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Abstract. The completion of a (normed) C*-algebra <%]|| - ||o] with respect to
a locally convex topology 7 on 4 that makes the multiplication of <% separately
continuous is, in general, a quasi *-algebra, and not a locally convex x-algebra [10],
[15]. In this way, one is led to consideration of locally convex quasi C*-algebras,
which generalize C*-algebras in the context of quasi *-algebras. Examples are given
and the structure of these relatives of C*-algebras is investigated.

1. Introduction.

The study of the structure and representation theory of the completion of
a (normed) C*-algebra o%]|| - |lo] with respect to a locally convex topology T on
oy “compatible” with the corresponding *-norm topology started in [10] and was
continued in [15]. When the multiplication of <% with respect to 7 is jointly
continuous, the completion :%[T] of af[r] is a GB*-algebra over the unit ball
U () ={x € o : ||z|lo < 1} of || - |lo] if and only if % (%) is T-closed [15,
Corollary 2.2]. When the multiplication of <% with respect to 7 is just separately
continuous, J%[T] may fail to be a locally convex x-algebra, but may well carry
the structure of a quasi *-algebra. The properties and the *-representation theory
of %[T], in this case, have been studied in [10, Section 3] and [15, Section 3].
Continuing this project we are led to the introduction of locally convex quasi C*-
algebras in the present study (see Definition 3.3). In this way, the notion of a C*-
algebra is incorporated within the context of quasi *-algebras. Topological quasi
x-algebras were first introduced by G. Lassner (see [18], [19]) for solving problems
in quantum statistics and quantum dynamics that could not be resolved within the
algebraic formulation of quantum theories developed by Haag and Kastler in [16].
However, the bimodule axiom (which is crucial for many considerations such as *-
representation theory) was missing therein and also from many subsequent research
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papers for about 20 years. The first correct definition was given in [20, p. 90], where
also large classes of O*-algebra examples have been derived. Furthermore, quasi
x-algebras appeared later in [21], [22] and [12], [13]. These algebras constitute
an interesting class of the so-called partial x-algebras, introduced by J.-P. Antoine
and W. Karwowski in [7], [8] and studied extensively in [3], [4], [5], [11] and
[6]. Partial x-algebras and quasi *-algebras play an important role in the theory of
unbounded operators, which in its turn has numerous applications in mathematical
physics (see, for instance, [6], [17], [22], [9]).

Our motivation for the present study is clear from the preceding discussion.
The results that we shall exhibit are structured as follows: After the background
material in Section 2, Section 3 defines two notions of positivity in the quasi
x-algebra %[T], called “quasi-positivity” and “commutatively quasi-positivity”;
besides, it introduces locally convex quasi C*-algebras (Definition 3.3) and gives
examples from various classes of topological algebras. Since locally convex quasi
C*-algebras of operators are of particular interest (see, for instance, Remark 4.2
and Propositions 4.3 and 4.5), we study them separately in Section 4. In Section
5, the structure of commutative locally convex quasi C'*-algebras is investigated
taking into account [1, Section 6] and [10], [15]. In Section 6 we apply the results
of Sections 3 and 5 and also ideas developed in [14, Section 4] and [15] to present
a functional calculus for the quasi-positive elements of a commutative locally con-
vex quasi C*-algebra. As a consequence the quasi nth-root of a quasi-positive
element of such an algebra is, for instance, defined (Corollary 6.7). In Section
7, the structure of a noncommutative locally convex quasi C*-algebra is studied.
More precisely, if «7[7] is a noncommutative locally convex quasi C*-algebra, nec-
essary and sufficient conditions are given (see Theorems 7.3 and 7.5) such that
&/ [1] is continuously embedded in a locally convex quasi C*-algebra of operators.
Further, a functional calculus for commutatively quasi-positive elements in o/[7]
is investigated (Theorem 7.8).

2. Preliminaries.

All algebras that we deal with are complex and the topological spaces are
supposed to be Hausdorff. If an algebra & has an identity, this will be denoted
by 1. An algebra o/ with identity 1, will be called unital.

Let ]| - |lo] be a C*-algebra. We shall use the symbol || - ||o of the C*-norm
to denote the corresponding topology. Suppose that 7 is a topology on . such
that %[7] is a locally convex s-algebra. Then, the topologies 7, || - ||o on <%
are compatible whenever each Cauchy net in both topologies that converges with
respect to one of them, also converges with respect to the other one. The symbol
;7’6[7] denotes the completion of <[]
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A partial x-algebra is a vector space &7 equipped with a vector space involution
x:9/ — o :x— x* and a partial multiplication defined on a set I' C &/ x & in
such a way that:

(i) (x,y) € " implies (y*,z*) € T;
(ii) (z,y1), (z,y2) € I' and A, p € C imply (z, Ay1 + py2) € T;

(iii) for every (z,y) € T', a product zy € « is defined,

such that zy depends linearly on y and satisfies the equality (xy)* = y*z*.

Whenever (z,y) € T, we say that x is a left multiplier of y and y a right
multiplier of « and we write x € L(y), respectively y € R(z).

Quasi *-algebras are important examples of partial *-algebras.

If o is a vector space and 7 is a subspace of &/ such that is also a *-algebra,
then o7 is said to be a quasi *-algebra over 7 whenever the next properties are
valid:

(i)’ The multiplication of % is extended on &7 as follows: The assignments

o X oy — o : (a,z) — ax (left multiplication of z by a) and
oy X of — o : (x,a) — za (right multiplication of by a)

are always defined and are bilinear;

(i) z1(z9a) = (z122)a, (ax1)xe = a(xi29) and x1(azs) = (x1a)zs, for all
T1,%2 € 9 and a € ;

(iii)" the involution * of % is extended on &7, denoted also by *, such that
(ax)* = z*a* and (za)* = a*z*, for all x € @ and a € &

For further information see [6]. If %4[r] is a locally convex x-algebra, with
separately continuous multiplication, its completion ;z% [7] is a quasi x-algebra over
2/ under the following operations: Given z € @ and a € %[T}

o ar:= li(in o (left multiplication)

o xa:= li(gn x4, (right multiplication)

with {Z4}aea & net in &% such that a = 7-lim z,,.
«

e An involution on ;{70[7] like in (iii)" is the continuous extension of the
involution given on 7.

A x-invariant subspace & of %[T] containing .27 is called a quasi *-subalgebra
of ;170[7] if ax, xa belong to & for any = € 4, a € &/. Then, one easily shows
that o7 is a quasi *-algebra over . Moreover, &/[7] is a locally convex space that
contains & as a dense subspace and for every fixed x € %, the maps <7 [r] — &[]
with a — ax and a — xa are continuous. An algebra of this kind is called locally
convex quasi x-algebra over 7.

Another concept we need is that of a G B*-algebra introduced by G.R. Allan in
1967 [2] for generalizing C*-algebras (also see [14]). Let &7[r] be a unital locally
convex x-algebra. Let %* be the collection of all closed, bounded, absolutely



514 F. BAGARELLO, M. FRAGOULOPOULOU, A. INOUE and C. TRAPANI

convex subsets B of </[r] with the properties: I € B,B* = B and B% C B.
For every B € %*, the linear span A[B] of B is a normed #-algebra under the
Minkowski functional || - || of B. If A[B] is complete for every B € %*, then
/|7 is said to be pseudo-complete. Every sequentially complete locally convex x-
algebra is pseudo-complete [1, Proposition (2.6)]. Now, a unital pseudo-complete
locally convex x-algebra 7[r], such that %* has a greatest member, denoted by
By, and (1 + x*z)~! exists and belongs to A[Bg] for every x € &, is called a
GB*-algebra over By. In this case A[By] is a C*-algebra.

3. Locally convex quasi C*-algebras.

Throughout this Section %] - ||o] denotes a unital C*-algebra and 7 a locally
convex topology on 2% compatible with the corresponding || - |[o-topology. Under
certain conditions on 7 a quasi *-subalgebra o/ of the quasi *-algebra J%[T] over
oy is formed, which is named locally convex quasi C*-algebra. Examples and
basic properties of such algebras are presented. So, let 24| -||o] and T be as above
with {px}rea a defining family of seminorms for 7. Suppose that 7 satisfies the
properties:

(T1) 7] is a locally convex *-algebra with separately continuous multipli-

cation.

(T2) 7 = |- flo-
Then, the identity map #][| - [o] — @[] extends to a continuous x-linear map
Al - llo] — “[r] and since 7, || - || are compatible, the C*-algebra 2%]|| - o] can

be regarded embedded into < [7]. It is easily shown that o7 |[7] is a quasi *-algebra
over 7 (cf. [15, Section 3]).

The next Definition 3.1 provides concepts of positivity for elements of a quasi
x-algebra %[T].

DEFINITION 3.1.  An element a of %[T] is called quasi-positive (resp. com-
mutatively quasi-positive) if there is a net (resp. commuting net) (z4)aca of the
positive cone ()4 of the C*-algebra o%|]| - ||o], which converges to a with respect
to the topology 7.

We have already used the symbol (&%) for the set of all positive elements
of the C*-algebra ]| - |lo]. The set of all quasi-positive (resp. commutatively
quasi-positive) elements of J%[T], we shall denote by J%[T]q+ (resp. %[T]Cﬁ).
Then, %[T]H is a wedge (that is, for any a,b € %[T]ﬁ and A > 0, the elements
a + b and Aa belong to %[T]ﬁ), but it is not necessarily a positive cone (i.e.
%[T]q+ N (*%[T]q_;,_) # {0}). The set %[T]CH is not even, in general, a wedge.

