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Abstract. We study one parameter deformations of a pair consisting of an analytic

singular space X0 and a function f0 on it, in case this defines an isolated singularity.

We prove, under general conditions, a bouquet decomposition of the Milnor fibre when

the isolated singularity splits in the deformation and the invariance of the Milnor fi-

bration if there is no splitting.

1. Introduction.

Let f : ðX ; 0Þ ! ðC ; 0Þ be an analytic function germ defined on an analytic

space germ ðX ; 0Þ embedded in ðC mþ1
; 0Þ. Let l be a linear function on C

mþ1,

which is considered as the last coordinate function of C
mþ1. Let D be a small

open disc in C with center 0, and U be a small open neighborhood of 0 in C
m,

such that in W :¼ U � D, ðX ; 0Þ can be represented as an analytic set. For each

t A D, define Xt :¼ W VX V l�1ðtÞ and ft :¼ f ð�; tÞ ¼ f jXt. Assume that Xt is

irreducible and f ð0; tÞ ¼ 0 for any t A D. The triple ðX ; f ; lÞ, or briefly, the pair

ðXt; ftÞ, is called a one-parameter deformation of the (space-function) pair ðX0; f0Þ.

Let S ¼ fSig be a Whitney stratification of X, the representative of ðX ; 0Þ in

W. Denote by SSð f ; lÞ the critical set of the mapping ð f ; lÞ : X ! C
2 with

respect to the stratification S. We study deformations of isolated singularities,

defined as follows.

Definition 1.1. The triple ðX ; f ; lÞ (or the pair ðXt; ftÞ) is called a one-

parameter deformation of an isolated singularity ðX0; f0Þ if the intersection of

SSð f ; lÞ with l�1ð0Þ has the origin as an isolated point.

If ðXt; ftÞ is a one-parameter deformation of an isolated singularity ðX0; f0Þ,

then it follows that the dimension of SSð f ; lÞ is at most one and the inter-

section of SSð f ; lÞ with l�1ðtÞ is of dimension 0 (or void) for small t. Since

SSlHSSð f ; lÞ, it follows that l�1ðtÞ cuts transversally the positive dimensional

strata of S, except at a finite number of points, namely the points of the set
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Xt VSSl. By the transversality result of Cheniot [4], the stratification St of

Xt which consists of Si V l�1ðtÞnSSl and the points l�1ðtÞVSSl is Whitney.

Now the function ft : Xt ! C has at most isolated singularities in U with respect

to the Whitney stratification St of Xt. The critical set of ft is SSt
ð ftÞ ¼

l�1ðtÞVSSð f ; lÞ.

Definition 1.2. If SSt
ð ftÞ has only one point in U for small enough U and

jtj, we say that the singularity ðX0; f0Þ does not split.

In this case, it follows that the singular locus SSð f ; lÞ is non-singular, hence

a line up to analytic change of coordinates.

The following questions may arise in this context.

Conjecture A. The Milnor fibre of an isolated singularity ðX0; f0Þ is

homotopy equivalent to the bouquet of the Milnor fibres of the isolated sin-

gularities into which it splits.

Conjecture B. If the isolated singularity ðX0; f0Þ does not split, then the

Milnor fibration of the isolated singularity of ðXt; ftÞ is homotopically constant,

for t close to 0.

For the existence of the Milnor fibrations and the topology of the Milnor

fibre we refer the reader to the papers of Lê [12], [13]. There is evidence for

these statements as follows. Conjecture A holds when X0 is a regular space.

More generally, it holds when Xt ¼ X0, Et, X0 has an isolated singularity,

dimX0 0 3 and the singularity of f0 splits such that outside the origin there are

only Morse singularities, see Siersma’s paper [21].

We show here that Conjecture A holds in homology (with any coe‰cients),

for the most general setting. It then follows, by Whitehead’s theorem, that it

holds in homotopy when the singularity splits into only singular points whose

local Milnor fibres are simply connected.

Conjecture B is an extension of a well known result of Lê and Ramanujam

[14] in case X ¼ C
m � C . The Lê-Ramanujam result has been extended in

another direction by Vannier [26], [27] and Massey [16], [17], in case X ¼

C
m � C and ft with non-isolated singularities on C

m. Let us mention that in

the classical case X ¼ C
m � C and ft with an isolated singularity, Timourian [25]

proved furthermore that the right-equivalence class of ft is constant.

With the usual restriction on dimension, we show that Conjectures A and B

hold when for each small t the space Xt has isolated singularity and ‘‘link

stability’’.
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2. Bouquet decompositions.

The purpose of this section is to show that Conjecture A holds in homology

in general and in homotopy under some conditions. We first extend a result of

Siersma [21] on generic splittings to the case of any splitting.

2.1.

