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Abstract. We give a detailed proof of convergence of a normalized solution of the
Maurer-Cartan equation in the Barannikov-Kontsevich construction.

1. Introduction.

The purpose of this paper is to show that the potential of the formal
Frobenius manifold constructed by Barannikov and Kontsevich in [T], converges.
Now we recall the definition of Frobenius manifolds, which were introduced and
investigated by B. Dubrovin: cf. [3]. ‘

According to [3] and [8], a Frobenius manifold is a quadruple (M, 954’1 g, A).
Here M is a supermanifold in one of the standard categories (C®, analytic,
algebraic, formal, etc.), 9}{ is the sheaf of flat vector fields tangent to an affine
structure, ¢ is a flat Riemannian metric (non-degenerate even symmetric quadratic
tensor) such that 9}{ consists of g-flat tangent fields. Finally, 4 is an even
symmetric tensor A4 : S3(9'M) — Oy, where () 1s the sheaf of germs of functions
on M in the sense of supermanifold. All the data must satisfy the following
conditions:

(a) Potentiality of A. Everywhere locally there exists a function @ such that
A(X,Y,Z) = XYZ® for any flat vector fields X, Y, and Z. @ is called potential.

(b) Associativity. A and ¢ together define a unique symmetric multiplication
o:8%(Jy) — Ty such that A(X,Y,Z)=g(XoY,Z)=g(X,YoZ). Then this
multiplication must be associative.

Thus given (M, 9}‘{ ,g), Frobenius manifold structure on it is determined
by a potential satisfying the associativity condition. In a formal Frobenius
manifold, the potential @ is a formal power series. If @ converges, then we can
consider that the Frobenius manifold is in the holomorphic category.

The Barannikov-Kontsevich construction is one of large classes of formal
Frobenius manifolds. We explain it in §2. On the other hand, quantum co-
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homology which was discoverd by physicists is also a large class of formal
Frobenius manifolds (cf. [6]). Its potential is called Gromov-Witten potential.
In general, it is difficult to prove the convergence of Gromov-Witten potential.

In this paper, we give a detailed proof of convergence of the normalized
solution of the Maurer-Cartan equation and the potential in the Barannikov-
Kontsevich construction. Consequently, the Barannikov-Kontsevich construction
gives a large class of holomorphic Frobenius manifolds. We state the precise
statement in §3, [Theorem 3.1 and (Corollary 3.2, We remark that Cao-Zhou
mentioned the convergence of the Barannikov-Kontsevich construction without
proof.

2. Barannikov-Kontsevich constructions.

In this section, we briefly recall the construction of Barannikov-Kontsevich
[1]. We use the notation in Manin [7).

Let M be a compact connected Kéhler manifold of dimension n whose
canonical bundle K, is holomorphically trivial. It follows from the condition
Ky =0 that there exists a nowhere vanishing holomorphic volume form Q e
HO(M,Q%,). Tt is defined up to a multiplication by a constant. Let us fix a
choice of Q.

Put

p q
¢ :zF(M, AT, ® /\TM>,
t":= P ", t:=Pt".
n

prq=n

We define Z- and Z,-grading on t, as follows:
Z-grading: |y| :=p+¢q (1)
Z)-grading: y :=p+¢q mod2 for yet’1.

t is endowed with differential 0 and wedge product A. Then (t, A,d) is a su-
percommutative differential graded algebra with respect to the grading above.

Moreover t is endowed with the standard Schouten-Nijenhuis bracket.
Explicitly, for X =Xi A --- A X,, Y=Y A--- A Y, (Where X;, ¥; are vector
fields of type (1,0)) and f e C*(M), define

([XeY]=(-1)"> (-1 X A X, Y] A Y,

s,

< p (2)

(X o f]=(-1)"Y (1)’ X,())X,,

\ s=1
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where :Y\s::Xl/\---/\XS_IAXsH/\---/\Xp. For p=dz;® X, y=dz; ®
Y, define

[poy] = (—1)""""Vdz; A dz; @ [X e Y).
Then one can see that this bracket satisfies the following formulas:
aeb] = —(—1) @D ¢ g

aefbod)=[laeb]ed+(~1) D befae) (3)
[aebc] =[aeblc+ (—1)*hlaed,

and 0 is the derivation with respect to both A and [e].
Now using Q, we define another differential 4 on t. Let A”9(M) :=
{smooth (p,q)-forms on M}. We consider

