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Abstract. This paper is concerned with the convergence rates to viscous shock
profile for general scalar viscous conservation laws. Compared with former results in
this direction, the main novelty in this paper lies in the fact that the initial disturbance
can be chosen arbitrarily large. This answers positively an open problem proposed by
A. Matsumura in and K. Nishihara in [16]. Our analysis is based on the L!-
stability results obtained by H. Freistithler and D. Serre in [1].

1. Introduction and the statement of our main results.

This paper is concerned with the convergence rates to viscous shock profile
of solutions to the Cauchy problem for general scalar viscous conservation laws

u+f(u), =uy, xeR, t>0 (1.1)
with initial data
u(t,x)|,_og =uo(x), xeR, (1.2)

where f(u) € C*(R) on the domain under our consideration and the initial data
up(x) is asymptotically constant as x — +oo:

up(x) - uy as x — +oo. (1.3)

The traveling wave u(x — st) = ¢(¢) is called a viscous shock profile to (1.1)-
(1.3) if it satisfies

—S¢5 +f(¢)af = ¢cffa (&) —uy as &— too. (1.4)

Here the constants u; and s (shock speed) satisfy the Rankine-Hugoniot con-
dition

(e — )+ () () = 0 (1.5)

and the generalized entropy condition
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b = —stu— ) 700~ f{ S0 SIS g
That is, the viscous shock profile ¢ is a solution to
9: =h(¢), $(Loo) =us.
It is noted that the condition (1.6) implies
fluy) < s <f'(u) (1.7)
which includes the following cases: the nondegenerate shock condition
flus) <s < f'(u-) (1.8),

and the degenerate shock condition

fllur)=s<f'(u), f(up)<s=f(u) or s=f(us). (1.8),

We call the shock satisfying (1.8); Lax shock (regardless of viscous or inviscid
case) while those satisfying (1.8), are called marginal shock. In what follows, for
the marginal shock, we only pay our attention to the case f'(u)=1s< f'(u_)
since the other cases can be treated similarly.

Stability results have a long history starting with the paper of A. M. II'in
and O. A. Oleinik [4], in which they proved that the viscous shock profile in the
case of a convex flux function is indeed stable. Since then, a lot of good results
have been obtained by employing various methods (All references [1]-[18] are on
this line. Especially, see the survey paper [12]).

To go directly to the main point of this paper, we only review two results
which are closely related to ours. The most general result on the nonlinear
stability of the viscous shock profile is given by H. Freistiihler and D. Serre in [1}].

Taeorem 1.1 (L'-stability). Let ¢(&): R — R be a bounded viscous shock
profile of (1.1), (1.2). Then for any uo(x) satisfying uo(x) — ¢(x) e L'(R), the
Cauchy problem (1.1), (1.2) admits a unique solution u(t,x) satisfying

lim [[u(t, x) — ¢(x — st + )|, =0, (1.9)

t—+0o0

where

Jr(uo(x) — §(x)) dx
u, —u_ '
Although the results obtained in are quite perfect, no decay
rates have been obtained. On the other hand, A. Matsumura and K. Nishihara

(13|, M. Nishikawa have obtained the following decay properties via the L>-
energy method. Notations are given in Remark 1.1 below.

0=

(1.10)
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TueoreM 1.2 (Decay rates). (I) When f'(uy) <s< f'(u-), suppose that
uy(x) — ¢(x) is integrable and that

Up(x) := Ji {uo(z) — ¢(z +6)Ydz e H*NL2(R).

Then there exists a sufficiently small positive constant & such that if |Uy(x)]|, < ei,
the Cauchy problem (1.1), (1.2) has a unique global solution u(t,x) satisfying

sup lu(t, x) — ¢(x — st +0)| < O()(1 +6)"*(lug — ¢, + |Udl,)- (1.11)

(I1) When f'(uy)=s< f'(u_), suppose that f(u)e C""'(R) such that
f"u)=-=f"u)=0 and f"V(u,) #0 for some n>1 (1.12)

and that uy(x) — @(x) is integrable and Uy(x) € H> N Li &, (0<a<2/n), then
there exists a sufficiently small positive constant & >0 such that if || Up||, +
|Uolsy, <e1, the Cauchy problem (1.1), (1.2) has a unique global solution u(t, x)

satisfying

sup u(1, ) = ¢(x = st + )] < O()(1+ 1) *(fluo = ]l + |Vl i, ) (1.13)

XeR

Here

) ¢ <0.