Let Y be an analytic space of pure dimension nþ 1, locally embedded in C
m

in a neighborhood of 0. Let S be a Whitney stratification of a representative of

Y. Denote by B the open ball in C
m with radius e and center 0, by D the open

disk in C with radius h and center 0.

Let f : Y ! C be an analytic function with isolated singularities in BVY

with respect to the stratification S in the sense of [13]. Let Sð f Þ ¼

fP0 ¼ 0;P1; . . . ;Psg be the critical set of f on BVY V f �1ðDÞ. Denote by

bi ¼ f ðPiÞ ði ¼ 0; 1; . . . ; sÞ. Assume that fP0 ¼ 0;P1; . . . ;PvgHYsing 0q, and

fPvþ1; . . . ;PsgHYreg. Moreover, we assume:

(�) For all u A D, ðY V f �1ðuÞÞ Vj qB (as stratified sets).

In B (resp. D), take a small closed ball B i (resp. disc D i) around each Pi

(resp. bi) such that the restriction of f to B i VY V f �1ðD infbigÞ induces the local

Milnor fibration. Let ci ð1a ia sÞ be the path in Dn6s

j¼0
intD j connecting

u0 A qD0 with ui A qD i such that each path has no self-intersection and two paths

intersect only at u0. Without loss of generality, we assume that, if bi ¼ bj (resp.

bi ¼ b0), then Di ¼ Dj and ci ¼ cj (resp. ci is the constant path at u0). For any

AHC , denote YA :¼ Y VBV f �1ðAÞ. Set

E :¼ YD; F̂F :¼ Yu0 ; E i
:¼ B i VYD i ; F i

:¼ B i VYui :

With appropriate deformation retractions and excisions, one can prove the

following homology direct sum decomposition formula which is also true in more

general setting (cf. [20], [21], [24], [10]). In this paper we consider homology with

Z-coe‰cient.

Proposition 2.2 (Additivity of vanishing homology). With the notations and

assumptions as above, we have

H�ðE; F̂FÞG 0
s

i¼0

H�ðE
i
;F iÞ:

2.3. Decomposition of the fibre in homotopy.

We make a homotopy model of the wedge of all the local Milnor fibres

F i. Denote
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G ¼ 6
s

i¼1

ci; D 0 ¼ 6
s

i¼0

D i
; E � ¼ YD 0UG F

h
YD; F � ¼ YG F

h
Yu0 ¼ F̂F ;

where and in the following, F
h
means ‘‘is homotopy equivalent to’’.

In the fibre F � one sees the following:

1) F 0
; . . . ;F v, the local Milnor fibres of f at P0; . . . ;Pv ;

2) the vanishing cycles from each F vþj F
h
S n4 � � �4S n (bvþj copies of n-

sphere), the local Milnor fibre of f at each Pvþj A Yreg, where bvþj is the local

Milnor number of f at Pvþj.

Let hvþj
1 U � � � U h

vþj
bvþj

be the ðnþ 1Þ-cells (called the thimbles) to be attached

to F vþj in order to kill the vanishing cycles. Let H be the union of all the

thimbles over all j.

Assume that F̂F and F i ð0a ia vÞ are connected. Let xi A qF i ð0a ia vÞ,

and let xvþj A F vþj be the wedge point of the spheres. Take a non self-

intersecting path gi in F � connecting x0 and xi ð1a ia sÞ by lifting ci (if bi 0 b0)

or within Yu0 ¼ F̂F (if bi ¼ b0), so that two paths intersect only at x0. We also

want that gi does not intersect F j, for j0 i. In order to satisfy this condition,

we may need to modify the path within a tubular neighbourhood of F �, resp. F̂F ,

which is of course possible. We then have the inclusion

i : F 0
:¼ F 0

U ðg1 UF 1ÞU � � � U ðgs UF sÞ ,! F �
:

Note that F 0F
h
F þ4S, where

F þ
:¼ F 0

U ðg1 UF 1ÞU � � � U ðgv UF vÞF
h
F 0

4F 1
4 � � �4F v

;

and S :¼ S n
1 4 � � �4S n

b is the wedge of b ¼
P

j bvþj copies of the n-sphere.

Let B 0
j be the ball with boundary S n

j in the bouquet of spheres. Then we

have the inclusion

F 0
,! F þ

4B 0
:¼ F þ

4B 0
14 � � �4B 0

b:

Define j : F þ4S ,! F � by the composition of F þ4SF
h
F 0

,!
i
F �. From the

identification of balls with thimbles we obtain the following maps

j 0
: F þ

4B 0 ! F �
UH; j 00

: F þ
,! F þ

4B 0 ! F �
UH.

