). (32)

Proof. Because of (31), ν[a, y) ≤ λ(y − a) for each y ∈ (a, a + 2π], and
passing to the limit, if necessary, we get ν[a, b〉 ≤ λ(b − a). Thus to obtain (32)
we need to show that

ν[a, b〉 ≥ λ(b− a). (33)

Recall that the inequalities (12)–(14) hold in the current situation.
Passing to the limit from the right, the inequalities (13) and (14) imply,

respectively,

ν(x, b〉 ≥ λ(b− x) for each x ∈ (a, b) (34)

and

ν〈b, y] ≤ λ(y − b) for each y ∈ (b, b + 2π). (35)

If ν{a} ≥ 0, then (33) holds, because of (12).
Now consider the case where ν{a} < 0. Since limy→a+ ν[a, y)/(y − a) = −∞

in this case and (31) holds, we have

λ = M+ν(a) = sup
y∈(a+δ,a+2π]

ν[a, y)
y − a

for some δ > 0. Hence there exist y0 ∈ (a + δ, a + 2π] and a sequence {yn}∞n=1

convergent to y0 such that λ = M+ν(a) = limn→∞ ν[a, yn)/(yn − a). Since a
convergent from the left or from the right subsequence can be extracted from this
sequence, we have

either ν[a, y0) = λ(y0 − a) or ν[a, y0] = λ(y0 − a). (36)

If y0 < b, then ν[y0, b〉 ≥ λ(b− y0) and ν(y0, b〉 ≥ λ(b− y0) by (13) and (34),
respectively, and summing up one of these inequalities with the corresponding
correct equality in (36), we get (33).

If y0 ∈ (b, b+2π), then ν〈b, y0) ≤ λ(y0−b) and ν〈b, y0] ≤ λ(y0−b) by (14) and
(35), respectively, and subtracting one of these inequalities from the corresponding
correct equality in (36), we get (33).
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Consider the remaining case y0 = b. If b 6∈ (a, b〉, i.e. M+ν(b) ≤ λ, then
ν{b} ≤ 0 (otherwise M+ν(b) = +∞) and (33) follows from (36). If b ∈ (a, b〉
(b−a < 2π in this case) and the first equality in (36) holds, i.e. ν[a, b) = λ(b−a),
then ν[a, b] ≥ λ(b− a) holds, because of (9), and (33) follows. ¤

Lemma 2. Under the hypothesis of Lemma 1, let x ∈ (a, b) and

lim inf
y→x+

M+ν(y) = λ. (37)

Then

ν(x, b〉 = λ(b− x). (38)

Proof. We have ν(x, b〉 = limy→x+ ν[y, b〉 and, by virtue of (37), for each
ε > 0, there exists a sequence {yn}∞n=1 convergent to x from the right such that

λ + ε > lim inf
n→∞

M+ν(yn) ≥ lim inf
n→∞

ν[yn, b〉
b− yn

=
ν(x, b〉
b− x

.

Thus ν(x, b〉 ≤ λ(b− x) and since (34) holds as well, we get (38). ¤

The following lemma has a general measure theoretical character.

Lemma 3. Let B ⊂ T be a Borel measurable set and h : B → R be an
integrable function, and let for each y ∈ B there exists δy > 0 such that

ν[y, z]
z − y

≤ h(y) for each z ∈ (y, y + δy). (39)

Then, for each S ⊂ B,

ν(S) ≤
∫

S

h dm. (40)

Proof. First consider the case where h ≡ λ is a constant function. Since
we can consider the measure ν + τm and the function h + τ , τ > 0, if necessary,
we can assume without loss of generality that λ > 0.

Take any Borel set S ⊂ B. Since the measure |ν| + m is regular, for each
ε > 0, there exists an open set O ⊃ S such that

(|ν|+ m)(O\S) < ε. (41)
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Let us cover S with the system of closed intervals I = {[y, z] : y ∈ S, z ∈
(y, y + δy), [y, z] ⊂ O}. We can extract disjoint subsystem J = {[yn, zn] : n =
1, 2, . . .} ⊂ I such that

(|ν|+ m)
(
S\ ∪∞n=1 [yn, zn]

)
= 0 (42)

(see, e.g., Lemma 2 in [5]). Because of (39), we have

ν[yn, zn] ≤ λ(zn − yn), n = 1, 2, . . . . (43)