I:t79— A" TP(M)

defined by
{I(dz:l ® X1 A _/\ X,) =dz; Niy, - ix, Q for X vectgr fields @
[(dz;® f):=dz; A fQ for f: functions,
where iy denotes interior product. Clearly,
ol = I0. (5)
Now define another differential 4 : t?4 — t»4~! by the formula:
Al = 10. (6)

The operators 0 and A satisfy the following properties:

0% =04+ 40 = 4*
A1 =0 ] (7)
[re f] = (=1){4(o A B) — (do) A B — (=1)"a A (4B)}.

The last formula in (7) is known as the Tian-Todorov lemma. A super-
commutative algebra satisfying the properties (3) and (7) is called differential
Gerstenhaber-Batalin-Vilkovisky algebra (see Manin [7], §5).
Formulas (4), (5) and (6) imply that I induces isomorphisms: H(t,0) =~
H:(M) and H(t,4) = H;(M). Consequently, H := H(t, 4) is finite dimensional.
Introduce a linear functional on t by

Jy::JMI(y)/\Q for yet. (8)
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Then | satisfies the following identities:

Yo, n et, J(@w) A= (=1 Jw A (On)

[d0) nn =17 [ ()

We define a symmetric pairing ¢ on H by

g((), In]) = jw A

Then ¢ is well-defined and nondegenerate.

Choose a homogeneous basis {[y,]}, (7, € ker4) of H. The dd-lemma on
Kihler manifolds (cf. Griffiths-Harris [4]) implies that we can choose y, in ker
ANkerd. We assume that 9, equals 1. Let {¢*} be the dual basis of {[y,]}.
Define

9] =2 = [7al. (10)

Then C[[ty]] ® t inherits a natural grading. Here C[[ty]] is a formal power series
ring in the superalgebra sense. See (13).
In [1], Barannikov and Kontsevich showed the following:

TueorREM 2.1 (Barannikov-Kontsevich [1]). There exists a solution to the
Maurer-Cartan equation

or (1) +%[F(z) e I'(1)] =0 (11)

in formal power series with value in t

T()= 74 Y Jupat® 1% (Cll]] @)’

ay <-—-<ay
k>2

such that
(i) vy, are chosen as above,
(i)  94..q, €Im 4 for k >2,
(iil) 0ol'(t) =1, where 0y is the coordinate vecter field corresponding to
[1] € H.

We call such a solution I'(¢) normalized, and denote I'(t) = I1(t) + AB(1),
where I7(7) :== ), y,t"

THEOREM 2.2 (Barannikov-Kontsevich [1]). Put
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MU:JeF@3—;%@AAB@) (12)
Then @ determines a formal Frobenius manifold structure on (H,g).

Using I, we can define another differential 0, on C[[ty]] @t by 0rp(f) :=
0p(t) + [I'() e p(t)]. Then we can easily show that inclusions induce the fol-
lowing isomorphisms (see Manin [7], §5):

ker A Nker oy

H(Clm] @ t.0r) = = =

Il

~ H(C[[ty]] ® t, 4) = C[[tn]] ® H.

We note that the homology H(0r) inherits a natural multiplication from
C|[tu]] ® t, because dr is a derivation with respect to the wedge product.

We identify Cl[[ty]] ® H with the space of vector fields on H by the
formula [y,] = 6/0t. This space acts on C[[tg]] ®t as derivation. Define a
map Y : C[[tq]] @ H — H(0r) by ¥(X):= XI' modImdr. Then y is algebra
isomorphism, if we define a multiplication on C[[4]] ® H by the potential @ in
Theorem 2.1. Namely, for X, Y e C[[txq]] ® H, their product X o Y is a unique
element satisfying (X o Y)I'= XI' A YI' modImdy.

3. Convergence of I'(f) in C0,

In this section, we keep the same notation as in the previous section.
{[7.}X, is a basis of H. We assume that y, is even for 1 <a <m, and odd

for m+1<a<N. {t“}is the dual basis. In order to distingish the odd basis
from the even one, we denote /™ by ¢’ for 1 <i<! (=N —m). Then

Cllml = C[[i,.... " @ \(z',.... 7" (13)

by definition. Later, when we need to distinguish even and odd, we use ('),
when not, (¢"").