Theorem 2.4. Under the above assumptions, if E is contractible, then the map

j induces isomorphisms on all the homology groups

H�ðF
þ
4SÞGH�ðF

�Þ:

Moreover, if F 0
; . . . ;F v and F̂F are simply connected, then

F̂F F
h
F þ

4SF
h
F 0

4 � � �4F v
4S:
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Proof. We follow the proof of [21, Proposition 2.8]. The maps j and j 0

above give a map between the space pairs:

j rel
: ðF þ4B 0

;F þ4SÞ ! ðF � UH;F �Þ;

which induces the map between the homology groups:

Hqþ1ðF
þ4B 0;F þ4SÞ ���! HqðF

þ4SÞ ���! HqðF
þ4B 0Þ

?
?
?
y
j rel
�

?
?
?
y
j�

?
?
?
y
j 0
�

Hqþ1ðF
� UH;F �Þ ���! HqðF

�Þ ���! HqðF
� UHÞ:

Diagram 1.

By excision, j rel
� is an isomorphism (cf. [11, §3]). Note that F þF

h
F þ4B 0.

By mainly excisions, it follows that the inclusion ðEþ;F þÞ ,! ðE �;F � UHÞ induces

an isomorphism in homology, where

Eþ
:¼ ðB0 VY V f �1ðD0ÞÞU 6

v

i¼1

gi

 !

U 6
v

i¼1

B i VY V f �1ðD iÞ

 !

:

Hence j 0
� is an isomorphism since both Eþ and E � are contractible. These imply

that j� is an isomorphism. r

We return to our original settings. Let ðX ; 0Þ be an analytic space germ of

dimension nþ 1 > 2, locally embedded in ðC mþ1
; 0Þ. Let f : ðX ; 0Þ ! ðC ; 0Þ be

a function germ. Let l be a linear function, considered as the last coordinate

of C
mþ1, and denote Xt ¼ X V l�1ðtÞ. The definition (Definition 1.1) of one-

parameter deformation ðXt; ftÞ of an isolated singularity ðX0; f0Þ implies the fol-

lowing facts:

(1) l�1ð0Þ intersects all the strata of Xnf0g transversally. Note that the

strata of dimensions less than 2 are contained in SSð f ; lÞ. For any

stratum Si A S of dimension at least 2 and any point z A Si V l�1ð0Þ,

if the transversality fails, then z is a critical point of ljSi
, the restriction

of l to Si. Since the critical locus SljSi
of ljSi

is contained in

Sð f ; lÞjSi
HSSð f ; lÞ and l�1ð0ÞVSSð f ; lÞ ¼ f0g, we have z ¼ 0;

(2) l�1ð0Þ is transversal to all the strata of f �1ð0Þnf0g.

By applying Proposition 2.2 to ðXt; ftÞ, we see immediately from the fol-

lowing Lemma 2.5 that Conjecture A is true in homology.

Lemma 2.5. Let ðXt; ftÞ be a one-parameter deformation of the isolated

singularity ðX0; f0Þ. Then we have

1) For any e > 0 small enough, f �1
0 ð0ÞVX0 is transversal to the boundary

qBe of the closed ball Be HC
m with center 0 and radius e. We denote

this by ð f �1
0 ð0ÞVX0Þ Vj qBe;
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2) Fix an e0 with the property in 1). There exist h > 0, t > 0 such that for

any juj < h and jtj < t, we have ð f �1
t ðuÞVXtÞ Vj qB0, where B0 :¼ Be0 ;

3) Let e0 > 0, h0 > 0 and t0 > 0 be as in 2). If t0 is small enough, then for

any jtj < t0 and u A qD0, F̂F :¼ f �1
t ðuÞVXt VB0F

h
F0 :¼ f �1

0 ðuÞVX0 VB0,

where D0 is the closure of the open disk in C with center 0 and radius h0;

4) f �1
t ðD0ÞVXt VB0F

h
f �1
0 ðD0ÞVX0 VB0. In particular, if h0 is small

enough, both spaces are contractible.

Proof. Part 1) is the well known lemma of the ‘‘conic structure of the

analytic germs’’, see, for instance, [19] for the smooth case and [3] for the

stratified case.

The proof of statement 2) follows from [12, §2]. Note that the conditions

required for l in loc. cit. such that the proof works are fulfilled by our l, since

dimSSð f ; lÞa 1 (see also the similar remarks in [24, §1.1]).

To prove 3), we consider the map (cf. [12], [13])

G ¼: ð f ; lÞ : X V ðB0 � DÞ ! C � D;

where D is the open disc in C with center 0 and radius t0. Let

Z
ð1Þ
i ¼G�1ðqD0 �DÞVSi V ðB0 �DÞ; and Z

ð2Þ
i ¼G�1ðqD0 �DÞVSi V ðqB0 �DÞ

be the strata of the Whitney stratification of G�1ðqD0 � DÞVX V ðB0 � DÞ induced

from S ¼ fSigi. Obviously, each GjZ
ð1Þ
i is a submersion. By the transversality

2), each GjZ
ð2Þ
i is again a submersion. It follows from Thom-Mather’s first

isotopy lemma that 3) holds.

