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Abstract. The spectrum of the Milnor-Gromoll-Meyer sphere is given. For this
purpose the system of orthogonal functions on the symplectic group Sp(2) (isomorphic
to the covering group of SO(5)) is studied.

Introduction.

The purpose of the present paper is to describe the spectrum of the Milnor-
Gromoll-Meyer sphere X7, a Riemannian manifold which is homeomorphic to
the standard 7-sphere S7 but not diffeomorphic to S7. Our idea for finding the
spectrum of X7 is simple. Namely, since X7 is given as a base space of a
Riemannian submersion Sp(2) — X7 due to [GM], the spectrum of X7 is a
“subspectrum’ of the compact Lie group Sp(2) with bi-invariant metric. Here
we recall that each space of eigenfunctions, belonging to a common eigenvalue,
on Sp(2) is the space H, spanned by matrix elements (representation coefficients)
of an irreducible representation x,, of Sp(2). Therefore, our problem is reduced
to the problem of finding the dimension of the subspace HI consisting of
functions in H,, which are constant on each fiber of the submersion. Then the
latter problem is solved by studying how the vertical vector fields of the sub-
mersion act on the matrix elements—a problem of finding the dimension of the
kernel of a linear mapping.

This paper is divided into five sections. We start with the definition of
Milnor-Gromoll-Meyer sphere X’ and state our main results, which describe,
in addition to the spectrum of X7, the spectrums of some other Riemannian
manifolds diffeomorphic to S7. The next section, §2, is devoted to the repre-
sentation theory of SpU(4) (which is isomorphic to Sp(2) by the isomorphism ¢
in §3). Following we consider the Lie group Sp(4,C) (complexification of
SpU(4)), and recall the definition of the representation 7, with the representation
space R,,. Then we express the canonical orthogonal basis (Gelfand-Cetlin
basis) of R,, as derivatives of the generating function ¢,,, and get the explicit
expression for the matrix elements of 7z,. From this expression we obtain the
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formulas which tell us how right or left invariant vector fields on Sp(4,C) act
on the matrix elements (Corollary 2.3.2). In §3 we give the correspondence ¢
between Sp(2) and SpU(4), which allows us to consider, instead of the original
submersion Sp(2) — X7, the submersion SpU(4) — X7 and to apply the results
in §2. In §4, using the fact that the vertical space field of the submersion
SpU(4) — X7 has a basis consisting of vector fields written as sums of right or
left invariant vector fields on SpU(4) (Proposition 3.1.1), we derive the condition
for a function in H,, to be constant on each fiber of the submersion. Studying
this condition through the matrix elements, we see that the problem of finding the
dimension of the subspace H! becomes the problem of counting the number of
lattice points in a certain subset in R> (Proposition 4.1.1). In Appendix, we give
the proof of [Theorem 2.2.1 (the expression for Gel’fand-Cetlin basis) by direct
computation, and prove the other statements in §2 as its consequences.

Although our result (Theorem LI.1) describes the spectrum of X7, we can
not “hear” the shape of X7 yet. We hope that our datum makes a contri-
bution to such new development in spectral geometry as statistical properties of
spectrums.  See e.g. [KMS], for the case in which geodesic flows are com-
pletely integrable, and [Ze], for a more general case. (Incidentally, the
geodesic flow of our object X7 is completely integrable.)

Throughout this paper, by functions, vector spaces we mean complex-valued
functions, complex vector spaces respectively, unless otherwise specified.

1. The spectrums of some 7-spheres lying under Sp(2).

1.1. Statement of the main results.

Let H be the algebra of quaternions, with basis 1,1, j, k satisfying the usual
multiplication rules. Let Sp(n) denote the symplectic group for dimension n,
that is, the group of n x n quaternion matrices Q such that QQ* = 0*Q = 1d,
where Q* is the transposed conjugate matrix of Q. We fix on Sp(2) the

bi-invariant metric g, normalized so that the tangent vector i, = (6 8) €

T.Sp(2) = sp(2), at the identity element e, has unit length. Let I": Sp(1) x
Sp(2) — Sp(2) be the action defined by the formula

I'(q,0) = (g 2>Q<g (1)>

where ¢ 1s the conjugate of g. Since this action is free and isometric, we can
consider the quotient Riemannian manifold X7 = I'\Sp(2), which turns out to be
an exotic sphere, i.e. a manifold homeomorphic to but not diffeomorphic to the
standard sphere S7 ([GM]).
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DerFINITION.  We call I the Gromoll-Meyer action on Sp(2), and the quotient
Riemannian manifold X7 the Milnor-Gromoll-Meyer 7T-sphere.

DerINITION.  Lety={0=p, <y <y < -}, A={0=4 << <}
be two infinite sequences tending to oo. We say that y, A are uniformly close if
there exists a positive constant ¢ such that |y, — ;| < ¢ for all / =0,1,2,---. If
that is the case, we write Z, = Z; for the series Z, = > 2 exp(—yt), Z, =

>0 exp(—Ait).

Now we can state our result.

TueoreM 1.1.1. Let {0 =y, <y, <y, < -} be the spectrum of X7, and let
Zor =Y 2 exp(—yt) be the partition function. Then Zy: satisfies

Zsr = Zm,, exp(—Ant), Ay =ni+n3—5.

Here the summation is taken over all pairs n= (nj,ny) of integers such that
ny >ny > 1, and m, is defined as follows:

= {i+n%((—1)nl2”1 — (=D)"(m —m))/16 if 2n <ny,
U = m) (=)0 = (=1)"m3) /16 if 2m > m,

where

i = n3(ny +my)(4ni — dnyny — 2n3 + 5) /48,
Jj=(n — nz)z(nl + nz)(—2n12 + 8nyny — 2n§ +5)/48.

REMARK. Needless to say, the values of m, coincide for the case 2n, = ny,
and although m, are integers, i, j may be ratinal numbers.

Besides the Gromoll-Meyer action I', we can consider other free, isometric
actions Sp(1) x Sp(2) — Sp(2) and get some 7-dimensional Riemannian mani-
folds as quotient manifolds. For such a Riemannian manifold M7, since we
have a Riemannian submersion Sp(2) — M7, we say that M’ lies under Sp(2).
We shall discuss the following cases:

(1) the action (g, Q) — ( g

q
0

0 . : : =
1>Q, and its quotient manifold S7,

: 0 . : : z
(2) the action (¢, Q) — ( q)Q, and its quotient manifold S,

: 1 0 g 0 . : . <
(3) the action (¢, Q) — ( >Q<g 1), and its quotient manifold S’.
q

It is easy to see that 5’7,5'7 are homogeneous Riemannian manifolds diffeo-
morphic to the standard 7-sphere S7. On the other hand, S7 is diffeomorphic to
S7, but now the metric is not homogeneous. For these manifolds we can give

)
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their respective spectrums. To describe those we denote by Z,,» the partition

function of M7 (cf. [BGM]).

THEOREM 1.1.2. The partition functions satisfy

Zg =Y Muexp(—inl), Wy =mn(ng + n)(n —m)*/6,

Z§7 = ZT:I:L, CXp(—/l,,l), ﬁ”[,, = (1 — (—1)"1+”2)n1n§(n1 -I—I/lz)(l’l] — I’lz)/lz,
Zg = > tgexp(—al), W, =mm(n — nm)(1+ 2m(ny — ny))/6.

Here the summations are taken over all pairs n= (ny,ny) of integers such that
ny >ny > 1, and i,,:nlz—kn%—S.

We shall prove these theorems in 1.3, assuming the propositions stated in
the next subsection.

1.2. The spaces H,, of eigenfunctions on Sp(2) and their subspaces of
functions fixed under the actions.

By a signature we mean a pair (mj,m;) of integers satisfying m; > m, > 0.
It is known that every irreducible unitary representation of Sp(2) is uniquely
defined (up to equivalence) by a signature m = (m;,m) (see [Zh]). Now fix a
signature m = (m;,m,), and let H,, denote the vector space spanned by matrix
elements (or representation-coefficients) of the representation defined by m. Then
the representation 7 of Sp(2) x Sp(2) on H,, n(x,y)p(x) = ¢(x~!xy), is irre-
ducible. Let H! denote the subspace of H,, consisting of functions which are
fixed under the Gromoll-Meyer action I, that is,

HE = {goeHm|q)(>:<) :(/)<(g 2) ) (g ?)) for all qup(l)}.

PrOPOSITION 1.2.1.  Let m = (my,my) be a signature. Set nj = my +2, n, =
my + 1. Then the dimension of the vector space HI is given by the following

formulas:
(1) If 2my < my, then

dim B! =i+ n3((-=1)"2n; — (1) (n; — my))/16
where
i = n3(ny +m)(4nf — dnyny — 2n3 + 5) /48.
(i) If 2my > my, then
dim H =+ (n — m)((=1)"'n? — (=1)"*n3) /16

where
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j=(nm — nz)z(m + nz)(—an + 8nyny — 2n§ +5)/48.

Next, we study the subspaces of H,, consisting of functions which are fixed
by the other actions introduced in §1.1. Let H,,, H,, H, be the subspaces
consisting of functions ¢ € H,, such that

¢<*>:<ﬂ((§ ?)*) w(*)=¢<<g 2)*) g"(*):(p«é 2)*(3 ?))

on Sp(2) for all ¢ € Sp(1), respectively. Then H,', H>,6 H are viewed as spaces

of functions on 5‘7,.§'7,S7, respectively.
PROPOSITION 1.2.2.  Let m = (my,my) be a signature. Set
m=m+2, m=m+1, d=mn(n +m)n —n)/6.
Then
dimH, = (n —m)d,
dim HY = (1 — (=1)"")nyd /2,
dim H,| = mny(ny — ny)(1 + 2ny(ny — n2)) /6.
We shall prove these propositions in §4.