2
@D+r—{;1+5’ <20, (1.14)

REMARK 1.1 (Notations). Here in the above and in what follows, by C
or O(1), we denote several generic constants and for each >0, C(t— 1) (or
Ci(t — 1) for some ie Z") will be used to denote some generic function which
is continuous with respect to ¢ on [r,0). For two functions f(x) and g(x),
f(x) ~¢g(x) as x — a means

Clf(x) < g(x) < Cf () (1.15)
in the neighborhood of a. H'(R) (I > 0) denotes the usual Sobolev space with
norm |- ||, and || -||; = || - || will denote the usual L*>-norm. For the weighted

function w(x) >0, L2(R) denotes the space of measurable functions f(x) sat-
isfying /w(x)f(x) e L*(R) with the norm

o= (], W(X)If(X)Ide>l/2~ (1.16)
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When C! < w(x) < C, we note that L2(R) = L*(R) with |-|, = -|. When
w(x) ~ x*=(1 +x2)°‘/2, we write L2(R)=L2(R) and |-|, =]|-|, without
confusion. Moreover, if w(x) is replaced by <{x)>*w(x), we denote the space by
L? (R) with the norm

oW

o = <JR O wlx)|f (X)|2dX)l/2- (1.17)

From the above two results, it is easy to find that in [Theorem 1.1, the initial
disturbance can be chosen arbitrarily large but no decay rates can be obtained.
In [Theorem 1.2, some decay rates have been obtained but, due to the limitation
of their arguments, its initial disturbance should be small in certain Sobolev
space. Thus it is of interest how to get the decay without smallness condition.
In fact, such a problem is one of the open problems proposed by A. Matsumura
in and K. Nishihara in [16]. Our main purpose of this paper is to give a
positive answer to this problem.

TueorREM 1.3 (Main results). Let the initial data ug(x) — ¢(x) € L' N L*(R)
and Uy(&) € L*(R), then the following attsertions hold.

(I) When f'(uy) <s< f'(u_), the estimate (1.11) holds provided Uy(&) €
L3 (R);

(IT) When f'(uy) =s< f'(u-), the estimate (1.13) holds provided that the
assumption (1.12) holds and Uy(¢) eL0267<f>+ (R) with 0 <o < 2/n.

REMARK 1.2. When f'(u;) <s= f'(u_) or s= f'(uy), then L§7<é>+(R) in
(IT) of should be replaced by L} . (R) or L; . (R)=L; (R)

respectively while the same results also hold. Here

2
-~ :{\/l—l-f, £<0,

1, &> 0.

REMARK 1.3.  Compared with the results obtained in [13], [17], the regularity
assumptions on the initial data is also weaker than those in [13], [17].

REMARK 1.4. As pointed out by A. Matsumura and K. Nishihara in [13],

for the Lax shock, the decay rates obtained in is expected to be
optimal in the L’-setting. In fact, when f(u) = u?/2, by exploiting an explicit
formula, K. Nishihara showed in that if

[Us(x)] < O(1)]x| ™ as |x| — +oo,

then
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sup |u(t, x) — ¢p(x — st +3)| < O(1)t™*/%,

xeR
which is an optimal decay rate in general.

Before concluding this section, we give main ideas in deducing our main
result, [Theorem 1.3. Decay rates [1.11), (1.13) in [Theorem 1.2 have been ob-
tained by the weighted energy method developed by Kawashima, Matsumura and
Nishihara etc. in [6], [7], [I3]. In their method, to obtain the a priori estimates is a
key point under the a priori assumption

N(t) = sup |[U(s, )|, <
0<s<t

for sufficiently small positive constant ¢ so that the initial disturbance Uy(&)
should be small. However, we found that the a priori estimates are available
provided that ||U(z,-)||;. is small. The L!-stability theorem, Theorem 1.1, by
H. Freistiiler and D. Serre in also shows that ||[U(t,-)||;. — 0 as ¢t — 0.
Therefore we can apply the weighted energy method on [T}, ) x R for some
large Tj.

Our plan is as follows. In Section 2, we give some preliminary results.
The proof of our main results will be given in Section 3.

2. Preliminary lemmas.

In this section, we give some preliminary lemmas which will be used in
proving our main results in the next section.

First, the existence of viscous shock profiles ¢(¢) follows from Kawashima
and Matsumura [5].