Let Z :¼ G�1ðD0 � DÞVX V ðB0 � DÞ ! D be the map p � G, where

p : D0 � D ! D is the projection to the second component. Stratify Z by

Z
ð1Þ
i ;Z

ð2Þ
i and

Z
ð3Þ
i ¼ G�1ðD0 � DÞVSi V ðB0 � DÞ; Z

ð4Þ
i ¼ G�1ðD0 � DÞVSi V ðqB0 � DÞ:

It is clear that fZ
ð jÞ
i g is a Whitney stratification of Z and the restrictions of p to

each stratum is a submersion. By Thom-Mather’s first isotopy lemma, p is a

locally trivial topological fibration. This proves 4). r

In some cases, one can remove from Theorem 2.4 the requirement that the

Milnor fibres F i be simply connected, and get a bouquet decomposition in

homotopy. For example, if one can prove that the map j induces isomorphisms

on the fundamental groups of the spaces and on the homologies of the universal

coverings of the spaces, then use Whitehead’s theorem [28]. This is the approach

of Siersma [21]. In the remainder of this section we use this idea to prove that

under some assumptions Conjecture A is also true in homotopy.

Define r : C
mþ1 ! R by rðz1; . . . ; zm; zmþ1Þ :¼

Pm
j¼1 zjzj . Still denote by r
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its restriction to X. Denote by GSðr; lÞ the germ of the set SSðr; lÞnr�1ð0Þ at

the origin, where SSðr; lÞ denotes the critical set of the map ðr; lÞ : X ! R� C

relative to the stratification S of X.

Definition 2.6. Let Xt be a space family with 0 A Xt for all t A C . Identify

ConeðXt V qB0Þ with ðXt V qB0Þ � ½0; e0�=ðx; 0Þ@ ðy; 0Þ, where B0 is the open ball

with center 0 and radius e0. If there exist e0 > 0 and t0 > 0 such that for each

jtj < t0, there exists a homeomorphism 0t from ConeðXt V qB0Þ to Xt VB0 such

that r � 0t is the projection onto the interval ½0; e0�, we say that the family of

germs ðXt; 0Þ has link stability.

Lemma 2.7. If GSðr; lÞ ¼ q, then the family ðXt; 0Þ has link stability.

Proof. Let W be an open neighborhood of the origin of C
mþ1 such that

inside W VX , GSðr; lÞ ¼ q. There exist e0 > 0, t0 > 0 such that B0 � DHW ,

where B0 is the open ball in C
m with center 0 and radius e0, and D is the open

disc in C with center 0 and radius t0. Since GSðr; lÞ ¼ q, for each t A D, the

restriction of r to each stratum of Xt is a submersion, except at the origin. In

other words, there are no 0-dimensional strata of Xt except the origin ð0; tÞ and

each positive dimensional stratum of Xt intersects qBe transversally, for each

0 < ea e0.

By [6, II (3.3)] or [7, p. 42], there exists a controlled vector field v on a

punctured neighborhood Unf0g of B0nf0g, tangent to the strata of Xt, such that

dzrðvÞ ¼ �
d

ds

� �

r

;

where U is an open neighborhood of B0 and ðd=dsÞr is the unit tangent vector to

R at r.

By [6, II (4.7)] or [7, p. 42], this vector field v can be integrated, and by

choosing the initial values appropriately, we can get the desired homeomorphism.

More precisely, let y A Xt V qB0, and hy : ð�d; dÞ ! Xtnf0g be the integral

curve of v with hyð0Þ ¼ y. The following points are important for the integra-

tion of the controlled vector fields. For each s A ð�d; dÞ, hyðsÞ is the unique point

on the orbit passing through y, and hyð�d; dÞ is in the same stratum which con-

tains y.

On each stratum, hy is smooth, and ðdðr � hyÞ=dsÞðsÞ ¼ �1, so r � hyðsÞ ¼

rðyÞ � s ¼ e0 � s. Define

0t : ð0; e0� � ðXt V qB0Þ ! ðXt VB0Þnf0g; by ðs; yÞ 7! hyðe0 � sÞ:

Then r � 0tðs; yÞ ¼ s. This also shows that, 0t is smooth on each stratum, and

r � 0t is the projection onto ð0; e0�. Hence 0t can be extended to a homeomor-

phism between ConeðXt V qB0Þ and Xt VB0. r
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Remark 2.8. The assumption GSðr; lÞ ¼ q in Lemma 2.7 is satisfied

automatically in some cases: X ¼ X0 � C , or Xt is a family of weighted ho-

mogeneous complete intersections with isolated singularity. If Xt is a family of

hypersurfaces with isolated singularities and does not split, then this assumption

implies the topological triviality of the family. This is similar to the so-called

(m) condition for the pair ðXnð0� C Þ; 0� C Þ used in the literature (see, e.g.,

[1]). However, this condition does not imply that the pair ðXnð0� C Þ; 0� C Þ

satisfies Whitney condition as shown by the following example.