1.3. Derivation of the main results from the propositions in §1.2.

We begin with a general statement (in C* category). This gives, for a
Riemannian submersion which is not assumed to be harmonic (see the remark
below), a relation between the respective spectrums of the Laplacians on the total
space and the base space.

PrOPOSITION 1.3.1. Let W be a closed, connected Riemannian manifold, and
let @:Kx W — W be an action of a compact Lie group K. Suppose that @ is
free and isometric. Let M be the quotient manifold equipped with the metric such
that the natural mapping n: W — M is a Riemannian submersion. Let A be the
Laplacian on W, and A the Laplacian on M. Let C (W) be the subspace con-
sisting of functions on W which are constant on each fiber n~'(x). Let A’Cifv(W)
denote the restriction of A to Co (W). For x e M, let v(x) denote the volume of

the fiber n='(x). Set V =v'?A(v""/?). Let y be a real number, and let  be a
function on M, which is also viewed as a function on W. Then

(A=V)W=—=p if and only if A('*y)=—p'*y.

Hence, the spectrum {0 =7y, <y, <y, < ---} of M is uniformly close to the
spectrum {0 =2y <A <Ay < -} of the operator A« yy. More precisely
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+minV <y, <A +maxV for any [ =0,1,2,---.

REMARK. This proposition is applied to the submersions Sp(2) — M’ in-
troduced in §1.1. Note that the submersion Sp(2) — X7 especially is not har-
monic, in other words the volumes of the fibers, v(x), are not constant (cf. [W]).
For this reason we can not give the spectrum exactly, but we know only the
“band” in which the spectrum appears.

Proor. By the usual argument about Riemannian submersions we have
A = A + gradlogu

for functions on M. (Roughly speaking, we use the formula A = div grad, and
observe that the vector field gradiy on W is invariant under the action, the log
Lie derivative of the horizontal area element with respect to grady becomes Ay,
and the log Lie derivative of the vertical area element yields the inner product
g(gradlogu, gradiy).) Hence we have (A — v'2A(v™"2))() = v 1/2A(0'/?) for
functions ¥ on M. This shows the coincidence of the eigenvalues of the op-
erators (A — V)|C§V(W) and A. The first part of our proposition is proved. By

the maximum-minimum property of the eigenvalues ((CH, VI, §2]) we have the
inequalities as above for the eigenvalues of the operators Alcw ), (A = V)|cx (),
which gives us immediately the desired estimates for the spectrum of M.

PrOOF OF THEOREM 1.1.1. Applying the preceding proposition to the sub-
mersion Sp(2) — X7, we see that the spectrum of X7 is uniformly close to the
spectrum of the operator A|Cf§v(51’(2))' Hence it suffices to show that the partition
function of the spectrum of the operator A|Ci:“‘v(Sp(2)) is given by > my, exp(—A,?).
Indeed, by the irreduciblity of the representation of Sp(2) x Sp(2) on H, men-
tioned in §1.2, the Laplacian A of Sp(2) is a constant multiplication on each
subspace H,,, and this constant is given by —((m; +2)* + (my + 1)* — 5) (Propo-
sition 3.3.1). Note that the Hilbert space L2(Sp(2)) of square integrable functions
on Sp(2) which are fixed under the action I” has the Hilbert space decomposition
L3(Sp(2)) = @®mHL, where the summation is taken over all signatures
m. Hence the operator A| C (5p(2) has, for each signature m, the eigenvalue
—((m; +2)* 4 (my + 1)* — 5) with multiplicity dim H!. Consequently, since we
know this multiplicity by [Proposition 1.2.1, we obtain the desired formula. []

PrOOF OF THEOREM 1.1.2. The proof is the same as above. In fact, for S’
or S7 the spectrum can be found exactly, because the manifold is homogeneous,
and hence the volume v(x) of each fiber is constant. As for S’ the function v is
not constant, and hence the partition function is found only through the relation

=. L]
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In order to know the constants min /', max }J/ concretely, we shall need

LeMMA 1.3.2.  Under the same assumption as in the preceding proposition, the
volume of the fiber n~'(x) is given by

v(x) = vg/det F(x).

Here F(x) is the matrix (g(e/,e});i,j =1,...,dim K), where g is the metric on W,
{ei} is a basis of the Lie algebra of K, e are the vector fields on W induced from

e;, and vk is the volume of K with respect to the left invariant volume element w
satisfying w(ey, ey, ..., edmk) = 1.

Proor. Elementary. ]

2. The system of orthogonal functions on SpU(4).

2.1. The complex symplectic group Sp(4,C) and its representations {7,,}.

We begin by recalling the definition of Sp(4,C) given in [Zh]. The sym-
plectic group Sp(4, C) consists of matrices x = (x;) satisfying ¢ = ‘xox, where ¢
is the matrix

00 0 -l
oo -1 0
o1 0 ol
10 0 0

and ’x is the transpose of x. The symplectic unitary group is defined as SpU(4) =
Sp(4,C)NU4). Let m= (m;,my) be a pair of integers satisfying m; > m, > 0.
We fix m throughout this section. Let ¢, : Sp(4, C) — C be the function defined
by

Pm(X) = Xi’?_’”WE’ffz)(Lz)-

Here x(; jx,; denotes the minor of a matrix x obtained from the intersection
of the i, j-th rows and k,/-th columns. Let C*(Sp(4,C)) be the vector space
of complex-valued C® functions on Sp(4,C) and let R,, be the subspace
spanned by the right translations R.¢,, = ¢,,(xx) of ¢,,, x € Sp(4,C). Then we
have an irreducible complex analytic representation 7, : Sp(4,C) — GL(R,),
Tm(X)(f) =f(xx), f € Rm. The function ¢,, is called the generating function of
Tm. Let (,) be the inner product of R, such that the restriction of 7, to
SpU(4) is unitary, normalized so that ||¢,| =1. In order to study ‘R, more
closely, we introduce some notations. As a basis of the Lie algebra sp(4,C)
we take
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100 0 00 0 0 010 0
000 0 01 0 0 000 0
h = , €= ;
0000 00 —1 0 00 0 —1
0 0 0 (0000 000 0
00 1 0 00 0 1 000 0
00 0 1 000 0 0010
““looo0o0| ®““loooo|l “"fooo ol
0000 0000 000 0

f1 = ’el, f2 = tez, f3 = te3, f4 = te4.
For a matrix fesp(4,C) we denote by f the left invariant vector field on
Sp(4, C) which is equal to f at the identity element, and by f the right invariant
vector field which is equal to the transpose 'f at the identity element (Note that
f_?,, for instance, coincides with e; at the identity element). The correspondence
f— f gives an isomorphism between the two Lie algebras of left invariant vector
fields and right invariant vector fields.

2.2. The Gel’fand-Cetlin basis and the matrix elements.
In order to give the Gel'fand-Cetlin basis of ‘R,, we have to introduce some
notations. Let M, be the set of 4-tuples (pi, p2,i,j) of integers such that

m =pr=m>=py >0, m+m—(pr+p)=i>0, pi—pr>j=0.

For a positive integer r we define C.(m) to be the polynomial in m of degree r

C(m)=mm—-1)---(m—(r—1)),

and we set C.(m) = 1 for nonpositive integers r. Moreover, for a pair of integers
s,t we define C;, to be the polynomial C;, = Hs>r> ,Cr. We set Cs; =1 for
s <t. Now, for each ue M, we define a left invariant differential operator
Q,:C*(Sp(4,C)) — C*(Sp(4,C)), which maps R, into itself, as follows.
First, for each pair of nonnegative integers p, ¢, we introduce a differential
operator

min(p, q o
=0

where

Vir = fo(ha + 1) — fafi,
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and

Cp’q’](hl,hZ)
= Cyi(h +1=p)Ci(hy +1+p)Cppii1(ht — h2)Cpi1,p—g(h1 — ).

Then we define

Q= jg"f;‘jQpl_mZ)pz for u = (p1, p2,i,j) € M.
We can now give the Gel'fand-Cetlin basis of R,,.

THEOREM 2.2.1. For u=(p1, p2,i,]) € Mm, set ¢, =Qu(¢,,). Then {9,},cu,
is the orthogonal basis of R,,.

The proof (and the norm of ¢,) will be given in Appendix.
Next, to give the expression for the matrix elements of 7, we introduce the
right invariant differential operators €, in a similar way. Namely, we set

min( p,q)
A q A gAy AL ~ o~
p.q = Z (_1)l<1)cl(l’)v4qz ; 31 ; le,q,l(hth)a
=0
where
Vio = fo(ha + 1) = f1 1,
and we define

Q, :f3if4]‘QP1—m27p2 for = (p1,p2,1,)) € M.

Now, for u,ve My let ¢, : Sp(4,C) — C be the function defined by

gp,uv(x) = (nm(x)((pv)a (p,u)'

THEOREM 2.2.2. The function ¢, is expressed as

(p,uv = ‘Qﬂ‘QV(¢m)

The proof will be given in Appendix.

2.3. The expression for the action of sp(4,C) on the basis {¢p,}.
Finally, we can give the explicit formulas for the action of sp(4,C), the
differential of 7,, on the basis {¢,}.