But, if < is commutative, then of course, &[7]q4+ = %[T]c,ﬁ_.
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Further, we employ the following two extra conditions (Tj), (T4) for the
locally convex topology 7 on <% and examine the effect on &%[7]cq+:
(T3) For each A € A, there exists ' € A such that

palzy) < llzllopa (y), ¥ 2,y € o4 with zy = ya;
(T4) The set % () + == {x € ()4 : ||z|lo < 1} is 7-closed, and ,;/(J)[H Mg N
o = ()

PROPOSITION 3.2.  Let ##]||-|lo] be a unital C*-algebra and T a locally convex
topology on <fy. Suppose that T fulfils the conditions (T1)—(T4). Then, 2h|T] is a
locally conver quasi *—alggbm over @y with the properties:

(1) For every a € @[T]cq+, the element 1 + a is invertible and its inverse
(1 +a)~t belongs to U ().
(2) For a given a € </[T)cqr and any € > 0, let

a. = a(1 +ea)™t.
Then, {ac}teso is a commuting net in ()4 such that a — a. € %[T}C,H_ and

a = T7-lim a..
e—0

(3) SolT]eqr N (—[Tleqr) = {0}. B
(4) If a € A[T]cqt and b € ()4 such that b—a € H[T]q4, then a € ().

PROOF. (1) Leta € %[T]CH. Then, there is a net {z4 }aeca in (%), such
that xqz3 = g4, for all o, B € A, and z, — a. Using properties of the positive
T

elements of a C*-algebra and the condition (T3), we have that for every A € A,
there is \' € A with

PA((I +20) ™ = (1 +25)7Y) = pal( +2a) " (wa —2p)(1 +25)7)
<2 +2a) " oll(2 +25)~ Hlopx (za — zp)

<px (o —25) — 0.

So, {(1 +za) '}aea is a Cauchy net in % |7] consisting of elements of % (%),
which by (T4) is 7-closed. Hence,

(1 +z4)7 " — Y €U () (3.1)

We shall show that (1 + a)~! exists and equals y. Indeed: Using again condition
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(T3), for each A € A, there is X' € A with
pal = (1 +a)(I +2a)™") = pa((za —a)(1 +2a) ™)
<1+ 2a) Hopw (Ta — a) < pr(za —a) — 0.
Therefore,
(14+a)(1 +zq) "t — 1. (3.2)
On the other hand, since
rpy =7 —limzg(1 +2,) ' =7 —lim(1 +2,) 'og = yzs, VB EA,
we have ay = ya. Further, we can show that

(1 +a)(1 +zo)"" — (1 +a)y. (3.3)

Indeed, since z, — a, for any € > 0 there exists oy € A such that for all a > ag
T

and all A € A one has py(z, — a) < e. Now, by (T3) we have that for any a € A

pA((1 +a)(1 +20) ™" = (1 +a)y)
<pa((2 +a)(1 +20) ™" = (1 +20,)(1 +20)7)
+ A1 + 2y ) (1 +20) ™ = (1 +2a0)y) + PAIL + 2ap)y — (1 + a)y)
< px (@ = Tag) + 11+ zao 0Py (1 +2a) ™" =) + palza, — a)
<2+ |1+ ZaollopA (1 +20) ™ = w),
which by (3.1) implies that lim, pA((1 + a)(I + z4)~! — (1 + a)y) = 0. Thus, by
(3.2) and (3.3) we have (1 +a)y = 1 = y(1 + a). Hence, (I + a)~! exists and
belongs to % () + (since y does).
(2) It is clear from (1) that for every € > 0 the element (1 +ea)™! exists in

;7/0[7] and belongs to % (#)+. In particular, applying (T3) we get that for each
A € A, there is M € A with

pall = (1 +ea)™) =epa(a(l +ea)™") < el (1 +ea) " lopx (a) < epx(a),

so that
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7- lim (1 +ea)t=1. (3.4)
E—
On the other hand, from the very definitions one has

1
:E(Z —(1+4ea)™), Ve>0, and

a—a.=a(l —(1+ea)™")=(1—(1+ea) " )a e H[T|eqs. (3.5)

a: =a(l +ea)™' = (1 +ea)ta

Now, by the same way as in (3.3), we conclude from (3.4) and (3.5) that 7- lir% a: =
E—

: (3) Let a € %[T]CH N (—.!%[T]cq+). For any £ > 0, we have by (2) that
()y 2 a(l +ea)™? —a and ()4 3 (—a)(1 —ea)™! - —a.
Thus, if
z.:=a(l +ea)t — (—a)(1 —ea)™t, (3.6)
we get

re=a((l4+ea) '+ (1 —ca))=a(l +ea) (1 —ca+1+ca)(l —ea)™?

=2a(1 4+ eca)"'(1 —ca)™t,

where by (1) and (2) we conclude that (1 —ea)™! € () and a(1 +ea)™! €
(9)+ respectively. Therefore, z. € (o) according to the functional calculus in
commutative C*-algebras. Similarly, we have that
—2. = 2(—a)(1 —ea) (1 +ea)t € ()4
since (—a)(1 —ea)™! and (1 +ca)~! belong to ()+. Thus,
ze € (#)+ N (—(2)4) = {0}

and so (see (3.6))

a(1 +ea)™! = —a(l —ca)™t.
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Taking 7-limits with € — 0, we get a = —a, i.e., a = 0. .
(4) By (2) and the assumptions in (4), b—a and a—a. are contained in &% [7]q4.

Since, 2%)[7]q+ is a wedge, b—a. = (b—a) + (a —ac) € %[T]H. Furthermore, by
(T4)

b—a. € Hlr)gr Ny = (H)y, Ve>0.
Hence,

llacllo < [bllo, Ve >0,

so that if b =0, then a = 0 € (%%) since a = 7-lim a.. If b # 0 then {ac/lIbllo :

e >0} C % (#)+ and by (Ty4) % ()4 is T-closed; so again we get that a €
(H0)+- O

The above lead to the following

DEFINITION 3.3. A quasi x-subalgebra o/ of the locally convex quasi *-
algebra %[T] over o, where <%||| - |lo] is a unital C*-algebra and 7 a locally
convex topology on & satisfying the conditions (T7)—(Ty), is said to be a locally
convex quasi C*-algebra over <.

We present now some examples of locally convex quasi C*-algebras.

EXAMPLE 3.4 (GB*-algebras). Let &/[r] be a GB*-algebra over By (see
Section 2). Then, 24| - |lo] = A[Bo] is a C*-algebra under the C*-norm || - ||o =
Il - I B, given by the Minkowski functional of By. Assume that the locally convex
topology 7 fulfils the condition (T3). Then, it is easily checked that &/[7] is a
locally convex quasi C*-algebra over 7.

EXAMPLE 3.5 (Banach quasi C*-algebras). Let @4]|| - ||o] be a unital C*-

algebra and 7 = || - || @ norm topology on . with the properties (T1)—(T4). That
is,

(T1) @] - ||] is a locally convex x-algebra;

(T2) -1 =11~ Hlos

(Ts) 2yl < llzllollyll, ¥ @,y € o with zy = yz;

(Ta) % () s || - [[-closed, and ]| - [l]g+ N = ()

Then, a locally convex quasi C*-algebra over . is called a normed quasi C*-
algebra over «%. In particular, the completion Jz%[H |]] of @[]l - ||] is said to be a
Banach quasi C*-algebra over 7.

Notice that the Banach space LP[0,1], 1 < p < oo, is a Banach quasi C*-
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algebra over the C*-algebra L*>°[0, 1].

EXAMPLE 3.6 (proper CQ*-algebras). A quasi x-algebra (£, o) is said to
be a Banach quasi *-algebra over % (see [12]), if a norm || - || is defined on 2
with the properties:

(i) Z7[|| - |I] is a Banach space;

(i) [lz=[| = [l=ll, V = € 27

(iil) % is dense in Z7[|| - |I];

(iv) for each a € &, the map L, : £ — 2 : x + ax, is continuous.

The continuity of the involution implies that for each a € ), the map R, :
2 — X :x— xa, is continuous.

The identity of (2, 2%) is an element I € o such that 1z = z1 = x, for
each ¢ € 2. Let (27, 4) be a unital Banach quasi #-algebra. Then, o is a
normed *-algebra under the norm

lallop :=max {||Lall, | Rall}, ¥V a € o, and
lall < llallop, ¥ a € b, (3.7)
labll < llal[l[bllop, V¥ a,b € . (3.8)

An element z of 2 is said to be bounded if the map R, : & — Z :a > ax is
continuous, equivalently the map L, : & — % : a — xza is continuous. Then,
R, respectively L, extend to bounded linear operators R, resp. L,. Denote by
2 the set of all bounded elements of 2". Then 2 is said to be normal [23] if
L,y = Ryx for every z,y € 2. In this case, 2}, is a Banach x-algebra equipped
with the multiplication

roy=Lyy, Vwzye

and the norm ||z||, := max {||L. ||, ||Rz||},z € 2} (see [23, Corollary 2.14]). Fur-
thermore, we have

DA To) " < w(2). (3.9)

Indeed, take an arbitrary x € % (||| - ||Op])|H‘. Then, there is a sequence {a,} in

U (A - llop]) such that lim ||a, — z| = 0. On the other hand, using (3.8), we
n—oo
have that for each b € .«

lzb]| = lim [land]| < Tm _[lanopBll < [1B]
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and similarly ||bx|| < [|b]|. Hence, x € % (24).

