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Abstract. We give a detailed proof of convergence of a normalized solution of the

Maurer-Cartan equation in the Barannikov-Kontsevich construction.

1. Introduction.

The purpose of this paper is to show that the potential of the formal

Frobenius manifold constructed by Barannikov and Kontsevich in [1], converges.

Now we recall the definition of Frobenius manifolds, which were introduced and

investigated by B. Dubrovin: cf. [3].

According to [3] and [8], a Frobenius manifold is a quadruple ðM;T
f

M ; g;AÞ.

Here M is a supermanifold in one of the standard categories (Cy, analytic,

algebraic, formal, etc.), T f
M is the sheaf of flat vector fields tangent to an a‰ne

structure, g is a flat Riemannian metric (non-degenerate even symmetric quadratic

tensor) such that T
f

M consists of g-flat tangent fields. Finally, A is an even

symmetric tensor A : S3ðTMÞ ! OM , where OM is the sheaf of germs of functions

on M in the sense of supermanifold. All the data must satisfy the following

conditions:

(a) Potentiality of A. Everywhere locally there exists a function F such that

AðX ;Y ;ZÞ ¼ XYZF for any flat vector fields X ;Y , and Z. F is called potential.

(b) Associativity. A and g together define a unique symmetric multiplication

� : S2ðTMÞ ! TM such that AðX ;Y ;ZÞ ¼ gðX � Y ;ZÞ ¼ gðX ;Y � ZÞ. Then this

multiplication must be associative.

Thus given ðM;T
f

M ; gÞ, Frobenius manifold structure on it is determined

by a potential satisfying the associativity condition. In a formal Frobenius

manifold, the potential F is a formal power series. If F converges, then we can

consider that the Frobenius manifold is in the holomorphic category.

The Barannikov-Kontsevich construction is one of large classes of formal

Frobenius manifolds. We explain it in §2. On the other hand, quantum co-
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homology which was discoverd by physicists is also a large class of formal

Frobenius manifolds (cf. [6]). Its potential is called Gromov-Witten potential.

In general, it is di‰cult to prove the convergence of Gromov-Witten potential.

In this paper, we give a detailed proof of convergence of the normalized

solution of the Maurer-Cartan equation and the potential in the Barannikov-

Kontsevich construction. Consequently, the Barannikov-Kontsevich construction

gives a large class of holomorphic Frobenius manifolds. We state the precise

statement in §3, Theorem 3.1 and Corollary 3.2. We remark that Cao-Zhou [2]

mentioned the convergence of the Barannikov-Kontsevich construction without

proof.

2. Barannikov-Kontsevich constructions.

In this section, we briefly recall the construction of Barannikov-Kontsevich

[1]. We use the notation in Manin [7].

Let M be a compact connected Kähler manifold of dimension n whose

canonical bundle KM is holomorphically trivial. It follows from the condition

KM ¼ 0 that there exists a nowhere vanishing holomorphic volume form W A

H 0ðM;Wn
MÞ. It is defined up to a multiplication by a constant. Let us fix a

choice of W.

Put

t
p;q

:¼ G M; 5
p

T�
M n 5

q

TM

� �
;

t
n
:¼ 0

pþq¼n

t
p;q

; t :¼ 0
n

t
n
:

We define Z- and Z2-grading on t, as follows:

Z-grading: jgj :¼ pþ q ð1Þ

Z2-grading: ~gg :¼ pþ q mod2 for g A t
p;q

:

t is endowed with di¤erential q and wedge product 5. Then ðt;5; qÞ is a su-

percommutative di¤erential graded algebra with respect to the grading above.

Moreover t is endowed with the standard Schouten-Nijenhuis bracket.

Explicitly, for X ¼ X15 � � �5Xp, Y ¼ Y15 � � �5Yq (where Xi, Yj are vector

fields of type ð1; 0Þ) and f A CyðMÞ, define

½X � Y � ¼ ð�1Þp
X

s; t

ð�1ÞsþtcXsXs5 ½Xs;Yt�5 bYtYt

½X � f � ¼ ð�1Þp
Xp

s¼1

ð�1ÞsXsð f ÞcXsXs;

8
>>>><

>>>>:

ð2Þ
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where cXsXs :¼ X15 � � �5Xs�15Xsþ15 � � �5Xp. For j ¼ dzI nX , c ¼ dzJ n

Y , define

½j � c� ¼ ð�1Þ jðpþ1Þ
dzI 5dzJ n ½X � Y �:

Then one can see that this bracket satisfies the following formulas:

½a � b� ¼ �ð�1Þð~aaþ1Þð~bbþ1Þ½b � a�

½a � ½b � c�� ¼ ½½a � b� � c� þ ð�1Þð~aaþ1Þð~bbþ1Þ½b � ½a � c��

½a � bc� ¼ ½a � b�cþ ð�1Þð~aaþ1Þ~bb
b½a � c�;

8
><

>:
ð3Þ

and q is the derivation with respect to both 5 and ½��.