ProposITION 2.3.1. Let u= (pi1,pa,i,j) € M. The action of the left in-
variant vector fields ey, e, ..., hi,hy € sp(4,C) on the function ¢, € Ry, is given by
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e1(9,) = —i(APuies—s, T COtey—pyra) T T — D) (B + DOy i)
2(0,) = —UjAP 4y oy, TIUL —1)Bp,_,

+ilJ =)COugy ey — L = D)(J = )) Dy,
e3(9,) = il =)@,

64(%,{) :](J _j)(p,u—sp

N(0) = —(A0uss,—s, + BOus 41—) + (T =N (COue, + DOy ,),
J2(0) = APuiey + BOus oy + COpioy oy T DOty ves

S3(00) = Oyt

Ja(0,) = Oy

hi(g,) = —1=2i)g,,

h(g,) = (J —1=2))p,

where 1,J,A,B,C,D are constants

I=m+m—(pr+p)+1, J=p—pr+1,

1
N IJCpl—mz—pz—l(ml — l/}’lz) ’

A

(p1+ 1)(p1 —=m2)Cpyr1(my — p1 +pa+ 1)

B—
1J ’

(my — p1)(my +my —pr + 1)

C—
1JCy, i 1(my — p1 + p2)

D = —py(my — py +2)(my — py + 1)(my +my — py + 3)Cp y—p, (M1 — m) /17

and &; denote the vectors ¢ = (1,0,0,0),& = (0,1,0,0),...,e4 = (0,0,0,1), which
act on the indexing set M, in the obvious manner. Here it is to be understood
that the function ¢, is zero if u' ¢ My,

In order to obtain the system of orthogonal functions on the Milnor-Gromoll-
Meyer sphere, we shall use the following.

COROLLARY 2.3.2. Let u= (pi1,p2i,Jj), v=I(q1,¢q2,k,1) € My, and set
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I=m +m—(pr+p)+1, J=p—pr+1,
K=m+m—(q+q@)+1, L=q—-q+1.

Then for the matrix element ¢,,, the following identities hold:

A~ ~

hl ((p,uv) = (1 -1 2i)¢/1v7 hz(gpyv) - (J —1- 2j)(pyv7

hl((p,uv) = (K —1- Zk)(p,uvv hZ((p,uv) = (L —-1- 21)(p,uv?
é3(¢ﬂ\1) = l(l - i)(p,u—sgv? é4((p,uv) :]<J _j)goﬂ—mv,
€3 ((p,uv) = k(K - k)(pﬂv—sgv 84((0/”) = I(L - l)(p,uv—&w

f3(¢yv) = Puteyr f4((p,uv) = Duteqns
f3(¢yv) = Ouytes f“(w/zv) = Puv+eys

where ¢ =1(0,0,1,0), & =(0,0,0,1), and wu—e¢3, for example, means
(p1,p2,i =1, j), with the convention that ¢,, =0 if u' ¢ My, and ¢, =0 if
V¢ M,,.

The proofs will be given in Appendix.

3. The description of X7 in terms of SpU(4).

3.1. The Gromoll-Meyer action in SpU(4).

Now, in order to study the submersion Sp(2) — X7 defined in §1, we con-
sider the corresponding objects in the general linear group GL(4,C). To be more
precise, let SpU(n) = Sp(n, C) N U(n) denote the symplectic unitary group in the
terminology of [Zh], and let spu(n) be the Lie algebra. Let hy,/aei,..., fa
(resp. hy, by, éy,. .., ﬂ) be the basis of left (resp. right) invariant vector fields
on Sp(4,C) as in §2. We introduce two inclusions i, o: GL(2,C) — GL(4,C)
defined by

100 0 a 00 b
_ab_OabO ab_OlOO
I((c d>)_ ocdo’°(<c d))_ 00 1 0

000 1 c 00 d

Define
I'“:GL(2,C) x GL(4,C) — GL(4,C) by I'“(g,x) = i(g)o(g)xo(g "),
and denote its restriction: SpU(2) x SpU(4) — SpU(4) by the same symbol.

Set
i 0 0 -1 0 —i
ci:(o —i>’ cj:<1 O)’ Ck:(—i O)espu(2).
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PropPOSITION 3.1.1. Let g, be the bi-invariant metric on SpU(4) normalized
so that ihy € spu(4) has unit length. Then the action

' SpUQ2) x SpU(4) — SpU(4)

is free and isometric, and hence yields the quotient Riemannian manifold. This
Riemannian manifold is isometric to the Milnor-Gromoll-Meyer sphere X7. For
each A = c;, ¢j, ¢k € spu(2), the Killing vector field dI{ on SpU(4) induced by the
action is expressed as

dlzlc = lfll + lﬁz — ihy,
dIf =& —fi+és—fut+ e fi,
AL = —i(é3+ ;) — i+ fy) + iles + 3),

respectively. Therefore, for a function ¢ on SpU(4) which is written as the re-
striction of a holomorphic function on Sp(4,C), in order that ¢ is invariant under
the action I'C it is necessary and sufficient that ¢ satisfies

(hi+hy—h)p=0, (fi+fi—e)p=0, (é&3+é — f3)p=0.

For the proof we have to study the correspondence between Sp(2) and
SpU(4), which is done in the following.

3.2. The correspondence of Sp(2) to SpU(4).

In order to define a correspondence of Sp(2) to SpU(4) (slightly different
from because of the different choice of “J”’), we let M, (C) (resp. M, (H))
denote the algebra of n x n matrices with coefficients in C (resp. H). Let ¢ be an
injective R-algebra homomorphism ¢: H — M, (C) defined by

c(a+jb) = <Z _a_b>’ a,beC.

It is easy to verify that its restrictions give the isomorphisms Sp(1) = SpU(2),
sp(1) = spu(2). Moreover, we denote by ¢ again the mapping M, (H) — NViy(C)
defined by the formula

Q)= (SAB ;5;?)

where Q is written in the form Q= A4+ jB with 4,BeM,(C), and where

S = ((1) (1)) Then using the relation jB = Bj, Be My(C), we see that ¢ is an
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injective R-algebra homomorphism and satisfies ¢(’Q) = ‘(¢(Q)). Hence the re-
strictions of ¢ yield the isomorphisms Sp(2) = SpU(4), sp(2) = spu(4).

Lemma 3.2.1.  The Gromoll-Meyer action I and the action I'¢ are equivalent
through ¢, that is, the following diagram is commutative:

Sp(1) x Sp(2)  ——  Sp(2)

CXCllll {2

SpU(2) x SpUE) —— SpU(4)

Hence, for o€ sp(1) the Killing vector field dI; on Sp(2) induced by the action I’
corresponds to the Killing vector field dI:,(Ca) on SpU(4) under c.

ProoF. Immediate from the identity ¢(({ qo,)):o(c(q))i(c(q’)), q.q' €
H- {0}, 0

3.3. Proof of Proposition 3.1.1.
For simplicity of notation we set

(2 0 00y 10 1 C1(0 4
o o) T \o «) TA\-1 o) *T A\ 0

for each « =i, j,k € H. Then these matrices form the orthonormal basis for the
Lie algebra sp(2) (with respect to g;). Moreover, the isomorphism ¢ : sp(2) —
spu(4) gives the following correspondence between the respective basis:

C(i.,.) = ihy, C(j.,.) = —e3 + {3, C(k+) = —iey — if3,
C(l',) = ihy, C(j,) = —ey + 4, c(k,) = —iey — ify,

c(lp) = \%(61 —f1), (o) = \%2(61 + 1),

e(jo) = %(—e2 +12), (ko) = —%(e2 +13).

Hence, in particular, our definition of the metric g, on SpU(4) in
3.1.1 implies that ¢ gives the isometry between Sp(2) and SpU(4). By
3.2.1 we conclude that the action I'¢ satisfies the same properties as I" and the
quotient manifold I"\SpU(4) is isometric to X7. Next, to find the expressions
for Killing vector fields induced by I'¢, let 4= (“%)espu(2). Then the
vector field dI’f on SpU(4) induced by I is expressed as
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a 0 0 b a 0 0 b
0 a b 0 0 0 0 O
FC :Rx* Lx* Tx 4
dli(x) 0 ¢ d 0 “|lo o o0 of]TPV®
c 0 0 d c 0 0 d

where R, (resp. L,.) denotes the map: T.SpU(4) — T, SpU(4) between the
tangent spaces, induced from the right (resp. left) translation by x on SpU(4).
Taking A =c¢; = ((’) 0 ) e spu(2) and recalling the definition of hl,hz,hl,hz
in §2, we observe that the above formula becomes

i 0 0 0 i 00 0
) 0 i 0 0 000 0
A =Rl 1o 0 —i o <110 0 0 o
00 0 —i 000 —i

= Zfllx + l'lazx — ihy,.

Similarly, using such obvious relations as R.e3 = ( f3) we get the expressions
for dF “,dI;. There remains to prove the last part. Clearly, on Sp(4,C)
the equatlon dl‘(p) = dlz,j"(q)) =dI; (p) =0 is equivalent to (hy + by — hy)p =
(s +fi—e3)p (e3 +eés— f3)p =0. Since Sp(4,C) is the complexification of
SpU(4), we have also such equivalence on SpU(4). This completes the proof of
IProposition 3.1.1l. ]

The following was mentioned in §1.3.

PropoSITION 3.3.1.  Let g, be the bi-invariant metric on the symplectic group
Sp(2) as in §1.1. Let m= (my,my) be a signature and let Hy, be the space as in
§1.2.  Then the Laplacian A of the Riemannian manifold Sp(2) satisfies

Ap = —((m +2)* + (my + 1)* = 5)g
for any ¢ € Hy,.

Proor. This is a special case of a well known fact about compact Lie
groups (cf. [Gu]). We give a direct proof, as a consequence of our argument.
By means of the isometry ¢ we identify the space H,, with the vector space
®,vCo,,, where u,v range over My,, and ¢,, are as in §2.2. It suffices to prove
that the Laplacian A of SpU(4) satisfies Ag,, = —((my +2)> + (my +1)* = 5)¢,,
for the generating function ¢,, (defined in §2.1). Indeed, since the left invariant
vector fields ihy,ihy, —e3 + f3,...,—(i/v/2)(es + f>) on SpU(4) mentioned above
form the orthonormal basis of 7,SpU(4) at the identity element e, we see that
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A= —(h? +h3 +4hy + 2hy + 2f1e1 + 2fres + 4 fre3 + 4 faey).