If o = 2, then the Banach quasi *-algebra (£, %) is said to be full. If
|| - lop] is @ C*-algebra, then (£, o%) is called a proper CQ*-algebra [12].
Let (2, o) be a full proper CQ*-algebra. Suppose %[ - ||lq+ N = (%) +-

Then, % (<) + is || - ||-closed. Indeed, take an arbitrary a € 02/(,5270)+H'H. Then,
there is a sequence {a,} in % (%) such that lim |la, — x| = 0. Since (2", %)

is full, it follows from (3.9) that @ € % (%), which implies € ||| - ||]q4 N =
() +. Thus, % (ef)+ is || - ||-closed.

Banach quasi C*-algebras are related to proper CQ*-algebras in the following
way':

1. If (2, %) is a full proper CQ*-algebra with ||| - |[|o+ N %% = ()4,
then Z is a Banach quasi C*-algebra over the C*-algebra 4[| - ||op)-

This follows by the very definitions (in this respect, see also Example 3.5) and
(3.7), (3.8), (3.9).

2. Conversely, suppose that o/ is a Banach quasi C*-algebra over the C*-
algebra ||| - |lo]. Then, (<, o%) is a proper CQ*-algebra if and only if ||a||, =
llallo, for all a € <.

We consider the following realization of this situation. Let I be a compact
interval of R. Then, it is shown that the proper CQ*-algebra (LP(I), L>°(I)) is a
Banach quasi C*-algebra over L>°(I), but the proper CQ*-algebra (LP(I),C(I))
is not a Banach quasi C*-algebra over C(I).

A noncommutative example of a proper C@Q*-algebra, which is also a Banach
quasi C*-algebra, can be constructed as follows. Let S be a (possibly unbounded)
selfadjoint operator in a Hilbert space J#, with S > I. Let €(S) be the von
Neumann algebra

CS)={XcRBH): XS'=5"1X},

where () is the C*-algebra of all bounded linear operators on .. We denote
with || - |lo the operator norm in %(.5¢). Let us define on ¢'(S) the norm

X[ =[S X5 o, X e%(S).
Let ‘a/S) denote the || - |[-completion of €(S). Then, it is easily seen that
(%(9),%(S5)) is a proper CQ*-algebra. Making use of the weak topology of Z(5),
one can prove that (T4) also holds on €(S). The proof will be given in the next

Section in a more general context. Then, € (.5) is a locally convex quasi C*-algebra.
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ExXAMPLE 3.7. In this example we will shortly discuss the so-called physical
topologies on a noncommutative C*-algebra, first introduced by Lassner [18], [19]
in the early 1980’s. Thereafter these topologies revealed to be very useful for the
description of many quantum physical models with an infinite number of degrees
of freedom (for reviews see [22], [9] and [6, Ch. 11]). In view of these applications,
it seems interesting to consider the question under which conditions they can be
cast in the framework developed in this paper.

Let % be a C*-algebra and ¥ = {m,;a € I} a system of #-representations
of &4 on a dense subspace %, of a Hilbert space J7,, i.e. each m, is a *-
homomorphism of % into the O*-algebra Z1(Z,) (see Section 4). Since 2%
is a C*-algebra, each 7, is a bounded *-representation, i.e. m € B(A,),
for every « € . The system ¥ is supposed to be faithful, in the sense that
if € o, x # 0, then there exists « € ¥ such that 7, (z) # 0. The physical
topology 7y is the coarsest locally convex topology on &% such that every 7, € .
is continuous from &[rs] into L1(Z,)[7u(LT(%s))], where 7,(ZL1(Z,)) is the
Z1(Dy)-uniform topology of £1(Z,) (see Section 4). This topology depends, of
course, on the choice of an appropriate system X of x-representations of <7%; these
x-representations are, in general nothing but the GN S representations constructed
starting from a family w, of states which are relevant (and they are usually called
in this way) for the physical model under consideration. Every physical topology
satisfies the conditions (T1), (T2) and (T4), but it does not necessarily satisfy
(T3). Here we show that J%[Tg] is a locally convex quasi C*-algebra over .o
for some special choice of the system X of *-representations of . Suppose that
Do = D (Ma) = pen Z(M}), where M, is a selfadjoint unbounded operator.
Without loss of generality we may assume that M, > I,, with I, the identity
operator in AB(,,). Let 3 be a system of representations 7, of 2% on %, such
that 7w (2) Mo& = Myma(x)E, for every © € 4% and for every £ € 9,. Then %[TE}
is a locally convex quasi C*-algebra over 7. This follows from the fact that, in
this case, the physical topology 7 is defined by the family of seminorms

pl(z) := || f(My)7a(x)|lo (operator C*-norm), YV = € %,
where 7, € X and f runs over the set % of all positive, bounded and continuous

functions on RT such that sup,cp+ 27 f(z) < oo, for every k = 0,1,2,... [19,
Lemma 2.8], and from the inequality

pl(zy) = I (Ma)ma(@)ma)llo < lITa(@)lloph (1), ¥ 2,y € .
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4. Locally convex quasi C'*-algebras of operators.

Let 2 be a dense subspace in a Hilbert space . Let £(2) be the alge-
bra (under usual algebraic operations) of all linear operators from Z to 2 and
LYNP) = {X € (D) : 2(X*) D P and X*P C P}, where 2(X*) stands
for the domain of the adjoint X* of X. Then .Z7(2) is a x-algebra under the
involution XT := X*[ (see [17, p.8]). Furthermore, let .Z7(2, ) denote all
linear operators X from 2 to J# such that 2(X*) D 2. Then, L1(2,#) is a
x-preserving vector space endowed with the usual linear operations and the involu-
tion X := X*[2 (ibid., p. 23). In particular, £1(2, /) is a partial *-algebra [6,
Proposition 2.1.11] under the (weak) partial multiplication XOY = XY defined
whenever Y2 € 2(X™) and X192 c 2(Y*),X,Y € L1(2,#).

Let now .#; be a unital C*-algebra over # that leaves Z invariant, i.e.,
MoD C 2. Then, the restriction Ay[D of My to P is an O*-algebra on 2,
therefore an element X of .4 is regarded as an element X [9 of #,[2. Moreover,
let

My C M C LD, H),

where .# is an O*-vector space on 2, that is, a *-invariant subspace of Z1(2, ).
Denote by B(.#) the set of all bounded subsets of Z[t 4], where t 4 is the graph
topology on .# (see [17, p.9]). Further, denote by %;(Z) the set of all finite
subsets of 9. Then %;(2) C B(A). A subset B of B(M) is called admissible
if the following hold:
() #,(2) C 2,

(11) vml,mg E%, dM3 € B : My UMy Cmg,

(i) AM € B,V A e My and VI € B.
It is clear that #(Z) and ZB(.4 ) are admissible. Consider now an arbitrary ad-
missible subset B of B(.#). Then, for any MM € A define the following seminorms
on /-

pm(X) == sup [(X¢[n)|, X e (4.1)
§neEM

P (X) = sup | X¢ll, X €. (4.2)
£em

PP (X) = sup{[| X¢|| + | XT¢l}, X €. (4.3)
gem

We call the corresponding locally convex topologies on .# defined by the fami-
lies (4.1), (4.2) and (4.3) of seminorms, #-uniform topology, strongly Z-uniform
topology, resp. strongly* Z-uniform topology on .# and denote them by 7,(%),
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7U(B), resp. TY(AB). In particular, the Z(A )-uniform topology, the strongly
PB( A )-uniform topology, resp. the strongly* Z(.#)-uniform topology will be
simply called .#Z-uniform topology, strongly .#-uniform topology, resp. strongly*
A -uniform topology and will be denoted by 7, (#), 7" (A), resp. 74(A). In
the book of Schmiidgen [20], these topologies are called bounded topologies and
T4 (B), T%(AB) are denoted by 7, 7%, while 7, (), T%(.#) are denoted by 7, 77,
respectively. The Z;(2)-uniform topology, the strongly %;(Z)-uniform topol-
ogy, resp. the strongly* Z(Z)-uniform topology is called weak topology, strong
topology, resp. strong*-topology on .#, denoted resp. by 7, 7s and 74«. All these
topologies are related in the following way:

Tw 3 Tu(%) = Tu(%)

Al Al Al
To ITUB) R T M) (4.4)
Al Al Al

Tex = Tf('%) = ij(///)

We investigate now whether %[Tu(,@)] and %[Tﬁ(%)] are locally convex
quasi C*-algebras over .#;. So, we must check the properties (T1)—(T4) (stated
before and after Definition 3.1) for the locally convex topologies 7, (%), (%) and
the operator C*-norm || - ||p on ..

(T1) This follows easily for both topologies, since £ is admissible and .#,2 C
2.

(T2) Notice that for all X € .#, and I € # we have:
pPH(0) = sup (1] + X7 < (2 5up €]} 1o
em cem

so by (4.4) we conclude that 7,(B) < 7(B) < | - |lo-

(T3) Concerning 7%(4), the property (T3) follows easily from the very def-
initions. Now, notice the following: For any X,Y € .#; with XY = Y X and
Y* =Y, one concludes that

p(XY) < [[X[lo sup ([Y[§ [ £), VIMe A, (4.5)
£em

where |Y] := (Y2)'/2. Then, it follows that for any X,V € .#, with XY =YX
and Y > 0, one has
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p(XY) < [[X[lo sup (Y€ | ), VIMe 2.
gem

We prove (4.5). From the polar decomposition of ¥, there is a unique partial
isometry V' from 5 to s such that

Y=VY|=[|Y|V, ker(V)=ker(Y)and VY = |Y].