Let I' e C[[ty]] ®t. We can represent it as I' =", I}(t)t* where I;(¢) €
C[[t',...,t"]] ®t, and 7* denotes t* ---7*. Then it makes sense to ask whether
I, is smooth in the coordinate (z!,...,z" ¢!,...,t™). Here (z',...,z") is a local
coordinate of M. We split H into even and odd parts: H=H® ®H*“. Let
U be an open set in H®. We say that I is smooth on U if I is smooth on
U x M for each . Our goal is the following.

THEOREM 3.1. There exists a normalized solution of the Maurer-Cartan
equation (11)
I'=T1+ 4B € (C[[tu]] ® t)*

such that I' and B are smooth on a sufficiently small neighbourhood of the origin
in H®.
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Let Oy be the sheaf of the germs of holomorphic functions on U. Put
0:=0y® /\(r',...,7!). We remark that if I'(r) is smooth, then we can con-
sider 0r in the smooth category, and obtain an algebra homomorphism H ®
O— H(0r): X w— XT.

For X = [a], Y = [b] € H, define g(X,Y) := [ab. When we regard (U, () as
a supermanifold, its tangent sheaf is identified with @ ® H. Then we can regard
g as a Riemannian metric on U. From (8), and the result above, we obtain
the following immediately.

COROLLARY 3.2. Let I' be as in Theorem 3.1, and @ be the potential which
takes the form of (12). Then @ is holomorphic on U. Consequently, (U,0,g,®)
is a Frobenius manifold in the sense of Manin [8].

This 1s straightforward.

We will prove by modifying the arguments in the Kodaira-
Spencer deformation theory (cf. Kodaira [5]). The proof is divided into two
parts: |Proposition 1 and [Proposition 2. In the first part, we shall prove the
C**+9_convergence, and in the second part, the regularity of the resulting solution.

We introduce the Holder norms on the space t. Let U be an open set in a
Euclidean space R", k be a nonnegative integer, and 0 < # < 1. For f e C¥(U),
define

|D*f(x) = D*f(y)l

U o
| flicwo == Z sup |[D*f(x)| + Z sup 7 :
o<k ¥EU o=k |xnyU1 |x — |

where o is multi-index. Next, we fix a finite covering {V}}, ., of M such that (z;)
are coordmate on V. For yet,

‘ 0 0
=3 S e Az G an G

B
p,q=0 01 <-<ap 52]-‘ 0z
ﬁl<m<ﬁq ’

the Holder norm |[y|,,, is defined as follows:

o = suplya 2 ()1,
where the sup is over all jel; pg=1,...,m5 09 <--- <oy fy <---<f,. We
also introduce the Holder norms on 4**(M), that is, the space of all the (p, q)-
forms on M.
Let I'(t) =Y 7,1 € C[[tn]] ®t, y,et. Here a= (a,...,ay) is a multi-
index, and ¢* denotes (¢!)* ---(¢t¥)*. Then we define

[7]0(2) E|7a|k+ef e Cllt',.... oM. (14)
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In (14), we forget the grading of (¢'). So, 't/ =t/t' for all i,j in
C[[¢',...,t"]], though C[[ty]] is graded commutative.

Clearly, if |I'|,.,(¢) converges on a domain U, then I'(z) is C*™¥ class on
U. Indeed,

ol
I, 1) = r t
| “|k+9( ) (atn7+1)al c e (atm_‘_l)xl tm+1:...:ﬂn+/:0| |k+0( )

converges. So we shall prove the convergence of |I'|,_,(?) for a certain specific
choice of I'(¢).

Fix a Kéihler metric on M. Let w be its Kéhler form; 0 be d-operator
acting on differential forms on M; 0* be the adjoint of 0 with respect to the
L-inner product induced by the Kéhler metric on M; 4; =00+ 00" be the
Laplacian; G5 be its Green operator. Similarly, we consider 0, 45, and G,. Let

L: A" (M) — A**(M)

be the map defined by L(y) := 5 A w, and A be its adjoint. Then the following
is well-known (cf. Griffiths-Harris [4]):

(4,0 =V—-1" [4,0) = —V/—17". (15)

We choose I'(¢) as follows. Let {[y,]} be a basis of H. We can assume
that 7y, are harmonic forms, that is,

45(17,) = 0. (16)
Then the condition 0y, = A4y, =0 is satisfied. Define

Iy:=0, Ij:= Zyal”.