Then our contention follows from the identities
hl (¢m) = m1¢m7 h2(¢m) - I/l’l2¢m,

€] (¢m) = 62(¢m) = €3(¢m) = 84(¢m) =0
which are noted in Appendix. 0

4. The dimension of H! or H!(SpU(4)).

4.1. The space H!(SpU(4)) and the lattice points L,,.

Fix a pair of integers m = (my,m,), m; > my > 0, and let 7, be the unitary
representation of SpU(4) defined in §2. Let M, be defined as in §2.2. Denote
by H,(SpU(4)) the vector space spanned by matrix elements of 7z,. Then we
have

Hu(SpU(4)) = ®Cy,,

where the direct sum is taken over all w,ve M, and ¢,, are the functions on
SpU(4) defined by ¢,,(x) = (mm(*)p,,¢,) with the Gel'fand-Cetlin basis {¢,}.
Let I'“: SpU(2) x SpU(4) — SpU(4) be the Gromoll-Meyer action defined in
§3.1, and let H! (SpU(4)) be the subspace of H,,(SpU(4)) consisting of functions
fixed under I'°. 1In order to find the dimension of H!(SpU(4)) we introduce
a set of lattice points in R°. Namely, we let L,, be the set of 5-tuples (pi, pa,
q1,4¢>,1) of integers such that

() m2=prz2m=2py>20,m>2q=2m=2q¢=>0,q—-¢g=>1>0,

(2) q1 +q> is even,

(3) (g1 +q)/2<mi+m—p1, pp<(q1+q)/2<p1.

PROPOSITION 4.1.1.  The dimension of the vector space HL (SpU(4)) is equal
to the cardinality of the set L.

To prove our proposition we begin by considering a direct sum decom-
position of H,(SpU(4)). For integers pi, p2,q1, 2, satisfying the condition (1)
above, let H,, (,, be the subspace of H,,(SpU(4)) defined by

Hy (p.q.1) = @ijik COpy pasij)lar.aa. k)

where the direct sum is taken over all integers i, j, k such that 4-tuples (p1, p2, 1, j),
(q1,¢2,k,1) belong to the set M,,. Then we have

Hu(SpU(4)) = @p.q.1Hm,(p.q.1)

where the sum is taken over all integers pi, p2,qi,q2,! satisfying (1). Thus
IProposition 4.1.1 is reduced to the following assertion.
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PROPOSITION 4.1.2.  Let p1, p2,q1,q2, 1 be integers satisfying (1) above. Then

the space Hy, (p 4.1 is invariant under the action I'“. Let H, r (& denote the

p:q,! 2,q.1)
subspace of functions in H,, (, .1 which are fixed under I'°. Then

HF ~ {C lf p17p27q17q271 SCltiSfy (2) and (3)7
m, (p4,1) = 0 otherwise.

4.2. Proof of Proposition 4.1.2.
First we note that pi, p»,q1,q2,! are fixed, and set

I=m+m—(pr+p)+1, J=pi—pr+1,
K=m+m—(q+q@)+1, L=q—-q+1.
For any integers i, j,k suchthat 0 <i<I—-1,0<;<J—-1,0<k<K-1, we
set

P, (k) = Ppr,pr,is i), qo,k 1)

As a matter of convention we set ¢; s = 0 if integers 7, j,k do not satisfy the
condition 0 <i</-1,0<;<J-1,0<k<K-1. Note that H,, (,, 1s a
vector space with the basis ¢ ), 0<i<I-1,0<;<J-1,0<k<K-1
By [Proposition 3.1.1 we see that a subspace S of H,,(SpU(4)) is invariant under
I'“ if and only if § is invariant under the three vector fields

dI¢ = ihy + iy — iy, dI¥ =&y~ fy+é4—fy +es— f
A = —i(és + f3) — i(es + fy) + i(es + f3).

By ICorollary 2.3.2 we observe that the space H,, (p 4 is invariant under the
operators h1 hz,h1,€3,f3,€4 f4,eg,f3, and hence the space H,, (p 4 18 I'C in-
variant. The former part of [Proposition 4.1.2 is proved. For the proof of the
latter part we have to look at the action 1" on H,, (, ;) more closely. For any
integer # we introduce the subspace H(yn) of H,, (4 defined by

Hin) = @ Cou,w-
k=i+j+n
0<i<I-1
0<j<J—1

By our definition, H(y) #0 if and only if —(/+J—-2) <y <K-1. Geo-
metrically, H(n) is the vector space with the basis ¢; ;) whose index (i, j, k)
ranges over lattice points in [0,/ —1] x[0,J —1] x [0,K —1] of the plane
{(x,y,2)|z=x+y+n}in R®. Obviously we have the direct sum decomposition

Hm7 (p,‘], l) = @ H(n)'
—(I+J-2)<p<K-1
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On the other hand, by [Proposition 3.1.1 we know that H

H, h that m, (p.q.1) CODsists of all
P €y (p g1 SUC a

(i +hy—h)p=0, (+fi—e)p=0, (&3+é5— f2)p=0.

Therefore the latter part of [Proposition 4.1.2] is an immediate consequence of the
following two lemmas.

LemmA 4.2.1. Let n be an integer.
W) I n#p2—(q1+q2)/2, then (hi+hy—h)p #0 for any ¢ #0¢€ H(n).
) If n=pr—(q1+q2)/2, then (hi+hy— i) =0 for any ¢ € H(n).

Proor. Using the obvious relation /I +J — K — 1 = q; + ¢, — 2p,, by Cor-
ollary 2.3.2 we have

(hy + hy — h)ea pwy = (=2p2 = 2(i +J) + @1 + 42 + 2K)p; jy00)-

Hence (le +hy— h)e = (q1+q92—2p2+2n)p for o€ H(y). This proves our
lemma. ]

LEMMA 4.2.2. Assume that q; + q, is even, and set 1y =p) — (q1 + ¢q2)/2.
Set D=fs+f, —es, U=é3+¢é4— fs, and let p e H(y).
(1) Suppose that ny > 1. If D(p) =0, then ¢ =0.

(ii) Suppose that ny < —I or ny < —J. If D(p)=U(p) =0, then ¢ =0.

(iii) Suppose that —1 +1 <ny <0and—-J +1 <y, <0. TheanI;(p,qJ) ~ C.

In order to prove [Lemma 4.2.2] we have to consider, moreover, a direct sum
decomposition of H(x). For any integers #,k, we set

Hip k)= @D Coi -

i+j=k—n
0<i<i-1
0<j<J—1

Obviously, H(n;k) # 0 if and only if
—(I+J-2)<np<K-1, max(n,0) <k <min(K—-1,1+J—-2+7n).

Now, for each 7 the subspace H(#x) can be written as

Hin= @ Hpk).

0<k<K-1

For any fixed # and for each k satisfying 0 < k < K — 1, we denote by proj, the
projection of H(x) onto the factor H(n;k) (which may be trivial).
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LEMMA 4.2.3. Let n be an integer.
(i) The operator D =f5+f, —es maps the space H(n) into H(n—1).
Moreover, for each integer k, 0 <k < K — 1, the mapping D satisfies

D:H(p;k)— Hn—1;k—1)® H(n— 1;k),
D(p jywy) = (kK = K)pi jyk—1)s Plist, jyie) + Pii 1))

(i) The operator U =eé3+ é4 — f3 maps the space H(n) into H(n+1).
Moreover, for each k, 0 <k < K — 1, the mapping U satisfies

U:H(p k) — Hip+ 1;k) @ Hin + 1k + 1),

Ui, i) = G = Dot w3 =D -1y 00 —P k1))

Proor. By [Corollary 2.3.2 we have

(f3 +ﬁl - e3)¢,uv = Puteyy + Putegy — k(K - k)wﬂv—ay
(é3 +e4 — f3)(p,uv = Z(I - i)(p,u—sw +](J _j)Qu—&;v - (p,uv+83

where = (p1, p2,i,j), v=(q1,92,k,1). Recalling our definition of ¢; ), we
get immediately the expressions for D(g(; i), Ulpq k) Lemma 4.2.3 is
proved. L]

LEMMA D. Let n be an integer, and set D :];3 —l—f4 — es.
(i) The following identities hold.

D o proj, = projy o D o proj : H(i7) — H(n — 1;0),
proj o D = proj; o D o (projy + proji,) : H(n) — H(n — 1;k),0 <k < K -2,
projx_j o D = projg_j o Doprojg_; : H(n) — H(n— 1; K —1).

(i) For any k satisfying 1 < k < K — 1, the composite mapping proj,_, o D :
H(n;k) — H(np— 1,k — 1) is an isomorphism.

(iit) If n =1, then the mapping D : H(n) — H(n — 1) is injective.

(iv)  Suppose that 5 <0, and let p € H(n). If D(p) =0 and proj,(p) =0,
then ¢ = 0.

PrOOF. Assertion (i) is an immediate consequence of (i) of the preceding
lemma. To prove (ii), suppose that 1 <k < K —1. Then note that H(n;k) is
isomorphic to H(n — 1;k — 1) under the correspondence ¢ ;) = @(; k1) DE-
tween their respective basis. By (i) of [Lemma 4.2.3 we see that the mapping
proj,_; o D| H(n; k) is expressed, with respect these basis, as a diagonal matrix
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with nonzero diagonals. This proves (ii). To prove (iii), suppose that # > 1,
and ¢ € H(n) satisfies D(p) =0. To prove ¢ =0 it will suffice to prove that
proji(¢) =0, k=0,...,K —1. Clearly, proj,¢ =0, because H(#;0) =0 for
n > 1. Using this fact and (i) we observe that proj, D proj, ¢ = proj, D(proj, +
proj, )(p) = proj, D(¢) = 0. Since proj, D : H(n;1) — H(n — 1;0) is injective by
(ii), we get proj; ¢ = 0. In this way, using the injectivity of proj,_, o D | H(n; k),
we get proj, ¢ =0 for k=2,...,K — 1, as desired. A similar argument proves
(iv). O

Lemma U. Let n be an integer, and set U = é; + é4 — f3.
(i) The following identities hold.

projy o U = projy o U o proj, : H(n) — H(n +1;0),
proj; o U = proji o U o (proj,_; + proj;) : H(y) — H(n + 1;k),1 <k <K -1,
U o projg_; = projg_j o Uoprojg_ : H(n) — H(n+1; K — 1).