By continuous functional calculus it follows that: X commutes with both |Y| and
[Y|'/2, but also V|Y|'/2 = [Y|'/2V. Thus,

pon(XY) = sup [(XYE )| = sup |(VIVIXE )]
fﬂ]éim Evnem
= sup [(XIY]2¢[[Y[V2Va)| < sup X o| Y1/ €]|[[ 1120
§neM £neM

IN

1
S1Xllo sup (|[Y1V2€))* + |[[Y 1207
2 £nem

IN

| X]jo sup ([Y[€]€), VMe B
£em

But, we can not say whether (T3) holds for 7,(#). In the case when .# is a von
Neumann algebra we have the following;:

o If ./, is commutative, then (T3) holds for the topology 7.

o If # is a commutative O*-algebra (see [17, p.8]) on Z in #, containing
My, then (T3) holds for the topology 7,(#).

Indeed: Suppose that .# is commutative with .#y C .#. For each M €
PB(AM ) consider the set

M := U{VIM : V partial isometry in .#}.
Commutativity of .# implies that I € ZB(A). Moreover, MM C M'. Let now

XY € #y. Let Y = V|Y| be the polar decomposition of Y. Since .4 is a von
Neumann algebra, we have V' € .#;, which implies that

pm(XY) = sup [(XYE|n)| = sup [(VX[Y['Z¢|[Y]"?)]
&meM Enem

<|IVXllo sup [[[Y[V2E[IYT20]| = X ]lo sup (1€ | €)
§meEM gem

= [|Xlo sup (YE|V*E) <[ X[lo sup [(YE|n)| = X [opon (Y).
£em £neEM’
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Hence, (T3) holds for 7, ().

(T4) This property holds for all topologies in (4.4). It suffices to prove (T4)
for the topology 7,. So, let X € ?/(//ZO)TW be arbitrary. Then, there is a net
{Xo} in % (M) with X, — X. Notice that the sesquilinear form defined on

2 x 9 by

7 x 7> (&n) = lim (Xa | ) € C,

is bounded. Hence, X can be regarded as a bounded linear operator on % such
that

IXllo =1 and (X¢ | n) =lim (Xof |n), VEneD.

Since Z is dense in J#, an easy computation shows that

(X |y) =lim (Xaz | y), Va,yer. (4.6)

This proves that X € .#y N B(H)1 = U (M), which means that % (Ap) is Tw-

closed. A consequence of (4.6) is now that % ()4 is weakly closed. Similarly

we can show that %[Tw]q+ Ny = (Mp)+, therefore (T4) holds for the topology

Tw on AMy. From (4.4), (T4) also holds for the topologies 7, (%) and 7%(%).
From the preceding discussion we conclude the following

PROPOSITION 4.1. Let % be an admissible subset of HB(#). Then,
%[Tﬂ(%)] and %[TS*] are locally convex quasi C*-algebras over M. If Mo
is a von Neumann algebra and there is a commutative O*-algebra M on P in H,
containing My, then My [Tw] and %[Tu(/fl )] are commutative locally convex quasi
C*-algebras over M.

REMARK 4.2. (1) In general, we do not know whether %[Tu(%’)] and
My [Tw] are locally convex quasi C*-algebras.

(2) The locally convex quasi C*-algebra ]0[7'5*] over .4, equals to the com-
pletion /ZS’ [Ts<] of the von Neumann algebra . with respect to the topology
Tg+, but ;/76’ [Ts<] is not necessarily a locally convex quasi C*-algebra over .#,

since in general, #'2 ¢ 2. In the case when .#}'% C 2, one has the equality

M 75] = Mo[Ts-),

set-theoretically; but, the corresponding locally convex quasi C*-algebras over .
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do not coincide. In particular, one has that
Mo[Ts+)eq+ G A [Ts]cq-

We present now some properties of the locally convex quasi C*-algebra
.ﬂ(][TS*].

PROPOSITION 4.3. Let A € %[TS*](I_;,_. Consider the following:
(i) A € Mo[rs+]cq+-
(i) (I + A)~ exists and belongs to U (M)~
(iii) The closure A of A is a positive self-adjoint operator.
Then, one has that (i) = (ii) = (iii).

ProoOF. (i) = (ii) It follows from Proposition 3.2, (1).
(i) = (iii) Since (I+A)~"!is a bounded self-adjoint operator and (I +A)~12
C 2, it follows that

(I+ AT+ A ) = (L +ANE] I+ A7) = (€| n),
for all £ € 2(A*) and n € 2, which implies

(A1) = (I + A (I + AT+ A7) = (€] ¢)
= (£l T+A)C) = (£1¢) = (] A7), V& e 7(A7).

Hence, £ € Z(A) and A¢ = A*E. Tt is now easily seen that A is a positive self-
adjoint operator. (|

COROLLARY 4.4. Suppose that A € J%[Ts*] and M{P C D. Then, the
following statements are equivalent:
() A € Mgy
(i) T+A) " ew( ).

(iii) A is a positive self-adjoint operator.

ProoF. From Proposition 4.3 we have that (i) = (ii) = (iii).

(iii) = (i) This follows easily by considering the spectral decomposition of
A. O

Tt is natural now to ask whether there exists an extended C*-algebra (abbre-
viated to EC*-algebra) .# on & such that
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My C M C My|Ts].

If ./ is a closed O*-algebra on Z in 52, let M), == {X € M : X € B(H)}
be the bounded part of .Z, where %(5¢) is the C*-algebra of all bounded linear
operators on .. Then, when %, = {X : X € .4} is a C*-algebra on J# and
(I+X*X)~' € M, for each X € 4, M is said to be an EC*-algebra on 2.

In this regard, we have the following, which gives a characterization of certain
EC*-algebras on 2, through the set of commutatively quasi-positive elements of

Mo[rs-).

PB@DOSITION 4.5. Let A be a closed O*-algebra on Z such that #y C
M C My|Te+] and My = My. Then, M is an EC*-algebra on P if and only if

%_A,. C <%0 [TS*]cq+ .

PROOF. Suppose that .# is an EC*-algebra on & and let A € .#, be
arbitrary. Then, since .4, = .#,, A is a bounded positive self-adjoint operator
with (I + A)~! € % (My)+. But, ]0[7'5*] is a locally convex quasi C*-algebra
(Proposition 4.1), therefore % (.#y)+ is 7¢--closed. Note that for each n € N,
the elements X,, := A(I++A)~! belong to (.#p)4, are commuting and X,, — A,
so Definition 3.1 implies that A € %[TS*]Cqu. Ts*

Conversely, suppose that .#, C My|Ts]eqr. So, A € 4 implies ATA €
%[Ts*]cq+, therefore (I + ATA)~! € % (#,); from Proposition 3.2, (1). Now,
since A, = My we finally get that .# is an EC*-algebra on 2. O

5. Structure of commutative locally convex quasi C*-algebras.

Throughout this Section, &/[7] is a commutative locally convex quasi C*-
algebra over a unital C*-algebra 7. If the multiplication of <% with respect to
the topology 7 is jointly continuous, then «7[r] is a commutative GB*-algebra [15,
Theorem 2.1}, and so &[] is isomorphic to a *-algebra of C*-valued continuous
functions on a compact space, which take the value co on at most a nowhere dense
subset [2, Theorem 3.9], where C* is the extended complex plane in its usual
topology as the one-point compactification of C. The purpose of this Section is to
consider a generalization of the above result in the case when the multiplication of
&/ [7] is not jointly continuous. As a*a is not necessarily defined for a € &[7], it is
impossible to extend any nonzero multiplicative linear functional ¢ on 7 to 2/[7],
like in the case of [1, Proposition 6.8]. Here we show that ¢ is extendable to a C*-
valued partial multiplicative linear functional ¢’ on @7[7],4, and that o7[7]qy is
isomorphic to a wedge of C*-valued positive functions on a compact space, which
take the value co on at most a nowhere dense subset. This result will be applied
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in Section 6 for studying a functional calculus for quasi-positive elements. Using
the notation given after Definition 3.1, define now a wedge of &/ [7] as follows:

T

A [Tlgy = A 7] N [T]gr = Z[T] N ()4

Then, let
m(%,%[,r]tﬁ*) = {GCL' +yrac d[T}qu» T,y € %}a

and denote by .Z (<) the Gel'fand space of <, i.e. the set of all nonzero
multiplicative linear functionals on &%, endowed with the weak*-topology
o(M (), ). Now, let a € [r]y+ and x,y € 4. Suppose z is hermitian.
Then, by continuous functional calculus, z is uniquely decomposed in the follow-
ing way:

r=xy—2_, xy, - € (H)t, zyx_ =0

o] = (@*2)'? = w4 + 2 € ()4

Hence, a|z|, azy, arx— € &/[7]44+, and by (1) and (2) of Proposition 3.2, (1 +
alz|)7t, alz|(1 + a|z|)~t € (), . Furthermore, since

alz|(1 +alz|) ™t — azy (1 +alz) ™t = az_(1 + alz]) 7 € Holr]e

Proposition 3.2, (4) implies that azy (1 + alz|)™! € (o). Similarly, ax_(1 +
alz])~! € ()+. Hence, we have

(az +y)(1 +alz)) ™
=ary (1 +alz))™ —ax_(1 +alz))"  +y(1 +alz)) ™t € .

