Convergence of the normalized solution of the Maurer-Cartan equation in the Barannikov-Kontsevich construction

By Yuya Itagaki

(Received Apr. 28, 1999) (Revised Sept. 18, 2000)

Abstract. We give a detailed proof of convergence of a normalized solution of the Maurer-Cartan equation in the Barannikov-Kontsevich construction.

1. Introduction.

The purpose of this paper is to show that the potential of the formal Frobenius manifold constructed by Barannikov and Kontsevich in [1], converges. Now we recall the definition of Frobenius manifolds, which were introduced and investigated by B. Dubrovin: cf. [3].

According to [3] and [8], a Frobenius manifold is a quadruple $(M, \mathcal{T}_M^f, g, A)$. Here M is a supermanifold in one of the standard categories $(C^{\infty}$, analytic, algebraic, formal, etc.), \mathcal{T}_M^f is the sheaf of flat vector fields tangent to an affine structure, g is a flat Riemannian metric (non-degenerate even symmetric quadratic tensor) such that \mathcal{T}_M^f consists of g-flat tangent fields. Finally, A is an even symmetric tensor $A: S^3(\mathcal{T}_M) \to \mathcal{O}_M$, where \mathcal{O}_M is the sheaf of germs of functions on M in the sense of supermanifold. All the data must satisfy the following conditions:

- (a) Potentiality of A. Everywhere locally there exists a function Φ such that $A(X, Y, Z) = XYZ\Phi$ for any flat vector fields X, Y, and Z. Φ is called potential.
- (b) Associativity. A and g together define a unique symmetric multiplication $\circ: S^2(\mathcal{T}_M) \to \mathcal{T}_M$ such that $A(X,Y,Z) = g(X\circ Y,Z) = g(X,Y\circ Z)$. Then this multiplication must be associative.

Thus given (M, \mathcal{T}_M^f, g) , Frobenius manifold structure on it is determined by a potential satisfying the associativity condition. In a formal Frobenius manifold, the potential Φ is a formal power series. If Φ converges, then we can consider that the Frobenius manifold is in the holomorphic category.

The Barannikov-Kontsevich construction is one of large classes of formal Frobenius manifolds. We explain it in §2. On the other hand, quantum co-

²⁰⁰⁰ Mathematics Subject Classification. Primary 53D45; Secondary 14J32.

Key Words and Phrases. Frobenius manifold, B-model, differential Gerstenhaber-Batalin-Vilkovisky algebra.

homology which was discoverd by physicists is also a large class of formal Frobenius manifolds (cf. [6]). Its potential is called Gromov-Witten potential. In general, it is difficult to prove the convergence of Gromov-Witten potential.

In this paper, we give a detailed proof of convergence of the normalized solution of the Maurer-Cartan equation and the potential in the Barannikov-Kontsevich construction. Consequently, the Barannikov-Kontsevich construction gives a large class of holomorphic Frobenius manifolds. We state the precise statement in §3, Theorem 3.1 and Corollary 3.2. We remark that Cao-Zhou [2] mentioned the convergence of the Barannikov-Kontsevich construction without proof.

2. Barannikov-Kontsevich constructions.

In this section, we briefly recall the construction of Barannikov-Kontsevich [1]. We use the notation in Manin [7].

Let M be a compact connected Kähler manifold of dimension n whose canonical bundle K_M is holomorphically trivial. It follows from the condition $K_M = 0$ that there exists a nowhere vanishing holomorphic volume form $\Omega \in H^0(M, \Omega_M^n)$. It is defined up to a multiplication by a constant. Let us fix a choice of Ω .

Put

$$\mathbf{t}^{p,\,q} := arGammaigg(M, igwedge^p ar{T}_M^* \otimes igwedge^q T_Migg), \ \mathbf{t}^n := igoplus_{p+q=n} \mathbf{t}^{p,\,q}, \quad \mathbf{t} := igoplus_{n} \mathbf{t}^n.$$

We define Z- and Z_2 -grading on t, as follows:

t is endowed with differential $\bar{\partial}$ and wedge product \wedge . Then $(\mathbf{t}, \wedge, \bar{\partial})$ is a supercommutative differential graded algebra with respect to the grading above.

Moreover **t** is endowed with the standard Schouten-Nijenhuis bracket. Explicitly, for $X = X_1 \wedge \cdots \wedge X_p$, $Y = Y_1 \wedge \cdots \wedge Y_q$ (where X_i , Y_j are vector fields of type (1,0)) and $f \in C^{\infty}(M)$, define

$$\begin{cases}
[X \bullet Y] = (-1)^p \sum_{s,t} (-1)^{s+t} \widehat{X}_s \wedge [X_s, Y_t] \wedge \widehat{Y}_t \\
[X \bullet f] = (-1)^p \sum_{s=1}^p (-1)^s X_s(\widehat{f}) \widehat{X}_s,
\end{cases} \tag{2}$$

where $\widehat{X}_s := X_1 \wedge \cdots \wedge X_{s-1} \wedge X_{s+1} \wedge \cdots \wedge X_p$. For $\varphi = d\overline{z}_I \otimes X$, $\psi = d\overline{z}_J \otimes Y$, define

$$[\varphi \bullet \psi] = (-1)^{j(p+1)} d\bar{z}_I \wedge d\bar{z}_J \otimes [X \bullet Y].$$

Then one can see that this bracket satisfies the following formulas:

$$\begin{cases}
[a \bullet b] = -(-1)^{(\tilde{a}+1)(\tilde{b}+1)}[b \bullet a] \\
[a \bullet [b \bullet c]] = [[a \bullet b] \bullet c] + (-1)^{(\tilde{a}+1)(\tilde{b}+1)}[b \bullet [a \bullet c]] \\
[a \bullet bc] = [a \bullet b]c + (-1)^{(\tilde{a}+1)\tilde{b}}b[a \bullet c],
\end{cases}$$
(3)

and $\bar{\partial}$ is the derivation with respect to both \wedge and $[\bullet]$.

Now using Ω , we define another differential Δ on \mathbf{t} . Let $A^{p,q}(M) := \{\text{smooth } (p,q)\text{-forms on } M\}$. We consider

$$I: \mathbf{t}^{p,q} \to A^{n-q,p}(M)$$

defined by

$$\begin{cases}
I(d\bar{z}_I \otimes X_1 \wedge \cdots \wedge X_p) := d\bar{z}_I \wedge i_{X_1} \cdots i_{X_p} \Omega & \text{for } X_i \text{: vector fields} \\
I(d\bar{z}_I \otimes f) := d\bar{z}_I \wedge f\Omega & \text{for } f \text{: functions,}
\end{cases} \tag{4}$$

where i_X denotes interior product. Clearly,

$$\bar{\partial}I = I\bar{\partial}.\tag{5}$$

Now define another differential $\Delta: \mathbf{t}^{p,q} \to \mathbf{t}^{p,q-1}$ by the formula:

$$\Delta I = I\partial. \tag{6}$$

The operators $\bar{\partial}$ and Δ satisfy the following properties:

$$\begin{cases}
\bar{\partial}^2 = \bar{\partial}\Delta + \Delta\bar{\partial} = \Delta^2 \\
\Delta(1) = 0 \\
[\alpha \bullet \beta] = (-1)^{\tilde{\alpha}} \{\Delta(\alpha \wedge \beta) - (\Delta\alpha) \wedge \beta - (-1)^{\tilde{\alpha}} \alpha \wedge (\Delta\beta)\}.
\end{cases} \tag{7}$$

The last formula in (7) is known as the Tian-Todorov lemma. A super-commutative algebra satisfying the properties (3) and (7) is called *differential Gerstenhaber-Batalin-Vilkovisky algebra* (see Manin [7], §5).