(i) Suppose that n < —1I or n < —J, and let p € H(ny). Then, proj,(p) =0
if and only if proj,(U(p)) = 0.
(iii) Suppose that —min(I —1,J —1) <y <0. Then the kernel of the op-
erator proj,o U : H(n;0) — H(y + 1;0) is of dimension one.
(iv) If n<—-(I—-K) or n<—(J—K), then
U:-Hmp;K—1)—>Hu+1;K-1)

Is Iinjective.

Proor. Assertion (i) follows from [Lemma 4.2.3, (ii). As for (ii), since
proj, o U = proj, o U o proj,, the condition proj,(¢) =0 implies proj, U(p) = 0.
Conversely, suppose that, say # < —I. Then, note that there exists a number
Jjo > 1 such that

P1-1,j0)(0)> P1-2, jo+1)(0)s P(1-3, jo+2)(0)> " " °

form a basis of H(17;0). Write projo¢ = copy_1 jy0) + 1Pu—2,jys1)0) T - By
Lemma 4.2.3, (ii) we observe that the coefficient of proj, U(¢) = proj, U proj,(p)
with respect to ¢;_; ;1)) 18 cojo(J —Jjo). Hence the assumption proj, U(p) =0
implies ¢y = 0, and inductively ¢; = 0,---. In this way we see that proj,(U(p)) =
0 implies proj,¢ =0. To prove (iii), suppose that —min(/ —1,J —1) < <0.
Then note that

P(—1,0)(0)> P(—n—1,1)(0)> """ » P(0,~1)(0)
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form a basis of H(n;0), and ¢_,_1 0)0), (—y—2,1)(0): """ » P(0,—y—1)(0) fOrm a basis
of H(n+1;0). Now, using [Lemma 4.2.3, (ii), we observe that the matrix of
proj, o U with respect to these basis is of full rank. This shows (iii), because
dim H(#;0) =dim H(y+1;0) + 1. A similar argument proves (iv). Indeed, sup-
pose that, say # < —(/ — K). Then we can take as the basis of H(y; K — 1)
(resp. Hip+1; K — 1))

Pr-1,j0)(K-1) PI=2,jo+1)(K-1)s """ (resp. Pr-1,jo-1)(K-1)s Pa-2,jo)(K-1) " ')

for some jy > 1. It is easy to see that the matrix of U with respect to these basis
is of full rank. Therefore, since dim H(; K — 1) <dimH(n+ 1;K — 1) we get
the injectivity of U|H(n; K —1). This completes the proof of ]

PrOOF OF LEMMA 4.2.2, (i), (ii). Assertion (i) follows from Lemma D, (iii).
Assertion (ii) follows from Lemma U, (ii) and Lemma D, (iv). O

PrOOF OF LEMMA 4.2.2) (iii). Suppose that ¢; + ¢, is even, and —/ + 1 <
Ny <0, —J+1<#5n,<0. By Lemma 4.2.1 we know that

Hyy o0 ={9€H(n) | D(p) = Ulp) = 0}.

First, we contend that dim H' (rqn < 1. Indeed, let ¢,y e H T (p.q0 Then

projy U(p) = proj U(W) = 0, and thus proj U(proj(p)) = projy U(projs(1)) = 0.
By Lemma U, (iii) we have cproj,(¢)+ dproj,(yy) =0 for some nontrivial
¢,d e C. Hence, by Lemma D, (iv) we get cp + dyy =0, as desired.

To complete the proof of [Lemma 4.2.2, (iii), we have to give a nonzero
¢ € H(n,y) such that D(¢) = U(¢) =0. For this purpose, let ¢, € H(#,;0) be a
nonzero element such that proj, U(¢,) =0 (it exists by Lemma U, (iii)).

ASSERTION 1. There exists ¢ € H(n,) such that proj,(¢) = @y, proj,(D(¢)) =0
for each 0 <k < K —2.

PrOOF. To construct ¢ we shall use, for every k=1,---,K—1, the
surjectivity of proj,_;oD: H(ny k) — H(ny— 1;k—1) ((ii) of Lemma D).
First, we find ¢, € H(n,; 1) such that proj, D(¢,;) = —D(¢,). Second, we find
¢, € H(1n,;2) such that proj, D(¢,) = —proj; D(¢;). In this way we find finally
¢x—1 € H(np; K — 1) such that projx_, D(¢x_) = —projx_, D(¢x_,). Thus, set-
ting ¢ =@y + ¢, + -+ dx_; proves Assertion 1. ]

We contend that this ¢ is what we wanted. Indeed, it suffices to prove the
following two assertions.

ASSERTION 2. U(¢) = 0.
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Proor. First, note that UDp = DU¢ for any ¢ € H(y,), because [U,D] =
hi +hy — hy. Then, recalling Lemma U, (i) and the identities proj, (D(4)) = 0,
0<k<K-2, we see that proj, DU(¢) =0 for 0 <k <K —2. Now, using
this fact and the injectivity of proj, D|H(n;k+ 1) (Lemma D, (ii)), we shall
prove proj, U(¢) =0 for k=0,...,K —1, and hence U(¢) =0. Indeed, first,
projy U(#) = 0, because projy U(¢) = projy U projy(¢) = proj U(dy) = 0 (by the
choice of ¢;). Next, proj,; U(¢) =0, because proj, D proj; U(¢) = proj, D(proj, +
proj, ) U(¢) =proj, DU(¢) =0, and proj, D | H(ny+ 1;1) is injective. Inductively,
proj, U(¢) = 0 for any positive kK < K — 1. This proves Assertion 2. O

ASSERTION 3. projx_; D(¢) =0, and hence D(¢) = 0.

Proor. Note that the mapping U: H(yy— ;K —1) — H(ny; K — 1) is in-
jective by Lemma U (iv), because 7, satisfies 7, — 1 < —(I — K), —(J — K) (because
of the obvious relation / +J — K =1—2y,). Hence to prove projx_, D(¢) =0
it suffices to prove that U projix_; D(¢) = 0. But, this is obvious, because we
know that UD(¢) =0 and D(¢) = projx_, D(¢). Assertion 3 is proved. O

This completes the proof of [Lemma 4.2.2. O

4.3. Counting the cardinality of L, and the proof of Proposition 1.2.1.

ProposITION 4.3.1. Let L, be the set defined in §4.1, and let §L,, be its
cardinality. Set ny =my +2, np =my + 1.
(i) If 2my, < my, then

Ly =i+ n3((—=1)"2n; — (1) (n; — ny))/16
where
i = n3(ny +m)(4ni — dnyiny — 2n3 + 5) /48.
(it) If 2my = my, then
AL =j + (m — m)((=1)"nf — (=1)"n3)/16
where
Jj=(n — nz)z(nl + ng)(—an + 8nyiny — 2n§ +5)/48.
We need two lemmas.

LemmA 4.3.2. The cardinality of L, is given by

§Lm = Z 8P (8)40m(s),
m2/2§s£(r§1+m2)/2
se
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where Py(s), Om(s) are the sets defined by

Bu(s) = {(p1,p2) € z’

such that my > py >my >py > 0,my +my —s>p; > s> pa},

Qm(S) - {(QIaq%l) € Z3
such that my >q >my > ¢ >0,q1 —q2 = 1> 0,91 + g2 = 25}.

PROOF. It is easy to verify that the set L, is written as a disjoint union
L, = U Pu(s) X Om(s), which yields at once our desired formula. OJ

It is elementary to find the cardinalities of P,(s), Om(s). Indeed, we have
LemmA 4.3.3. Let s be an integer such that my < 2s < my +my. Then

1P(s) = { mp—my+1)(s+1) if s <m,

(
(my+ 1) (my +my+1-=25) if s>my,
(

my+1)(2s —my + 1) if my <2s < my,
(my —my + V) (my +my +1=25) if m <25 <my+my.

10n(s) = {

PROOF OF PROPOSITION 4.3.1.  Suppose that 2m; < m;. Then the righthand
side of the formula in [Lemma 4.3.2 is written as

)SIRTED SUTIND SR

my[2<s<my my<s<my/2 my[2<s < (my4+my) /2

with % = {85, (5)§Qu(s). Here se Z. Applying [Lemma 4.3.3, we have

Iij = (I’I’l] —nmy + 1)(?’)’12 + 1)

- {(m2/2-|— DI+ (=D"™)/2+ Y (s+D2s—m+ 1)}

m2/2<s£m2

+(m+1)? Y (A my+1=2) (25— my+ 1)

my<s<mj/2

+ (my —my + 1) (my + 1) > (my +my + 1 — 25)%.
my [2<s< (my+my)/2

Using the elementary formulas

Yo l=Mbl=ld, Y s=(1/2)(b] — [a)([B] + [a] + 1),

a<s<b a<s<b

> 57 = (6] = a))(2(6] + [a])* = 2[][a] + 3([6] + [a]) + 1)/6,
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/2] =1/2—1/4+ (-1)'/4

for real numbers a, b satisfying 0 < a < b and an integer / > 0, where [ | denotes
Gauss’s symbol, and substituting m; =n; — 2, my = ny — 1, we see that $L,, be-
comes the desired formula. Similarly, we obtain the formula for the case 2m, >
my. |Proposition 4.3.1 is proved. ]

PrROOF OF ProposiTioN 1.2.1. By [Proposition 4.1.] we see that
dim HI(SpU(4)) is given by the formula in [Proposition 43.1. Since H! ~
HI'(SpU(4)) by Lemma 3.2.1, we obtain the desired expression for dim HE. ]

4.4. Proof of Proposition 1.2.2.

Let H,(SpU(4)) be as in §4.1.  Let ¢ be the correspondence Sp(1) = SpU(2),
Sp(2) = SpU(4) in §3.2. By means of ¢, instead of the action Sp(1) x Sp(2) —
Sp(2) giving the quotient manifold S7 (resp. S7, resp. S7), we consider the
corresponding action I'~ (resp. I'~, resp. I'V): SpU(2) x SpU(4) — SpU(4).
In order to describe these actions, let 4 = ¢;,¢;,cx € spu(2) be as in §3.1.  Then,
as in the proof of [Proposition 3.1.1] we see that the Killing vector fields dI’;” on
SpU(4) induced by I'~ are expressed as

(1) A =ih, dI” =é—f, dI7 =—iés—if;.