Obviously (∪∞n=1[yn, zn]\S) ⊂ (O\S), so that, by virtue of (41),

(|ν|+ m)(∪∞n=1[yn, zn]\S) ≤ (|ν|+ m)(O\S) < ε. (44)

It follows from the relations S = (S\A) ∪ (S ∩ A), A = (A\S) ∪ (S ∩ A), where
A = ∪∞n=1[yn, zn], (42) and (44) that

∣∣ν(S)− ν(∪∞n=1[yn, zn])
∣∣ =

∣∣ν(
S\(∪∞n=1[yn, zn])

)− ν(∪∞n=1[yn, zn]\S)
∣∣ ≤ ε (45)

and

∣∣m(S)−m(∪∞n=1[yn, zn])
∣∣ =

∣∣m(
S\(∪∞n=1[yn, zn])

)−m(∪∞n=1[yn, zn]\S)
∣∣ ≤ ε. (46)

By virtue of (45), (43) and (46), we have

ν(S) ≤ ν(∪∞n=1[yn, zn]) + ε ≤ λm(∪∞n=1[yn, zn]) + ε

≤ λ(m(S) + ε) + ε ≤ λm(S) + (1 + λ)ε, (47)

and since ε is arbitrary, the inequality (40) holds for h = λ.
If now h =

∑∞
k=1 λk1Bk

, Bi ∩ Bj = ∅, ∪∞k=1Bk = B, is a simple integrable
function, then

ν(S) =
∞∑

k=1

ν(S ∩Bk) ≤
∞∑

k=1

∫

S∩Bk

λk dm =
∫

S

h dm. (48)

For arbitrary h, we can approximate it by the simple functions hn =∑∞
k=−∞

k
n1{ k−1

n <h≤ k
n} and pass to the limit
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ν(S) ≤
∫

S

hn dm −→
∫

S

h dm, (49)

so that (40) holds. ¤

In an absolutely similar manner we can prove

Lemma 4. Let B ⊂ T be a Borel measurable set and h : B → R be an
integrable function, and let for each y ∈ B, there exists δy > 0 such that

ν[y, z]
z − y

≥ h(y) for each z ∈ (y, y + δy)

Then, for each S ⊂ B,

ν(S) ≥
∫

S

h dm.

Proof. We need to follow exactly the proof of the Lemma 3, just chang-
ing the signs of inequalities in (43), (48) and (49) (approximating by the simple
functions hn =

∑∞
k=−∞

k−1
n 1{ k−1

n <h≤ k
n} from below), and the relations in (47) as

follows

ν(S) ≥ ν(∪∞n=1[yn, zn])− ε ≥ λm(∪∞n=1[yn, zn])− ε

≥ λ(m(S)− ε)− ε ≤ λm(S)− (1 + λ)ε. ¤

Obviously, Lemmas 3 and 4 remain correct if, for each y ∈ B, we consider
intervals [z, y], z < y, instead of [y, z], z > y. Thus, we have the following

Corollary 1. Let B ⊂ T be a Borel measurable set and h : B → R be
a bounded measurable function, and let, for each y ∈ B, there exists δy > 0 such
that ν[y,z]

z−y ≤ h(y) for each z ∈ (y, y + δy) and ν[z,y]
y−z ≥ h(y) for each z ∈ (y− δy, y).

Then

ν(S) =
∫

S

h dm for each S ⊂ B.

4. A main lemma.

The following lemma plays a decisive role in the proof of Theorem 1.

Lemma 5. Let ν, µ ∈ M (T ) be such that (7) holds, and let λ0 ≥ λmin be



On the uniqueness of the one-sided maximal functions 707

such that Gλ0 6= R (see (8)). If (a, b〉 ⊂ R is a connected component of Gλ0 , then,
for each x ∈ (a, b),

ν[x, b〉 = µ[x, b〉. (50)

Let us first show how Theorem 1 follows from Lemma 5.
We say that µ = ν on B, for a Borel measurable set B ⊂ R, if ν(S) = µ(S)

for each measurable set S ⊂ B. Obviously, if we have a countable collection of
sets {Bn}∞n=1 and µ = ν on Bn for each n, then ν = µ on ∪∞n=1Bn.