Formulas (4), (5) and (6) imply that I induces isomorphisms: $H(\mathbf{t}, \overline{\partial}) \cong H^*_{\overline{\partial}}(M)$ and $H(\mathbf{t}, \Delta) \cong H^*_{\overline{\partial}}(M)$. Consequently, $\mathbf{H} := H(\mathbf{t}, \Delta)$ is finite dimensional. Introduce a linear functional on \mathbf{t} by

$$\int \gamma := \int_{M} I(\gamma) \wedge \Omega \quad \text{for } \gamma \in \mathbf{t}. \tag{8}$$

Then \(\) satisfies the following identities:

$$\forall \omega, \eta \in \mathbf{t}, \quad \int (\bar{\partial}\omega) \wedge \eta = (-1)^{\tilde{\omega}+1} \int \omega \wedge (\bar{\partial}\eta)$$
$$\int (\Delta\omega) \wedge \eta = (-1)^{\tilde{\omega}} \int \omega \wedge (\Delta\eta). \tag{9}$$

We define a symmetric pairing g on \mathbf{H} by

$$g([\omega], [\eta]) := \int \omega \wedge \eta.$$

Then g is well-defined and nondegenerate.

Choose a homogeneous basis $\{[\gamma_a]\}_a$ $(\gamma_a \in \ker \Delta)$ of **H**. The $\partial \overline{\partial}$ -lemma on Kähler manifolds (cf. Griffiths-Harris [4]) implies that we can choose γ_a in ker $\Delta \cap \ker \overline{\partial}$. We assume that γ_0 equals 1. Let $\{t^a\}$ be the dual basis of $\{[\gamma_a]\}$. Define

$$|t^a| := 2 - |\gamma_a|. \tag{10}$$

Then $C[[t_H]] \otimes t$ inherits a natural grading. Here $C[[t_H]]$ is a formal power series ring in the superalgebra sense. See (13).

In [1], Barannikov and Kontsevich showed the following:

THEOREM 2.1 (Barannikov-Kontsevich [1]). There exists a solution to the Maurer-Cartan equation

$$\bar{\partial}\Gamma(t) + \frac{1}{2}[\Gamma(t) \bullet \Gamma(t)] = 0 \tag{11}$$

in formal power series with value in t

$$\Gamma(t) = \sum_{a} \gamma_a t^a + \sum_{\substack{a_1 < \dots < a_k \\ k > 2}} \gamma_{a_1 \dots a_k} t^{a_1} \dots t^{a_k} \in (\boldsymbol{C}[[t_{\mathbf{H}}]] \, \hat{\otimes} \, \mathbf{t})^2$$

such that

- (i) γ_a are chosen as above,
- (ii) $\gamma_{a_1\cdots a_k} \in \operatorname{Im} \Delta \text{ for } k \geq 2,$
- (iii) $\partial_0 \Gamma(t) = 1$, where ∂_0 is the coordinate vecter field corresponding to $[1] \in \mathbf{H}$.

We call such a solution $\Gamma(t)$ normalized, and denote $\Gamma(t) = \Gamma_1(t) + \Delta B(t)$, where $\Gamma_1(t) := \sum_a \gamma_a t^a$.

THEOREM 2.2 (Barannikov-Kontsevich [1]). Put

$$\Phi(t) = \int \left(\frac{1}{6}\Gamma(t)^3 - \frac{1}{2}\bar{\partial}B(t) \wedge \Delta B(t)\right). \tag{12}$$

Then Φ determines a formal Frobenius manifold structure on (\mathbf{H}, g) .

Using Γ , we can define another differential $\bar{\partial}_{\Gamma}$ on $C[[t_{\mathbf{H}}]] \otimes \mathbf{t}$ by $\bar{\partial}_{\Gamma} \varphi(t) := \bar{\partial} \varphi(t) + [\Gamma(t) \bullet \varphi(t)]$. Then we can easily show that inclusions induce the following isomorphisms (see Manin [7], §5):

$$H(\mathbf{C}[[t_{\mathbf{H}}]] \hat{\otimes} \mathbf{t}, \bar{\partial}_{\Gamma}) \cong \frac{\ker \Delta \cap \ker \bar{\partial}_{\Gamma}}{\operatorname{Im} \Delta \bar{\partial}_{\Gamma}} \cong H(\mathbf{C}[[t_{\mathbf{H}}]] \hat{\otimes} \mathbf{t}, \Delta) \cong \mathbf{C}[[t_{\mathbf{H}}]] \otimes \mathbf{H}.$$

We note that the homology $H(\bar{\partial}_{\Gamma})$ inherits a natural multiplication from $C[[t_{\mathbf{H}}]] \hat{\otimes} \mathbf{t}$, because $\bar{\partial}_{\Gamma}$ is a derivation with respect to the wedge product.

We identify $C[[t_{\mathbf{H}}]] \otimes \mathbf{H}$ with the space of vector fields on \mathbf{H} by the formula $[\gamma_a] = \partial/\partial t^a$. This space acts on $C[[t_{\mathbf{H}}]] \otimes \mathbf{t}$ as derivation. Define a map $\psi : C[[t_{\mathbf{H}}]] \otimes \mathbf{H} \to H(\bar{\partial}_{\Gamma})$ by $\psi(X) := X\Gamma \mod \operatorname{Im} \bar{\partial}_{\Gamma}$. Then ψ is algebra isomorphism, if we define a multiplication on $C[[t_{\mathbf{H}}]] \otimes \mathbf{H}$ by the potential Φ in Theorem 2.1. Namely, for $X, Y \in C[[t_{\mathbf{H}}]] \otimes \mathbf{H}$, their product $X \circ Y$ is a unique element satisfying $(X \circ Y)\Gamma \equiv X\Gamma \wedge Y\Gamma \mod \operatorname{Im} \bar{\partial}_{\Gamma}$.

3. Convergence of $\Gamma(t)$ in $C^{k+\theta}$.

In this section, we keep the same notation as in the previous section. $\{[\gamma_a]\}_{a=1}^N$ is a basis of **H**. We assume that γ_a is even for $1 \le a \le m$, and odd for $m+1 \le a \le N$. $\{t^a\}$ is the dual basis. In order to distingish the odd basis from the even one, we denote t^{m+i} by τ^i for $1 \le i \le l$ (= N-m). Then

$$C[[t_{\mathbf{H}}]] = C[[t^1, \dots, t^m]] \otimes \bigwedge(\tau^1, \dots, \tau^l)$$
(13)

by definition. Later, when we need to distinguish even and odd, we use (τ^i) , when not, (t^{m+i}) .

Let $\Gamma \in C[[t_{\mathbf{H}}]] \otimes \mathbf{t}$. We can represent it as $\Gamma = \sum_{\alpha} \Gamma_{\alpha}(t) \tau^{\alpha}$ where $\Gamma_{\alpha}(t) \in C[[t^{1}, \dots, t^{m}]] \otimes \mathbf{t}$, and τ^{α} denotes $\tau^{\alpha_{1}} \cdots \tau^{\alpha_{l}}$. Then it makes sense to ask whether Γ_{α} is smooth in the coordinate $(z^{1}, \dots, z^{n}, t^{1}, \dots, t^{m})$. Here (z^{1}, \dots, z^{n}) is a local coordinate of M. We split \mathbf{H} into even and odd parts: $\mathbf{H} = \mathbf{H}^{ev} \oplus \mathbf{H}^{odd}$. Let U be an open set in \mathbf{H}^{ev} . We say that Γ is smooth on U if Γ_{α} is smooth on $U \times M$ for each α . Our goal is the following.

THEOREM 3.1. There exists a normalized solution of the Maurer-Cartan equation (11)

$$\Gamma = \Gamma_1 + \Delta B \in (\boldsymbol{C}[[t_{\mathbf{H}}]] \, \hat{\otimes} \, \mathbf{t})^2$$

such that Γ and B are smooth on a sufficiently small neighbourhood of the origin in \mathbf{H}^{ev} .

Let \mathcal{O}_U be the sheaf of the germs of holomorphic functions on U. Put $\mathcal{O} := \mathcal{O}_U \otimes \bigwedge(\tau^1, \dots, \tau^l)$. We remark that if $\Gamma(t)$ is smooth, then we can consider $\overline{\partial}_{\Gamma}$ in the smooth category, and obtain an algebra homomorphism $\mathbf{H} \otimes \mathcal{O} \to H(\overline{\partial}_{\Gamma}) : X \mapsto X\Gamma$.