C

Similarly we have

(2) IS =ihy +ihy, dI> =é3—f;+é4—fy,
dI> = —i(és +£3) — i(és + fy),
(3) I} =ihy —ihy, dIY =éy—fy+es— [,

T} = —i(és +1;) +i(es + £3).

Now, let H, (SpU(4)) (resp. H (SpU(4)), resp. H (SpU(4))) be the subspace
of Hu(SpU(4)) consisting of functions which are fixed by the action '~ (resp.
I'~, resp. I'Y). Then, the description of the actions above yields immediately

Lemva 4.4.1.
Hy (SpU(4)) = {p|h(p) = &(p) = f3(p) = 0},
Hy (SpU4)) = {p| (h +h)p = (& +é)p = (/s +f1)p = 0},
HyY (SpU4)) = {p| (ha = h)p = (&4 = f3)p = (/s — e3)p = 0}

where ¢ € H,(SpU(4)).
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In order to find the dimension of H (SpU(4)), we proceed as in §4.2.
Namely, for any integers pp, p»,j such that m; >py >my >p, >0, p; —pr >
j >0 and for any ve M,, we set

Hmv(p7jvv) = ®OSiSI—1C¢(p17p27i7j)V7
where I=m;+m—(pr+p)+1 as in §2. Then H,(SpU4))=
®p,jv Hum,(p,j,v)- To see how I'™ acts on H,, (p ), We set
P = Plprpaiyy

with the convention that ¢, =0 if / does not satisfy 0 <i<7—1. Then by
(Corollary 2.3.2| we have

hi(py) =T —1=20pu, élpp) =il — oy, filow) = 0w

These formulas show that each subspace H,, (, ;) is invariant under hl,é3, /i
and moreover

0 otherwise.

(0.€ Hy oy | (0) = é3(9) = f5(0) = 0} = {

Consequently, we conclude that dim H,, (SpU(4)) is equal to the cardinality
of the set {jeZ|0<j<m —my} x M, that is, (m; —m, + 1)d, where d =
(my +2)(my + 1)(my —my + 1)(m; +my +3)/6. This proves the first formula of
IProposition 1.2.2,

To find the dimension of H (SpU(4)), for any integers pi, p» such that
my >py =>my >py >0 and any ve M,,, we set

Hy (pv) = @o<i<1-1,02j<5-1CP(py py.ijyvs

where I,J are as in §4.2. Then Hu(SpU(4)) = @) Hu, (p,)- We set g, ;) =
P prps,irjys @A @ 5 =0 if i, j do not satisfy O£z£1—1 0<j<J-1 By
(Corollary 2.3.2 we have

(};1 + ilz)(ﬂ(,'7j) = (I +J-2-2i- 2j)(p(i,j)a
(e +ea)p =il — D)oy ;) +i(J =)o 1),
(fs +SD)96 ) = s,y T P j41)-

Usmg these formulas, we see that H, (,,) is invariant under Iy +h2, é3 + &4,
f3 + f4, and

Cp ifI=1J,

H h h o ) et f 3 :0 —
{pe o | (4 ha)e = (34 és)p = (fs +fy)p = 0} {O otherwise,
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where ¢ = ¢_1 o) — @2yt + (—1)1_1(/)(07,_1). Hence, HY (SpU(4)) is non-
trivial if and only if m; + my is even, and if that is the case, dim H,; (SpU(4)) is
equal to the cardinality of the set {0 < py <my} x My, that is (my + 1)d.

There remains to find the dimension of H, (SpU(4)). For any integers
P1, P2, 1,41, ¢2,1 such that

(*) m=pr=>=m=>pp>0, I-1>i>0,
€ m>q =>2m>q¢>0, L-1>[/>0,
we set

Hy, (piig.) = ®o<j<i—1.0<k<k-1CP(p s i iar o, kD)

Here I,J,K,L are as in §4.2. Then H,(SpU(4)) = @,.i,q,1Hm, (p,i.q.n- We set
D)) = Pipr.pmi ) graok)> A0 set @y =0 1f j k do not satisfy 0 <j <J —1,
0<k<K-—1. Then, by (Corollary 2.3.2 we have

(2 = 1)y = (J = K+ 2(k = 7)o k)
(ea = )0 yw) = = DP-1)k) = P k+1)s
(fa = e3)o(pw) = (1w — KK = K)p (k1)

Using these formulas we observe that H,, (, ;. 1s invariant under h — /hy,
és — f3, f4 —e3, and moreover

Co if J=K,

H . A — = (¢4 — = f — == ==
{9 Hn paan | s =)o = = f)o = (fi—enp =0y = { 4 1=K

where ¢ =3 ;1 ((J—j = DI/e - Hence dim H,/ (SpU(4)) is equal to
#Cm, where C, is the set of 6-tuples of integers (pi, p2,i,q1,¢2,/) satisfying
(%), (*xx) above and the condition p; — py + q1 + ¢o = m; + my.  To find §C,,, for
each integer s such that 0 < s <my, let P(s) be the set of points (py, pa,i) € Z°
satisfying (%) and the condition p; —p, =s, and let Q(s) be the set of points
(q1,92,1) € Z* satisfying (xx) and the condition ¢ + ¢ =m; +my —s. Then
Cm =, <y<m P(5) x O(s) (disjoint union). It is directly verified that

4P(s) = (my +2)(my + 1 —max(my,8)) + Y (my+s—1-2p),

my <p;<m

10(s) = (my +2)(my + 1 —max(my,s)) + Y (2q1+s—1—2m —my).

my<qp<mj

In this way we obtain
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BCm = (my +2)(my + 1)(my —my + 1)(3 + 2my + 2mymy — 2m§)/6.

Substituting m; =n; —2, my =ny, — 1 yields the desired expression for #C,,.
This completes the proof of |Proposition 1.2.2| ]

Appendix.

A.1. PrROOF OF THEOREM 2.2.1.

We fix a pair m = (m;,m,) of integers satisfying m; > my >0, and use the
notation in §2. We begin by recalling the Gauss decomposition in Sp(4, C) (see
|Zh]). Almost every x = (x;) € Sp(4, C) is decomposed uniquely into the product

1 0 0 O 51 0 0 0 1 Z12 213 Z14
* 1 0 0 0 52 0 0 0 1 273 Z24
X = B
1t ollo o &' o 0 0 1 —zp
« 1/\0 0 0 o6'/\O 0 0 1
of matrices in Sp(4,C), and we know that
01 =X11, 0= 1,212 . Zln= &, 713 = m, Z14 = m;
X11 X11 X1 X1
X
Z33 = CLICY) , 224 = Z13 — Z12223.
X(1,2)(1,2)

From the formula za4 = x(1,2)(1,4)/%(1,2)(1,2), We see that if 0 <p <m; —my, 0 <
q < my, then z{,z1,4,, € C*(Sp(4,C)), and moreover z{,z3,4,, € R,y by [Zh, §113,
Theorem 6], or by Proposition A.1.3 below. Now consider the subgroup

a 0 0 b
0 a b 0 a b a b

Go= 0 ¢ d 0 <c d)’(c/ d,)eSp(Z,C)
c 0 0 d

of Sp(4,C), and denote by 7| the restriction of the representation 7, to the
subgroup Gy.

LemmMa ALl If 0<p<m —my, 0<q<m, then z{,z3,¢,,€ Ry is a
highest weight vector of mim|g,, whose weight is given by

o0p 0 O 0
0 o 0 0
2 0 = 5¥11—(p+q)5§42+p7q_

I

0 o7!
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Conversely, each highest weight vector of mm|g, has the form 20z (up 10 a
constant factor) with 0 <p <m; —my, 0 < g < m,.