Now using W, we define another di¤erential D on t. Let Ap;qðMÞ :¼

fsmooth ðp; qÞ-forms on Mg. We consider

I : t
p;q ! An�q;pðMÞ

defined by

IðdzI nX15 � � �5XpÞ :¼ dzI 5 iX1
� � � iXp

W for Xi: vector fields

IðdzI n f Þ :¼ dzI 5 fW for f : functions,

�
ð4Þ

where iX denotes interior product. Clearly,

qI ¼ Iq: ð5Þ

Now define another di¤erential D : t
p;q ! t

p;q�1 by the formula:

DI ¼ Iq: ð6Þ

The operators q and D satisfy the following properties:

q2 ¼ qDþ Dq ¼ D2

Dð1Þ ¼ 0

½a � b� ¼ ð�1Þ~aafDða5bÞ � ðDaÞ5b � ð�1Þ~aaa5ðDbÞg:

8
><

>:
ð7Þ

The last formula in (7) is known as the Tian-Todorov lemma. A super-

commutative algebra satisfying the properties (3) and (7) is called di¤erential

Gerstenhaber-Batalin-Vilkovisky algebra (see Manin [7], §5).

Formulas (4), (5) and (6) imply that I induces isomorphisms: Hðt; qÞG

H�
q
ðMÞ and Hðt;DÞGH�

q ðMÞ. Consequently, H :¼ Hðt;DÞ is finite dimensional.

Introduce a linear functional on t by

ð
g :¼

ð

M

IðgÞ5W for g A t: ð8Þ
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Then
Ð

satisfies the following identities:

Eo; h A t;

ð
ðqoÞ5h ¼ ð�1Þ ~ooþ1

ð
o5ðqhÞ

ð
ðDoÞ5h ¼ ð�1Þ ~oo

ð
o5ðDhÞ:

ð9Þ

We define a symmetric pairing g on H by

gð½o�; ½h�Þ :¼

ð
o5h:

Then g is well-defined and nondegenerate.

Choose a homogeneous basis f½ga�ga ðga A kerDÞ of H. The qq-lemma on

Kähler manifolds (cf. Gri‰ths-Harris [4]) implies that we can choose ga in ker

DV ker q. We assume that g0 equals 1. Let ftag be the dual basis of f½ga�g.

Define

jtaj :¼ 2� jgaj: ð10Þ

Then C ½½tH�� n̂n t inherits a natural grading. Here C ½½tH�� is a formal power series

ring in the superalgebra sense. See (13).

In [1], Barannikov and Kontsevich showed the following:

Theorem 2.1 (Barannikov-Kontsevich [1]). There exists a solution to the

Maurer-Cartan equation

qGðtÞ þ
1

2
½GðtÞ � GðtÞ� ¼ 0 ð11Þ

in formal power series with value in t

GðtÞ ¼
X
a

gat
a þ

X
a1<���<ak

kb2

ga1���ak t
a1 � � � tak A ðC ½½tH�� n̂n tÞ2

such that

(i) ga are chosen as above,

(ii) ga1���ak A ImD for kb 2,

(iii) q0GðtÞ ¼ 1, where q0 is the coordinate vecter field corresponding to

½1� A H.

We call such a solution GðtÞ normalized, and denote GðtÞ ¼ G1ðtÞ þ DBðtÞ,

where G1ðtÞ :¼
P

a gat
a.

Theorem 2.2 (Barannikov-Kontsevich [1]). Put
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FðtÞ ¼

ð

1

6
GðtÞ3 �

1

2
qBðtÞ5DBðtÞ

� �

: ð12Þ

Then F determines a formal Frobenius manifold structure on ðH; gÞ.

Using G , we can define another di¤erential qG on C ½½tH�� n̂n t by qGjðtÞ :¼

qjðtÞ þ ½GðtÞ � jðtÞ�. Then we can easily show that inclusions induce the fol-

lowing isomorphisms (see Manin [7], §5):

HðC ½½tH�� n̂n t; qGÞG
kerDV ker qG

ImDqG
GHðC ½½tH�� n̂n t;DÞGC ½½tH��nH:

We note that the homology HðqGÞ inherits a natural multiplication from

C ½½tH�� n̂n t, because qG is a derivation with respect to the wedge product.

We identify C ½½tH��nH with the space of vector fields on H by the

formula ½ga� ¼ q=qta. This space acts on C ½½tH�� n̂n t as derivation. Define a

map c : C ½½tH��nH ! HðqGÞ by cðXÞ :¼ XG mod Im qG . Then c is algebra

isomorphism, if we define a multiplication on C ½½tH��nH by the potential F in

Theorem 2.1. Namely, for X ;Y A C ½½tH��nH, their product X � Y is a unique

element satisfying ðX � YÞG 1XG5YG mod Im qG .

3. Convergence of GðtÞ in C kþy.

In this section, we keep the same notation as in the previous section.

f½ga�g
N
a¼1 is a basis of H. We assume that ga is even for 1a aam, and odd

for mþ 1a aaN. ftag is the dual basis. In order to distingish the odd basis

from the even one, we denote tmþi by t i for 1a ia l ð¼ N �mÞ. Then

C ½½tH�� ¼ C ½½t1; . . . ; tm��n5ðt1; . . . ; t lÞ ð13Þ

by definition. Later, when we need to distinguish even and odd, we use ðt iÞ,

when not, ðtmþiÞ.

Let G A C ½½tH�� n̂n t. We can represent it as G ¼
P

a GaðtÞt
a where GaðtÞ A

C ½½t1; . . . ; tm�� n̂n t, and ta denotes ta1 � � � tal . Then it makes sense to ask whether

Ga is smooth in the coordinate ðz1; . . . ; zn; t1; . . . ; tmÞ. Here ðz1; . . . ; znÞ is a local

coordinate of M. We split H into even and odd parts: H ¼ Hev lHodd . Let

U be an open set in Hev. We say that G is smooth on U if Ga is smooth on

U �M for each a. Our goal is the following.