For n > 2, we define I, inductively, as follows:

1
Vy==5 ) eI}
i+j=n
I, = 10"Gly,,

where G := G5 = G, and [ is defined by (4). Here, I, is homogeneous of degree
nin t%.

LemMA 3.3. Let I'=3, ., I, be as above. Then I' is a normalized solu-
tion. More precisely, if we define
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B, :=V-114Gly,, B=) B, (17)
n>2

then I' = I1 + AB, and I' is homogeneous of degree 2 with respect to the grading
on C[[ty]] ®t induced by (1) and (10).

ProOOF. By definition,

I ol =0 and
Or+35le =090, =—-(1/2) Y [Gel]=y, Ynx2.

i+j=n

From [16), we have dI7 = 0. Therefore it is sufficient to prove inductively the
following:

51—;1 = %
I, = AB, (%),
Ll =2.

We assume that (x),,..., (%), ; hold. Then

The right hand side vanishes because the Jacobi identity reads:
[ie I} o Ii] + [[Ij o Ii] o Ii] + ([T} @ Ii] @ [] = 0.

On the other hand, because of the Tian-Todorov lemma (7), we have y, € Im 4.
Namely, Iy, e kerdNImd. We have

Iy, = 00"Gly, because Iy, € Imo
= V—13(40 — 0A)GIY, from [T5)
= 0(V=104GIy,)
= 00" Gl
Therefore we obtain y, = oI, and I, = AB,. Finally, because

IALIGI : t — t
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preserve Z-grading, we have
[T = [Bal = 1= [, =1 =2. O
For f =3, a,t", g =Y sbpt’ € C[[t!,...,t"]], we define:

def
[« g < lay <|b,| for all a.
If f«<g and ¢ converges, then f also converges. For b,ce R, define

b < cH
A(t) = A(b, ¢;1) ‘:ﬁzﬁ(ﬂ R A
u=l

Then A(f) converges on {te C" ||| < 1/Nc}, and satisfies
A()? « gA(t). (18)

ProposITION 1. Let I'(t)=1I11(t)+ 4B(t) be chosen as in Lemma 3.3.
Then, for fixed integer k > 2 and real number 0 < 6 < 1, there exist sufficiently
large numbers b,c which satisfy

\l|isg(t) < A(t) and  |Bli, . 0(1) < A(1).
To prove this, we need the following two lemmas.

Lemma 3.4. For all pe A%*(M) and y e t, we have

©) 6ol < Ciloli_i0s

(i) |4l < Cololisp,
(i) Ci'9li g < |0liso < C3lI0ls,
(V) (4700 < Calplisr10s

where Cy, Cy, Cs and C4 are some positive constants depending on k, 0, not on ¢,y.

Proor. The first inequality is well-known in the theory of elliptic operators
(cf. Kodaira [5], Appendix, etc.). A:A4"* — A%* and I :t — A™* are operators
of order 0, and 4:t—t is of order 1. Hence we obtain the remaining in-
equalities. O

LemMMmA 3.5. There exists a positive constant Cs depending on k,0 such that

o Y]|i_10 < CsloliolV|iro
for all ¢, et

Proor. In general, if U < R is an open set, and f,g e CK/(U), we have

9110 < Clf 140190140
for some constant C.
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By 0;, we denote 0/0z;. Let 9= fdzi®0; A+ NG, Y=gdZ;®

0y A --- A0, et. Then, from (2), we have

—

P
[(poy] = i‘dZI/\dZJ®{Zif(5z;,g)5i1 A ANOj, A AOj A A
a=1

q —
—l—Zig((?jbf)ail/\---A@l-p/\&jl/\---A(?jb/\---/\('}jq}.
b=1

Hence

4 q
oo Y]li_1p < Z £ 0i9lk-110 Z 1905, f k- 140
a=1 b=1

< 2nC|oli ol ]ip-

Since general elements in t are represented as sum of at most 4” such elements,

we obtain

L9 @ Yll—140 < 204" Cloly o[l 10-

]