ProOF. By definition, a function f € R, is a highest weight vector, with
weight o, of m,|g, if and only if f satisfies the functional equations

f(xz0) = f(x) for any zp € Zy, f(x0)=a(d)f () for any J € Dy,

where Z, is the subgroup of Gy consisting of upper triangular matrices with
I’s along the diagonal, and D, is the subgroup of Gy consisting of diagonal
matrices. From the identities

1 0 0 b 1 zip ziz+bziy ziu+b
01 5 0 0 1 Z73 + b’ 224
A _=
0 0 1 0 0 0 1 Z34 ’
0 0 0 1 0 0 0 1
1 5;152212 5;1551213 5;2214
5_125 _ 0 1 52_2223 51_152_1224
0 0 | 51_152234
0 0 0 1
for matrices
| Z12 Z13 Z14 5] 0 0 0
0 | 273 Z74 0 52 0 0
z= , 0= 1 ;
0 0 1 Z34 0 0 52 0
0 0 0 1 0 0 0 o

we see that the function zf,z{,4, satisfies the functional equations above. To
prove the converse we have to use the indicator system in [Zh]. By [Zh, §113,
Theorem 6] we know that if z{,zJ,¢,, € R, for some p,g >0, then we have
O<p<m —my, 0<g<m. Now it is easy to complete the proof of the
converse. ]

COROLLARY A.1.2. The representation space R, has the orthogonal direct
sum decomposition

ERm - @p.,qinm(pa q)a

where p,q range over integers such that 0 <p <m;—my, 0<q<my, and
Ru(p,q) denotes the subspace of R, spanned by the right translations (z{,z3,4,,)
(xg), g € Go. The dimension of Ry (p,q) is equal to (m; — (p+q)+ 1)(my+p —
g+1).
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Proor. The method of Z-invariants ([Zh]) gives us the orthogonal direct
sum decomposition. To find the dimension of R, (p, q), note that the irreducible
representation 7,|g, in Ru(p,q) can be written as a tensor product of two irre-
ducible representations m,,mz of Sp(2,C) (= SL(2,C)), whose highest weights
o, f are given by

o 0 _ sm—(p+q) o 0 _ §mtp—q
((o 51-1))‘51 Mo )7

respectively. Since the dimensions of the representation spaces of m,,7p are
my—(p+4q)+1, my+p—q+1 respectively, we get the desired formula. []

ProposiTION A.1.3.  For any integers p,q >0, the operator Q, , satisfies
2p,¢(m) = Np.g212234m:
where N, , is defined to be
Np.g = Cylmr + 1) Cy(m2) Co(my + ma + 2) Gy pyg(my — my).
The proof will be given in the end of this appendix.

REMARK. Since for a nonnegative integer p, the number C,(p) does not
vanish if and only if r < p, we see that for nonnegative integers p, ¢, the number
N, 4 does not vanish if and only if p <mj; —my and g < my.

For the proof of [Theorem 2.2.1 we have to study the operators f3, f4, which
map R, (p,q) into itself, more closely.

LemMA A.1.4. The commutation relations
[h1,Vaz] = =Vaa,  [ha, Vo] = —Vipa,
hold, and moreover for nonnegative integers p,q,1i, J,
[, L1 Qo) = —(p+ 4+ 20) 51 2p.q,
o, {20 = (P = 4= 20 f{ Qg
Hence, the generating function ¢,, satisfies
W (A1 g (P)) = (1= p = 4 = 20) £ 1]y (9).
ha(f3 1 Qb)) = (m2 40— 4= 21) 3 1 Q.o ).

Proor. The former parts are direct consequences of the relations:
i fil= A, [ fil=he I fpl=—f, [ fil = -1,

I, 3l = =215, [ha, 3] =0, [, fa] =0, [ha, fu] = =2fa.
The fact that h(¢,,) = mid,,, h2(d,,) = ma¢,, yields the latter part. ]
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PrOOF OF THEOREM 2.2.1.  First, note that each ¢, is nonzero. This follows
from Lemma A.1.5 below. Next, we contend that for fixed pj, p, satisfying
0 < p, <my < p; <my, the functions

(pypa ﬂp:(p17p27i7j)7 0£i£M1+M2—(p1+p2), O£j£p1—p2,

constitute an orthogonal basis for R,,(p; — my, p>). In fact, by Proposition A.1.3
we observe that

#p(¢ ) f3f4 12 mzpz(¢m)€€nm(pl —le,pz).

Comparing the Weights of Du, by Lemma A.1.4, we see that (pﬂp’s are mutually
orthogonal. Thus, counting the dimension of R, (p; — ma, p») we conclude that
{q)ﬂp} is a basis for R, (p1 —ma, p2). Now by Corollary A.1.2 it is clear that
{9} ,.c 1, 1s an orthogonal basis of R,,. [Theorem 2.2.1 is proved. O

Assuming Proposition A.1.3, we can find the norm of ¢,.

PropoSITION A.1.5.  The norm N, = ||lp,|| of ¢, is given by the formula
Ny =il Ci(my +my — (p1 + p2)) Gi(p1 = P2)Npymo s N,

is defined to be

—my, P2

where N, , is as in Proposition A.1.3, and N, p ‘
Ny, =D'q!Comi+1 = p)Cy(mr+ 1+ p)Cpi pg(m — my).

ProoOF. The same argument as in [Zh, §69] proves our proposition.
Namely, we consider the adjoint operator Q, of €,. It is given by

min(p, ¢) [ q ' 1
Z (1) (1>C1(P)Cpql(h1,h2) A
1=0
V42 (hz + )62 —e1eq4 = €2(h2 + 1) — e4e].

Direct computation yields

Q; (212734¢m) = N, for nonnegative integers p,q.
On the other hand

elel fifl(zh 28 b)) = D Ci(my — p — ) Ci(my + p — )20y 28, b
Using these formulas and Proposition A.1.3 we observe that
‘Q;Qﬂ((bm) = N p1—my, PZN];: —my, pzl ]'C,(Wll +my — (pl +p2))cj(p1 _p2)¢m'

Recalling our assumption (¢,,,¢,,) = 1, we see that this formula shows Propo-
sition A.1.5. [
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There remains to prove Proposition A.1.3. We need some lemmas.

LEMMA A.1.6. The operators f, Vi satisfy
N1(@) = (M1 —m2)z120,  Var(hy) = ma(mi +my + 2)224,,
and moreover, for any nonnegative integers r,k,
K (@) = Celmi —ma)z154,,
Vi ($m) = Ci(ma) Ci(my + my + 2)25,,,.

Proor. Recall that the left invariant vector field f; is expressed as f} =
Ey — Ey3, where E; = 3% | x,;(0/0x,), and that Ej is the operator replacing the
j-th column by the i-th column [Zh, §68]. Then we observe that

S1(8m) = E21(¢y) = (m1 —my) i—f% = (m1 —m2)z12¢,,-

Since fi(z12) = —z3,, we get immediately the expression for f{(¢,,). Similarly,
we have

S2(B) = (M1 +m2)z13 — 2mpz12223) Py
fa(d) = M2z3@y,,  fa(z12) = z13.

(To get the expression for f>(¢,) we have to use the identity x(j 2)14) +
X(1,22,3 =0.) Using these identities, we get the expression for Vi(d,).
Moreover, using the identities

hy(z24) = =224, f1(224) = 212224 — 214,
fo(z24) = =234 + (212224 — z14)z23,  fa(z1a) =0, fa(z24) = —223224,
by direct computation we obtain
Via(z3) = 1(r = 2)z54 ",
Vi (2548m) = (M — 1) (my +my +2 — 1)z57 h,
and then the desired expression for Vj(4,). Lemma A.1.6 is proved. ]

LemmA A.1.7. For nonnegative integers p,q the following identities hold:

—1 +1
ﬁ(zfz 22q4¢m) =(q— m2)2fzz§4 m

+(m—p—q+ 1)z 2 214,



Milnor-Gromoll-Meyer sphere 439

Vir (s 28 b) = (m2 — @) (my +ma +2 4 p — q)20028 " b,
‘|'p(m2 +p+ 1)212 224214¢m-

Hence, eliminating the terms containing zi4 yields
(mi 41— q)(my = q)my +m2 +2 = q)z1,23; '

= (m1 — (p+ q) + 1)Var (20,254 8) — p(m2 + p + 1)](3(2{)2_1234¢m)-
Proor. From the identities

f3(z12) = —z12z14,  f3(204) = (=214 + Z12224) 224,
f3(bm) = (m1214 — Maz12224) By,

we get at once the expression for f3(zf, 122"4¢m). As for the second formula we
note that

fr(z12) = 214 — z12213,  Ma(z12) = z1p, and hence Vi (z2) = 2z14.
Then we get
Vaa(zh) = p(p + 1)zl ' 214,
and hence the expression for Vi (z4,z3,4,,). Lemma A.1.7 is proved. ]

LemMA A.1.8. For any nonnegative integers p,q,

Qp g1 =Vl (Il — (p+q) + 1) Cpg1 (1 — h2)
—pf3Q2-1,4(ha+p+1)Cy(hy — hy).

Proor. Recalling the definition of €, ,, and using the fact that C;(p) =0
if [ >p+1, we can write the first half of the right-hand side of our formula as

q

VirQp o = (p+ ) + )Gy (=) =Y (=1 Ci(p) V5 AT
=0

with D; = (q) .4, [(hl,hz)(hl (p + q) + 1)Cp g 1(h1 — hz). Similarly, using

/3, Va2l =0, [h2, 53] =0, [h2, 2,1 4] = (p—q—1)2,-1,, and replacing / + 1 by /,
we can write the second half of the right-hand side as

q+1

Pyt gha+p+ )Gl — ) =Y (=)' Cp)VE T AAE,
=1
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with E; = (131 J(hy+p+1)Cpor gi-1(hi,h2)Cy(hy — hp). On the other hand,
by definition we have

q+1

Qg1 = (D' Cp)VE AR
=0

with F; = (qTI)Cp7q+17l(h1,h2). Now, note the following obvious relations:

Csi= Cs,41C = CCs_1; for any integers s > ¢,
C(m)=mC_y(im—1)=m—r+1)C,_;(m) for any integer r > 1.

Then, using the identities

(U7 )i+ 10- 0

=(§) 1=+ (1 Jms2-p),
1 </ <gq, we obtain D; + E; = F, for 1 </ <gq. Clearly Dy = Fy, E;11 = Fyq1.
These relations yield the desired formula. Lemma A.1.8 is proved. O

PrROOF OF PropoOSITION A.1.3. We shall prove Proposition A.1.3 by double
induction on p,q. It suffices to prove the following two assertions.

ASSERTION 1. If p or q is zero, then Proposition A.1.3 holds, that is

Q0,4(bm) = NO,qu4¢mv Qp.0(dm) = Np.,02f2¢m'

Indeed, we have Qp,=V5C,(hi+1), No,= Cy(m +1)C,y(m2)Cy(m +
my+2), and Q, 0= fl, Nyo=Cy(m —my). Then Lemma A.1.6 shows our
formulas.