Lemma 2.1 (Existence of the viscous shock profile). (i) If the Cauchy prob-
lem (1.1), (1.2) admits viscous shock profile ¢(x — st) connecting u_ and u,, then
u_,uy and s must satisfy the Rankine-Hugoniot condition (1.5) and the generalized
entropy condition (1.6);

(ii) Conversely, suppose that (1.5) and (1.6) hold, then there exists a viscous
shock profile ¢(x — st) of (1.1), (1.2) which connects u_ and u, and is unique up to
a shift in & =x — st and is monotone in .  Moreover, if

hg) ~ 19— ux | (2.1)
as ¢ — uy with ke >0, then it holds

{\(ﬁ(f) —uy| ~exp(=Ci[¢l]) as & — foo if ky =0,

2.2
19(0) —us| ~ 167V as & oo if ke #0, (22

for some positive constant Cy .
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Note that k4 =n in if W'(uy)=---=h"(uy) =0 and A" D(uy) #0
which are corresponding to (1.12).
We now define the shift 6 of the viscous shock profile ¢(x — st) as

JR(uO(x) —¢(x+09))dx=0 (2.3)
and set
Up(x) := Jxﬁ ‘(uo(z) —¢(z+0))dz. (2.4)

It is easy to see that o satisfies and, without loss of generality, we
may take 0 =0. Following A. Matsumura and K. Nishihara [I3], we put the
perturbation

u(t,x) = 9() + Ue(1,6),  &=x—st, (2:5)
then the problem [I.1J, is reformulated to
Ur— U + 1 ($)Us = F(1, ), (2.6)
U(t,8)li=o = Uo(&) = foo(MO(Z) - ¢(2)) dz, (2.7)
where
F(1,8) = —{f (¢ + Us) = f(¢) —["($) Uc}. (2.8)

Note that ¢(¢) e L*(R) and Up:(¢) € L*(R). From the well-known result
on the global solvability of the Cauchy problem to scalar parabolic equations |1},
we have that

LemMma 2.2 (Global existence to the Cauchy problem (2.6), (2.7)). Suppose
that f(u) e CY(R), uo(x) — ¢(x) e L'NL*(R), then the Cauchy problem (2.6),
(2.7) admits a unique global smooth solution U(t,&) satisfying

|Us(2,9)] < C, (2.9)
where

Cr = Jluo(x) = ¢() = + [ - (2.10)

From the Duhamel principle, the solution U(z,¢) to the Cauchy problem
(2.6), (2.7) has the following integral representation
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t
U(1,¢) = K(t,€) * Up(<) -I—J K(t—s,&) % G(s, &) ds. (2.11)

0

Here * denotes the convolution in space and

- ¢’
K(1,¢) = T P ( 47)’ (2.12)

G(1,¢) = =(f($(S) + U, ) = ($(<)) = sUe).

Having obtained the above integral representation, we can deduce that

LEMMA 2.3. In addition to the assumptions stated in Lemma 2.2, we assume
further that Uy(¢) € L*(R), f(u) € C'(R), then we have for each t >0, T > 0 and
i=0,1 that

Has’ & B <GV t<t<T. (2.13)
Proor. Notice that
;—;U(né) ;; (é)*Uo(é)+Jta—:K(t—s,é)*G(s,é)ds, i=0,1 (2.14)
0 0¢
and
G(1,8) = O(1)|Us(1,€)- (2.15)

By Hausdorff-Young’s inequality and we have that, for i =0,1,

e

, K(t—s,¢)

)|, Nl +

1G (s, &)l - ds
L1

reve], <[

< O || Us(&)] 2 + O(1) Jo(l =) PN Uels, )2 ds, (216)

and hence

P LS o)1+ VAT (9)].-

e

+o(1) Lu (=) P U, | p ds. (217
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Thus the singular Gronwall inequality gives

H U < U@, (2.17)
0¢ L

which is the desired estimates [2.13). This completes the proof of
2.3. [

REMARK 2.1. Since the viscous shock profile ¢(¢&) satisfies
¢5§ = (f(¢4) - S¢)5 = h/(¢)¢§» (2.18)
we can deduce that, if f(u) e C¥(R) for some positive integer k > 0, then

ak-{—l

a§k+1¢( )| < O(1). (2.19)

Combining the above observation with the technique used in the proof of
[Cemma 2.3, we have the following lemma.