ProOF oOF ProposiTION 1. Recall that 17 =)y, and A(¢) = (b/16)-

(t' 4+ -+ V) + higher terms. Therefore, if

b= 16 max|y, ;..

then it follows that |I7], ,(?) < A().
Assume that for all i=1,...n,

|1l 9(1) < A(2),
for some b,¢ > 0. Using [Lemma 3.4, 3.5, and [17), we have

|Bitlis10(t) = HAGIY, |1 4149(2) < C C2C32’lpn+l|k71+0(t)'

We denote 17+ ---+ 1, by I'". Then

| 1
Wniile-110(0) = 5 Y e (1) < S & Il 149(2)-
i+j=n+1

hjz1 k—1+0

For ¢ =Y ¢,t* € C[[tny]] ® t, we have

(19)

(21)
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[0 @ plli_140(0) < Z [, ® Pp)li—140
% p

& Zlalﬂc5|(0oc|k+0|¢ﬁ|k+0
a’ﬁ

= Cs|pli (D)ol 1o(2),

by Lemma 3.5 Since ||, 4« A(f) by the assumption (20), we obtain

1
Wil 110 < §|[Fn o I 140

5
< 7|Fn|k+9|rn|k+0

Cs

= A(D3?
< (7)
< (;—SbA(t) from [18). (22)
¢
From (21) and (22), we have
C,C,C3Csb
[Butt iy 140 < 2—C3A(l)-

Choose b satisfying (19). Next, choose ¢ so that ¢ satisfies

1
¢z 3G C,C;C4Csb. (23)

Then

[Dnrtliro = 14Busiligg
< C4|Bn+1|k+1+0
< A(1).
The conditions (19) and (23) are independent of n. Therefore once we

choose b and c¢ satisfying (19) and (23), we can apply this argument for all
n. Hence for such b and ¢

17|, 0(1) < A(t) and |Bl,, . < CilA(f) < A(2). O

REMARK. Since b and ¢ depend on k and 0, the convergence radius of I'(z)
also depends on k and 0.
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From [Proposition 1, we can deduce |Corollary 3.2, However, because in
order to observe the multiplicative structure of the resulting Frobenius manifold,
it seems suitable to use I'(¢), we prove the regularity of /°(¢) in the next section.

4. Regularity of I'(¢).

In the previous section, we proved that I'(¢) is C¥*’. In this section we
shall prove that I'(¢) is C* on a sufficiently small neighbourhood of the origin in
H®. Since B, = (V-1/2)IAGI(}_,;,;_,[I; o I}]), we have

v—1
B= TIAGI([F o).
Therefore if I'(¢) is C*, then B is also C*. See Kodaira 5], Theorem 7.10.
In this section, we separate even and odd, again. (¢!....,#") denotes even
parameter, and (¢!,...,7/) denotes odd. Put
o(t):=1I(t), ¢,:=I1I, and (24)

S:={(t,...,t") e C"||t'| < r for Vi} for small r> 0.

We assume that I'(¢) is C**’ on S. Let 7 be a projection M x S — M. Then
we can regard ¢ as a C* section of

Vzﬂ*(/*\T;[(@ ;\T;) @ A\, 7)) = M xS.

In order to prove that I'(¢) is C*”, it is sufficient to prove that ¢ is so. We
consider the equation that ¢(z) satisfies.
Since I'(¢) satisfies

=1
¢(t) satisfies
= 1
6(p—1—§l[l(poltp] =0.
Here, we have ¢,(¢) = > (Iy,)t* by definition. Because we choose y, so that

they satisfy [16], we have d(Iy,) = 0*(Iy,) = 0. Therefore 0*p,(1) =0. Ifn>2,
then 0*p, = 0 because ¢, = 0*GIly,. Hence ¢(1) satisfies the following:

1_*

Using and AI' =0, we can rewrite this equation as follows:



Normalized solution of the Maurer-Cartan equation 321

V-1

On the other hand, since ¢ is holomorphic in (¢!,...,#™), we obtain the fol-
lowing:
LN V-1
= —+ A5 |9+ ——0Al[lp e [p] = 0. 25
( ;azlazl @>(/) 5—0AI[Ipe Ig) (25)