For X = [a], $Y = [b] \in \mathbf{H}$, define $g(X, Y) := \int ab$. When we regard (U, \mathcal{O}) as a supermanifold, its tangent sheaf is identified with $\mathcal{O} \otimes \mathbf{H}$. Then we can regard g as a Riemannian metric on U. From (8), (12) and the result above, we obtain the following immediately.

COROLLARY 3.2. Let Γ be as in Theorem 3.1, and Φ be the potential which takes the form of (12). Then Φ is holomorphic on U. Consequently, (U, \emptyset, g, Φ) is a Frobenius manifold in the sense of Manin [8].

This is straightforward.

We will prove Theorem 3.1 by modifying the arguments in the Kodaira-Spencer deformation theory (cf. Kodaira [5]). The proof is divided into two parts: Proposition 1 and Proposition 2. In the first part, we shall prove the $C^{k+\theta}$ -convergence, and in the second part, the regularity of the resulting solution.

We introduce the Hölder norms on the space \mathbf{t} . Let U be an open set in a Euclidean space \mathbf{R}^n , k be a nonnegative integer, and $0 < \theta < 1$. For $f \in C^k(U)$, define

$$|f|_{k+\theta}^{U} := \sum_{|\alpha| \le k} \sup_{x \in U} |D^{\alpha} f(x)| + \sum_{|\alpha| = k} \sup_{\substack{x, y \in U \\ |x-y| \le 1}} \frac{|D^{\alpha} f(x) - D^{\alpha} f(y)|}{|x-y|^{\theta}},$$

where α is multi-index. Next, we fix a finite covering $\{V_j\}_{j\in I}$ of M such that (z_j) are coordinate on V_j . For $\gamma \in \mathbf{t}$,

$$\gamma = \sum_{p,q=0}^{n} \sum_{\substack{\alpha_1 < \dots < \alpha_p \\ \beta_1 < \dots < \beta_q}} \gamma_{j\overline{\alpha}_1 \dots \overline{\alpha}_p}^{\beta_1 \dots \beta_q}(z_j) d\overline{z}_j^{\alpha_1} \wedge \dots \wedge d\overline{z}_j^{\alpha_p} \otimes \frac{\partial}{\partial z_j^{\beta_1}} \wedge \dots \wedge \frac{\partial}{\partial z_j^{\beta_q}},$$

the Hölder norm $|\gamma|_{k+\theta}$ is defined as follows:

$$|\gamma|_{k+\theta} := \sup |\gamma_{j\overline{\alpha}_1\cdots\overline{\alpha}_p}^{\beta_1\cdots\beta_q}(z_j)|_{k+\theta}^{V_j},$$

where the sup is over all $j \in I$; p, q = 1, ..., n; $\alpha_1 < \cdots < \alpha_p$; $\beta_1 < \cdots < \beta_q$. We also introduce the Hölder norms on $A^{*,*}(M)$, that is, the space of all the (p,q)-forms on M.

Let $\Gamma(t) = \sum \gamma_{\alpha} t^{\alpha} \in C[[t_{\mathbf{H}}]] \hat{\otimes} \mathbf{t}$, $\gamma_{\alpha} \in \mathbf{t}$. Here $\alpha = (\alpha_1, \dots, \alpha_N)$ is a multi-index, and t^{α} denotes $(t^1)^{\alpha_1} \cdots (t^N)^{\alpha_N}$. Then we define

$$|\Gamma|_{k+\theta}(t) := \sum_{\alpha} |\gamma_{\alpha}|_{k+\theta} t^{\alpha} \in \mathbf{C}[[t^1, \dots, t^N]].$$
(14)

In (14), we forget the grading of (t^i) . So, $t^i t^j = t^j t^i$ for all i, j in $C[[t^1, \ldots, t^N]]$, though $C[[t_H]]$ is graded commutative.

Clearly, if $|\Gamma|_{k+\theta}(t)$ converges on a domain U, then $\Gamma(t)$ is $C^{k+\theta}$ class on U. Indeed,

$$\left| arGamma_{lpha}
ight|_{k+ heta}(t) = rac{\partial^{|lpha|}}{\left(\partial t^{m+1}
ight)^{lpha_1} \cdots \left(\partial t^{m+l}
ight)^{lpha_l}}
ight|_{t^{m+1} = \cdots = t^{m+l} = 0} \left| arGamma
ight|_{k+ heta}(t)$$

converges. So we shall prove the convergence of $|\Gamma|_{k+\theta}(t)$ for a certain specific choice of $\Gamma(t)$.

Fix a Kähler metric on M. Let ω be its Kähler form; $\bar{\partial}$ be $\bar{\partial}$ -operator acting on differential forms on M; $\bar{\partial}^*$ be the adjoint of $\bar{\partial}$ with respect to the L^2 -inner product induced by the Kähler metric on M; $\Delta_{\bar{\partial}} = \bar{\partial}^* \bar{\partial} + \bar{\partial} \bar{\partial}^*$ be the Laplacian; $G_{\bar{\partial}}$ be its Green operator. Similarly, we consider ∂^* , Δ_{∂} , and G_{∂} . Let

$$L: A^{*,*}(M) \to A^{*,*}(M)$$

be the map defined by $L(\eta) := \eta \wedge \omega$, and Λ be its adjoint. Then the following is well-known (cf. Griffiths-Harris [4]):

$$\Delta_{\bar{\partial}} = \Delta_{\partial} \quad G_{\bar{\partial}} = G_{\partial}$$
$$[\Lambda, \partial] = \sqrt{-1}\bar{\partial}^* \quad [\Lambda, \bar{\partial}] = -\sqrt{-1}\partial^*. \tag{15}$$

We choose $\Gamma(t)$ as follows. Let $\{[\gamma_a]\}$ be a basis of **H**. We can assume that $I\gamma_a$ are harmonic forms, that is,

$$\Delta_{\bar{\partial}}(I\gamma_a) = 0. \tag{16}$$

Then the condition $\bar{\partial}\gamma_a = \Delta\gamma_a = 0$ is satisfied. Define

$$\Gamma_0 := 0, \quad \Gamma_1 := \sum_a \gamma_a t^a.$$

For $n \ge 2$, we define Γ_n inductively, as follows:

$$\psi_n := -rac{1}{2} \sum_{i+j=n} [\Gamma_i ullet \Gamma_j]$$

$$\Gamma_n := I \overline{\partial}^* G I \psi_n$$

where $G := G_{\bar{\partial}} = G_{\partial}$, and I is defined by (4). Here, Γ_n is homogeneous of degree n in t^a .

Lemma 3.3. Let $\Gamma = \sum_{n \geq 1} \Gamma_n$ be as above. Then Γ is a normalized solution. More precisely, if we define

$$B_n := \sqrt{-1}I\Lambda GI\psi_n, \quad B = \sum_{n>2} B_n, \tag{17}$$

then $\Gamma = \Gamma_1 + \Delta B$, and Γ is homogeneous of degree 2 with respect to the grading on $C[[t_H]] \otimes t$ induced by (1) and (10).