Example 2.9. Let X be the Briançon-Speder family of surfaces defined by

h ¼ z3 þ ty2aþ1zþ xy3aþ1 þ x6aþ3 ¼ 0 ðab 1Þ. Then ðXnð0� C Þ; 0� C Þ does

not satisfy the Whitney condition (cf. [2]). Computation shows that GSðr; lÞ ¼ q

(see also Example 3.5).

Theorem 2.10. Let ðXt; ftÞ be a one-parameter deformation of the isolated

singularity ðX0; f0Þ, with Xt irreducible at 0 and dimXt ¼ nþ 10 3, Et, nb 1.

Suppose that there exist e0 > 0 and t0 > 0 such that Xt VB0nf0g is non-singular for

all t A D, and that l�1ðtÞVSSð f ; lÞ :¼ fP0ðtÞ ¼ 0;P1ðtÞ; . . . ;PsðtÞg for t A Dnf0g

and limt!0 PjðtÞ ¼ 0. If ðXt; 0Þ has link stability, then

F0F
h
Ft4S n4 � � �4S n

;

where Ft is the Milnor fibre of ft at 0, and the total number of spheres S n in the

bouquet is equal to the sum of the local Milnor numbers of ft at PiðtÞ.

Proof. We use Theorem 2.4 and Lemma 2.5. Let et > 0 and ht > 0 be the

Milnor data for ft, i.e., the restriction ft : Bt VXt V f �1
t ðD�

t Þ ! D�
t :¼ Dtn0 of ft

is the Milnor fibration of ft, where Bt is an open ball with center 0 and radius

et, and Dt is an open disc with center 0 and radius ht. We also assume that

0 < et < e0 and 0 < ht < h0 for t0 0.

We briefly recall the constructions in §2.1 and §2.3 for ðXt; ftÞ. By the

assumptions, there exists t0 > 0 such that for any t A D, Xt has an isolated

singularity in B :¼ Xt VB0.

Set b0 :¼ ftðP0ðtÞÞ ¼ 0, bi :¼ ftðPiðtÞÞ A D0. Note that v ¼ 0, since Xt has

an isolated singularity at P0ðtÞ ¼ 0 in B. In D0, take small closed discs D i with

center bi and radius h 0 > 0. Let ui be a point on qD i. For i > 0, let ci be the

path connecting u0 with ui, as explained in §2.3.

Let B i be the closed ball with center PiðtÞ and radius e 0 > 0. Take h 0 > 0;

e 0 > 0 so small that B i (resp. D i) are disjoint and contained in B0 (resp. D0), the

restriction of ft to Xt VB i V f �1
t ðD infbigÞ is a Milnor fibration with fibre F i

:¼

Xt VB i V f �1
t ðuiÞ, and E i

:¼ BVB i V f �1ðD iÞ is contractible.

Similarly, one has E, F̂F , E �, F �
F

h
F̂F , F þ ¼ F 0, and the mapping
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j : F 04S ,! F �. Note that F i is connected, since Xt is irreducible at 0 and

with isolated singularity, Et.

Since Xt VB0 has an isolated singularity at 0, F þ ¼ F 0 is the Milnor fibre Ft

of ft. If dimXt ¼ 2, by using resolution of singularities, one can prove that Ft is

a bouquet of one-spheres. Hence, the theorem follows. If dimXt > 3 and Ft is

simply connected, then the theorem also follows from Theorem 2.4 and Lemma 2.5.

In the general case, we make use of Whitehead’s theorem [28] in a similar

manner as done by Siersma in [21]. Namely, we prove the following two

statements in the remainder of this section:

1) the map j induces isomorphism on the fundamental groups (cf. Lemma

2.11);

2) the map j induces isomorphism on the homology groups of universal

coverings of the spaces (cf. Proposition 2.16).

Then we may apply Whitehead’s theorem [28] to conclude that j is a

homotopy equivalence. r

Lemma 2.11. Let ðXt; ftÞ be a one-parameter deformation of the isolated

singularity ðX0; f0Þ with dimXt > 3. If Xt VB0 has an isolated singularity at 0

and ðXt; 0Þ has link stability, then

1) p1ðqFtÞG p1ðqF
�Þ, where qF � :¼ F � V qB0;

2) p1ðFtÞG p1ðF
�Þ, hence p1ðFt4SÞG p1ðF

�Þ.