Since a general element x of % is a linear combination of two hermitian elements
of <7, we finally obtain that

(ax +y)(1 +alz|)™' € o, ¥V a € F[r],r and x,y € .

Indeed: Let x be arbitrary in «%. Then, x = x1 4 ixs, with 1 and x5 hermitian.
An easy computation shows that
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2| < Jai| + a2, |z < |zl (1 +ala; (1 +alz]) ™" € lr]gs

and 1 — (1 +alz;|)(1+alz)™" € [r]gs, j=1,2.

The latter together with Proposition 3.2, (4) gives (1 +alxz;|)(1 +alz|)~! € (#h)+;
moreover, from the above (az; + y)(1 + alz;|) ™ € . Thus, for j = 1,2, we get

(azj +y)(1 +alz)) ™" = ((azj +y)(1 +ala;)7H((L + alz;])(1 +alz]) ™) € b,
which implies
(az +y)(1 +alz))™" = (a1 +y)(1 +alz) ™" +iz2(1 +alz) ™" € .

Hence, the elements ¢((1 + alz|)™1) and ¢((az + y)(I + a|z|)~!) are complex
numbers for each ¢ € # (%), so that we can consider the correspondence

o' M, H[1]q4) — C* = CU{x}, with

ax alz|) "t . —
W((W(lei(jli-l)l_llg ) if ‘P((I + alxl) 1) #0

o0 if o((1 +alz])~t) = 0.

ax +y+— o (ax +y) =

Then, we have

LEMMA 5.1.  The following statements hold:

(1) For every ¢ € 4 () the correspondence ¢', given above, is well-defined.

(2) Let a € |14+ and x € . Then, (1 +a)~! ezists in o (from Propo-
sition 3.2, (1)) and we have:

() @((1 +alzl) ™) = 0 implies p((1 +a)~") = 0, € A (k).

(i) p((1 +a) ") = 0 and p(z) £ 0 imply (1 +ale]) ™) = 0, € .4 ().

PRrROOF. (1) Let a,b € &[1]4+ and z,y, z,w € o such that ax+y = bz +w.
Then, for every ¢ € .# (%) one has that

o((1 +alel)™) = 0.6 (1 +blz]) ™) = 0. (5.1)

Indeed, we first show (5.1) in case x and z are hermitian. Since ax + y = bz + w,
we have

(1 +alz|) —2ax_ +y=(1+Db|z|]) —2bz_ +w.
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We multiply the last equality by (1 + alz|)~1(1 +blz|)~! and get

(1 +bz)™" =202 (1 +ale) (1 + b)) ™ +y(1 +ala]) 7' (1 +0l2)) 7
= (1 +alz])™" = 2bz_(1 +b|z|) "' (1 +alz|) ™t +w(l +alz|)" (1 +blz))" "

This implies that for every ¢ € # ()
o1+ alal) ™) = 0. (1 +b2)Y) =0. (5:2)

We next prove (5.1) in the case when = and z are arbitrary elements of «%. Then,
the elements x,y, 2 and w are decomposed into

T=21+1x2, Y=Y+, 2z=2721+12, wW=wi+iws,

where x;,y;,z;, w; (j = 1,2) are hermitian elements in < that satisfy the equa-
tions:

ari +y1 = bz +wy, axg + ys = bzo + wo. (5.3)
We show now that

p((1+alal) ) =0 & cither (1 +ala])™) =0
(5.4)
0.

or ¢((1 +alzaf)™) =
Suppose that ¢((1 + alz1|)™1) # 0 and ¢((1 + a|z2|)~t) # 0. Then,

(1 +a(lza] + [a2])) ™" = (1 +alza[) 711 + alz2) ™
= (1 +allz] + |a2])) " (ale1|(1 + alei )71 (alwa| (1 + alza]) ) € ()4,

whence
o((1 + ales] + J221)) 1) = @((1 + alza]) 7 (1 + alza]) 1) > 0.
Furthermore, since |z| < |21| 4 |22|, we have

0 <o((1 +a(lzi] +|220)) ") < (1 +alz])™h).
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Hence, ¢((1 + alz|)~1) # 0. Conversely, suppose ¢((1 + alz1])™) =0 or p((1 +
alza|)™1) = 0. Then, since (1 + alz;|)~' > (1 + alz|)™!, j = 1,2, we have that
o((1 +al) ™) =0,

Now from (5.2), (5.3) and (5.4) we get

p((1 +alz))™) =06 (1 +alz1))™) =0 or (1 +alz2)) ™) =0
& @((1 +blar]) ™) =0 or (1 +blz2)71) =0
(1 +bl2))7h) = 0.

Thus, (5.1) has been shown. Now, by assumption ax + y = bz + w, consequently
¢ (az +y) =00 & ¢ (bz + w) = .

On the other hand, from (5.1) it follows that
¢'(az +y) < 0o & ¢ (bz +w) < <.

In this case,

p((az +y)(1 +alz) (1 +bl2)) )
p((1 +alz)=He((1 +0]2))71)

¢ (ax +y) = = ¢'(bz +w)

and this completes the proof of (1).
(2) (i) Suppose ¢((1 +alz|)™t) =0, € 4 (), Then,
(14+a)" ' =1 +alz|) (1 +alz))(1 +a)™?
= (1 +ae)7H(L +a)" +zla(l +a)7h)
= (1 +ae) "L +a)" + o] — |zl(1 +a)7)
( )T = J2)(2 +a) ™+ [z,
where (1 — |2|)(1 +a)~! + |z| € <. So applying ¢ we have p((1 +a)~!) = 0.

(ii) Suppose that ¢((1 +a)™') =0 and ¢(z) # 0, ¢ € 4 (). Then, we
apply ¢ to the final result of the preceding calculation in (i) and we take

(1 +alz) () = 0.
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Since p(x) # 0 if and only if ¢(|z|) # 0, clearly we have p((1 +alz|)~!) =0. O

PROPOSITION 5.2.  For ¢ € # (), the well defined map ¢’ has the follow-
ing properties:

(1) ¢’ D (i.e., ¢ is an extension of v);

(2) ¢'(az +y) = ' (a)p(x) + ¢(y) and ¢'(ax) = ¢'(a)p(x), whenever a €
A [T)q+ and z,y € o such that ¢'(a)p(z) # o0 - 0;

(3) ¢'(a+b) =¢'(a) +¢'(b), for all a,b € F[r]q;

(4) ¢’ (Aa) = X¢'(a), for all X € C and a € o/ [7]q4, where 0 - 00 = 0.

PRrOOF.

(1) Tt is trivial.

(2) Suppose that ¢’ (a)p(x) # -0, ¢ € A (). Then, from the definition of
¢’ and Lemma 5.1, (2), we have the following implications (considering separately
the cases where ¢'(a) is infinite or not):

e Ylart+y)=00 & ¢'(a) = 0o
T (i
e((1 +alz)~1) =0 e((1+a)"H) =0
I
¢'(a)p(z) + o(y) = oo
o Y(ar+y) <oo & ¥'(a) < oo
T T
e((1 +alz)~") #0 (1 +a)™t) #0.

So, in this case we also get

p(az(1 +alz)~")

¢'(ax +y) = (1 +ajz)) ) + ¢(y)
- gO(Czo((l(j f)a_))l@)(x) +oly) = ¢(a)e(@) + ¢(y),

and this completes the proof of (2).
(3) Observe that for any a,b € &/[7]44, one has

(14+a) ' (1 +b) =1 +a+b)"((1 +a) (1 +0b)7!
+a(l+a) (1 +b)7 + (1 +a) Mol +0)7Y),

where (1 +a) (1 +b)7 ' +a(l +a) (1 +b)" 4+ (1 +a)7tb(1 +b)~! € o (see
Proposition 3.2). Thus, applying any ¢ € .# () to the last equality we conclude
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that

o((1 +a+b)~1) = 0 implies either
(1 +a) ™) =0o0r¢((1+b)~")=0.

Conversely, observe that
(14+a)t=+a+bd) ' +b(1+a+b)7 (1 +a)",

where b(1 +a+b)~! € (%) by Proposition 3.2, (4), since (a +b)(1 +a+b)~1 —
a(1+a+b)"1=b(1+a+b)"! € Hlr]es with (a+b)(1 +a+b)"" € (o). So,
taking also into account an analogous equality for (1 + b)~!, as well as (5.5) we
have that

o((1 +a+b)"') =0« either o((1 +a)"')=0o0r
e((1 4071 =0, Voe.#().

Using now the preceding equivalence, clearly we conclude that:
o ¢'(a+b) =00 & either ¢'(a) = 0o or ¢'(b) = oo; thus,

¢'(a+b) =¢'(a) +¢'(b) = o0; or

o Y(a+b) <ooe ¢(a) <ooand ¢ (b) < oco.
In this case,

o' (a+0b)
ola(l+a) (1 +b) (1 +a+b) " +b(1+a) (1 +b) (1 +a+b)h)
(1 +a)"He((1 +b)"H)e((I +a+b)71)
pla(f +a)™) | (b1 +b)")
e((L+a)7t) (1 +b)71)

/

= ¢'(a) + ¢'(b).

(4) It follows from (2) by replacing x with A7, A € C, and y with 0. O

REMARK 5.3. In order to have all the values of ¢’ fully determined, we need
to define the following:

o V(a)p(r), ¢'(ax) + ¢/ (bx) and ¢'(a)p(z1) + ¢'(a)p(22), for any a,b €
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A [T]q+ and z1, 29 € .