LEMMA 2.4. In addition to the assumptions listed in Lemma 2.3, we assume
further that f(u) e CK(R) for some positive integer k, then we have

T T
<G|z, t—=)||U <t<T, i=0,1,....k. (2.20
Haél 2 3(27 2>|| O(é)HLZ; T=sl= y 1 ) ) ( )

Proor. We only treat the case k =2. The case k > 2 can be shown by
employing the induction method. In the case k = 2, from [Lemma 2.3, we only
need to estimate ||Us(t,&)|;.. We first have that for each 7; >0

() = Klt=0,8)+ U0+ | K-8+ 660 (22

and hence
Us(td) = Kalt = 0.8+ U O+ | Klr=5.0 0.0 @2

Since
G:(1,€) = O(1)$(&)| [Ux(t, &) + O(1) U1, &), 2.23)

we have from [2.9), (2.19), and Hausdorff-Young’s inequality that
for t > 1
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1Us(:€) 12 < O()(t = 21) U (21, €)l 2

+ O(I)J (6= 5)" P (1Uels, )l 2 + 1 Use5: €)1 2) ds

71

<o)t —1) "1 2 Co(e) | Un(©) ]2

t

+0<1>J Ca(s)(t = 5)" 2572 Up () .2 ds

71

t

n 0<1>j (t = )" P Use(s, &)l ds

< o(1)(t—11)" C(t, 1) | Un (&)l

t

n o<1>j (t— )7 2| Uss(s, E)| 2 . (2.24)

71

Thus the singular Gronwall’s inequality deduces

1Uz(6, )12 < (1= 1) Ct, 0 = 71, 70) | Vo)1 (2.25)

Here C(¢,t— 11,71) is a continuous, monotonically increasing function of ¢ and
r—1.
By (2.25), if we take 7y = 7/2 for each given 7 > 0, then we have

1
oz ol < (1-3) c(ne-SIu@le @29

which shows (2.20) with k =2 and completes the proof of [Lemma 2.4.
Our final result in this section is concerned with the weighted energy estimate
on the solution U(t,¢) obtained in [Cemma 2.2.

LemmA 2.5. In addition to the assumptions in Lemma 2.2, suppose further
that Uy(&) € LE(R), then the solution U(t,&) obtained in Lemma 2.2 satisfies

VW)Ul < Ca(n)][v/ W) Uo ()l 2 (2.27)
provided that the weighted function w(&) satisfies
v;/((g))‘ < O(1)w(&). (2.28)

Multiplying by w(&)U(t, &) and integrating the resultant equation with
respect to ¢ and & over [0,7] x R. If [(2.28) holds, then we can employ the
Gronwall inequality and obtain {2.27). Since this is a standard way, we omit the
details.
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ReEMARK 2.2. It is easy to check that all the weighted functions used in our
subsequent analysis satisfying (2.28).

3. The proof of Theorem 1.3.

In this section we devote ourselves to the proof of our main result,
1.3. The non-degenerate shock case can be treated easier than the degenerate
shock case. Hence we deal with the case s = f'(u;) < f'(u_). Without loss of
generality, we assume u, <u_ and h(¢) <0 for ¢ e (u,,u_). Consequently,
there 1s a unique number &, € R such that

§e) == (3.1)
To overcome the nonconvexity of f(u), as in [13], the weight w(¢) is chosen
as
_(Pp—u)(p—u)
w(ep) == 79) : (3.2)
It is easy to find that
C, if fMuy) <s<f'(u)
as ¢ — +oo and
d2
e (h(p)w(¢)) = 2. (3:4)

For the weight function w(¢) chosen above, we have the following basic energy
estimates.

Lemma 3.1. Let U(t,&) be the solution of the Cauchy problem (2.6), (2.7)
obtained in Lemma 2.5, then it follows that

1 t
$IUOR + [ Iy =pvePas

t
+ (1 - G sup |U<z>m> | 1R ds < cary. 69
1,1 1

ProOOF. Multiplying by w(g(&))U(t,&), we have
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(310000 ) + (30 @00 - w0 U0 )
SOV ~ L ()" DB U20) =W @UOFD). (36

Here we have used the fact that ¢:(&) = h(¢4(£)).

Noticing ¢:(¢) <0 and F(£,¢) = O(1)|Us(1,&)|?, we can get from
2.27) and (3.4) immediately by integrating with respect to ¢ and ¢ over
[T1,1] x R. This completes the proof of [Lemma 3.1. O

The next lemma is concerned with the improvement of the estimate (3.5).