Proof. Since F̂F is a deformation retract of F � (cf. §2.3), it is enough to

prove the lemma by replacing F � by F̂F ; i.e.

1 0) p1ðqFtÞG p1ðqF̂F Þ;

2 0) p1ðFtÞG p1ðF̂F Þ, hence p1ðFt4SÞG p1ðF̂FÞ.

We follow [21, §3] closely. In the proof, we use the following notations:

M ¼ qB0 VXt; F̂F ¼ f �1t ðu0ÞVB0 VXt; K ¼ f �1t ð0ÞV qB0 VXt;

Mt ¼ qBt VXt; Ft ¼ f �1t ðu0ÞVBt VXt; Kt ¼ f �1t ð0ÞV qBt VXt;

‘F ¼ F̂FnFt; ‘M ¼ ðB0nBtÞVXt:

Note that we have KF
h
qF̂F and KtF

h
qFt.

p1ðMtÞ ���!
c1

p1ð‘MÞ  ���

c2
p1ðMÞ

x
?
?
?
G

x
?
?
?
f1

x
?
?
?
G

p1ðKtÞ ���!
f2

p1ð‘F Þ  ���
G

p1ðKÞ
?
?
?
y
G

?
?
?
y
G

p1ðFtÞ ���!
f3

p1ðF̂FÞ

Diagram 2.
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All the morphisms in Diagram 2 are induced by the inclusion maps. The

indicated isomorphisms can be proved via Morse theory, by using the results of

Hamm [8, 2.9]. By link stability, the inclusions of Mt and M into ‘M are

homotopy equivalences. We have the isomorphisms c1 and c2. It follows that

f1 and f2 are isomorphisms. Hence f3 is an isomorphism. r

2.12.

Let ðXt; ftÞ be a one-parameter deformation of the isolated singularity

ðX0; f0Þ with dimXt > 3. Assume Xt VB0 has an isolated singularity at 0 and

ðXt; 0Þ has link stability. We continue to use the notations in §2.10 and §2.11.

By link stability, the cone cM over M is homeomorphic to B. Let ~MM be

the universal covering of M. ~MM is smooth, connected, and simply connected.

Set ~BB :¼ c ~MM, the cone over ~MM, which is smooth outside the top �. There is a

map p : ~BB ! B compatible with the cone structure such that the restriction of p

to ~BBn� is also a covering, which can be identified with ð0; 1� � ~MM ! ð0; 1� �M.

The function ft on B0 VXt and its restriction to M can be lifted to functions on ~BB

and ~MM respectively; i.e., we have commutative Diagram 3.

~MM R��! ~BB
?
?
?
y
p

?
?
?
y
p

M R��! B �����!
ft

C

�
�
�
�
�
�
�
��!

~fft :¼ ft�p

Diagram 3.

Lemma 2.13. Under the assumptions above, ~KK ¼ ~ff �1
t ð0ÞV ~MM and

~̂
FF̂FF ¼

~ff �1
t ðu0ÞV ~BB are simply connected. Moreover, the restrictions of p give universal

coverings

p : ~KK ! K and p :
~̂
FF̂FF ! F̂F :

Proof. One uses the following fact from topology (see [21, Lemma 4.1]).

Sublemma. Let Y be connected, locally path connected and locally simply

connected. Let p : ~YY ! Y be the universal covering of Y. If Z ðHYÞ is con-

nected and the inclusion map Z ,! Y induces an isomorphism on the fundamental

groups, then the restriction of p to ~ZZ :¼ p�1ðZÞ is also a universal covering.

The space Bnf0gF
h
M satisfies the requirements for Y in the sublemma. By

Lemma 2.11, both K and F̂F satisfy the requirements for Z in the sublemma, and

the lemma follows. r

2.14.

We repeat the constructions in §2.1 and §2.3 for the spaces ~BB, ~MM,
~̂
FF̂FF and ~KK

for the function ~fft. At the same time, we also use the notations in §2.10 and

§2.11.
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Note that, by Lemma 2.5, for e0 > 0, h0 > 0 and D small, for each t A D,

ft : BV f �1
t ðD0nfb0; . . . ; bsgÞ ! D0nfb0; . . . ; bsg is a locally trivial topological

fibration. Hence

~fft :
~BBV ~ff �1

t ðD0nfb0; . . . ; bsgÞ ! D0nfb0; . . . ; bsg

is also a locally trivial topological fibration. Denote ~EE ¼ ~BBV ~ff �1
t ðD0Þ,

~EE i ¼ p�1ðE iÞ, ~FF i ¼ p�1ðF iÞ and ~FF � ¼ p�1ðF �Þ. For i > 0, ~EE i is a disjoint union

of closed sets, and each of which is homeomorphic to E i. And ~FF i is a disjoint

union of closed sets, each of which is homeomorphic to F i ¼ X VB i V f �1
t ðuiÞ.