If λ > λmin, then Gλ 6= R, by virtue of the definition (16), and hence its
connected components are finite. Thus, Lemma 5 implies that ν = µ on each
connected component of Gλ and hence on Gλ. Consequently ν = µ on Gλmin =
∪∞n=1Gλn

, where λn ↘ λmin, and Theorem 1 follows in the case where Gλmin = R.
Consider the case where Gλmin is a proper subset of R. One can then take

λ0 = λmin in Lemma 5. We need to show that ν = µ on T \Gλmin .
Suppose Gλmin = ∪∞n=1(an, bn〉. Since M+ν(x) ≥ λmin for each x ∈ R and

an 6∈ Gλmin ⇔ M+ν(an) ≤ λmin, we have M+ν(an) = λmin. Thus, applying
Lemma 1 to the measures ν and µ, we get

ν[an, bn〉 = λmin(bn − an) = µ[an, bn〉, (51)

which also implies that

ν
( ∪∞n=1 [an, bn〉

)
= λminm

( ∪∞n=1 [an, bn〉
)

= µ
( ∪∞n=1 [an, bn〉

)
. (52)

If we let x tend to a from the right in (50), we get ν(a, b〉 = µ(a, b〉 for each finite
connected component of Gλmin . Thus

ν(an, bn〉 = µ(an, bn〉. (53)

It follows from (51) and (53) that ν{an} = µ{an} for each n. Thus it remains to
show that ν = µ on B, where

B = T \( ∪∞n=1 [an, bn〉
)
, (54)

and let us show that ν = λmin ·m = µ on B, i.e.

ν(S) =
∫

S

λmindm = µ(S) for each S ⊂ B. (55)
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By Proposition 2,

ν(T ) = λmin · 2π (56)

and it follows from (52), (54) and (56) that

ν(B) = λminm(B). (57)

Since M+ν(x) = λmin for x ∈ B, we have ν[x, y) ≤ λmin(y − x) for each
y ∈ (x, x + 2π] and hence, by virtue of Lemma 3,

ν(S) ≤
∫

S

λmindm for each measurable set S ⊂ B. (58)

If there were the strict inequality for some S ⊂ B, say

ν(S) <

∫

S

λmindm, (59)

then subtracting (59) from (57), we would get

ν(B\S) >

∫

B\S
λmindm,

which contradicts (58). Thus the first equality in (55) holds.
The same consideration is true for the measure µ, so that (55) holds.

5. An auxiliary function Ψ.

To prove Lemma 5, we introduce an auxiliary function Ψ which is uniquely
determined in terms of the maximal function M+ν and we represent ν(x, b〉 in
terms of Ψ. Equality (50) follows from the fact that the same representation is
naturally correct for µ(x, b〉 as well.

Fix any x ∈ (a, b) for which

λx := M+ν(x) < +∞ (60)

(recall that λx > λ0) and, for each λ ∈ [λ0, λx), let (aλ, bλ〉 be the connected
component of Gλ containing x. Define the map Ψ : [λ0, λx] 7→ R by the equalities:
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Ψ(λ) = bλ for λ0 ≤ λ < λx, and Ψ(λx) = x. (61)

Note that Ψ(λ0) = b by the hypothesis of the lemma.
Obviously, the sets (aλ, bλ〉 are embedded, so that Ψ is the decreasing function

on [λ0, λx], λ0 ≤ λ1 < λ2 ≤ λx ⇒ (aλ1 , bλ1〉 ⊃ (aλ2 , bλ2〉 ⇒ Ψ(λ1) ≥ Ψ(λ2). Note
also that

Ψ(λ) > x for λ0 ≤ λ < λx, (62)

since if Ψ(λ) = x for some λ < λx = M+ν(x), then (aλ, x] would be the connected
component of {M+ν > λ} which is a contradiction, by virtue of (9), (10) and (60).

Let

Ψ(λ±) := lim
λ′→λ±

Ψ(λ′), λ ∈ [λ0, λx],

where it is assumed that

Ψ(λx+) = Ψ(λx) = x and Ψ(λ0−) = Ψ(λ0) = b. (63)

Let D be the set of discontinuity points of Ψ,

D = {λ ∈ [λ0, λx] : Ψ(λ−) 6= Ψ(λ+)},

(D is a countable set), let C be the set where Ψ does not decrease strictly,

C = {λ ∈ [λ0, λx] : ∃λ′ ∈ [λ0, λx]\{λ} such that Ψ(λ′) = Ψ(λ)}

(C consists of a countable union of disjoint intervals) and let

E = (λ0, λx)\(C ∪D).