LemMa 3.2, For 0 < f<a<2/n (n>=1), we have that the solution U(t,&)
of the Cauchy problem (2.6), (2.7) satisfies

t

| vy v ae+ | L>0 w()! U(s) deds

T

" (1 ¢ sup |U<r>|Lw> j | w1010 (0 s

[Tlvt]

4 J[ JR () P UR(s) déds

T

t
< () + G s U], j Ue(3)] 2 d: (3.7)
1,1 1

Proor. The proof of follows essentially the arguments devel-
oped by A. Matsumura and K. Nishihara in [13]. Thus, we only give a sketch
of the proof, and the difference between our arguments and those in will be
emphasized.

Multiplying by 2w(4) P U(r), we have similar to the proof of Lemma
6.1 in that

() U (0), + () + 201 = e)w() T UZ (1)

+2{=2w($) g + Pw()” ' h(g)(2(5 — ) — P’ ($)h($)/2¢) L U(2)
< 2w(¢)"PIU()F(1)|. (3.8)

Here ¢ (0,1) is an arbitrarily chosen constant.
On the other hand, if 6 = ¢(&) —uy >0 and 4 =wu_ —uy >0, then
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1(8) := Pw(@(E)" W' (HEDA(H(E) 200 — §(0)) — pw' (H(E)h(#(E))/2¢)
= pw(@(E)"" (@n + 0))(a(1 — pn/2e) + 0(9)) (3.9)

as & — +o0.
Since f < o < 2/n, we can always choose ¢ € (0, 1) such that 1 — fn/2e > 0.
Consequently, there are positive constants Cjp and R; such that

I(f) > Cjp for &> Ry. (310)

Noticing also C™! < w(¢(&)) < C, C1 <w/(4(¢)) < C as ¢ — —o0, we have
from that

J; LR 2U(E)U (s, &) déds < O(1) J; |6:(&)| U (s, &) déds

< () + 0(1) sup [U(1,E)]], j U5, )2 ds (3.11)

[Tht]

and

J; JR W((b(f))“rﬂ’ U(s,&)F (s, &) déds

<o) s 060l [ [ wiae) oz des @12

[Tl»[]

Integrating with respect to ¢ and & over [T, x R, we can immediately
get from (3.10)—(3.12). This completes the proof of [Lemma 3.2l ]

LemMma 3.3.  For each given o > 0, the solution U(t,&) to the Cauchy problem
(2.6), (2.7) satisfies for [ €[0,q

t
(1+ f)y|U(f)’/§,W(¢) + (1 — Cyy sup [|U(1, f)m) JT (1 -|-s)V]U5(s)|§7w(¢) ds
1

[Tlvl]

t
+ﬁj (145U, ds
T,
t
< cu(m{l i yj (145 U i ds
Ty

B[ | s et @ UG Ui ol dcds .

t
T
(3.13)
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PROOF. Putting <& —&,):=+/1+(6—¢,)* and multiplying by
2(1+1)7¢E = EXMW(PE)U(1,), we get

(14 0)7<E = EXPw(B) U (1), + (1 +1)7CE = EDP U Ue()(w(9) + (wh)'(4)));
+2(1 4+ 1) = EXPw(B)UZ — (1 + 1)1 <E = ENPw(g) U (1)
+(1+0)7¢E = & ap(O U (1)
+2B(1+ 1) = EDPHE = E)w(P U (1) Ue(n)

=2(1+1)"CE = EHPw(P) U (D) F(1). (3.14)

Here

Ap(&) = —(E€ = (&) (wh)" ($(E)) — (BE = &) /<& = E) (wh)'(4(£))
= —2{E = E9:(E) = (2B(E = £.) /<& = ED)(B(8) — m). (3.15)
Due to (3.1), there exists a positive constant Cy independent of 8 such that
Ap(&) = Copp for any & eR. (3.16)

Integrating with respect to ¢ and ¢ over [T7,1] x R, it is deduced by
(3.16) that

t

t
(1+ 07| U0, + 2JT (14 5)7|Us(5) gy s + CoﬁJT (1+5)[U(s)j, ds
1 1

t

< (1 + Tl)y|U(T1)|/2)’w(¢) + yJT (1 +S)y_1|U(S)|/§,w(¢) ds
1

w38 [ 09— e vl dcas
r2] | (47— EP@IU0 ) deds (3.17)
Due to
[ ], s = eomanuepo)as

t
< (i [i_up} 1U(#, )l JT (1+ S)y‘Uf(S”;,w(@ ds, (3.18)
1, 1
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we can get (3.13),  immediately by substituting into (3.17), which com-

pletes the proof of [Lemma 3.3. O
Now from the L!-stability result, Theorem I.1, by H. Freistiihler and D.