Theorem 3.1. There exists a normalized solution of the Maurer-Cartan

equation (11)

G ¼ G1 þ DB A ðC ½½tH�� n̂n tÞ2

such that G and B are smooth on a su‰ciently small neighbourhood of the origin

in Hev.
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Let OU be the sheaf of the germs of holomorphic functions on U. Put

O :¼ OU n5ðt1; . . . ; t lÞ. We remark that if GðtÞ is smooth, then we can con-

sider qG in the smooth category, and obtain an algebra homomorphism Hn

O ! HðqGÞ : X 7! XG .

For X ¼ ½a�;Y ¼ ½b� A H, define gðX ;YÞ :¼
Ð
ab. When we regard ðU ;OÞ as

a supermanifold, its tangent sheaf is identified with OnH. Then we can regard

g as a Riemannian metric on U. From (8), (12) and the result above, we obtain

the following immediately.

Corollary 3.2. Let G be as in Theorem 3.1, and F be the potential which

takes the form of (12). Then F is holomorphic on U. Consequently, ðU ;O; g;FÞ

is a Frobenius manifold in the sense of Manin [8].

This is straightforward.

We will prove Theorem 3.1 by modifying the arguments in the Kodaira-

Spencer deformation theory (cf. Kodaira [5]). The proof is divided into two

parts: Proposition 1 and Proposition 2. In the first part, we shall prove the

C kþy-convergence, and in the second part, the regularity of the resulting solution.

We introduce the Hölder norms on the space t. Let U be an open set in a

Euclidean space R
n, k be a nonnegative integer, and 0 < y < 1. For f A C kðUÞ,

define

j f jUkþy :¼
X

jajak

sup
x AU

jDa f ðxÞj þ
X

jaj¼k

sup
x;y AU
jx�yja1

jDa f ðxÞ �Da f ðyÞj

jx� yjy
;

where a is multi-index. Next, we fix a finite covering fVjgj A I of M such that ðzjÞ

are coordinate on Vj. For g A t,

g ¼
Xn

p;q¼0

X

a1<���<ap
b1<���<bq

g
b1���bq
ja1���ap

ðzjÞ dz
a1
j 5 � � �5dz

ap
j n

q

qz
b1
j

5 � � �5
q

qz
bq
j

;

the Hölder norm jgjkþy is defined as follows:

jgjkþy :¼ supjg
b1���bq
ja1���ap

ðzjÞj
Vj

kþy;

where the sup is over all j A I ; p; q ¼ 1; . . . ; n; a1 < � � � < ap; b1 < � � � < bq. We

also introduce the Hölder norms on A�;�ðMÞ, that is, the space of all the ðp; qÞ-

forms on M.

Let GðtÞ ¼
P

gat
a A C ½½tH�� n̂n t, ga A t. Here a ¼ ða1; . . . ; aNÞ is a multi-

index, and ta denotes ðt1Þa1 � � � ðtNÞaN . Then we define

jG jkþyðtÞ :¼
X

a

jgajkþyt
a A C ½½t1; . . . ; tN ��: ð14Þ
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In (14), we forget the grading of ðt iÞ. So, t it j ¼ t jt i for all i; j in

C ½½t1; . . . ; tN ��, though C ½½tH�� is graded commutative.

Clearly, if jGjkþyðtÞ converges on a domain U, then GðtÞ is C kþy class on

U. Indeed,

jGajkþyðtÞ ¼
qjaj

ðqtmþ1Þa1 � � � ðqtmþlÞal
�

�

�

�

tmþ1¼���¼tmþl¼0

jG jkþyðtÞ

converges. So we shall prove the convergence of jG jkþyðtÞ for a certain specific

choice of GðtÞ.
Fix a Kähler metric on M. Let o be its Kähler form; q be q-operator

acting on di¤erential forms on M; q� be the adjoint of q with respect to the

L2-inner product induced by the Kähler metric on M; D
q
¼ q�qþ qq� be the

Laplacian; G
q
be its Green operator. Similarly, we consider q�;Dq, and Gq. Let

L : A�;�ðMÞ ! A�;�ðMÞ

be the map defined by LðhÞ :¼ h5o, and L be its adjoint. Then the following

is well-known (cf. Gri‰ths-Harris [4]):

D
q
¼ Dq G

q
¼ Gq

½L; q� ¼
ffiffiffiffiffiffiffi

�1
p

q� ½L; q� ¼ �
ffiffiffiffiffiffiffi

�1
p

q�: ð15Þ

We choose GðtÞ as follows. Let f½ga�g be a basis of H. We can assume

that Iga are harmonic forms, that is,

D
q
ðIgaÞ ¼ 0: ð16Þ

Then the condition qga ¼ Dga ¼ 0 is satisfied. Define

G0 :¼ 0; G1 :¼
X

a

gat
a
:

For nb 2, we define Gn inductively, as follows:

cn :¼ � 1

2

X

iþj¼n

½Gi � Gj�

Gn :¼ Iq�GIcn;

where G :¼ G
q
¼ Gq, and I is defined by (4). Here, Gn is homogeneous of degree

n in ta.