For B ⊂ [λ0, λx], let I(B) = {y : ∃λ ∈ [λ0, λx] such that y = Ψ(λ)}.
By virtue of (62), we have

x 6∈ I(C). (64)

Note also that if Ψ(λ) = b for some λ ∈ (λ0, λx), then λ ∈ C. So that, by virtue
of the definition of E,



710 L. Ephremidze and N. Fujii

x, b 6∈ I(E). (65)

Because of the monotonicity of Ψ, we have

(x, b) ⊂ ∪λ∈D[Ψ(λ+),Ψ(λ−)] ∪ I(E) ∪ I(C) ⊂ [x, b] (66)

and the sets

(Ψ(λ+),Ψ(λ−)), λ ∈ D, I(E) and I(C), are pairwise disjoint. (67)

Besides

[Ψ(λ+),Ψ(λ−)] ∩ I(E) = ∅ for each λ ∈ D (68)

and

y ∈ [Ψ(λ1+),Ψ(λ1−)] ∩ [Ψ(λ2+),Ψ(λ2−)], where λ1 > λ2,=⇒
Ψ(λ1−) = Ψ(λ2+) = y =⇒ Ψ(λ) = y for each λ ∈ (λ2, λ1) =⇒ y ∈ I(C). (69)

We need some further properties of the function Ψ.
Let G+ := {λ ∈ [λ0, λx) : Ψ(λ′) < Ψ(λ+) for each λ′ ∈ (λ, λx)} and G− :=

{λ ∈ [λ0, λx) : Ψ(λ′) > Ψ(λ−) for each λ′ ∈ (λ0, λ)}. Note that

Ψ(λ±) 6∈ I(C) =⇒ λ ∈ G±, (70)

but the converse implication is not correct.

Lemma 6. If λ ∈ G+, then

M+ν(Ψ(λ+)) ≤ λ. (71)

Proof. For each ε > 0 and δ > 0, there is λ′ ∈ (λ, λ+ ε) such that Ψ(λ′) ∈
(Ψ(λ+)− δ,Ψ(λ+)) and since (aλ′ ,Ψ(λ′)〉 is the connected component of {M+ν >

λ′}, it follows that there exists y ∈ [Ψ(λ′),Ψ(λ+)) ⊂ (Ψ(λ+)−δ,Ψ(λ+)) such that
M+ν(y) ≤ λ′. Thus, by virtue of Proposition 1(i), we have M+ν(Ψ(λ+)) ≤ λ + ε

and since ε is arbitrary (71) follows. ¤

Lemma 7. If λ ∈ G−, then

M+ν(Ψ(λ−)) ≥ λ. (72)
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Proof. By the hypothesis, for each λ′ ∈ (λ0, λ) we have Ψ(λ′) > Ψ(λ−), so
that [x,Ψ(λ−)] ⊂ (aλ′ ,Ψ(λ′)) ⊂ {M+ν > λ′} and consequently M+ν(Ψ(λ−)) >

λ′. This implies (72). ¤

Corollary 2. For each λ ∈ E,

M+ν(Ψ(λ)) = λ. (73)

Proof. Since λ 6∈ C, we have Ψ(λ) 6∈ I(C). Since Ψ is continuous at λ, i.e.
Ψ(λ+) = Ψ(λ−) = Ψ(λ), and (70) holds, we have λ ∈ G±. Thus we can apply
Lemmas 6 and 7, and (73) follows from (71) and (72). ¤

Lemma 8. Let y ∈ I(C)\{b} and 〈α, β〉 = Ψ−1{y} (〈α, β〉 ⊂ [λ0, λx] is a
non-degenerated interval). Then either M+ν(y) = ∞ or M+ν(y) = α.