Serre in [I], we conclude that
lim ||U(¢,¢)| -~ < lim J lu(t, x) — ¢(x — st)| dx = 0. (3.19)
{— 0 {— 0 R

Thus if we choose T sufficiently large such that

1 I 1 1
sup [[U(t,&)];. <= min{—,—,—}, 3.20
[Tlvg} ” ( )HL 2 C5 C7 Cl] ( )

then we have from (3.20) and [Lemma 3.1-[Lemma 3.3 that

COROLLARY 3.1.  For Ty chosen as above and 0 < f <o <2/n (n>1), the
solution U(t,&) to the Cauchy problem (2.6), (2.7) satisfies for t > T

t

1 ! _
IV + | 1=0U61 s+ | U0 b < (T, (321)
1

T

t

| vy v ae+ | L>o w(g)! " U(s) déds

T

¥ J; || wig)gel2 o) dcas + Jt | v vk azas < cum) - 22,

Ty JR

and

¢ t
(1+10)7|U(2) éw(@ + J_ (1 +S)V\U§(S)|§7w(¢) ds—}—ﬁj_ (1 +s)V|U(S)’§_1 ds

T1 Tl

t

< cum){m (U2 ds

T,

b o[ c-errmpiue s o). e,

The proof of (II) of Mheorem 1.3 follows from (3.21), (3.22)4 and (3.23), 4,
in a similar fashion to that in [13], [T7]. For completeness, we give the outline.



Convergence rates to viscous shock profile with large initial disturbance 461

First, letting y =0 and f < « in (3.23), 4, we can estimate the corresponding

last term as in the following

t
last term in (3.23) 4| < gJ_ |U(S)|§_1ds

T

+0(1) JT JR E=EPw(g(9) Ul (s, &) déds == 1y + L. (3.24)
Noticing

~E asé—to,
W(¢(é)){ ~ Const. as ¢ — —o0, (3:25)

we can find two positive constants R, > 0 and R3; > 0 such that

1 t
= L<_R3 (&= EYPWP)U2(s) déds

T
+0(1) J J w($)" T U2(s) déds + O(1) J J UZ(s) déds
Ty JE>R, Ty J-R3<E(<Ry
1 t t
< 3 | 10 s+ 000) || w030 deas
+ 0(1) JT JR Uéz(s) d&ds

_ 1 (!
< C(TY) +§JT U)o . (3.26)
1

Here we have used (3.21) and (3.22)p.
Substituting (3.26) and (3.24) into (3.23)y 4 and letting f = o, we have for

a<2/n (n>1) that

t
U500 + Jf (US)5y + U5 i) ds < Cia(Th) (3.27)
1

provided that ¢ > Tj.
Next, we consider (3.23), 5 with y =a/2+¢ and f=0

t
1

t

< Clz(Tl)(l +J_

IR Rl IO ds>. (3:23),5.00
1
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Here ¢ > 0 is chosen sufficiently small such that

<OC OC+ <1<1
=, =—te<-— :
<3 3 n =

Since

T

[ass oy as | ava ([ 4] Jwvisod
T >0 £<0

(1 4 54/ J () U(s) déds
>0

t

+0(1) J (1 4 5)*/2! J L U?(s) déds

T

=J1+ Js, (328)

we have from (3.25) and (3.22) that

J1 < 0(1) J;l(l _|_S)°f/2+s—1 <L w(¢)1+°‘U2(s) di)&—o«)/z

>0

X (L>O w(g)* ™ UP(s) df)“/z ds

< C(ﬂ)J;(l L gy <L (@)™ U(s) df)m B

>0

o (2-9)/2
< C(T)) (J (14 5) 1H2/C2) ds>

T

(] oo

< C(T)(1+ 1" (3.29)

As to J,, if o > 1 (consequently n = 1), we have from o/2 +¢ < 1 that

t

< 0(1)J L U(56)deds < 0(1)J; U ds< C(T).  (3.30)

T

When n > 2 (consequently « < 1), we have from (3.25) and (3.27) that
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t