PROOF. By definition,

$$\overline{\partial}\Gamma + \frac{1}{2}[\Gamma \bullet \Gamma] = 0 \Leftrightarrow \begin{cases} \overline{\partial}\Gamma_1 = 0 \text{ and} \\ \overline{\partial}\Gamma_n = -(1/2)\sum_{i+j=n}[\Gamma_i \bullet \Gamma_j] = \psi_n \quad \forall n \geq 2. \end{cases}$$

From (16), we have $\bar{\partial} \Gamma_1 = 0$. Therefore it is sufficient to prove inductively the following:

$$\begin{cases} \bar{\partial} \Gamma_n = \psi_n \\ \Gamma_n = \Delta B_n \\ |\Gamma_n| = 2. \end{cases} (*)_n$$

We assume that $(*)_1, \ldots, (*)_{n-1}$ hold. Then

$$\bar{\partial}\psi_n = -\frac{1}{2} \sum_{i+j=n} ([\bar{\partial}\Gamma_i \bullet \Gamma_j] - [\Gamma_i \bullet \bar{\partial}\Gamma_j])$$
$$= -\frac{1}{2} \sum_{i+j+k=n} [[\Gamma_i \bullet \Gamma_j] \bullet \Gamma_k].$$

The right hand side vanishes because the Jacobi identity reads:

$$[[\Gamma_i \bullet \Gamma_j] \bullet \Gamma_k] + [[\Gamma_j \bullet \Gamma_k] \bullet \Gamma_i] + [[\Gamma_k \bullet \Gamma_i] \bullet \Gamma_j] = 0.$$

On the other hand, because of the Tian-Todorov lemma (7), we have $\psi_n \in \operatorname{Im} \Delta$. Namely, $I\psi_n \in \ker \bar{\partial} \cap \operatorname{Im} \partial$. We have

$$I\psi_{n} = \partial \partial^{*}GI\psi_{n} \quad \text{because } I\psi_{n} \in \text{Im } \partial$$

$$= \sqrt{-1}\partial(\Lambda \bar{\partial} - \bar{\partial}\Lambda)GI\psi_{n} \quad \text{from (15)}$$

$$= \bar{\partial}(\sqrt{-1}\partial\Lambda GI\psi_{n})$$

$$= \bar{\partial}\bar{\partial}^{*}GI\psi_{n}.$$

Therefore we obtain $\psi_n = \bar{\partial} \Gamma_n$ and $\Gamma_n = \Delta B_n$. Finally, because

$$IAI.IGI: \mathbf{t} \to \mathbf{t}$$

preserve Z-grading, we have

$$|\Gamma_n| = |B_n| - 1 = |\psi_n| - 1 = 2.$$

For $f = \sum_{\alpha} a_{\alpha} t^{\alpha}$, $g = \sum_{\beta} b_{\beta} t^{\beta} \in C[[t^{1}, \dots, t^{N}]]$, we define:

$$f \ll g \stackrel{\text{def}}{\iff} |a_{\alpha}| \leq |b_{\alpha}|$$
 for all α .

If $f \ll g$ and g converges, then f also converges. For $b, c \in \mathbf{R}_{>0}$, define

$$A(t) = A(b, c; t) := \frac{b}{16c} \sum_{\mu=1}^{\infty} \frac{c^{\mu}}{\mu^{2}} (t^{1} + \dots + t^{N})^{\mu}.$$

Then A(t) converges on $\{t \in \mathbb{C}^N \mid |t^i| < 1/Nc\}$, and satisfies

$$A(t)^2 \ll \frac{b}{c}A(t). \tag{18}$$

PROPOSITION 1. Let $\Gamma(t) = \Gamma_1(t) + \Delta B(t)$ be chosen as in Lemma 3.3. Then, for fixed integer $k \geq 2$ and real number $0 < \theta < 1$, there exist sufficiently large numbers b, c which satisfy

$$|\Gamma|_{k+\theta}(t) \ll A(t)$$
 and $|B|_{k+1+\theta}(t) \ll A(t)$.

To prove this, we need the following two lemmas.

LEMMA 3.4. For all $\varphi \in A^{*,*}(M)$ and $\gamma \in \mathbf{t}$, we have

- (i) $|G\varphi|_{k+\theta} \leq C_1 |\varphi|_{k-2+\theta}$,
- (ii) $|\Lambda \varphi|_{k+\theta} \leq C_2 |\varphi|_{k+\theta}$,
- (iii) $C_3^{-1} |I\varphi|_{k+\theta} \le |\varphi|_{k+\theta} \le C_3 |I\varphi|_{k+\theta}$,
- (iv) $|\Delta \gamma|_{k+\theta} \le C_4 |\gamma|_{k+1+\theta}$,

where C_1, C_2, C_3 and C_4 are some positive constants depending on k, θ , not on φ, γ .

PROOF. The first inequality is well-known in the theory of elliptic operators (cf. Kodaira [5], Appendix, etc.). $\Lambda: A^{*,*} \to A^{*,*}$ and $I: \mathbf{t} \to A^{*,*}$ are operators of order 0, and $\Delta: \mathbf{t} \to \mathbf{t}$ is of order 1. Hence we obtain the remaining inequalities.

Lemma 3.5. There exists a positive constant C_5 depending on k, θ such that

$$|[\varphi \bullet \psi]|_{k-1+\theta} \le C_5 |\varphi|_{k+\theta} |\psi|_{k+\theta}$$

for all $\varphi, \psi \in \mathbf{t}$.

PROOF. In general, if $U \subset \mathbb{R}^l$ is an open set, and $f, g \in C^{k+\theta}(U)$, we have

$$|fg|_{k-1+\theta} \le C|f|_{k-1+\theta}|g|_{k-1+\theta}$$

for some constant C.

By ∂_i , we denote $\partial/\partial z_i$. Let $\varphi = f \, d\bar{z}_I \otimes \partial_{i_1} \wedge \cdots \wedge \partial_{i_p}$, $\psi = g \, d\bar{z}_J \otimes \partial_{j_1} \wedge \cdots \wedge \partial_{j_q} \in \mathbf{t}$. Then, from (2), we have

$$[\varphi \bullet \psi] = \pm d\bar{z}_I \wedge d\bar{z}_J \otimes \left\{ \sum_{a=1}^p \pm f(\partial_{i_a} g) \partial_{i_1} \wedge \cdots \wedge \widehat{\partial_{i_a}} \wedge \cdots \wedge \partial_{i_p} \wedge \partial_{j_1} \wedge \cdots \wedge \partial_{j_q} \right.$$
$$+ \sum_{b=1}^q \pm g(\partial_{j_b} f) \partial_{i_1} \wedge \cdots \wedge \partial_{i_p} \wedge \partial_{j_1} \wedge \cdots \wedge \widehat{\partial_{j_b}} \wedge \cdots \wedge \partial_{j_q} \right\}.$$

Hence

$$|[\varphi \bullet \psi]|_{k-1+\theta} \le \sum_{a=1}^{p} |f \partial_{i_a} g|_{k-1+\theta} + \sum_{b=1}^{q} |g \partial_{j_b} f|_{k-1+\theta}$$
$$\le 2nC|\varphi|_{k+\theta} |\psi|_{k+\theta}.$$

Since general elements in \mathbf{t} are represented as sum of at most 4^n such elements, we obtain

$$|[\varphi \bullet \psi]|_{k-1+\theta} \le 2n4^n C|\varphi|_{k+\theta}|\psi|_{k+\theta}.$$

PROOF OF PROPOSITION 1. Recall that $\Gamma_1 = \sum \gamma_a t^a$ and $A(t) = (b/16) \cdot (t^1 + \dots + t^N) + \text{higher terms}$. Therefore, if

$$b \ge 16 \max_{a} |\gamma_a|_{k+\theta},\tag{19}$$

then it follows that $|\Gamma_1|_{k+\theta}(t) \ll A(t)$.