Proof. If α = λ0, then

M+ν(y) ≥ α (74)

since y ∈ {M+ν > λ0}. If α > λ0, then for each λ ∈ (λ0, α) we have Ψ(λ) > y and
since [x, y] ⊂ (aλ,Ψ(λ)) ⊂ {M+ν > λ}, we have M+ν(y) > λ. Thus (74) is always
correct. Assume now that M+ν(y) < ∞ and let us show that

M+ν(y) > α (75)

cannot be true. This completes the proof of the lemma.
Since ν{y} ≤ 0 (see (10)), if (75) were correct, then [y, y + δ] would be a

subset of {M+ν > λ} for some λ ∈ (α, min(β, M+ν(y)) and δ > 0, by virtue of
Proposition 1(ii). This contradicts the fact that (aλ, bλ〉 = (aλ, y〉 is the connected
component of {M+ν > λ}. ¤

Lemma 9. Let y ∈ [x, b) be such that M+ν(y) = inf{λ : Ψ(λ) = y} =: λy

and Ψ(λy−) = y. Then ν{y} = 0.

Proof. Since M+ν(y) = λy ≤ λx < ∞, the impossibility of the inequality
ν{y} > 0 follows from (10).

Since y 6= b and Ψ(λ0−) = b, we have λy 6= λ0. If λ ∈ (λ0, λy), then Ψ(λ) > y

and, for each τ > 0, there exists y′ ∈ [Ψ(λ),Ψ(λ) + τ ] such that M+ν(y′) ≤ λ.
Letting λ tend to λy from the left, Ψ(λ) converges to y, by the hypothesis, so
that we can conclude lim infy′→y+ M+ν(y′) ≤ λy. The impossibility of ν{y} < 0
follows now from Proposition 1(iii). ¤
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Lemma 10. For λ ∈ [λ0, λx), let

M+ν(Ψ(λ)) = ∞ (76)

and

β = sup{λ′ : Ψ(λ′) = Ψ(λ)}. (77)

Then β ∈ D.

Proof. Assume β 6∈ D. Then it follows from the definition (77) that

Ψ(β+) = Ψ(β) = Ψ(β−) = Ψ(λ). (78)

If β = λx, then Ψ(β) = x, by (61), and (78) implies that M+ν(Ψ(λ)) =
M+ν(Ψ(β)) = M+ν(x) = λx < ∞ (see (60)), which contradicts (76). Thus the
lemma follows in this case.

Consider the case β < λx. It follows from the definition (77) and the relation
(78) that β ∈ G+. Thus, by virtue of Lemma 6, we get M+ν(Ψ(β+)) ≤ β. This
contradicts (76) since Ψ(β+) = Ψ(λ), by (78). ¤

Ψ is strictly decreasing on E. Hence Ψ−1 exists on I(E). By virtue of Corol-
lary 2, we have

M+ν(y) = Ψ−1(y) (79)

for each y ∈ I(E). We can identify ν on E by the following

Lemma 11. For each measurable set S ⊂ I(E), we have

ν(S) =
∫

S

Ψ−1dm. (80)

Proof. Let y ∈ I(E). By virtue of (79), we have

ν[y, z]
z − y

≤ Ψ−1(y) (81)

for each z ∈ (y, y + 2π). Let us now show that, for each z ∈ (x, y),
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ν[z, y]
y − z

≥ Ψ−1(y). (82)

Let Ψ−1(y) = λ and consider (aλ, bλ〉 = (aλ, y〉. Because of the definition of E, for
each ε > 0 there exists λ′ ∈ (λ−ε, λ) such that y < bλ′ = Ψ(λ′) < bλ+ε = Ψ(λ)+ε.
Thus x ∈ (aλ, bλ] ⊂ (aλ′ , bλ′〉. By virtue of (13), for each z ∈ (aλ, bλ), we have

ν[z, bλ′〉
bλ′ − z

≥ λ′. (83)

If we let ε tend to 0, then λ′ → λ and bλ′ → bλ, so that, passing to the limit in
(83), we get ν[z,bλ]

bλ−z ≥ λ, which is the same as (82) since Ψ(λ) = bλ = y.
By virtue of (81) and (82), we can use Corollary 1 to conclude that (80) holds.