These are possible since the restriction of p to ~BBn� is a universal covering.

Then the following proposition is similar to Proposition 2.2 and can be

proved in the same way.

Proposition 2.15. With the notations and assumptions above, we have

H�ð ~EE;
~̂
FF̂FFÞG 0

s

i¼0

H�ð ~EE
i
; ~FF iÞ:

Note that the ball B0 is a Milnor ball of ft at P0 ¼ 0. We have F 0 ¼ Ft,

the Milnor fibre of ft. The lifting ~FF 0 ¼ ~ff �1
t ðu0ÞV ~BB0 of F 0 by p is a universal

covering of F 0 by the sublemma, where ~BB0 is the lifting of B0 VXt by p.

The fibre ~FF � contains ~FF 0 and ~FF i ði > 0Þ. For each i > 0, ~FF i is a disjoint

union of pieces which are copies of F i. And each F i is homotopy equivalent to

a bouquet of spheres F i F
h
S n4 � � �4S n (bi copies). Let h i

1 U � � � U h i
bi

be the

union of the thimbles. Denote H ¼ 6s

j¼1
ðh j

1 U � � � U h
j
bj
Þ. Let xi be the wedge

point in F i, and x0 A q ~FF 0. Let ~ggi be the union of the paths in ~FF � connecting x0
and the liftings of xi in a usual way. One can take the liftings of ci as ~ggi. We

have the inclusion:

~FF 0
:¼ ~FF 0

U ð~gg1 U ~FF 1ÞU � � � U ð~ggs U ~FF sÞ ,! ~FF �
:

Obviously ~FF 0 is homotopy equivalent to ~FF 0
4 ~SS, where ~SS is a wedge of the lifted

bouquets in F i’s (i > 0).

Denote by ~HH ¼
F

H the disjoint union of H such that the attachments of

the balls in ~HH to the spheres in ~SS will kill all the the n-spheres in ~FF � coming from

the liftings of F i ði > 0Þ. The result of this attachment is denoted by ~FF �
U ~HH.

Let B 0
j be the ball with boundary S n

j , then we have the inclusion

F 0
,! F 0

4B 0
:¼ F 0

4B 0
14 � � �4B 0

b; with b ¼
Xs

i¼1

bi:

Denote by ~BB 0 the disjoint union
F
ðB 0

14 � � �4B 0
bÞ. Using the union of the paths

~ggi above, we have ~jj : ~FF 0
4 ~SS ,! ~FF �, the composition of ~FF 0

4 ~SSF
h
~FF 0

,! ~FF �, and
~FF 0

,! ~FF 0
4 ~BB 0. We also have the following obvious mappings
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~jj 0 : ~FF 0
4 ~BB 0 ! ~FF �

U ~HH; ~jj 00 : ~FF 0
,! ~FF 0

4 ~BB 0 ! ~FF �
U ~HH:

With the data above, we have the following conclusion similar to Theorem 2.4

and its proof is almost word by word the same as that of Theorem 2.4.

Proposition 2.16. The map

~jj : ~FF 0
4 ~SS ! ~FF �

induces isomorphisms on all the homology groups:

H�ð ~FF
0
4 ~SSÞGH�ð ~FF

�Þ:

3. The Lê-Ramanujam problem.

3.1.

Let et > 0; ht > 0 be admissible for the Milnor fibration of the germ of ft at

0. Denote by Bt the open ball in C
m with center 0 and radius et, and by Dt the

open disc in C with center 0 and radius ht. Denote by D a small open disc in C

with center 0.

Theorem 3.2. Let ðXt; ftÞ be a one-parameter deformation of the isolated

singularity ðX0; f0Þ with Xt irreducible at 0 and dimXt 0 3. Suppose there exists

an open neighborhood U of 0 such that, for each t A D, U VXtnf0g is non-singular.

Suppose further that ðXt; 0Þ has link stability and the isolated singularity ðX0; f0Þ

does not split. Then

1) the homotopy type of the Milnor fibre of ft is constant; i.e. for any

u A D�
t :¼ Dtnf0g

F0 ¼ f �1
0 ðuÞVX0 VB0F

h
Ft ¼ f �1

t ðuÞVXt VBt;

2) The monodromy fibrations of f0 and ft are fibre homotopy equivalent (as

fibrations over qD0 and qDt respectively); i.e.

E0 :¼ f �1
0 ðqD0ÞVX0 VB0F

h
Et :¼ f �1

t ðqDtÞVXt VBt:

Here and in the following, we denote the fibration ðEt; ftjEt; qDtÞ by Et;

If, moreover, the Milnor fibre Ft of ft is simply connected or if dimXt ¼ 2,

then we have:

3) the di¤eomorphism type of the Milnor fibration of ft is constant (as

fibrations over qD0 and qDt respectively); i.e.