Assume that for all i = 1, ... n,

$$|\Gamma_i|_{k+\theta}(t) \ll A(t), \tag{20}$$

for some b, c > 0. Using Lemma 3.4, 3.5, and (17), we have

$$|B_{n+1}|_{k+1+\theta}(t) = |I\Lambda GI\psi_{n+1}|_{k+1+\theta}(t) \ll C_1C_2C_3^2|\psi_{n+1}|_{k-1+\theta}(t). \tag{21}$$

We denote $\Gamma_1 + \cdots + \Gamma_n$ by Γ^n . Then

$$|\psi_{n+1}|_{k-1+\theta}(t) = \frac{1}{2} \left| \sum_{\substack{i+j=n+1\\i,j\geq 1}} [\Gamma_i \bullet \Gamma_j] \right|_{k-1+\theta} (t) \ll \frac{1}{2} |[\Gamma^n \bullet \Gamma^n]|_{k-1+\theta}(t).$$

For $\varphi = \sum \varphi_{\alpha} t^{\alpha} \in C[[t_{\mathbf{H}}]] \hat{\otimes} \mathbf{t}$, we have

$$\begin{split} |[\varphi \bullet \varphi]|_{k-1+\theta}(t) &\ll \sum_{\alpha,\beta} t^{\alpha} t^{\beta} |[\varphi_{\alpha} \bullet \varphi_{\beta}]|_{k-1+\theta} \\ &\ll \sum_{\alpha,\beta} t^{\alpha} t^{\beta} C_{5} |\varphi_{\alpha}|_{k+\theta} |\varphi_{\beta}|_{k+\theta} \\ &= C_{5} |\varphi|_{k+\theta}(t) |\varphi|_{k+\theta}(t), \end{split}$$

by Lemma 3.5. Since $|\Gamma^n|_{k+\theta} \ll A(t)$ by the assumption (20), we obtain

$$|\psi_{n+1}|_{k-1+\theta} \ll \frac{1}{2} |[\Gamma^n \bullet \Gamma^n]|_{k-1+\theta}$$

$$\ll \frac{C_5}{2} |\Gamma^n|_{k+\theta} |\Gamma^n|_{k+\theta}$$

$$\ll \frac{C_5}{2} A(t)^2$$

$$\ll \frac{C_5 b}{2c} A(t) \quad \text{from (18)}. \tag{22}$$

From (21) and (22), we have

$$|B_{n+1}|_{k+1+\theta} \ll \frac{C_1 C_2 C_3^2 C_5 b}{2c} A(t).$$

Choose b satisfying (19). Next, choose c so that c satisfies

$$c \ge \frac{1}{2} C_1 C_2 C_3^2 C_4 C_5 b. \tag{23}$$

Then

$$|\Gamma_{n+1}|_{k+\theta} = |\Delta B_{n+1}|_{k+\theta}$$

$$\ll C_4 |B_{n+1}|_{k+1+\theta}$$

$$\ll A(t).$$

The conditions (19) and (23) are independent of n. Therefore once we choose b and c satisfying (19) and (23), we can apply this argument for all n. Hence for such b and c

$$|\Gamma|_{k+\theta}(t) \ll A(t)$$
 and $|B|_{k+1+\theta} \ll C_4^{-1}A(t) \ll A(t)$.

REMARK. Since b and c depend on k and θ , the convergence radius of $\Gamma(t)$ also depends on k and θ .

From Proposition 1, we can deduce Corollary 3.2. However, because in order to observe the multiplicative structure of the resulting Frobenius manifold, it seems suitable to use $\Gamma(t)$, we prove the regularity of $\Gamma(t)$ in the next section.

4. Regularity of $\Gamma(t)$.

In the previous section, we proved that $\Gamma(t)$ is $C^{k+\theta}$. In this section we shall prove that $\Gamma(t)$ is C^{∞} on a sufficiently small neighbourhood of the origin in \mathbf{H}^{ev} . Since $B_n = (\sqrt{-1}/2)I\Lambda GI(\sum_{i+j=n}[\Gamma_i \bullet \Gamma_j])$, we have

$$B = \frac{\sqrt{-1}}{2} I \Lambda G I([\Gamma \bullet \Gamma]).$$

Therefore if $\Gamma(t)$ is C^{∞} , then B is also C^{∞} . See Kodaira [5], Theorem 7.10. In this section, we separate even and odd, again. (t^1, \ldots, t^m) denotes even parameter, and (τ^1, \ldots, τ^l) denotes odd. Put

$$\varphi(t) := I\Gamma(t), \quad \varphi_n := I\Gamma_n \quad \text{and}$$

$$S := \{(t^1, \dots, t^m) \in \mathbf{C}^m \mid |t^i| < r \text{ for } \forall i\} \quad \text{for small } r > 0.$$

We assume that $\Gamma(t)$ is $C^{k+\theta}$ on S. Let π be a projection $M \times S \to M$. Then we can regard φ as a $C^{k+\theta}$ section of

$$V=\pi^*igg(igwedge^* T_M^* \otimes igwedge^* \overline{T}_M^* igg) \otimes igwedge(au^1,\ldots, au^l) o M imes S.$$

In order to prove that $\Gamma(t)$ is C^{∞} , it is sufficient to prove that φ is so. We consider the equation that $\varphi(t)$ satisfies.

Since $\Gamma(t)$ satisfies

$$\overline{\partial}\Gamma + \frac{1}{2}[\Gamma \bullet \Gamma] = 0,$$

 $\varphi(t)$ satisfies

$$\bar{\partial}\varphi + \frac{1}{2}I[I\varphi \bullet I\varphi] = 0.$$

Here, we have $\varphi_1(t) = \sum (I\gamma_a)t^a$ by definition. Because we choose γ_a so that they satisfy (16), we have $\bar{\partial}(I\gamma_a) = \bar{\partial}^*(I\gamma_a) = 0$. Therefore $\bar{\partial}^*\varphi_1(t) = 0$. If $n \ge 2$, then $\bar{\partial}^*\varphi_n = 0$ because $\varphi_n = \bar{\partial}^*GI\psi_n$. Hence $\varphi(t)$ satisfies the following:

$$\Delta_{\bar{\partial}}\varphi + \frac{1}{2}\bar{\partial}^*I[I\varphi \bullet I\varphi] = 0.$$

Using (15) and $\Delta\Gamma = 0$, we can rewrite this equation as follows:

$$\Delta_{\bar{\partial}}\varphi + \frac{\sqrt{-1}}{2}\partial \Lambda I[I\varphi \bullet I\varphi] = 0.$$

On the other hand, since φ is holomorphic in (t^1, \dots, t^m) , we obtain the following:

$$\left(-\sum_{i=1}^{m} \frac{\partial^{2}}{\partial t^{i} \partial \bar{t}^{i}} + \Delta_{\bar{\partial}}\right) \varphi + \frac{\sqrt{-1}}{2} \partial \Lambda I [I \varphi \bullet I \varphi] = 0.$$
 (25)

Unlike the Kodaira-Spencer theory, our $\varphi(t)$ is possibly nonzero even if t = 0. Perhaps the quasi-linear equation (25) is not elliptic. However, we will prove the regularity, modifying the argument in Kodaira [5], appendix, §8.

We introduce a new norm on the space of sections of V. Let ψ be a section of V. Then we can represent ψ uniquely as $\psi = \sum_{\beta} \psi_{\beta} \tau^{\beta}$ where ψ_{β} is a section of $W = \pi^*(\bigwedge^* T_M^* \otimes \bigwedge^* \overline{T}_M^*)$. Let $\{V_j\}$ be a coordinate neighbourhood of M. Then $\{V_j \times S\}$ is a coordinate neighbourhood of $M \times S$. For $f = \sum_{j \in AB} (z_j, t) dz_j^A \wedge d\overline{z}_j^B \in \Gamma(M \times S, W)$, define

$$|f|_{k+\theta} := \max_{j,A,B} |f_{jAB}(z_j,t)|_{k+\theta}^{V_j \times S}.$$

In order to distinguish this norm from the one in the previous section, we denote the latter by $|\cdot|_{k+\theta}^M$. Next, for $\psi = \sum \psi_\beta \tau^\beta$ and fixed $\rho \in \mathbf{R}$ with $0 < \rho < 1$, define

$$|\psi|_{k+ heta}^
ho:=\sum_eta|\psi_eta|_{k+ heta}
ho^{|eta|}.$$

For $\varphi = \sum \varphi_{\alpha\beta} t^{\alpha} \tau^{\beta}$ defined by (24), we can assume that φ satisfies

$$|\varphi|_{k+\theta}(t,\tau) = \sum_{\alpha,\beta} |\varphi_{\alpha\beta}|_{k+\theta}^{M} t^{\alpha} \tau^{\beta}$$

$$\ll A(t,\tau) = \sum_{\alpha,\beta} A_{\alpha\beta} t^{\alpha} \tau^{\beta}$$

$$= \frac{b}{16c} \sum_{\mu \ge 1} \frac{c^{\mu}}{\mu^{2}} (t^{1} + \dots + t^{m} + \tau^{1} + \dots + \tau^{l})^{\mu}$$
(26)

i.e. $|\varphi_{\alpha\beta}|_{k+\theta}^M \leq A_{\alpha\beta}$.