¤

For λ ∈ D\{λ0}, let

〈Ψ(λ+),Ψ(λ−)〉 :=




[Ψ(λ+),Ψ(λ−)] if M+ν(Ψ(λ+)) ≤ λ and M+ν(Ψ(λ−)) ≥ λ,

[Ψ(λ+),Ψ(λ−)) if M+ν(Ψ(λ+)) ≤ λ and M+ν(Ψ(λ−)) < λ,

(Ψ(λ+),Ψ(λ−)] if M+ν(Ψ(λ+)) > λ and M+ν(Ψ(λ−)) ≥ λ,

(Ψ(λ+),Ψ(λ−)) if M+ν(Ψ(λ+)) > λ and M+ν(Ψ(λ−)) < λ,

(84)

and if λ0 ∈ D, let

〈Ψ(λ0+),Ψ(λ0−)〉 := (Ψ(λ0+), b〉. (85)

Lemma 12. For each λ ∈ D, we have

ν〈Ψ(λ+),Ψ(λ−)〉 = λ(Ψ(λ−)−Ψ(λ+)). (86)

Proof. First consider the case λ = λ0 ∈ D. Since Ψ(λ0+) ∈ (a, b), we have
M+ν(Ψ(λ0+)) > λ0. Thus, there exists δ > 0 such that

inf
y∈[Ψ(λ0+)−δ,Ψ(λ0+)]

M+ν(y) > λ0, (87)

by Proposition 1(i). If λ ∈ (λ0, λx], then Ψ(λ) ≤ Ψ(λ0+) and since (aλ,Ψ(λ)〉
is a connected component of {M+ν > λ}, for each τ > 0, there exists y ∈
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[Ψ(λ),Ψ(λ) + τ ] such that M+ν(y) ≤ λ. Letting λ tend to λ0 from the
right (Ψ(λ) → Ψ(λ0+) in this case) and taking into account (87), we con-
clude that Ψ(λ) = Ψ(λ0+) whenever λ ∈ (λ0, λ0 + ε) for some ε > 0, and
lim infy→Ψ(λ0+)+ M+ν(y) ≤ λ for each λ > λ0. Since M+ν is greater than λ0

on (a, b〉, it follows that lim infy→Ψ(λ0+)+ M+ν(y) = λ0. We are now able to use
Lemma 2 in order to conclude that ν(Ψ(λ0+), b〉 = λ0(b − Ψ(λ0+)) which is the
equality (86) for λ = λ0, by (85).

Consider now the case λ ∈ D\{λ0}.
If M+ν(Ψ(λ+)) ≤ λ, then ν[Ψ(λ+), y) ≤ λ(y − Ψ(λ+)) for each y ∈

(Ψ(λ+),Ψ(λ+) + 2π]. Hence

M+ν(Ψ(λ+)) ≤ λ ⇒
{

ν[Ψ(λ+),Ψ(λ−)] ≤ λ(Ψ(λ−)−Ψ(λ+)),

ν[Ψ(λ+),Ψ(λ−)) ≤ λ(Ψ(λ−)−Ψ(λ+)).
(88)

If M+ν(Ψ(λ+)) > λ (note that λ 6= λx and Ψ(λ+) 6= x in this case, because
of (60)), then there are ε > 0 and δ > 0 such that M+ν(y) > λ + ε for each
y ∈ (Ψ(λ+) − δ,Ψ(λ+)], by virtue of Proposition 1(i), and Ψ(λ′) ∈ (Ψ(λ+) −
δ,Ψ(λ+)] for each λ′ ∈ (λ, λ + ε). Thus (aλ′ , bλ′〉 ⊃ (Ψ(λ+) − δ,Ψ(λ+)] and
bλ′ = Ψ(λ′) cannot belong to (Ψ(λ+)−δ,Ψ(λ+)), so that Ψ(λ′) = Ψ(λ+) for each
λ′ ∈ (λ, λ+ε). This implies that there exists a convergent from the right to Ψ(λ+)
sequence {yn}∞n=1 such that M+ν(yn) ≤ λ′, since (aλ′ ,Ψ(λ′)〉 = (aλ′ ,Ψ(λ+)] is
a connected component of {M+ν > λ′}. Passing to the limit, as n → ∞, in the
inequality ν[yn, y) ≤ λ′(y−yn), where y ∈ (yn,Ψ(λ+)+2π], we get ν(Ψ(λ+), y) ≤
λ′(y−Ψ(λ+)), and since the last inequality holds for each λ′ ∈ (λ, λ+ ε), we have
ν(Ψ(λ+), y) ≤ λ(y −Ψ(λ+)). Thus

M+ν(Ψ(λ+)) > λ ⇒
{

ν(Ψ(λ+),Ψ(λ−)] ≤ λ(Ψ(λ−)−Ψ(λ+)),

ν(Ψ(λ+),Ψ(λ−)) ≤ λ(Ψ(λ−)−Ψ(λ+)).
(89)