Unlike the Kodaira-Spencer theory, our ¢(f) is possibly nonzero even if
t =0. Perhaps the quasi-linear equation (25) is not elliptic. However, we will
prove the regularity, modifying the argument in Kodaira [5], appendix, §8.
We introduce a new norm on the space of sections of V. Let y be a
section of V. Then we can represent i uniquely as y =} wﬂrﬁ where 5 is
a section of W =n*(N\'T;; ® \'Ty;). Let {V}} be a coordlnate neighbourhood
of M. Then {V;x S} is a coordlnate neighbourhood of M x S. For f =
> fias(zj, 1) dzt A dZf e T(M x S, W), define

Vix§S
|f|k+0 —JmaX |fAB(Z]’ )|k+xa :

In order to distinguish this norm from the one in the previous section, we denote
the latter by |~|,fi0. Next, for = Zl///ﬂ'ﬁ and fixed pe R with 0 <p <1,
define

W|]€+e = Z |¢ﬁ|k+0pw-
B
For ¢ = Z(paﬂt“rﬂ defined by (24), we can assume that ¢ satisfies

|0ls0(2,7) Z|%ﬁ|k+0’ T

< A(t,7) ZA ﬁt"‘fﬁ

b Iz
=1—6cZf?<t1+---+tm+r1+~-+r’)” (26)
u=1

: M
Le. [@ypliry < Aap.

LemMa 4.1. Under the assumption (26) above, we have

@) lely < A(r,p),
(i) gl <24(r,p) +2" 3 ool dugr™ 2o = B(r, p),
where A(r,p) = A(r,...,1,p,...,p).
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Proor. (i) is obvious. Indeed,

oy =D 1 o
o

B
To prove (ii), it is sufficient to consider locally. For (x,¢),(y,s) e V; x S,
we estimate

P < S oyl < Ar, ).
0 o f

0p(x, 1) — pg( ¥, 9)]|
(x,1) = (1,5)|°

where g =3 ¢,5(x)t*. We have

|(pﬂ(X, Z) - (l’ﬁ(y, S)‘ < \g/)/;(x, Z) — ¢ﬁ(y’ [)| + |(pﬂ(y’ [) _ (pﬁ(y; S)‘
[CHECO . I — p2 + 1 — o7

|(pﬁ(xa Z)_(pﬁ(ya [)l |¢ﬁ(y7 t)_¢ﬁ(yas)|
= 0 + 0
v = ¥l |t =]

X, 1) — 1 x) —
|9p(x, 1) qﬂﬁo(y I Z!%ﬂ( ) q)og)’(y)||t|oc < 3 Ay
x =yl 7 [x = ] z

952, 1) = 9p(1,5)l s =] 1 0
< > o) <210 57 [a] .
6= E s —1 =1
Hence
015 = loglop™ < 24(r,p) + 20 [o| dygr™=0p. =
! 2> 1

Remark that if » and p are sufficiently small, then A(r,p), B(r,p) are also
small. Of course they converge.

Choose a partition of unity {w;} subordinate to the open cover {V;}. Next,
for each / =1,2,..., we choose a C*-function #'(f) on S such that

(2_1 —|—2_l_1)r

(=1 if |1 <
> 427

nl()=0 if |t
0<y'(t)<1.

Put /(x,1) := w;(x)y'(1). Furthermore, we choose a C*-function y;(x) with
supp y; < ¥; which is identically equal to 1 on some neighbourhood of supp w;.
Put le = )(jnl . Because 4’ = 1 on some neighbourhood of supp#n/*?, )(]? =1 on

some neighbourhood of supp a)]”z. Then we shall prove the following:
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PROPOSITION 2. For some small r > 0, n* g is CK*'*0 In particular, ¢ is
C* on M x{te C" ||| <r/2}.

w; !p can be considered as a vector-valued function with compact support
on a (2n+2m) dimensional torus T?"*?". Since n**+lp = > 0y, to prove
IProposition 2| it is sufficient to prove the regularity of a)jz”l(p To prove this, we
need some lemmas. Let C¥* = C*/(T! C) be the space of C-valued C*t?

functions on T'.