Lemma 3.3. Let G ¼
P

nb1 Gn be as above. Then G is a normalized solu-

tion. More precisely, if we define
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Bn :¼
ffiffiffiffiffiffiffi

�1
p

ILGIcn; B ¼
X

nb2

Bn; ð17Þ

then G ¼ G1 þ DB, and G is homogeneous of degree 2 with respect to the grading

on C ½½tH�� n̂n t induced by (1) and (10).

Proof. By definition,

qG þ 1

2
½G � G � ¼ 0 ,

qG1 ¼ 0 and

qGn ¼ �ð1=2Þ
X

iþj¼n

½Gi � Gj� ¼ cn Enb 2:

8

>

<

>

:

From (16), we have qG1 ¼ 0. Therefore it is su‰cient to prove inductively the

following:

qGn ¼ cn

Gn ¼ DBn

jGnj ¼ 2:

8

>

<

>

:

ð�Þn

We assume that ð�Þ1; . . . ; ð�Þn�1 hold. Then

qcn ¼ � 1

2

X

iþj¼n

ð½qGi � Gj� � ½Gi � qGj�Þ

¼ � 1

2

X

iþjþk¼n

½½Gi � Gj � � Gk�:

The right hand side vanishes because the Jacobi identity reads:

½½Gi � Gj� � Gk� þ ½½Gj � Gk� � Gi� þ ½½Gk � Gi� � Gj� ¼ 0:

On the other hand, because of the Tian-Todorov lemma (7), we have cn A ImD.

Namely, Icn A ker qV Im q. We have

Icn ¼ qq�GIcn because Icn A Im q

¼
ffiffiffiffiffiffiffi

�1
p

qðLq� qLÞGIcn from ð15Þ

¼ qð
ffiffiffiffiffiffiffi

�1
p

qLGIcnÞ

¼ qq�GIcn:

Therefore we obtain cn ¼ qGn and Gn ¼ DBn. Finally, because

ILI ; IGI : t ! t
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preserve Z-grading, we have

jGnj ¼ jBnj � 1 ¼ jcnj � 1 ¼ 2: r

For f ¼
P

a aat
a, g ¼

P
b bbt

b A C ½½t1; . . . ; tN ��, we define:

f f g ()
def

jaaja jbaj for all a:

If f f g and g converges, then f also converges. For b; c A R>0, define

AðtÞ ¼ Aðb; c; tÞ :¼
b

16c

Xy

m¼1

cm

m2
ðt1 þ � � � þ tNÞm:

Then AðtÞ converges on ft A C
N j jt ij < 1=Ncg, and satisfies

AðtÞ2 f
b

c
AðtÞ: ð18Þ

Proposition 1. Let GðtÞ ¼ G1ðtÞ þ DBðtÞ be chosen as in Lemma 3.3.

Then, for fixed integer kb 2 and real number 0 < y < 1, there exist su‰ciently

large numbers b; c which satisfy

jGjkþyðtÞfAðtÞ and jBjkþ1þyðtÞfAðtÞ:

To prove this, we need the following two lemmas.

Lemma 3.4. For all j A A�;�ðMÞ and g A t, we have

(i) jGjjkþyaC1jjjk�2þy,

(ii) jLjjkþyaC2jjjkþy,

(iii) C�1
3 jIjjkþya jjjkþyaC3jIjjkþy,

(iv) jDgjkþyaC4jgjkþ1þy,

where C1;C2;C3 and C4 are some positive constants depending on k; y, not on j; g.

Proof. The first inequality is well-known in the theory of elliptic operators

(cf. Kodaira [5], Appendix, etc.). L : A�;� ! A�;� and I : t ! A�;� are operators

of order 0, and D : t ! t is of order 1. Hence we obtain the remaining in-

equalities. r

Lemma 3.5. There exists a positive constant C5 depending on k; y such that

j½j � c�jk�1þyaC5jjjkþyjcjkþy

for all j;c A t.

Proof. In general, if U HR
l is an open set, and f ; g A C kþyðUÞ, we have

j fgjk�1þyaCj f jk�1þyjgjk�1þy

for some constant C.

Normalized solution of the Maurer-Cartan equation 317



By qi, we denote q=qzi. Let j ¼ f dzI n qi1 5 � � �5qip , c ¼ g dzJ n

qj1 5 � � �5qjq A t. Then, from (2), we have

½j � c� ¼ GdzI 5dzJ n

(
Xp

a¼1

G f ðqiagÞqi1 5 � � �5cqiaqia 5 � � �5qip 5qj1 5 � � �5qjq

þ
Xq

b¼1

Ggðqjb f Þqi1 5 � � �5qip 5qj1 5 � � �5cqjbqjb 5 � � �5qjq

)
:

Hence

j½j � c�jk�1þya

Xp

a¼1

j f qiagjk�1þy þ
Xq

b¼1

jgqjb f jk�1þy

a 2nCjjjkþyjcjkþy:

Since general elements in t are represented as sum of at most 4n such elements,

we obtain

j½j � c�jk�1þya 2n4nCjjjkþyjcjkþy: r

Proof of Proposition 1. Recall that G1 ¼
P

gat
a and AðtÞ ¼ ðb=16Þ �

ðt1 þ � � � þ tNÞ þ higher terms. Therefore, if

bb 16 max
a

jgajkþy; ð19Þ

then it follows that jG1jkþyðtÞfAðtÞ.