Lemma 4.1. Under the assumption (26) above, we have

(i) $|\varphi|_0^{\rho} \leq A(r,\rho)$,

(ii)
$$|\varphi|_{\theta}^{\rho} \leq 2A(r,\rho) + 2^{1-\theta} \sum_{|\alpha| \geq 1} |\alpha| A_{\alpha\beta} r^{|\alpha|-\theta} \rho^{|\beta|} =: B(r,\rho),$$

where $A(r,\rho) = A(r,\ldots,r,\rho,\ldots,\rho).$

PROOF. (i) is obvious. Indeed,

$$|arphi|_0^
ho = \sum_eta \Biggl| \sum_lpha arphi_{lphaeta} t^lpha \Biggl|_0^{|eta|} \le \sum_{lpha,eta} |arphi_{lphaeta}|_0^M r^{|lpha|}
ho^{|eta|} \le A(r,
ho).$$

To prove (ii), it is sufficient to consider locally. For $(x, t), (y, s) \in V_j \times S$, we estimate

$$\frac{\left|\varphi_{\beta}(x,t)-\varphi_{\beta}(y,s)\right|}{\left|(x,t)-(y,s)\right|^{\theta}}$$

where $\varphi_{\beta} = \sum_{\alpha} \varphi_{\alpha\beta}(x) t^{\alpha}$. We have

$$\frac{|\varphi_{\beta}(x,t) - \varphi_{\beta}(y,s)|}{|(x,t) - (y,s)|^{\theta}} \leq \frac{|\varphi_{\beta}(x,t) - \varphi_{\beta}(y,t)| + |\varphi_{\beta}(y,t) - \varphi_{\beta}(y,s)|}{||x - y|^{2} + |t - s|^{2}|^{\theta/2}}$$

$$\leq \frac{|\varphi_{\beta}(x,t) - \varphi_{\beta}(y,t)|}{||x - y|^{\theta}} + \frac{|\varphi_{\beta}(y,t) - \varphi_{\beta}(y,s)|}{||t - s|^{\theta}}$$

$$\frac{|\varphi_{\beta}(x,t) - \varphi_{\beta}(y,t)|}{||x - y|^{\theta}} \leq \sum_{\alpha} \frac{|\varphi_{\alpha\beta}(x) - \varphi_{\alpha\beta}(y)|}{||x - y|^{\theta}} ||t|^{|\alpha|} \leq \sum_{\alpha} A_{\alpha\beta} r^{|\alpha|}$$

$$\frac{|\varphi_{\beta}(y,t) - \varphi_{\beta}(y,s)|}{||t - s|^{\theta}} \leq \sum_{\alpha} |\varphi_{\alpha\beta}(y)| \frac{|s^{\alpha} - t^{\alpha}|}{||s - t|^{\theta}} \leq 2^{1-\theta} \sum_{|\alpha| \geq 1} |\alpha| A_{\alpha\beta} r^{|\alpha| - \theta}.$$

Hence

$$|\varphi|_{\theta}^{\rho} = \sum_{\alpha} |\varphi_{\beta}|_{\theta} \rho^{|\beta|} \le 2A(r,\rho) + 2^{1-\theta} \sum_{\substack{|\alpha| \ge 1 \\ \beta}} |\alpha| A_{\alpha\beta} r^{|\alpha|-\theta} \rho^{|\beta|}.$$

Remark that if r and ρ are sufficiently small, then $A(r,\rho), B(r,\rho)$ are also small. Of course they converge.

Choose a partition of unity $\{\omega_i\}$ subordinate to the open cover $\{V_i\}$. Next for each $l=1,2,\ldots$, we choose a C^{∞} -function $\eta^l(t)$ on S such that

$$\begin{cases} \eta^l(t) \equiv 1 & \text{if } |t| \le (2^{-1} + 2^{-l-1})r \\ \eta^l(t) \equiv 0 & \text{if } |t| \ge (2^{-1} + 2^{-l})r \\ 0 \le \eta^l(t) \le 1. \end{cases}$$

Put $\omega_j^l(x,t) := \omega_j(x)\eta^l(t)$. Furthermore, we choose a C^∞ -function $\chi_j(x)$ with $\operatorname{supp} \chi_j \subset V_j$ which is identically equal to 1 on some neighbourhood of $\operatorname{supp} \omega_j$. Put $\chi_j^l := \chi_j \eta^l$. Because $\eta^l \equiv 1$ on some neighbourhood of $\operatorname{supp} \eta^{l+2}$, $\chi_j^l \equiv 1$ on some neighbourhood of $\operatorname{supp} \omega_j^{l+2}$. Then we shall prove the following:

PROPOSITION 2. For some small r > 0, $\eta^{2l+1}\varphi$ is $C^{k+l+\theta}$. In particular, φ is C^{∞} on $M \times \{t \in \mathbb{C}^m \mid |t^i| < r/2\}$.

 $\omega_j^l \varphi$ can be considered as a vector-valued function with compact support on a (2n+2m)-dimensional torus \boldsymbol{T}^{2n+2m} . Since $\eta^{2l+1}\varphi = \sum_j \omega_j^{2l+1}\varphi$, to prove Proposition 2, it is sufficient to prove the regularity of $\omega_j^{2l+1}\varphi$. To prove this, we need some lemmas. Let $C^{k+\theta} = C^{k+\theta}(\boldsymbol{T}^l, \boldsymbol{C})$ be the space of \boldsymbol{C} -valued $C^{k+\theta}$ functions on \boldsymbol{T}^l .

LEMMA 4.2. Let $u, v \in C^{K+\theta}(T^l, C)$. Then the product uv is $C^{k+\theta}$. And there exists a positive constant B_k depending only on k and l, but independent of u and v such that

$$|uv|_{k+\theta} \le B_k \sum_{r+s=k} (|u|_{r+\theta}|v|_s + |u|_r|v|_{s+\theta}).$$

LEMMA 4.3. Let $(x^1, ..., x^l)$ be coordinate functions on \mathbf{T}^l . For $h \in \mathbf{R}$ with $h \neq 0$, a = 1, ..., l and $f \in C^{k+\theta}$, define

$$\Delta_a^h f(x^1, \dots, x^l) := \frac{f(x^1, \dots, x^a + h, \dots, x^l) - f(x^1, \dots, x^l)}{h}.$$

Then we have the following:

- (i) If $f \in C^{k+\theta}$, then $\Delta_a^h f \in C^{k+\theta}$ for all $h \neq 0$ and a = 1, ..., l.
- (ii) If $f \in C^{k+1+\theta}$, then $|\Delta_a^h f|_{k+\theta} \le |f|_{k+1+\theta}$ for all a and h (0 < |h| < 1).
- (iii) If $f \in C^{k+\theta}$ and for any a = 1, ..., l and any h with 0 < |h| < 1 there exists a positive constant independent of h such that

$$|\Delta_a^h f|_{k+\theta} \le M,$$

then $f \in C^{k+1+\theta}$.

LEMMA 4.4 ($C^{k+\theta}$ a priori estimate). Let U be a domain in \mathbf{T}^l . Suppose that the second-order linear partial differential operator E with C^{∞} coefficients defined on \overline{U} is of diagonal type in the principal part and strongly elliptic. Let $0 < \theta < 1$. Then for all integer $k \geq 0$, there exists a positive constant C such that

$$|f|_{k+2+\theta} \le C(|Ef|_{k+\theta} + |f|_0)$$

for all $f \in C^{k+2+\theta}$ with supp $f \subset U$. Here C is independent of f.