From Proposition 5.2 we conclude that:

(i) ¢’ (a)p(z) = ¢'(ax), for any a € [r]q4 and = € o with ¢’ (a)p(z) #

oo - 0.

(i) ¢'(ax) + ¢'(bx) = ¢'((a + b)x), for any a, b € [r]4+ and = € o with
either ¢’ (a)p(xz) # 0o -0 or ¢’ (b)p(x) # oo - 0.

(iil) ¢'(a)p(z1 + z2) = ¢'(a(z1 + x2)), for any a € [1],4 and z1,22 €
with ¢’ (a(x1 + 23)) # o0 - 0.

Furthermore, the definition of ¢’ and Proposition 5.2 imply that:

(1) When ¢'(a) = oo and p(z) = 0, the value ¢'(az) of ¢’ depends upon a
and z. For instance,

o o= 0= /() = (0) = p(0) = 0

e v=(1+a) "t = all +a)) = plall +a) ) = o1 — (1 +a)") = 1.

(2) For a,b € [r]q+ and x € % such that either ¢'(a)p(z) = 0o -0 or
¢ (b)p(x) = 00 - 0, the value ¢'((a + b)x) clearly depends upon a,b and z.

(3) For a € [1]4+ and z1,z2 € o such that either ¢'(a)p(z1) = o0 -0 or
@' (a)p(xe) = 00 - 0, then again the value ¢'(a(z1 + z2)) depends upon a, x; and
Za.

CoNCLUSION.  We define the requested values of ¢’ by (i), (ii) and (iii), for
any a, b € o[7),+ and x1, 2 € .

REMARK 5.4. We do not know whether ¢’ is defined or not on the linear
span of M (e, o [T]q4 ).

Now, for any a € &/[7]4+ and z,y € Ay, we fix the notation:

—

ax +ylp) = ' (ax +y), ¢ M(H).

Then, we have the following

PROPOSITION 5.5. m is a C*-valued continuous function on the com-
pact Hausdorff space M (), which takes the value oo on at most a nowhere dense

subset of M ().

ProoF. We shall show that the set
N ={p € #(h): az+y(p) = oo},

is a nowhere dense closed subset of .#(<%). Notice that
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={p € M(h): o1 +alz])™! =0}, (5.6)

azty
from which it follows that Nﬂ—&-\ is closed. Now, suppose that
Yy

3 % mnon-empty open subset of .# () with % C N+

From the commutative Gel’fand-Naimark theorem, o ~ € (.# (%)), up to an
isometric *-isomorphism. Thus, using Urysohn’s lemma for .# (%) we get that

Jbedh: ||blo=1and b(e) =p(b) =0, YVod#%.
But this together with (5.6) and the fact that % C N@, implies
p(b(1 +alz))™') =0, Ve ().
The afore-mentioned identification .« ~ € (.# (%)) gives now b(1 +alz|)~! =0,
which clearly yields b = 0, a contradiction to [[bllo = 1. Hence, No—= is a nowhere
dense closed subset of .Z ().
Next we show that az + y is continuous on .7 (7). Put
z=(1+alz])"" and w = ax(1 + alz|) " .
Take an arbitrary o € # (%) and consider the cases:
o az+y(po) # 00, ie., £(po) # 0.

From the continuity of 2 there is a neighborhood %, of ¢y with z(¢) # 0, for all
» € Up,. Thus, we get

ar +y(p) = +9(0), V@€ U,

where all functions w, 2, § are continuous at ¢y, so that the same is true for cﬁ?y.
o az + y(po) = 00, i.e., 2(pg) = 0.

Take an arbitrary net {¢,} in .# (%) such that ¢, — o, with respect to the

weak*-topology o (. (<), %%). Then,

’2(5004) - »’:'(SDO) = 07

where £(¢q) # 0, since N+ is a nowhere dense subset of .2 (). Since
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pal(az*((1 + ale)) ") (az(1 + ala))~1))?
eal(1 +afa) )
pal(all + alz) ) (a"wa(1 + ala])~1)"/2
eal(1 +afa) 1)
_ allale|(1 +ale])~)2)?
eal(1+ale]) )
_ palalal( + ale)) )
pa((1 T ala]) 1)
_ pall — (1 +ale)™)
eal(1 T ala]) 1)

|az(pa)| =

it follows that lim az(¢,) = oo, which implies

—

lim az + y(pa) = 00 = az + y(o)-

This completes the proof of the continuity of m at g; so the proof of Propo-
sition 5.5 is finished. O

All the above lead to the following

DEFINITION 5.6. Let W be a completely regular topological space and
F (W), the set of all C*-valued positive continuous functions on W, which take
the value co on at most a nowhere dense subset Wy of W. Then, .# (W), is said
to be a wedge on W, if for any f,g € .Z (W) and A > 0, the functions f + g and
Af defined pointwise on W, on which f and g are both finite, are extendible to
C*-valued positive continuous functions on W that also belong to .7 (W),. We
keep the same symbols f 4+ g and \f for the respective extensions.

Consider now the set
FW)={fgo+ho:feFW)i go,ho€C(W)},

where € (W) is the x-algebra of all continuous C-valued functions on W. Then,
the set .7 (W) fulfils the following conditions:

o (fi+ f2)90 = f190 + f290,
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e (A)go = Afg0),
e f(g90+ ho) = fgo + fho,
for all f, f1, fo € F(W)4, go,ho € €(W) and X > 0.

DEFINITION 5.7.  We call .% (W) the set of C*-valued positive continuous
functions on W generated by the wedge .7 (W), and the *-algebra € (W).

In this regard (see also Remark 5.3), we have the following

THEOREM 5.8. Let F (M (H))+ ={a:a € [r]q+}. Then,

(1) Z (A (A))+ is a wedge on A ().

(2) The map ® : M(ty, H[r]qr) — F(M(HA)) : ax +y — ax+y, is a
bijection satisfying the properties:

(i) (A 7)g4) = F (M (H))+, with ®(a + b) = ®(a) + ®(b) and P(Na) =
A®(a), for all a,b € 1|44 and X > 0.

(i) ®(A) = € (A (), © being an isometric *-isomorphism from <t onto
G M ().

(iii) ®(az) = ®(a)®(x), for all a € H|r]g+ and z € <. P((a + b)z) =
(®(a) + ®(b))®(x), for all a,b € H[r]g+ and x € 2. P(Aax) = AP(a)®(x), for
ala € IT)gq,x € o and X > 0. (a(z1 + x2)) = P(a)(P(z1) + ®(x2)), for all
a € I[7)g+ and x1,22 € .

PROOF. The statements (1), (2)(i) and (2)(ii) follow from Propositions 5.2
and 5.5. We show the statement (2)(iii). Let a € #/[r]¢4+ and z € . From
Proposition 5.5, @ and ax are C*-valued continuous functions on .# (<) that
take the value oo on at most a nowhere dense subset of .# (o). Hence, the set

A ={p € M) :alp) < oo and aZ(p) < oo}
is dense in . (%) and
ar(p) = alp)i(p),V v € X,
therefore by the continuity of a and aZ we conclude that ax = a, from which it
follows that ®(ax) = ®(a)®(z). The rest of the properties in (2)(iii) are similarly

proved. O

6. Functional calculus for quasi-positive elements.

Throughout this Section &/[7] is a commutative locally convex quasi C*-
algebra over a C'*-algebra .o. Here we shall consider a functional calculus for
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the quasi-positive elements of &7 [7], resulting, for instance, to consideration of the
quasi nth-root of an element a € &[],y (see Corollary 6.7). For this purpose, we
first need to extend the multiplication of <7[7].

DEFINITION 6.1. Let a,b € &7[7]4+; a is called left-multiplier of b, and we
write a € L(b), if there exist nets {z,},{yg} in (&%)+ such that z, — a, y3 — b

and z,yg — ¢ (in the sense that the double indexed net {z,ys} converges to ¢).
T

The product of a,b denoted by ab is given as follows
ab:=c=r1- lilg ZTals-
LEMMA 6.2.  The product ab is well-defined, in the sense that it is indepen-
dent of the selection of the nets {zq.}, {ys}-

PrOOF. Let {z,},{ys} be two nets in (.2%) such that

To — a, yg — b and Yz — c.
T T T

Then (also see Proposition 3.2)

(1 +20) ' 2ays(I +yp) (1 +0) P = (1 +a) el +c)7 (1 +b)7!
= ((1 + @) 2ayp(L +yp) " (L + 07" = (L +za) 'e(L +¢)7 (L +y5)7")
+ (L +za) (I +)7 L +yp) ™ = (L +a) (I +)7H (L +yp)7)
+((14+a) te(14+e) M1 +ys) = (1 +a) el +e)7 (1 +b)7h).

As we have seen in the proof of Proposition 3.2,(1) (1 + x4)~! — a, so taking

7-limits in the preceding equality, we conclude that

(1 +za) 'ways(1 +ys) ' (1 +0) ' = (I +a) "e(1+¢) (1 +b)"

T

On the other hand,

(1 +20)  aays(1 +1p) (1 +0)7" = (L +a)  a)(b(1 +5)"1)(1 +¢) !
=((1 +za) 2o — (I +a) ra)ys(L +yz) (1 +¢)"
+ (1 +a) talys(1 +ys) ' —b(1 +b)" (I +0¢)7 ",
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from which, as before, we take that

(1 +za) "ays(l +yp) " (1 +)7 = (1 +a)la)(b(1 +b)7)(L + )7

T

Hence, we finally obtain

(14+a)te(1 +b)7 = (1 +a) ta)(b(1 +b)71). (6.1)

Suppose now that two other nets {z },{y; } exist in (%) such that
xh —q, Yy, —band Ay, - .