Assume that for all i ¼ 1; . . . n,

jGijkþyðtÞfAðtÞ; ð20Þ

for some b; c > 0. Using Lemma 3.4, 3.5, and (17), we have

jBnþ1jkþ1þyðtÞ ¼ jILGIcnþ1jkþ1þyðtÞfC1C2C
2
3 jcnþ1jk�1þyðtÞ: ð21Þ

We denote G1 þ � � � þ Gn by G n. Then

jcnþ1jk�1þyðtÞ ¼
1

2

X

iþj¼nþ1
i; jb1

½Gi � Gj �

��������

��������
k�1þy

ðtÞf
1

2
j½G n � G n�jk�1þyðtÞ:

For j ¼
P

jat
a A C ½½tH�� n̂n t, we have
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j½j � j�jk�1þyðtÞf
X

a;b

tatbj½ja � jb�jk�1þy

f
X

a;b

tatbC5jjajkþyjjbjkþy

¼ C5jjjkþyðtÞjjjkþyðtÞ;

by Lemma 3.5. Since jG njkþy fAðtÞ by the assumption (20), we obtain

jcnþ1jk�1þy f
1

2
j½G n � G n�jk�1þy

f
C5

2
jG njkþyjG

njkþy

f
C5

2
AðtÞ2

f
C5b

2c
AðtÞ from ð18Þ: ð22Þ

From (21) and (22), we have

jBnþ1jkþ1þy f
C1C2C

2
3C5b

2c
AðtÞ:

Choose b satisfying (19). Next, choose c so that c satisfies

cb
1

2
C1C2C

2
3C4C5b: ð23Þ

Then

jGnþ1jkþy ¼ jDBnþ1jkþy

fC4jBnþ1jkþ1þy

fAðtÞ:

The conditions (19) and (23) are independent of n. Therefore once we

choose b and c satisfying (19) and (23), we can apply this argument for all

n. Hence for such b and c

jGjkþyðtÞfAðtÞ and jBjkþ1þy fC�1
4 AðtÞfAðtÞ: r

Remark. Since b and c depend on k and y, the convergence radius of GðtÞ

also depends on k and y.
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From Proposition 1, we can deduce Corollary 3.2. However, because in

order to observe the multiplicative structure of the resulting Frobenius manifold,

it seems suitable to use GðtÞ, we prove the regularity of GðtÞ in the next section.

4. Regularity of GðtÞ.

In the previous section, we proved that GðtÞ is C kþy. In this section we

shall prove that GðtÞ is Cy on a su‰ciently small neighbourhood of the origin in

Hev. Since Bn ¼ ð
ffiffiffiffiffiffiffi

�1
p

=2ÞILGIð
P

iþj¼n½Gi � Gj�Þ, we have

B ¼
ffiffiffiffiffiffiffi

�1
p

2
ILGIð½G � G �Þ:

Therefore if GðtÞ is Cy, then B is also Cy. See Kodaira [5], Theorem 7.10.

In this section, we separate even and odd, again. ðt1: . . . ; tmÞ denotes even

parameter, and ðt1; . . . ; t lÞ denotes odd. Put

jðtÞ :¼ IGðtÞ; jn :¼ IGn and ð24Þ

S :¼ fðt1; . . . ; tmÞ A C
m j jt ij < r for Eig for small r > 0:

We assume that GðtÞ is C kþy on S. Let p be a projection M � S ! M. Then

we can regard j as a C kþy section of

V ¼ p� 5
�
T�
M n 5

�
T

�
M

� �

n5ðt1; . . . ; t lÞ ! M � S:

In order to prove that GðtÞ is Cy, it is su‰cient to prove that j is so. We

consider the equation that jðtÞ satisfies.

Since GðtÞ satisfies

qG þ 1

2
½G � G � ¼ 0;

jðtÞ satisfies

qjþ 1

2
I ½Ij � Ij� ¼ 0:

Here, we have j1ðtÞ ¼
PðIgaÞta by definition. Because we choose ga so that

they satisfy (16), we have qðIgaÞ ¼ q�ðIgaÞ ¼ 0. Therefore q�j1ðtÞ ¼ 0. If nb 2,

then q�jn ¼ 0 because jn ¼ q�GIcn. Hence jðtÞ satisfies the following:

D
q
jþ 1

2
q�I ½Ij � Ij� ¼ 0:

Using (15) and DG ¼ 0, we can rewrite this equation as follows:
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D
q
jþ

ffiffiffiffiffiffiffi

�1
p

2
qLI ½Ij � Ij� ¼ 0:

On the other hand, since j is holomorphic in ðt1; . . . ; tmÞ, we obtain the fol-

lowing:

�
X

m

i¼1

q2

qt iqt
i
þ D

q

 !

jþ
ffiffiffiffiffiffiffi

�1
p

2
qLI ½Ij � Ij� ¼ 0: ð25Þ

Unlike the Kodaira-Spencer theory, our jðtÞ is possibly nonzero even if

t ¼ 0. Perhaps the quasi-linear equation (25) is not elliptic. However, we will

prove the regularity, modifying the argument in Kodaira [5], appendix, §8.