ASSERTION 2. Fix any integers p > 1, ¢ >0, and assume that

-1
Qp—l,q(¢m) = Np—l,quz Z§4¢m, Qp,q(¢m) = vaquzzg4¢m'
Then

11
Qp g11(d) = Np,q+lzfzzg4 D

Indeed, this is a consequence of Lemmas A.1.7, A.1.8 and the relation
Cp—g-1(m1 —my) Ny, g = Cp(my — mp)Ny_1 4.

This completes the proof of Proposition A.1.3. O
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A.2. PROOF OF THEOREM 2.2.2.

For representations of the general linear groups, the explicit formulas of
matrix elements are given in [Zh]. For the purpose of proving our theorem, the
argument in [Zh, §71] may be summarized as in the following lemma. For a
function  : Sp(4, C) — C let  denote the function defined by y(x) = y('x).
For a left invariant vector field X on Sp(4, C) we denote by X the right invariant
vector field such that the tangent vector ()A( ), at the identity element e is equal to
the transpose (X,) of the tangent vector X, € sp(4,C). Fix m = (m;,m,) as in

§2, and recall that ¢, (x) = (zu(x)(9,), 9,)-

Lemma A2.1.
(i) For any x e Sp(4,C), the adjoint operator m,(x)" of mm(x) satisfies

(i) The identities

— ~ —_—

XW)=XW), X(Y())=X(Y(¥)

hold for any left invariant vector fields X,Y and any function \ on
Sp(4,C).
(iii) The complex conjugate of the function ¢,, satisfies

O (X) = 9,0(X)  for x € Sp(4,C),
and hence ¢, = ¢,,.

PrOOF. As noted in [Zh, p.198], using the assumption that the restric-
tion Tu|g,ys) is unitary, we observe that the differential representation dm,, :
sp(4,C) — gl(R,,) satisfies (dmn(X))" = dn,('X). Hence we see that 7, (x)" =
Tm('X) for x € Sp(4,C) which is close to e, and thus for all x. To prove (ii) it
suffices to verify the first half. We see that/)z W) (x) = (d/ ds)|S:0l/;(exps’(Xe)x) =
(d/ds)|_o¥(‘xexps(X,)) = (X (¥))("x) = X(¥)(x). This proves (ii). In order to
prove (iii), since the function ¢,, : Sp(4,C) — C is holomorphic, it suffices to
verify that the restriction of ¢, to Sp(4,R) is real-valued. For this purpose
consider the real vector space Ry, 0= {Y € Ru|Y(x) € R for any x e Sp(4,R)}.
It is clear that R, o is invariant under m,(x) (x € Sp(4,R)), and that ¢,, € Ry o.
Moreover Py € R0 for any pe M, (because the operator @, leaves R, ( in-
variant).  Since {¢,} ., constitutes a basis of Ry, 9, we conclude that the value
¢n(x) is real for x e Sp(4,R). This completes the proof of Lemma A.2.1. ]

PrOOF OF THEOREM 2.2.2. Set 0 = (m,,0,0,0) € M,,. Then clearly Q, is the
identity operator, and ¢, = ¢,,.
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ASSERTION 1. 0, = s that i5, (tn(5) s ) = () for x € Sp(4, ).

This is an immediate consequence of the Gauss decomposition of x, (i) of
Lemma A.2.1, and the fact that =,,(6)¢,, =6{"0,"¢,, for any o as in Appendix
A.1 (see [Zh, p.205]).

ASSERTION 2. ¢,, = @,.

For 1 e M, let N, denote the norm of ¢, € R,,, and let ¢, = (1/N,)p, the
normalization. Set ¢,,(x) = (mm(x)(4,), ¢,). Then we have ¢,,(xy) = >, 4,,(x) -
$n(), x,y€Sp(4,C). Taking u=v=o0 we get ¢,(xy) =2, (X)¢;,(y).

On the other hand we have 7, (y)(4) =225 9:0()¢s, 1€ d(xy) = 225 630(2) -
¢,(x). Thus the irreducibility of =, yields ¢,,(x) =¢,(x). This proves As-

sertion 2.
ASSERTION 3. ¢, = Qu(b)-

By Assertion 2 we know that ¢, (x) = ¢,(x) = Q,(¢,)(x). Hence ¢, =
Q,(¢,,). Applying (i), (ili) of Lemma A.2.1 and recalling the definition of Q,,

we see that ¢, = Q,(¢,,).

Now we can prove [Theorem 2.2.2. From the proof of Assertion 2 we have
O (xY) = 22, 00i(X) B0 (¥), Do (xy) = 325 b,1(x)¢;,(¥).  Fixing y, and applying
the right invariant operator Qﬂ to the first formula, by Assertions 2, 3 we get
00(xy) = (1/N;) >, Q,92,(¢n(x))4,,(¥). Comparing this formula and the sec-

ond one above, by the irreducibility of 7, we obtain (1/N,N;)2,2;(4,(x)) =

¢,;(x). Returning to the unnormalized functions, we get ¢,; = Q,9,(¢,,), which
is what we wanted. [Theorem 2.2.2 is proved. ]

A.3. Proors oF PrOPOSITION 2.3.1 AND COROLLARY 2.3.2.
Let u= (p1,p2,i,j) and set uy, = (p1,p2,0,0). Recalling the definition
Dy = 2p1—my.pr($), by Proposition A.1.3 we have

_ pr—nmy _p>
Puo = Nor—mo,pZ12 224 Pm-

From this expression we get directly the following formulas for the action of
sp(4,C) on ¢, (special case i =;=0 of [Proposition 2.3.1)).

LemMmA A.3.1. Let I,J,A,B,C,D be as in Proposition 2.3.1. Then
e1(0,,) = 1(Bpy o, + DOy _yis,)s
exp,) =—1IDg, ., e(p,)=0, esp,)=0,
N1(04,) =J(COu v, + DOy y14)5

fz((pﬂo) - A(pﬂo+82 + B¢ﬂ0*81+83 + C(pﬂo+81+84 + D¢#o*82+83+84‘
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Proor. The identities

ei(zin) =1, ei(z4) = =223, ei(gy) =0
yield immediately

r—1_q
1

-1
el(zfzzg4¢m) =PZ12 24Pm — 42{3234 223Pm

for nonnegative integers p,q. On the other hand, using the relation zj3 = zp4 +
Z12z23 and the identities in the proof of Lemma A.1.6 we get

fi(Zh7y ) = (ma+p — g+ D228y 236 + P70 iy
Eliminating the term z/,zj, '23¢, from these two formulas, we get
1 1
(ma +p — g+ De1(z12234¢m) = pm2 +p + )20y 23400 — 42212235 bu)-

Then the identity N, , = Cyy1(m; —my —p+q+1)N,_; , yields the desired ex-
pression for ej(p, ). Next, the expression for ex(g, ) follows immediately from

62(212) = Oa 62(224) = 17 62(¢m) = 07
Npg=(mi —q+2)(my—q+1)(m +my—q+3)Cpy(mi —mp)N, 41

The identities e3(¢, ) = es(p, ) =0 are obvious by the infinitesimal version of
Lemma A.l.1. As for fi(g, ), we use the formula

+1 —1
fl(Zszng) = (m —my —p+ Q)Zfz Z2q4¢m - qu222q4 214

obtained from the identities in the proof of Lemma A.1.6. Moreover, we need
the formula for f3(zf,z3, 1¢m) obtained from the first formula in Lemma A.1.7.

Eliminating the term z{,zJ, 1214¢m from these two formulas, we obtain the desired
expression for fi(g, ). Finally, to find the expression for f(¢,) we proceed
similarly. We use the formula

S(Zzibn) = (i my = (p+ )20 b+ P20y ' 242146,
+ (= my + q = p)2Ay b — 47 2147230
Moreover, we need
S a(Z028 ) = P3N ) — Pq = mo) 2ozl b
+ (g = 1= m) fa(=ly 24

+ (m1 —p—q+ 1)(’””2 +p—q+ 1)2{72234_1214223%
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. . . . 1 .
which is a direct consequence of the expression for fi(z{,z3, " ¢4,,) given above,

f3(2z23) = —z3, and the first formulas in the proof of Lemma A.1.7. Eliminating
the term zf,z7~ 1214223¢m from these two formulas, we obtain the desired ex-
pression for fa(¢, ). Lemma A.3.1 is proved. O

To complete the proof of |[Proposition 2.3.1, we need the following com-
mutation relations.

LemMmA A.3.2. Let i,j be nonnegative integers. Then
lev, 11 = =i~ i,
e AR = iR R = G iR e
les. A1 = ilh +i= DS,
leas Af{1 = +j = DA,
L AR = =B
NAHE

Proor. Direct consequences of the identities used in the proof of Lemma
A.1.4 and

[el,jé] = —f, [81,f4] =0, [627](3] =/, [62,f4] =€,
[e3af3] = hla [63,f4] =0, [64’f3] = 07 [64,f4] = h27
[/{17]{3] = 07 [flaf“] = _f27 []{Zvﬁ] = [f%ﬁ‘] = [f%ﬁ‘] =0. O

PrOOF OF PrOPOSITION 2.3.1.  The expressions for f3(¢,), fa(¢,) are obvious
by our definition of ¢,. As for hi(p,), ha(p,), recalling that

(p,u = Npl—mzypzﬁlf;lj(zfé_mzzgi m)a

we see that the desired formulas are already given in Lemma A.1.4. Note that
Py = fi ﬁ((pﬂo). Then the others are direct consequences of Lemmas A.3.1 and
A32. o

PrROOF OF COROLLARY 2.3.2. Immediate consequence of [Theorem 2.2.2,
Lemma A.2.1 and the fact that the operator £, (resp. £,) commutes with every
left (resp. right) invariant vector field. O
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