If M+ν(Ψ(λ−)) ≥ λ, then for each λ′ ∈ (λ0, λ) we have [Ψ(λ+),Ψ(λ−)] ⊂
(aλ′ ,Ψ(λ′)〉, by virtue of the definition of function Ψ. Thus ν[y, ψ(λ′)〉 ≥ λ′(ψ(λ′)−
y) for each y ∈ [Ψ(λ+),Ψ(λ−)), by (13). Letting λ′ tend to λ from the left, we
get ν[y, ψ(λ−)] ≥ λ(ψ(λ−)− y). Thus

M+ν(Ψ(λ−)) ≥ λ ⇒
{

ν[Ψ(λ+),Ψ(λ−)] ≥ λ(Ψ(λ−)−Ψ(λ+)),

ν(Ψ(λ+),Ψ(λ−)] ≥ λ(Ψ(λ−)−Ψ(λ+)).
(90)

If M+ν(Ψ(λ−)) < λ, then for each λ′ ∈ (M+ν(Ψ(λ−)), λ) we have Ψ(λ′) =
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Ψ(λ−), since otherwise Ψ(λ−) ∈ (aλ′ ,Ψ(λ′)) and M+ν(Ψ(λ−)) > λ′, which is
a contradiction. For each λ′ ∈ (M+ν(Ψ(λ−)), λ), we have [Ψ(λ+),Ψ(λ−)) ⊂
(aλ′ ,Ψ(λ′)〉 = (aλ′ ,Ψ(λ−)) and ν[y, Ψ(λ−)) ≥ λ′(Ψ(λ−) − y) for each y ∈
[Ψ(λ+),Ψ(λ−)), by (13). If we let λ′ tend to λ, we get ν[y, Ψ(λ−)) ≥ λ(Ψ(λ−)−y).
Thus

M+ν(Ψ(λ−)) < λ ⇒
{

ν[Ψ(λ+),Ψ(λ−)) ≥ λ(Ψ(λ−)−Ψ(λ+)),

ν(Ψ(λ+),Ψ(λ−)) ≥ λ(Ψ(λ−)−Ψ(λ+)).
(91)

If we now combine the relations (88)–(91), we get the desired equality (86). ¤

6. Proof of the main lemma.

Since Gλ0 is periodic and differs from R, the interval (a, b〉 is finite. Obviously,
if we prove (50) for each x from a dense subset of (a, b), say {M+ν < +∞}∩ (a, b)
(see (6)), then we get (50) for each x ∈ (a, b). So we can assume that x is fixed
and (60) holds. Let us construct the function Ψ considered in Section 5 for that
x. Set

〈x, b〉 :=

{
[x, b〉 if λx ∈ D,

(x, b〉 if λx 6∈ D.
(92)

We need to observe that 〈x, b〉 is the union of disjoint sets

〈x, b〉 = ∪λ∈D〈Ψ(λ+),Ψ(λ−)〉 ∪ I(E) ∪Q, (93)

where

Q :=
{
y ∈ I(C)\{b} : M+ν(y) = inf{λ : Ψ(λ) = y} =: λy, Ψ(λy−) = y

} ⊂ I(C).
(94)

Recall first of all that function Ψ satisfies the relations (66)–(69).
We prove the following two statements:
(i) If y ∈ {x, b}, then y cannot belong to the more than one part of the

right-hand side of (93) and

y ∈ 〈x, b〉 ⇐⇒ y ∈ ∪λ∈D〈Ψ(λ+),Ψ(λ−)〉 ∪ I(E) ∪Q.

(ii) Each y ∈ (x, b) belongs to one and only one part of the right-hand side of
(93).
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By taking into account the inclusions in (66) and (94), the relations (i) and
(ii) imply the validity of decomposition (93).

Since (65) and (69) hold and x, b 6∈ Q (see (64) and (94)), the first part of
claim (i) is clear.