LemMa 4.2. Let u,ve CK*(T! C). Then the product uv is C**0. And
there exists a positive constant By depending only on k and [, but independent of u
and v such that

’uv’k+9 < Bk Z (|u|r+0‘v|s + |u’r’0’s+0)'
r+s=k
LemMa 4.3, Let (x',...,x") be coordinate functions on T'. For he R with
h#0, a=1,...,0 and fe C* define

1 a A pral 1
A;’f(xl,.”,xl)::f(x,...,X —I—h,...h,x) f(x,...,x).

Then we have the following:
() If feCHO then A"feC*? for all h#0 and a=1,...,1.
(i) If fe C1H0 then |A'fl,,p <|flisrso for all @ and h (0 < |h| < 1).
(iii) If fe C*? and for any a=1,...,1 and any h with 0 < |h| < 1 there
exists a positive constant independent of h such that

|A2f|k+0 < M;

then f e CkH1+0,

LEMMA 4.4 (C*t7 a priori estimate). Let U be a domain in T'. Suppose
that the second-order linear partial differential operator E with C® coefficients
defined on U is of diagonal type in the principal part and strongly elliptic. Let
0 <0< 1. Then for all integer k > 0, there exists a positive constant C such that

[ les2v0 < CUES i + 1/ T0)
for all fe C*>*0 with supp f =« U. Here C is independent of f.

See Kodaira (5], appendix §8, Theorem 2.3, Lemma 8.1 and Lemma 8.2.
Put

Z azlaﬂ

E is a second-order strongly elliptic operator of diagonal type in the principal
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part. If we consider that ¥; x S « T?"*"  then there exists a positive constant
Co such that

Wiero < Co(lEY 219 + Wlo) (27)

for all sections  of W with suppy = V; x S. This estimate (27) is true for all
sections of W. Let y =Y ;7” be a section of V. Since Eyy = Y (E,)t” and
for all g

Wsliro < CollEWgli_arg + Wplo),

we obtain the following:

|‘p|l€+0 = Z Wﬁ’kwpw
B

<Y Co(IEWgliaig + Wglo)p”
B

= Col| BVl g+ [W10): (28)

Here the constant C in is same as the one in (27). We prove [Proposition 2,
using this.

ProOF OF PROPOSITION 2. (I) First, we shall prove that w}p e C*H1+7.

cofgo can be considered as a function on T2"**". Therefore we can define
Afl’(cof(p). By [Lemma 4.3, it is sufficient to prove the following: for each
a=1,...,2n+2m and each p, there exists a positive constant K such that
403 pglsg < K for all he R with 0 < |h] < 1.

For simplicity, denote w := wf, z = )(jl. If \Afa)(p|,f+0 < K, then we have
|Agw(pﬁ|k 9 < p PIK for each B. Therefore, we shall prove that:

|A§w(p|,f+0 <K.

We have
E(wp) = E(wyp) = [E, 0](x9) + 0E(x9p)
= — @wﬁﬂ[lw o [xp] + [E, o](x9)
Therefore

E(4)wp) = ALE(wp) + [E, A7) (wp)

=L otz o 1z0) + AH(E )20 + 145 410

= Fl. (29)
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Here we used the following facts:

m 62 .
!— py atf’AZ] =0 and y =1 on a neighbourhood of suppw.
i=1

Using [28), we obtain
Ah0pl]. g < Co(|F1[}] 5,9 + 1410g])).

Since wg is C* we have

Ai00lg < loggl o, (30)
B

from [Lemma 4.3. The right hand side of (30) is independent of .

Let us estimate |Fy|/ ,.,. First, we have |42([E,o](x9))|/_,,, < K. Here
K is a positive constant which is independent of /4. Indeed, since [E,w] is first
order operator, [E,w|(yp) is C* 110,

Secondly, we have |[A5,Ag]( x0)|5 5. < K. Indeed Af acts only on coeffi-
cients of 45 which is smooth.

Finally we estimate |4 (wdAI[Ixp o Ix9])|! ,.,. Since

A} (woAI[Typ o Ing)) = Y +42(wdAI[Ixpg » Ixp, )7,

B,y
we have
A} (@dAI[Txp o Ixp)l7 59 < D 1AL (@AITxpg o Txg,)_200p"* .
B,y
LemMmMmA 4.5.

|45 (00A1[Txpg © 10, D20 < CrllA3005li,0l0, 10 + 10glol 4500, |10) + K
where C) is a positive constant which is independent of h,w and j.