Working exactly as before we come to the equality

(L +a)" (1 4+b)7" = ((1 +a) " a)(b(1 + b)),
which together with (6.1) gives

(14+a)te(1 +b) =1 +a) 1+ tec=C. O

We may now set the following

DEFINITION 6.3. Let a,b € &/[r],+ with a € L(b) and z,y € <. The
product of the elements ax, by is defined as follows:

(azx)(by) := (ab)xy.

Further, we consider the spectrum of an element a € &7[7],+.

DEFINITION 6.4. Let a € &/[7]+. The spectrum of a denoted by o, (a), is
that subset of C*, defined in the following way:

o Let A€ C. Then )\ € 04,(a) & A — a has no inverse in 2;

e 0 Eoy(a)ead .

LEMMA 6.5. Let a € &/[7]g+. Then,
oa(a) ={a(p) : ¢ € M ()} C Ry U{oo}.

In particular, o44,(a) is a locally compact subset of C*.
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PrOOF. Let A € C. Then (also see Theorem 5.8),
AN og(a) & (A —a)™" € o & X # a(p),¥ ¢ € M(H).
Let now A = co. Then,

A€oy (a)=ad < ad €M)
& Jpo € M () : alpo) =

The rest is clear. O

If a € o/ [7]q+, denote by 6 (0 (a)), the C*-algebra of all bounded continu-
ous functions on o, (a). For n € N and f € € (04, (a)), define the function

gn(A) = A € oy (a). (6.2)

In this regard, set
Cn(om(a) :=={f € Cloa () N R) : gn € Co(0.(a))}- (6.3)
Then,
Co(0y(a)) C Cr(0ug(a)) C Ca(oagy (@) C -+

Now, the promised functional calculus for quasi-positive elements in 7[r] is given
by the following

THEOREM 6.6. Let a € &/[7|qy. Suppose that the element a™ is well-
defined for some n € N. Then, there is a unique x-isomorphism f +— f(a) from
Ur_, Cr(ow,(a)) into &7, in such a way that:

(1) If up € Up—y Cr(0a(a)), with ug(X) = 1, for each X € o4 (a), then
up(a) =1 € oy — AIr].

(i) If w1 € Ui—; Crl(ow,(a)), with uz(X) = A, for each X\ € o4 (a), then

ui(a) = a € r].
(iii) f(a)(p) = f(a()), for any f € U_, Ci(m,(a) and o € 4 (ch);
(iv) (fi+f2)(a) = fi(a)+ f2(a), for any f1, fo € Up_, Ci(om,(a), (Af)(a) =

Af(a), for any f € Up—y Cr(0m(a)) and X € C, (f1f2)(a) = fi(a)fz(a), for any
[i € Cx;(0(a)), j=1,2, with ky + ky < n.

(v) Restricted to C’b(a% (a)) the map f — f(a) is an isometric x-isomorphism
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of the C*-algebra Cy(cuy(a)) onto the closed x-subalgebra of the C*-algebra <%
generated by 1 and (1 +a)~L.

Proor. Let f € Ui_, Ck(ow(a)). Then, f € Ci(ow(a)), for some k
with 1 < k < n, and g, € Cy(0u(a)) with gx(A) = F(A)/(1+ X))\ € 0 (a).
From Lemma 6.5 we have that g, o & € C (4 (%)), therefore (Gel’fand-Naimark
theorem) there is a unique element gi(a) € <% such that

—

ge(a)(p) = gralyp)), vy € (). (6.4)

Now let
f(a) = gr(a)(1 +a)* € 7). (6.5)
We shall show that f(a) does not depend on k, 1 < k < n. Indeed, let f €

Cj (0w, (a)) with:
o j <k; then for each A € o4, (a),

f) f) 1 o 1
GraF -~ aearv 9 Na

Hence, gi.(a) = g;(a)(1 +a)~*=9) € o and
ge(a)(1 +a)* = gj(a)(1 + a)’; (6.6)

e j > k; in this case too, one takes (6.6) in a similar way. So, the element
f(a) € &[] is well-defined by (6.5). Now, it is easily seen that the map

f— f(a) from U Cr(0u,(a)) into o[7]
k=1

is a x-isomorphism with the properties (i), (ii), (iii).
(iv) Consider the functions fi € Ck, (0, (a)), fo € Ck, (0w (a)) with ki +ko <
n. Then (see (6.3) and discussion before (6.4)), gr, € Cy(ou,(a)) with gi,(a)

unique in %, i = 1,2. Define the function f(A) := f1(A)f2(A), A € o0 (a). Then,
f € Clirkz (Uﬂo (a’)) and

Gk1+ko (>‘) = (1+f>(‘))\k)l+k2 = Gk, ()‘)gkz ()‘)7 A € 0, (CL),
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that is g, 4k, € Cp(0ap(a)). Thus, gr, 4k, (a) = gk, (a)gk, (a) € . Moreover (see
also Definition 6.3 and (6.5))

(f1f2)(a) = f(a) = gr,+1a (@) (1 + @)1 Hh2
= (gr, ()(1 + a)**)(gr, (a) (1 + a)?)
= f1(a) f2(a).
The first two equalities in (iv) are similarly shown.

(v) Arguing as in (6.4) and taking into account Lemma 6.5, we easily reach
at the conclusion. O

COROLLARY 6.7. Let a € &/[r]q+ and n € N. Then, there is a unique
b € [1)q+ such that a = b™ The element b is called quasi nth-root of a and is
denoted by an. If, in particular, n = 2, the element a? is called quasi square-root

of a.
1

PrROOF. Consider the functions fi(\) := A+ and fo(A) == M=%, X >0,
which clearly belong to Ci(o4,(a)). Then (see (6.2), (6.3)), g1,92 € Co(0w,(a))
with g1(A) = fi(A) (1 + X)L g2(A) = fa(A) (1 + )~ XA > 0. Theorem 6.6 gives
that the elements fi(a), f2(a) are uniquely defined in </[7] with

fila) = g1(a)(1 +a),  faa) = g2(a)(1 +a),

where g;(a) € ()4, i = 1,2 (see, e.g., (6.4)). Moreover (also see Proposition 3.2,
(1) and (2)), for each e >0

()+ 2 gi(a)(1 +a)(1 +ea)™? %‘% £1(a), Tesp.

()+ 2 g2(a)(1 +a)(1 +ea) ™ <= fu(a).

On the other hand, since (f1f2)(A) = A, from Theorem 6.6, (ii) we have that
(f1f2)(a) = a, therefore (also see Proposition 3.2, (2))

(g1(a)(1 4+ a)(1 +ea) V) (g2(a)(1 +a)(1 +ea)™) =a(l +ea)™? 20, .

T

So, from Definition 6.1, we conclude that

fi(a) € L(f2(a)) and a = fi(a) fa(a).
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Now, since fa(a) € &/[7]4+, we repeat the previous procedure with fo(a) in the
place of a, so that continuing in this way we finally obtain

a= fi(a)fi(a)--- fi(a) (n-times).
The proof is completed by taking b = fi(a). 0

7. Structure of noncommutative locally convex quasi C*-algebras.

In this Section we consider a noncommutative locally convex quasi C*-algebra
&[] over a unital C*-algebra o7 and we investigate the following: (a) Conditions
under which such an algebra is continuously embedded in a locally convex quasi
C*-algebra of operators (Theorems 7.3, 7.5); (b) a functional calculus for the
commutatively quasi-positive elements in 27[r] (Theorem 7.8).

DEFINITION 7.1. Let 2 be a dense subspace of a Hilbert space 5. A x-
representation 7 of &7[7] is a linear map from &7 into £1(2, 7#) (see beginning
of Section 4) with the following properties:

(i) 7 is a *-representation of <7;

(ii) 7(a)t = 7(a*),V a € o;

(iii) m(ax) = w(a)On(z) and 7w(rxa) = w(x)0On(a),¥ a € & and x € A,
where O is the (weak) partial multiplication in .Z7(2, ) (ibid.). Having a *-
representation 7 as before, we write Z(r) in the place of 2 and J%; in the place of
A . By a (1, T4+ )-continuous *-representation 7 of &7[7], we clearly mean continuity
of m, when Z1(2(n), #,) carries the locally convex topology T+ (see Section 4).

LEMMA 7.2. Let w be a x-representation of </ [r] with domain 2(w) dense
in H5. Let also B be an admissible subset of B(n(/)). The following holds:

(1) If 7 is (7, 7+ )-continuous, then mw(&f)[rs+] is a locally conver quasi C*-
algebra over the C*-algebra w(4).

(2) If ™ is (1,7%(%B))-continuous (in the spirit of Definition 7.1), then
() [T B)] is a locally conver quasi C*-algebra over m(2%).