We introduce a new norm on the space of sections of V. Let c be a

section of V. Then we can represent c uniquely as c ¼Pb cbt
b where cb is

a section of W ¼ p�ð5�
T�
M n5�

T �
MÞ. Let fVjg be a coordinate neighbourhood

of M. Then fVj � Sg is a coordinate neighbourhood of M � S. For f ¼
P

fjABðzj ; tÞ dzAj 5dzBj A GðM � S;WÞ, define

j f jkþy :¼ max
j;A;B

j fjABðzj ; tÞjVj�S

kþy :

In order to distinguish this norm from the one in the previous section, we denote

the latter by j � jMkþy. Next, for c ¼
P

cbt
b and fixed r A R with 0 < r < 1,

define

jcjrkþy :¼
X

b

jcbjkþyr
jbj
:

For j ¼
P

jabt
atb defined by (24), we can assume that j satisfies

jjjkþyðt; tÞ ¼
X

a;b

jjabjMkþyt
atb

fAðt; tÞ ¼
X

a;b

Aabt
atb

¼ b

16c

X

mb1

cm

m2
ðt1 þ � � � þ tm þ t1 þ � � � þ t lÞm ð26Þ

i.e. jjabjMkþyaAab.

Lemma 4.1. Under the assumption (26) above, we have

(i) jjjr0aAðr; rÞ,
(ii) jjjrya 2Aðr; rÞ þ 21�y

P

jajb1jajAabr
jaj�yrjbj ¼: Bðr; rÞ,

where Aðr; rÞ ¼ Aðr; . . . ; r; r; . . . ; rÞ.
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Proof. (i) is obvious. Indeed,

jjjr0 ¼
X

b

X

a

jabt
a

�

�

�

�

�

�

�

�

�

�

0

rjbja
X

a;b

jjabj
M
0 rjajrjbjaAðr; rÞ:

To prove (ii), it is su‰cient to consider locally. For ðx; tÞ; ðy; sÞ A Vj � S,

we estimate

jjbðx; tÞ � jbðy; sÞj

jðx; tÞ � ðy; sÞjy

where jb ¼
P

a jabðxÞt
a. We have

jjbðx; tÞ � jbðy; sÞj

jðx; tÞ � ðy; sÞjy
a

jjbðx; tÞ � jbðy; tÞj þ jjbðy; tÞ � jbðy; sÞj
�

�jx� yj2 þ jt� sj2
�

�

y=2

a
jjbðx; tÞ � jbðy; tÞj

jx� yjy
þ
jjbðy; tÞ � jbðy; sÞj

jt� sjy

jjbðx; tÞ � jbðy; tÞj

jx� yjy
a

X

a

jjabðxÞ � jabðyÞj

jx� yjy
jtjjaja

X

a

Aabr
jaj

jjbðy; tÞ � jbðy; sÞj

jt� sjy
a

X

a

jjabðyÞj
jsa � taj

js� tjy
a 21�y

X

jajb1

jajAabr
jaj�y:

Hence

jjjry ¼
X

a

jjbjyr
jbj
a 2Aðr; rÞ þ 21�y

X

jajb1
b

jajAabr
jaj�yrjbj: r

Remark that if r and r are su‰ciently small, then Aðr; rÞ;Bðr; rÞ are also

small. Of course they converge.

Choose a partition of unity foig subordinate to the open cover fVig. Next,

for each l ¼ 1; 2; . . . ; we choose a Cy-function h lðtÞ on S such that

h lðtÞ1 1 if jtja ð2�1 þ 2�l�1Þr

h lðtÞ1 0 if jtjb ð2�1 þ 2�lÞr

0a h lðtÞa 1:

8

>

<

>

:

Put o l
j ðx; tÞ :¼ ojðxÞh

lðtÞ. Furthermore, we choose a Cy-function wjðxÞ with

supp wj HVj which is identically equal to 1 on some neighbourhood of suppoj .

Put w l
j :¼ wjh

l . Because h l 1 1 on some neighbourhood of supp h lþ2, w l
j 1 1 on

some neighbourhood of suppo lþ2
j . Then we shall prove the following:
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Proposition 2. For some small r > 0, h2lþ1j is C kþlþy. In particular, j is

Cy on M � ft A C
m
�

� jt ij < r=2g.

o l
j j can be considered as a vector-valued function with compact support

on a ð2nþ 2mÞ-dimensional torus T
2nþ2m. Since h2lþ1j ¼

P

j o
2lþ1
j j, to prove

Proposition 2, it is su‰cient to prove the regularity of o2lþ1
j j. To prove this, we

need some lemmas. Let C kþy ¼ C kþyðT l ;CÞ be the space of C-valued C kþy

functions on T
l .

Lemma 4.2. Let u; v A CKþyðT l ;CÞ. Then the product uv is C kþy. And

there exists a positive constant Bk depending only on k and l, but independent of u

and v such that

juvjkþyaBk

X

rþs¼k

ðjujrþyjvjs þ jujrjvjsþyÞ:

Lemma 4.3. Let ðx1; . . . ; x lÞ be coordinate functions on T
l . For h A R with

h0 0, a ¼ 1; . . . ; l and f A C kþy, define

Dh
a f ðx

1; . . . ; x lÞ :¼
f ðx1; . . . ; xa þ h; . . . ; x lÞ � f ðx1; . . . ; x lÞ

h
:

Then we have the following:

(i) If f A C kþy, then Dh
a f A C kþy for all h0 0 and a ¼ 1; . . . ; l.