Postponing the proof of this lemma, we shall finish the proof of (I). If we
assume [Lemma 4.5, we have

A" (@0 AT [Iyp @ Lo)l; 5,0 <2C Z |Aga)(pﬂ|k+0|%|0plﬁl+lyl + K
By

=2C|4lwgl], lol) + K.
From [Cemma 4.1, we have |p|) < B(r,p). Therefore we obtain

42 (0p)|]g < 2CoCB(r, p)| ALkl ) + K.
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If we choose r and p such that
2C()ClB(V,p) < 1/2, (31)
then it follows that 4wl , < K.

PrOOF OoF LEMMA 4.5. For simplicity, we denote f =¢; and g =¢,. Let

f:ZfABdZA ndz®, g:chpdzc/\dz‘D
A,B C,D
A(dz? A d2P) =) AR d=C A dzP

Q="hdz' A - A dZ".

Then
="+ fup/hdz® @ 0.0es,
where n — A denotes the compliment of 4 in {1,...,n}.
Uf eIg) = > *(fus/h)di(gcp/h) dZPdzP0 im0 + (f < g),
45D

I[If o Ig) = > + fasdi(gep/h) dz"dz" + (f < g),
where E and F are defined so that I(dz8dz20., 40,0 c) = dzEdzF

wOAI[Iyf o I[yg] = Z +00;(ASE 1 fa80i(xgcp/h)) d=/dzCdz" + (f « g).

Therefore it is sufficient to estimate

|45 (00 (A G 7 f180i(xgcn /M) i 210 (32)
When we expand [32) by Leibniz rule, all the terms except
A GE xfanh™ 00543 (19ep)lk—240 (33)

can be estimated by positive multiple of | f 1. olx9lirg OF [2flirol@9|irg- Using
[Cemma 4.2, we can estimate (33) as follows:

Ay faph™ 0:0,4" (xgcp) |y 210
< |AgF fuph™ ' 0:0;4! (0gcp)li_rso + K
< 2BIAZF g fanloloidi A2 (wgep)ly_aig + K

< 2BC|f |4} (wg) o+ K.
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Here we used wy = w. C) is represented as a combination of C**? norms of A
and Q2. Hence C is independent of y and w. ]

(IT) To complete the proof of |Proposition 2, we prove, by induction, the
following: for all [ =1,2,..., o7*'p is C**'*?. Here, we do not change r and
p satisfying [31). Under the assumption that a)jy“(p is CK++0 we prove that

2”3(0 is C¥*1+0  To prove this, it is sufficient to prove that

(D' )Ly < K

le+0
where D! denotes an arbitrary /-th order differential. By the same computation
s (29), we obtain

Fiy1 = E(4,(0]9))

V-1
— _TAG( 2l+38/1][]%2[+1¢ ° IX2I+1¢])

+ AH(E 03 0) + 5 41 )
Therefore

E(4)(D'op)) = D'Fyy + [45, D)(4)w} ).
Here we used [4", D'] =0. Hence

|A (Dl Zl+3 )’£+0

< Co(|D'Frial{_ysp + |45, D) (4507 0y + 145(D' w0} P )I().

By assumption of induction, a)y“(p TR 2’“(1) is CM'+0  Hence
|A£(Dle2’+3(p)|g <K. Since [45, D' is (I+1)-th order, we have

Iy (b 2 ho2l /
|45, D ](Aalez Po)li 249 < Cl4, 2+3|k+l 19 < Clo 2+3|k+l+() <K.

Consider |[D'Fy;1|]_,,,- The same argument as (I) is also valid here. Therefore
it 1s sufficient to estimate

|D1Ah( 21+36/1[[[)(2[+1(0 ° IX21+1¢D|]/¢)+0'
By the same computation as [Lemma 4.3, we obtain the following:
|D Ah( 2l+3aAI[IX21+1¢.IXZI+1 ])|k+0 <2C1|(p|0|A (Dl 21+3 )|I€+0+K

where C) is the same constant as [Lemma 4.3. Since r and p are chosen so that
they satisfies [31), we obtain the following again:

|Aa (Dla)]21+3 )|k+9 K |:|
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