*

PROOF. Clearly 7(a%) is a C*-algebra and

m: 1] = (A )[1e-] C w(Ho)[Ts+]

is a (7, T4+ )-continuous #-representation of &/ [7], with 7(47) a quasi x-algebra over

—_—~—

() and w(eh)[7s-] (similarly 7(2%)[74(%)]) a locally convex quasi C*-algebra
over m(%). So, (1) and (2) follow from Definition 3.3. O
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Now, a sesquilinear form ¢ on &7 x &/ is called positive, resp. invariant, if
and only if ¢(a,a) > 0, for each a € &7, resp. p(ax,y) = p(z,a*y), for all a € o
and z,y € <. Moreover, ¢ is called T-continuous, if |¢(a,b)| < p(a)p(b) for some
T-continuous seminorm p on 7 and all a,b € 7.

Further, let ¢ be a 7-continuous positive invariant sesquilinear form on @7 x
. Then, @ denotes the extension of ¢ to a 7-continuous positive invariant
sesquilinear form on &7 x &7. Moreover, let (7, Ay, #,,) be the GN S-construction
for ¢ (see, for instance, [6, Section 9.1]). Then, 7, is extended on <7, as follows:

To(a) () = liglﬂw(xa))\w(:r), YV x € o, (7.1)

where {z,} is a net in &7[r] with ¢ = 7-limz,. By the very definitions and the
(03

T-continuity of ¢, it follows that 7, is a (7, s+ )-continuous *-representation of <7
Now, put

S () := {r-continuous positive invariant sesquilinear forms ¢ on o x 2 }.
We shall say that the set 7 (%) is sufficient, whenever
a € o with ¢(a,a) =0,V ¢ € (%), implies a = 0.

From the results that follow, Theorems 7.3, 7.5 (and, of course, Corollary 7.4) give
answers to the question (a) stated at the beginning of this Section. These results
can be viewed as analogues of the Gel’fand-Naimark theorem, in the case of locally
convex quasi C*-algebras.

THEOREM 7.3.  Let &[7] be a locally convezx quasi C*-algebra over a unital
C*-algebra . The following statements are equivalent:

(1) There exists a faithful (T, Te«)-continuous x-representation m of < .

(2) The set () is sufficient.

PrOOF. (1) = (2) For every & € Z(m) define
pe(,y) = (m(2)¢|m(y)€), V 2,y € H.

Then, {p¢ : &€ € P(m)} C (), so that from the preceding discussion it follows
easily that .7 () is sufficient.

(2) = (1) Let ¢ € L(4) and (1, Ay, H#,) the GN S-construction for ¢.
Then, as we noticed before (see (7.1)), m, extends to a (7,7s)-continuous x*-
representation of .7 with Z(m,) = Ay (4%). Now, take
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D (m) = {(Aga(xtp))goey(,gfo) € @ Iy, xy, € Sy and
pES (o)

Ap(zy,) =0, except for a finite number of ¢’s from y(%)}

and define

m(a)(Ap(7p)) := (Ap(amy)),V a € & and (A, (2y)) € D(7).

Then, it is easily seen that m is a faithful (7, 75+ )-continuous *-representation of
. O

Results for quasi *-algebras over a unital C*-algebra 7, related to Theorem
7.3, have been considered in [10, Theorem 3.3] and [15, Theorem 3.2].
Now an application of Theorem 7.3 and Lemma 7.2, gives the following

COROLLARY 7.4. Let o/[1], o be as in Theorem 7.3. Suppose that the set
S () is sufficient. Then, the locally convex quasi C*-algebra </ [t] over < is
continuously embedded in a locally conver quasi C*-algebra of operators.

The next theorem gives further conditions under which a locally convex quasi
C*-algebra &/[7] can be continuously embedded in a locally convex quasi C*-
algebra of operators.

THEOREM 7.5. Let &/[7] be a locally convex quasi C*-algebra over <. Sup-
pose the multiplication of <7, satisfies the following condition:

For every T-bounded subset B of <y and every A € A, there exist N € A and
a positive constant cg such that

sup pa(zy) < eppy(z), V€ 9.
yeB

Then, the next statements are equivalent:
(i) There is a faithful (1, 7*(PB))-continuous x-representation w of <, where
A is an admissible subset of B(n(H)).
(ii) There is a faithful (7, Ts)-continuous x-representation of <7 .

(iii) The set 7 () is sufficient.

PrOOF. (i) = (ii) It is trivial (see (4.3)).
(ii) = (iii) It follows from Theorem 7.3.
(iii) = (i) Let ¢ € () and (7, Ay, H,) the GN S-construction for ¢ (see
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discussion before Theorem 7.3). Set
By = {As(B) : B a T-bounded subset of % }.

Then, for each T7-bounded subset B of %, we have

sup |7, (a) Ao (y) || = sup p(ay, ay)'/* < sup px(ay) < cpp (a),
yeEB yEB yEB

for all @ € o/ and some A\, X" € A. It is clear now that \,(B) € #(m (<)) and
that (see (4.2)) m, is (7, 73(%,))-continuous. Let now 7 be as in the proof of
Theorem 7.3. Put

finite
B = { @ Ap(By) : By, a T-bounded subset of %}.
peS ()

Then, it is easily seen that %, is an admissible subset of (7 (<)) and 7 a faithful
(1, T¥(Z,))-continuous x-representation of <7 O

An analogue of Corollary 7.4 is stated in the case of Theorem 7.5, too.

Taking again «7[7|, %% as in Theorem 7.3, we proceed to the study of a func-
tional calculus for the commutatively quasi-positive elements of «7[r] (see (b) at
the beginning of this Section). So, let a € &/[7]cq+. Then, from Proposition
3.2,(1), the element (1 + a)~! exists and belongs to % (). Consider the maxi-
mal commutative C*-subalgebra C*(a) of 7% containing the elements 1, (1 +a)~*.
Then,

o C*(a)[r] satisfies the properties (T1)—(T4) of Section 3. The properties
(T1)—(T3) are trivially checked. We must check (T4).

First we prove that % (C*(a))+ is 7-closed. Let {x,} be a net in % (C*(a))4+ such
that zo — x. But, Z(C*(a))+ C % (%)+ and since % ()~ is T-closed we have
that € % (#%)+. On the other hand,

TY — Toy = YTo — Yz, Yy € C*(a).
T T

Hence, xy = yz, which by the maximality of C*(a) means that x € C*(a) and
finally x € % (C*(a))+. Thus, % (C*(a))+ is T-closed. Now, take an arbitrary

x € C*(a)[7]q+ N C*(a). Then, z € 1]+ Nt = ()4, and so x € C*(a) N
(9)+ = C*(a)4+. This completes the proof of (T4). Thus, the following is proved:
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PROPOSITION 7.6. Let &/[r] be a locally convex quasi C*-algebra over a
unital C*-algebra <fy. Let a € </ [T)cqq and C*(a) the mazimal commutative C*-
subalgebra of <y containing {1,(1 + a)~'}. Then, C*(a)[r] is a commutative
locally convex quasi C*-algebra over C*(a).

COROLLARY 7.7.  The element a belongs to C*(a)[T]q+-

PROOF. Since a € &/[7]cq+, Proposition 3.2, (2) implies that for every € > 0,
a(l1+ea)™t =1/e(1 — (1 +ea)™t) € (o). Now, since (I +a)~! commutes with
every element w € C*(a), it follows that w also commutes with 1 + a, hence with
a, therefore with (1 +ca)~! too. Thus, a(1 +¢ca)~! € C*(a), for each € > 0. Since

IOTeover, a = T—liH(l) a(1 +ea)~" (ibid.), Definition 3.1 gives that a € C*(a)[r]4+-
£—
O

It is now clear from Corollary 7.7 that making use of Theorem 6.6 for

C*(a)[r]q+, we can obtain the promised functional calculus for the commutatively
quasi-positive elements of the noncommutative locally convex quasi C*-algebra
&/ [r]. That is, we have the following

THEOREM 7.8. Let /[r] be a noncommutative locally conver quasi C*-
algebra over a unital C*-algebra ofy. Let a € &f[T|cqq such that a” is well de-
fined for some n € N. Then, there is a unique x-isomorphism [ +— f(a) from
Ui—1 Ck(0c+(a)(a)) into < [7] such that:

(1) If ug € Up—y Cr(oc+(a)(a)) with ug(X) = 1, for each X € oc+(q)(a), then

up(a) =1 € C*(a) — H|r].

(2) If ur € Uj—y Cr(oc+(a)(a)) with u1(X) = A, for each X € 0«4y (a), then

ui(a) = a € Hr].

(3) F(@)(¢) = £(a(), for any f € Ur_y Ch(00- (o) () and ¢ € A(C*(a)).

(0 s+ (o) = @) + Jo@), Jor an fifo € UioyCuloe-ofa)
(A -
fi(a)

0) = Af(a), for any | € Uy Or(0cm@ (@) and A € C, (fufs)(a)
2(a), for any f; € Cy,(0c+(a)(a)), j = 1,2, with ky + ko < n.

(5) Restricted to C’b(a(;*(a)( a)) the map f +— f(a) is an isometric *-

isomorphism of the C*-algebra Cy(cc+(a)(a)) onto the closed x-subalgebra of the

C*-algebra C*(a) generated by 1 and (1 +a)~!

Now, an application of Corollary 6.7 for the commutative locally convex quasi
C*-algebra C*(a)[r] and Theorem 7.8 give the following

COROLLARY 7.9. Let o/[7], o be as in Theorem 7.8. Let a € &/[T]cq+ and
n € N. Then, there is a unique element b € &/[7]cqt such that a = b*. The
element b is called commutatively quasi nth-root of a and is denoted by aw. If
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n = 2, the element a? is called commutatively quasi square root of a.
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