See Kodaira [5], appendix §8, Theorem 2.3, Lemma 8.1 and Lemma 8.2. Put

$$E := -\sum_{i=1}^{m} \frac{\partial^{2}}{\partial t^{i} \partial \bar{t}^{i}} + \Delta_{\bar{\partial}}.$$

E is a second-order strongly elliptic operator of diagonal type in the principal

part. If we consider that $V_i \times S \subset T^{2n+2m}$, then there exists a positive constant C_0 such that

$$|\psi|_{k+\theta} \le C_0(|E\psi|_{k-2+\theta} + |\psi|_0) \tag{27}$$

for all sections ψ of W with supp $\psi \subset V_j \times S$. This estimate (27) is true for all sections of W. Let $\psi = \sum \psi_{\beta} \tau^{\beta}$ be a section of V. Since $E\psi = \sum (E\psi_{\beta})\tau^{\beta}$ and for all β

$$|\psi_{\beta}|_{k+\theta} \le C_0(|E\psi_{\beta}|_{k-2+\theta} + |\psi_{\beta}|_0),$$

we obtain the following:

$$\begin{aligned} |\psi|_{k+\theta}^{\rho} &= \sum_{\beta} |\psi_{\beta}|_{k+\theta} \rho^{|\beta|} \\ &\leq \sum_{\beta} C_0(|E\psi_{\beta}|_{k-2+\theta} + |\psi_{\beta}|_0) \rho^{|\beta|} \\ &= C_0(|E\psi|_{k-2+\theta}^{\rho} + |\psi|_0^{\rho}). \end{aligned}$$
(28)

Here the constant C_0 in (28) is same as the one in (27). We prove Proposition 2, using this.

Proof of Proposition 2. (I) First, we shall prove that $\omega_j^3 \varphi \in C^{k+1+\theta}$.

 $\omega_j^3 \varphi$ can be considered as a function on T^{2n+2m} . Therefore we can define $\Delta_a^h(\omega_j^3 \varphi)$. By Lemma 4.3, it is sufficient to prove the following: for each $a=1,\ldots,2n+2m$ and each β , there exists a positive constant K such that $|\Delta_a^h \omega_j^3 \varphi_\beta|_{k+\theta} \leq K$ for all $h \in \mathbb{R}$ with 0 < |h| < 1.

For simplicity, denote $\omega := \omega_j^3$, $\chi := \chi_j^1$. If $|\Delta_a^h \omega \varphi|_{k+\theta}^{\rho} \leq K$, then we have $|\Delta_a^h \omega \varphi_{\beta}|_{k+\theta} \leq \rho^{-|\beta|} K$ for each β . Therefore, we shall prove that:

$$|\Delta_a^h \omega \varphi|_{k+\theta}^{\rho} \leq K.$$

We have

$$\begin{split} E(\omega\varphi) &= E(\omega\chi\varphi) = [E,\omega](\chi\varphi) + \omega E(\chi\varphi) \\ &= -\frac{\sqrt{-1}}{2}\omega\partial \Lambda I[I\chi\varphi\bullet I\chi\varphi] + [E,\omega](\chi\varphi). \end{split}$$

Therefore

$$E(\Delta_{a}^{h}\omega\varphi) = \Delta_{a}^{h}E(\omega\varphi) + [E, \Delta_{a}^{h}](\omega\varphi)$$

$$= -\frac{\sqrt{-1}}{2}\Delta_{a}^{h}(\omega\partial\Lambda I[I\chi\varphi\bullet I\chi\varphi]) + \Delta_{a}^{h}([E,\omega](\chi\varphi)) + [\Delta_{\bar{\partial}}, \Delta_{a}^{h}](\omega\varphi)$$

$$=: F_{1}.$$
(29)

Here we used the following facts:

$$\left[-\sum_{i=1}^{m} \frac{\partial^{2}}{\partial t^{i} \partial \overline{t}^{i}}, \Delta_{a}^{h}\right] = 0 \quad \text{and} \quad \chi \equiv 1 \quad \text{on a neighbourhood of supp } \omega.$$

Using (28), we obtain

$$|\Delta_a^h \omega \varphi|_{k+\theta}^{\rho} \le C_0(|F_1|_{k-2+\theta}^{\rho} + |\Delta_a^h \omega \varphi|_0^{\rho}).$$

Since $\omega \varphi$ is $C^{k+\theta}$, we have

$$|\Delta_a^h \omega \varphi|_0^\rho \le \sum_\beta |\omega \varphi_\beta|_{k+\theta} \rho^{|\beta|},\tag{30}$$

from Lemma 4.3. The right hand side of (30) is independent of h.

Let us estimate $|F_1|_{k-2+\theta}^{\rho}$. First, we have $|\Delta_a^h([E,\omega](\chi\varphi))|_{k-2+\theta}^{\rho} \leq K$. Here K is a positive constant which is independent of h. Indeed, since $[E,\omega]$ is first order operator, $[E,\omega](\chi\varphi)$ is $C^{k-1+\theta}$.

Secondly, we have $|[\varDelta_{\bar{\partial}},\varDelta_a^h](\chi\varphi)|_{k-2+\theta}^{\rho} \leq K$. Indeed \varDelta_a^h acts only on coefficients of $\varDelta_{\bar{\partial}}$ which is smooth.

Finally we estimate $|\Delta_a^h(\omega \partial \Lambda I[I\chi \varphi \bullet I\chi \varphi])|_{k-2+\theta}^{\rho}$. Since

$$\varDelta_a^h(\omega\partial \varLambda I[I\chi\varphi\bullet I\chi\varphi])=\sum_{\beta,\gamma}\pm\varDelta_a^h(\omega\partial \varLambda I[I\chi\varphi_\beta\bullet I\chi\varphi_\gamma])\tau^\beta\tau^\gamma,$$

we have

$$|\varDelta_a^h(\omega\partial \varLambda I[I\chi\varphi\bullet I\chi\varphi])|_{k-2+\theta}^{\rho}\leq \sum_{\beta,\gamma}|\varDelta_a^h(\omega\partial \varLambda I[I\chi\varphi_\beta\bullet I\chi\varphi_\gamma])|_{k-2+\theta}\rho^{|\beta|+|\gamma|}.$$

LEMMA 4.5.

$$|\Delta_a^h(\omega\partial \Lambda I[I\chi\varphi_{\beta}\bullet I\chi\varphi_{\gamma}])|_{k-2+\theta} \leq C_1(|\Delta_a^h\omega\varphi_{\beta}|_{k+\theta}|\varphi_{\gamma}|_{\theta}+|\varphi_{\beta}|_{\theta}|\Delta_a^h\omega\varphi_{\gamma}|_{k+\theta})+K$$

where C_1 is a positive constant which is independent of h, ω and χ .

Postponing the proof of this lemma, we shall finish the proof of (I). If we assume Lemma 4.5, we have

$$\begin{split} |\varDelta_a^h(\omega\partial \Lambda I[I\chi\varphi\bullet I\chi\varphi])|_{k-2+\theta}^\rho &\leq 2C_1\sum_{\beta,\gamma}|\varDelta_a^h\omega\varphi_\beta|_{k+\theta}|\varphi_\gamma|_\theta\rho^{|\beta|+|\gamma|}+K\\ &=2C_1|\varDelta_a^h\omega\varphi|_{k+\theta}^\rho|\varphi|_\theta^\rho+K. \end{split}$$

From Lemma 4.1, we have $|\varphi|_{\theta}^{\rho} \leq B(r,\rho)$. Therefore we obtain

$$|\Delta_a^h(\omega\varphi)|_{k+\theta}^{\rho} \le 2C_0C_1B(r,\rho)|\Delta_a^h\omega\varphi|_{k+\theta}^{\rho} + K.$$

If we choose r and ρ such that

$$2C_0C_1B(r,\rho) \le 1/2, (31)$$

then it follows that $|\Delta_a^h \omega \varphi|_{k+\theta}^{\rho} \leq K$.