(ii) If f A C kþ1þy, then jDh
a f jkþya j f jkþ1þy for all a and h ð0 < jhj < 1Þ.

(iii) If f A C kþy and for any a ¼ 1; . . . ; l and any h with 0 < jhj < 1 there

exists a positive constant independent of h such that

jDh
a f jkþyaM;

then f A C kþ1þy.

Lemma 4.4 (C kþy a priori estimate). Let U be a domain in T
l . Suppose

that the second-order linear partial di¤erential operator E with Cy coe‰cients

defined on U is of diagonal type in the principal part and strongly elliptic. Let

0 < y < 1. Then for all integer kb 0, there exists a positive constant C such that

j f jkþ2þyaCðjEf jkþy þ j f j0Þ

for all f A C kþ2þy with supp f HU . Here C is independent of f .

See Kodaira [5], appendix §8, Theorem 2.3, Lemma 8.1 and Lemma 8.2.

Put

E :¼ �
X

m

i¼1

q2

qt iqt i
þ D

q
:

E is a second-order strongly elliptic operator of diagonal type in the principal
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part. If we consider that Vi � SHT
2nþ2m, then there exists a positive constant

C0 such that

jcjkþyaC0ðjEcjk�2þy þ jcj0Þ ð27Þ

for all sections c of W with suppcHVj � S. This estimate (27) is true for all

sections of W. Let c ¼
P

cbt
b be a section of V. Since Ec ¼

P

ðEcbÞtb and

for all b

jcbjkþyaC0ðjEcbjk�2þy þ jcbj0Þ;

we obtain the following:

jcjrkþy ¼
X

b

jcbjkþyr
jbj

a

X

b

C0ðjEcbjk�2þy þ jcbj0Þrjbj

¼ C0ðjEcjrk�2þy þ jcjr0 Þ: ð28Þ

Here the constant C0 in (28) is same as the one in (27). We prove Proposition 2,

using this.

Proof of Proposition 2. (I) First, we shall prove that o3
j j A C kþ1þy.

o3
j j can be considered as a function on T

2nþ2m. Therefore we can define

Dh
a ðo3

j jÞ. By Lemma 4.3, it is su‰cient to prove the following: for each

a ¼ 1; . . . ; 2nþ 2m and each b, there exists a positive constant K such that

jDh
ao

3
j jbjkþyaK for all h A R with 0 < jhj < 1.

For simplicity, denote o :¼ o3
j , w :¼ w1j . If jDh

aojj
r
kþyaK , then we have

jDh
aojbjkþya r�jbjK for each b. Therefore, we shall prove that:

jDh
aojj

r
kþyaK :

We have

EðojÞ ¼ EðowjÞ ¼ ½E;o�ðwjÞ þ oEðwjÞ

¼ �
ffiffiffiffiffiffiffi

�1
p

2
oqLI ½Iwj � Iwj� þ ½E;o�ðwjÞ:

Therefore

EðDh
aojÞ ¼ Dh

aEðojÞ þ ½E;Dh
a �ðojÞ

¼ �
ffiffiffiffiffiffiffi

�1
p

2
Dh
a ðoqLI ½Iwj � Iwj�Þ þ Dh

a ð½E;o�ðwjÞÞ þ ½D
q
;Dh

a �ðojÞ

¼: F1: ð29Þ
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Here we used the following facts:

�
X

m

i¼1

q2

qt iqt i
;Dh

a

" #

¼ 0 and w1 1 on a neighbourhood of suppo:

Using (28), we obtain

jDh
aojj

r
kþyaC0ðjF1j

r
k�2þy þ jDh

aojj
r
0 Þ:

Since oj is C kþy, we have

jDh
aojj

r
0a

X

b

jojbjkþyr
jbj
; ð30Þ

from Lemma 4.3. The right hand side of (30) is independent of h.

Let us estimate jF1j
r
k�2þy. First, we have jDh

a ð½E;o�ðwjÞÞj
r
k�2þyaK. Here

K is a positive constant which is independent of h. Indeed, since ½E;o� is first

order operator, ½E;o�ðwjÞ is C k�1þy.

Secondly, we have j½D
q
;Dh

a �ðwjÞj
r
k�2þyaK . Indeed Dh

a acts only on coe‰-

cients of D
q
which is smooth.

Finally we estimate jDh
a ðoqLI ½Iwj � Iwj�Þjrk�2þy. Since

Dh
a ðoqLI ½Iwj � Iwj�Þ ¼

X

b; g

GDh
a ðoqLI ½Iwjb � Iwjg�Þt

btg;

we have

jDh
a ðoqLI ½Iwj � Iwj�Þjrk�2þya

X

b; g

jDh
a ðoqLI ½Iwjb � Iwjg�Þjk�2þy r

jbjþjgj
:

Lemma 4.5.

jDh
a ðoqLI ½Iwjb � Iwjg�Þjk�2þyaC1ðjD

h
aojbjkþyjjgjy þ jjbjyjD

h
aojgjkþyÞ þ K

where C1 is a positive constant which is independent of h;o and w.