1—o
bfgou)J(1+@W%61<L0<¢—593U%&¢yﬁ)

T

X (J <é——é*>“‘1UQC$é)d£> ds
<0

T

<o [ g (LO (&= EY W)U, 0) dé)la

X (J (E=ENTU(s,8) dé) ds
<0

t
<c(m) | (149U, ds
T

< C(Ty) (J (1 +5)0-o#2-9/0-2) ds)H (j UL, ds)“ <c(m) (31

since & < o/2.
Inserting [3.28)-(3.31) into (3.23),/24,0 deduces

t
(L+ 071U (1) 5y + JT (1+5)27|Us(s) 5 gy ds < Ca(T1)(1+ 1" (3.32)
1

provided that > T;. Thus we have the following lemma.

LemMMA 3.4.  Under the conditions (11) in Theorem 1.3, the solution U(t,¢&) to
the Cauchy problem (2.6), (2.7) satisfies (3.32) for any t > T\ and some sufficiently
small € > 0.

Now we turn to get the decay rates for derivatives of U(z,£). We first have

LeMMA 3.5. In additional to the assumptions listed in Theorem 1.3, suppose
that f(u) e CK(R) for some k e Z", then, for each fixed t > 0, the solution U(t,¢&)
to the Cauchy problem (2.6), (2.7) satisfies
o/

— U(t,

ProOF. We only prove (3.33) for the case k = 2 since the rest can be treated
similarly. For each 0 <71 <1, <t<t<T, we have

sup
[, 0)

<Cs(t)< oo, j=1,... .k (3.33)
Loo

t

Us(6,6) = Kelt — 11,8) % U(11, &) +} Kelt = 5,8) * G(s, &) d,

(3.34)

t

Uﬂﬁ@ZKﬂﬂ%bﬁ*anﬂwi&U—&@*%@Qdi

T2
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On the other hand, we have from the L!'-stability result obtained in [T] that
1U () - < O(1). (3.35)

Consequently from [2.9], (3.34) and [3.35), we have by the iteration argu-
ments used in that for t<t<T

<C16(I—‘Cj;‘[1,...,fj,1), j=1,2. (336)

e

Having obtained [3.36), we now turn to prove (3.33).

First we notice that holds for each given 71,75, 7. Hence, for each
fixed 7 > 0, letting 7, =27 =7/2, T =2t; (where ¢; > 7 is an arbitrarily given
positive constant), we have from that

” Ut

su
1Y 6@

[‘L’ 2[1

< C17(2l1 — T3 Ty ,‘fj,l), j=1,2. (337)
L*

Now suppose that for some 1 <me Z™"

il :
sup U( (._,Z) < C17(2l‘1 —fj;fl,...,fj,l), j=12, (338)
[z, (m+1)t] aé L»
then it holds that
o/
sup —]U( f) < C17(2l‘1 —fj;fl,...,fj,l), j=12. (339)
[mt;+7, (m+2)1] af L*

In fact, letting 7,7y,7; in be equal to (m+2)t;,mt; + 71, mt; + 7,
respectively, we can get (3.39). By setting #; =27 and Cs5(7) = Cy7(47 — jr/4;
t/4,...,(j— 1)t/4), (3.33) follows easily. This completes the proof of [Lemmal
3.5. O

Since
U6, &) = lu(t,&) = $(E)F < 10lt,€) = )l 1, ) = $(O)]
= 1 Ueelt, ) N U Ol e
we have from and that
lim || U:(5,) . = 0. (3.40)

Furthermore, from [Lemma 2.4, under the assumption that Uy(¢) € L*(R), we
have
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NU(T1, &)z < Cis(Th) (3.41)
for each given 77 > 0. With (3.40) and [3.41), we also have the following lemma.

LeEmMA 3.6. Let [ = 1,2 and assume that the conditions listed in Lemma 3.4
are satisfied, then it holds for any t > T\ and some sufficiently small ¢ > 0 that

al 2 t /ore al _ ,
U0 +JTI(1+S) oG U] vz o+ (34

Combining [Lemma 3.4 with [Lemma 3.6, we can deduce that

(1 4+ Z)O(/Z-l—s

sup |u(t, x) — ¢(x — st)| = sup |Ug(z, )|

xeR xeR
< C(T)| U021 U=(0)]]'* < C(T)(1 + 1),

which proves (II) of Theorem 1.3
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