If x ∈ 〈x, b〉, i.e. λx ∈ D (see (92)), then Ψ(λx+) = x ∈ 〈Ψ(λx+),Ψ(λx−)〉
by virtue of (63), (60) and the definition (84). If x 6∈ 〈x, b〉, i.e. λx 6∈ D, then x

have no possibility to belong to ∪λ∈D[Ψ(λ+),Ψ(λ−)], by (62).
If b ∈ (x, b〉, i.e. (x, b〉 = (x, b], then ν{b} > 0 (see (9)) and since M+ν(b) =

+∞ and Ψ(λ0) = b, we have β = sup{λ : Ψ(λ) = b} ∈ D, by virtue of Lemma
10. Thus b = Ψ(β−) and b ∈ 〈Ψ(β+),Ψ(β−)〉 either by the definition (84), if
β > λ0, or by the definition (85), if β = λ0. Hence b belongs to the right-hand
side of (93). If b 6∈ (x, b〉, i.e. (x, b〉 = (x, b), then b 6∈ 〈Ψ(λ0+),Ψ(λ0−)〉, by (85),
in the case λ0 ∈ D, and b 6∈ 〈Ψ(λ+),Ψ(λ−)〉 for each λ ∈ D\{λ0}, by (84) (since
M+ν(b) ≤ λ0 < λ). Thus b 6∈ ∪λ∈D〈Ψ(λ+),Ψ(λ−)〉 ∪ I(E) ∪Q.

The proof of the claim (i) is completed and let us now prove (ii). This is
evident in the case y ∈ ∪λ∈D(Ψ(λ+),Ψ(λ−)) ∪ I(E), by (67) and (68). Con-
sider the remaining cases where y ∈ (x, b) is either the endpoint of an inter-
val (Ψ(λ+),Ψ(λ−)) for some λ ∈ D or it belongs to I(C) (see (66); recall that
x 6∈ I(E) in these cases, by (67) and (68)).

If y is the endpoint of an interval (Ψ(λy+),Ψ(λy−)) for some λy ∈ D and
y 6∈ I(C), then, by virtue of (70), Lemma 6 or 7 and the definition (84), y ∈
〈Ψ(λy+),Ψ(λy−)〉. At the same time y 6∈ [Ψ(λ+),Ψ(λ−)] for each λ ∈ D\{λy},
by (69).

If now y ∈ I(C)∩ (x, b) and 〈α, β〉 = Ψ−1{y}, then we have only the following
three possibilities (see Lemma 8):

i) M+ν(y) = α and limλ→α−Ψ(λ) = y. Then y ∈ Q, by the definition (94).
Besides, we have α 6∈ D, y = Ψ(β−) and if β ∈ D, then y 6∈ 〈Ψ(β+),Ψ(β−)〉, by
(84). Thus y 6∈ ∪λ∈D〈Ψ(λ+),Ψ(λ−)〉.

ii) M+ν(y) = α and limλ→α−Ψ(λ) > y. Then y 6∈ Q, α ∈ D, Ψ(α+) =
y and y ∈ 〈Ψ(α+),Ψ(α−)〉, by (84). Besides, if β ∈ D, then y = Ψ(β−) 6∈
〈Ψ(β+),Ψ(β−)〉, by (84). Thus y 6∈ ∪λ∈D\{α}〈Ψ(λ+),Ψ(λ−)〉.

iii) M+ν(y) = ∞. Then β ∈ D, by virtue of Lemma 10, and y =
Ψ(β−) ∈ 〈Ψ(β+),Ψ(β−)〉, by (84). Besides, if α ∈ D, we have y = Ψ(α+) 6∈
〈Ψ(α+),Ψ(α−)〉, by (84). Thus y 6∈ ∪λ∈D\{β}〈Ψ(λ+),Ψ(λ−)〉.

We have considered all the possible situations to ensure that (93) holds.
Now if λx 6∈ D, then Ψ(λx−) = x, and y = x satisfies the conditions of Lemma

9, because of (62) and (60). Hence ν{x} = 0 in this case. Consequently, we have
(see (92))

ν〈x, b〉 = ν[x, b〉. (95)
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Lemma 9 assures us as well that each point of Q has measure 0 and, since Q is a
countable set, we have

ν(Q) = 0. (96)

Combining (95), (93), (96), (86) and (80), we get

ν[x, b〉 =
∑

λ∈D

λ(Ψ(λ−)−Ψ(λ+)) +
∫

I(E)

Ψ−1dm.

This is the desired expression of the left-hand side of (50) in terms of Ψ. Obviously,
the same representation is correct for the right-hand side of (50) as well, so that
the equality holds and Lemma 5 is proved.
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