Postponing the proof of this lemma, we shall finish the proof of (I). If we

assume Lemma 4.5, we have

jDh
a ðoqLI ½Iwj � Iwj�Þjrk�2þya 2C1

X

b; g

jDh
aojbjkþyjjgjyr

jbjþjgj þ K

¼ 2C1jD
h
aojj

r
kþyjjj

r
y þ K :

From Lemma 4.1, we have jjjryaBðr; rÞ. Therefore we obtain

jDh
a ðojÞj

r
kþya 2C0C1Bðr; rÞjD

h
aojj

r
kþy þ K :

Normalized solution of the Maurer-Cartan equation 325



If we choose r and r such that

2C0C1Bðr; rÞa 1=2; ð31Þ

then it follows that jDh
aojj

r
kþyaK .

Proof of Lemma 4.5. For simplicity, we denote f ¼ jb and g ¼ jg. Let

f ¼
X

A;B

fAB dz
A5dzB; g ¼

X

C;D

gCD dzC5dzD

LðdzA5dzBÞ ¼
X

C;D

LAB
CD dzC5dzD

W ¼ h dz15 � � �5 dzn:

Then

Ið f Þ ¼
X

G fAB=h dz
B n qz n�A ;

where n� A denotes the compliment of A in f1; . . . ; ng.

½If � Ig� ¼
X

i AA
A;B;C;D

Gð fAB=hÞqiðgCD=hÞ dz
BdzDqz n�A�iqz n�C þ ð f $ gÞ;

I ½If � Ig� ¼
X

G fABqiðgCD=hÞ dz
EdzF þ ð f $ gÞ;

where E and F are defined so that IðdzBdzDqz n�A�iqz n�C Þ ¼ dzEdzF

oqLI ½Iw f � Iwg� ¼
X

GoqjðL
GH
EF w fABqiðwgCD=hÞÞ dz

jdzGdzH þ ð f $ gÞ:

Therefore it is su‰cient to estimate

jDh
a ðoqjðL

GH
EF w fABqiðwgCD=hÞÞÞjk�2þy: ð32Þ

When we expand (32) by Leibniz rule, all the terms except

joLGH
EF w fABh

�1qiqjD
h
a ðwgCDÞjk�2þy ð33Þ

can be estimated by positive multiple of jo f jkþyjwgjkþy or jw f jkþyjogjkþy. Using

Lemma 4.2, we can estimate (33) as follows:

joLGH
EF w fABh

�1qiqjD
h
a ðwgCDÞjk�2þy

a jLGH
EF fABh

�1qiqjD
h
a ðogCDÞjk�2þy þ K

a 2BjLGH
EF h�1jyj fABjyjqiqjD

h
a ðogCDÞjk�2þy þ K

a 2BCj f jyjD
h
a ðogÞjkþy þ K :
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Here we used ow ¼ o. C1 is represented as a combination of C kþy norms of L

and W. Hence C is independent of w and o. r

(II) To complete the proof of Proposition 2, we prove, by induction, the

following: for all l ¼ 1; 2; . . . ; o2lþ1
j j is C kþlþy. Here, we do not change r and

r satisfying (31). Under the assumption that o2lþ1
j j is C kþlþy, we prove that

o2lþ3
j j is C kþlþ1þy. To prove this, it is su‰cient to prove that

jDh
a ðD lo2lþ3

j jÞjrkþyaK

where D l denotes an arbitrary l-th order di¤erential. By the same computation

as (29), we obtain

Flþ1 :¼ EðDh
a ðo2lþ3

j jÞÞ

¼ �
ffiffiffiffiffiffiffi

�1
p

2
Dh
a ðo2lþ3

j qLI ½Iw2lþ1
j j � Iw2lþ1

j j�Þ

þ Dh
a ð½E;o2lþ3

j �ðw2lþ1
j jÞÞ þ ½D

q
;Dh

a �ðo2lþ3
j jÞ:

Therefore

EðDh
a ðD lo2lþ3

j jÞÞ ¼ D lFlþ1 þ ½D
q
;D l �ðDh

ao
2lþ3
j jÞ:

Here we used ½Dh
a ;D

l � ¼ 0. Hence

jDh
a ðD lo2lþ3

j jÞjrkþy

aC0ðjD lFlþ1jrk�2þy þ j½D
q
;D l �ðDh

ao
2lþ3
j jÞjrk�2þy þ jDh

a ðD lo2lþ3
j jÞjr0 Þ:

By assumption of induction, o2lþ3
j j ¼ h2lþ3o2lþ1

j j is C kþlþy. Hence

jDh
a ðD lo2lþ3

j jÞjr0aK . Since ½D
q
;D l � is ðl þ 1Þ-th order, we have

j½D
q
;D l �ðDh

ao
2lþ3
j jÞjrk�2þyaCjDh

ao
2lþ3
j jrkþl�1þyaCjo2lþ3

j jrkþlþyaK:

Consider jD lFlþ1jrk�2þy. The same argument as (I) is also valid here. Therefore

it is su‰cient to estimate

jD lDh
a ðo2lþ3

j qLI ½Iw2lþ1
j j � Iw2lþ1

j j�Þjrkþy:

By the same computation as Lemma 4.5, we obtain the following:

jD lDh
a ðo2lþ3

j qLI ½Iw2lþ1
j j � Iw2lþ1

j j�Þjrkþya 2C1jjjry jDh
a ðD lo2lþ3

j jÞjrkþy þ K

where C1 is the same constant as Lemma 4.5. Since r and r are chosen so that

they satisfies (31), we obtain the following again:

jDh
a ðD lo2lþ3

j jÞjrkþyaK : r
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