Proof of Lemma 4.5. For simplicity, we denote $f = \varphi_{\beta}$ and $g = \varphi_{\gamma}$. Let

$$f = \sum_{A,B} f_{AB} dz^{A} \wedge d\bar{z}^{B}, \quad g = \sum_{C,D} g_{CD} dz^{C} \wedge d\bar{z}^{D}$$
$$\Lambda(dz^{A} \wedge d\bar{z}^{B}) = \sum_{C,D} \Lambda_{CD}^{AB} dz^{C} \wedge d\bar{z}^{D}$$
$$\Omega = h dz^{1} \wedge \dots \wedge dz^{n}.$$

Then

$$I(f) = \sum \pm f_{AB}/h \, d\bar{z}^B \otimes \partial_{z^{n-A}},$$

where n - A denotes the compliment of A in $\{1, \ldots, n\}$.

$$[I\!fullet I\!g] = \sum_{\substack{i\in A\A.B.C.D}} \pm (f_{AB}/h) \hat{\partial}_i (g_{CD}/h) \, dar{z}^B dar{z}^D \hat{\partial}_{z^{n-A-i}} \hat{\partial}_{z^{n-C}} + (f\leftrightarrow g),$$

$$I[If \bullet Ig] = \sum \pm f_{AB} \partial_i (g_{CD}/h) dz^E d\bar{z}^F + (f \leftrightarrow g),$$

where E and F are defined so that $I(d\bar{z}^B d\bar{z}^D \partial_{z^{n-A-i}} \partial_{z^{n-C}}) = dz^E d\bar{z}^F$

$$\omega \partial \Lambda I[I\chi f \bullet I\chi g] = \sum \pm \omega \partial_j (\Lambda_{EF}^{GH} \chi f_{AB} \partial_i (\chi g_{CD}/h)) dz^j dz^G d\bar{z}^H + (f \leftrightarrow g).$$

Therefore it is sufficient to estimate

$$|\Delta_a^h(\omega\partial_i(\Lambda_{EF}^{GH}\chi f_{AB}\partial_i(\chi g_{CD}/h)))|_{k=2+\theta}.$$
(32)

When we expand (32) by Leibniz rule, all the terms except

$$|\omega \Lambda_{EF}^{GH} \chi f_{AB} h^{-1} \partial_i \partial_j \Lambda_a^h (\chi g_{CD})|_{k=2+\theta}$$
(33)

can be estimated by positive multiple of $|\omega f|_{k+\theta} |\chi g|_{k+\theta}$ or $|\chi f|_{k+\theta} |\omega g|_{k+\theta}$. Using Lemma 4.2, we can estimate (33) as follows:

$$\begin{split} |\omega A_{EF}^{GH} \chi f_{AB} h^{-1} \partial_i \partial_j \Delta_a^h (\chi g_{CD})|_{k-2+\theta} \\ & \leq |A_{EF}^{GH} f_{AB} h^{-1} \partial_i \partial_j \Delta_a^h (\omega g_{CD})|_{k-2+\theta} + K \\ & \leq 2B |A_{EF}^{GH} h^{-1}|_{\theta} |f_{AB}|_{\theta} |\partial_i \partial_j \Delta_a^h (\omega g_{CD})|_{k-2+\theta} + K \\ & \leq 2BC |f|_{\theta} |\Delta_a^h (\omega g)|_{k+\theta} + K. \end{split}$$

Here we used $\omega \chi = \omega$. C_1 is represented as a combination of $C^{k+\theta}$ norms of Λ and Ω . Hence C is independent of χ and ω .

(II) To complete the proof of Proposition 2, we prove, by induction, the following: for all $l=1,2,\ldots,$ $\omega_j^{2l+1}\varphi$ is $C^{k+l+\theta}$. Here, we do not change r and ρ satisfying (31). Under the assumption that $\omega_j^{2l+1}\varphi$ is $C^{k+l+\theta}$, we prove that $\omega_j^{2l+3}\varphi$ is $C^{k+l+1+\theta}$. To prove this, it is sufficient to prove that

$$|\Delta_a^h(D^l\omega_j^{2l+3}\varphi)|_{k+\theta}^{\rho} \le K$$

where D^l denotes an arbitrary l-th order differential. By the same computation as (29), we obtain

$$\begin{split} F_{l+1} &:= E(\Delta_a^h(\omega_j^{2l+3}\varphi)) \\ &= -\frac{\sqrt{-1}}{2} \Delta_a^h(\omega_j^{2l+3} \partial \Lambda I[I\chi_j^{2l+1}\varphi \bullet I\chi_j^{2l+1}\varphi]) \\ &+ \Delta_a^h([E,\omega_j^{2l+3}](\chi_j^{2l+1}\varphi)) + [\Delta_{\bar{\partial}},\Delta_a^h](\omega_j^{2l+3}\varphi). \end{split}$$

Therefore

$$E(\Delta_a^h(D^l\omega_j^{2l+3}\varphi)) = D^lF_{l+1} + [\Delta_{\bar{\partial}}, D^l](\Delta_a^h\omega_j^{2l+3}\varphi).$$

Here we used $[\Delta_a^h, D^l] = 0$. Hence

$$|\Delta_a^h(D^l\omega_j^{2l+3}\varphi)|_{k+\theta}^{\rho}$$

$$\leq C_0(|D^l F_{l+1}|_{k-2+\theta}^{\rho} + |[\Delta_{\bar{\partial}}, D^l](\Delta_a^h \omega_i^{2l+3} \varphi)|_{k-2+\theta}^{\rho} + |\Delta_a^h (D^l \omega_i^{2l+3} \varphi)|_0^{\rho}).$$

By assumption of induction, $\omega_j^{2l+3}\varphi=\eta^{2l+3}\omega_j^{2l+1}\varphi$ is $C^{k+l+\theta}$. Hence $|\varDelta_a^h(D^l\omega_j^{2l+3}\varphi)|_0^{\rho}\leq K$. Since $[\varDelta_{\bar\partial}^h,D^l]$ is (l+1)-th order, we have

$$|[\mathcal{\Delta}_{\bar{\partial}}, D^l](\mathcal{\Delta}_a^h \omega_j^{2l+3} \varphi)|_{k-2+\theta}^{\rho} \leq C |\mathcal{\Delta}_a^h \omega_j^{2l+3}|_{k+l-1+\theta}^{\rho} \leq C |\omega_j^{2l+3}|_{k+l+\theta}^{\rho} \leq K.$$

Consider $|D^l F_{l+1}|_{k-2+\theta}^{\rho}$. The same argument as (I) is also valid here. Therefore it is sufficient to estimate

$$|D^l \Delta_a^h(\omega_j^{2l+3} \partial \Lambda I[I\chi_j^{2l+1} \varphi \bullet I\chi_j^{2l+1} \varphi])|_{k+\theta}^{\rho}.$$

By the same computation as Lemma 4.5, we obtain the following:

$$|D^{l} \Delta_{a}^{h}(\omega_{i}^{2l+3} \partial \Lambda I[I\chi_{i}^{2l+1} \varphi \bullet I\chi_{i}^{2l+1} \varphi])|_{k+\theta}^{\rho} \leq 2C_{1} |\varphi|_{\theta}^{\rho} |\Delta_{a}^{h}(D^{l} \omega_{i}^{2l+3} \varphi)|_{k+\theta}^{\rho} + K$$

where C_1 is the same constant as Lemma 4.5. Since r and ρ are chosen so that they satisfies (31), we obtain the following again:

$$|\Delta_a^h(D^l\omega_i^{2l+3}\varphi)|_{k+\theta}^{\rho} \leq K.$$

ACKNOWLEDGEMENT. Thanks are due to Professor Kenji Fukaya for his advice and encouragement.

References

- [1] S. Barannikov and M. Kontsevich, Frobenius manifolds and formality of Lie algebra of polyvector fields, Preprint alg-geom/97010072.
- [2] H.-D. Cao and J. Zhou, Frobenius manifold structure on Dolbeault cohomology and mirror symmetry, Preprint math.D.G/9805094.
- [3] B. Dubrovin, Geometry of 2D topological field theories, In: Springer LNM, **1620** (1996), 120–348.
- [4] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978.
- [5] K. Kodaira, Complex Manifolds and Deformation of Complex Structure, Springer-Verlag, New York, 1986.
- [6] M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys., **164:3** (1994), 525–562.
- [7] Yu. Manin, Three constructions of Frobenius manifolds: a comparative study, Preprint math.Q.A/9801006.
- [8] Yu. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces (Chapters I, II, III), Preprint MPI 96–113, 1996.

Yuya Itagaki

Department of Mathematics Kyoto University Kyoto, 606-8502 Japan

E-mail: itagaki@kusm.kyoto-u.ac.jp