E0 :¼ f �1
0 ðqD0ÞVX0 VB0 F

di¤eo
Et :¼ f �1

t ðqDtÞVXt VBt;

4) the local topological type of ft is constant; i.e.,

ðB0 VX0;B0 VX0 V f �1
0 ð0ÞÞ F

homeo
ðBt VXt;Bt VXt V f �1

t ð0ÞÞ:
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Proof. We follow the pattern of Lê-Ramanujam’s proof [14]. By the non-

splitting condition, ft has no critical point on U VXtnf0g for any t.

Note that the di¤eomorphism type of the Milnor fibration does not depend

on the choice of h > 0. Hence for any t0 0 fixed, as fibrations over qD0 and

qDt respectively, we have a di¤eomorphism

E0 ¼ f �1
0 ðqD0ÞVX0 VB0 F

di¤eo
E 0
0 :¼ f �1

0 ðqDtÞVX0 VB0:

Then we prove that (as fibrations)

E 0
0 ¼ f �1

0 ðqDtÞVX0 VB0 F

di¤eo
E 0
t :¼ f �1

t ðqDtÞVXt VB0:

So there is an inclusion Et ,! E 0
t , and also inclusions for their fibres. We prove

these induce the desired results.

Consider the map G defined in the proof of Lemma 2.5

Gðz; tÞ ¼ ð f ðz; tÞ; tÞ : X V ðB0 � DÞ ! C � D:

This map induces the following two di¤erentiable fibrations by Ehresmann’s

theorem (see [11]):

G1 : ðB0 � DÞVX VG�1ðqDt � DÞ ! qDt � D;

and

G2 : ðqB0 � DÞVX VG�1ðDt � DÞ ! Dt � D:

Moreover, G2 is a trivial fibration since Dt � D is contractible.

Hence, as fibrations over qDt � 0 and qDt � t respectively,

G�1ðqDt � 0Þ F

di¤eo
G�1ðqDt � tÞ;

and this is compatible with the trivialization G2. This proves that as fibrations

over qDt

E 0
0 ¼ f �1

0 ðqDtÞVX0 VB0 F

di¤eo
E 0
t :¼ f �1

t ðqDtÞVXt VB0:

Next, we prove that E 0
t F

di¤eo
Et as fibrations over qDt. Recall that a fibre

of Et is denoted by Ft, which is the Milnor fibre of ft. Since the fibre of E 0
t is

di¤eomorphic to the Milnor fibre F0 of f0, in the following we use this notation.

Obviously Et ,! E 0
t . By Ehresmann’s theorem (loc. cit.)

ft : ‘Et :¼ E 0
tnEt ! Dt
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is a di¤erentiable fibration and trivial: ‘Et F
di¤eo

fibre�Dt, as fibrations over Dt.

We may take the typical fibre to be the one over u A qDt:

‘Ft :¼ ‘Et V f �1
t ðuÞ ¼ F0nintFt: r

We use the following lemma which will be proved in §3.4.

Lemma 3.3. Under the assumptions of Theorem 3.2 and with the notations

above, we have:

a) If dimXt > 3, then the inclusion Ft ,! F0 is a homotopy equivalence

(cf. [21]);

b) If dimXt > 3, then p1ðqF0ÞG p1ð‘FtÞG p1ðqFtÞ (loc. cit.);

c) H�ðqFt;ZÞGH�ð‘Ft;ZÞ;

d) H�ðqF0;ZÞGH�ð‘Ft;ZÞ.

All the isomorphisms are induced by appropriate inclusion maps.

In case dimXt ¼ 2, the statements 1) and 2) follow from Theorem 2.10 and

the fact that the Milnor fibres are bouquets of 1-spheres.

We now consider the case dimXt > 3. The statement 1) follows from a) in

Lemma 3.3, and 2) follows from 1) and a theorem of Dold [5, (6.3)].

3) By Morse theory, p1ðqF0Þ ¼ p1ðF0Þ and p1ðqFtÞ ¼ p1ðFtÞ. Hence qF0 and

qFt are simply connected since F0 and Ft are simply connected by the assumption.

By Whitehead’s theorem qF0 ,! ‘Ft and qFt ,! ‘Ft are homotopy equivalences.

Since dimR ‘Ftb 6, by h-cobordism theorem (cf. [18], [22]), ‘Ft F
di¤eo

½0; 1� � qFt.

Since

ft : qB0 VXt V f �1
t ðDtÞ ! Dt

is trivial,

ft : qB0 VXt V f �1
t ðqDtÞ ! qDt

is also trivial. Hence E 0
t can be obtained from Et by attaching qDt � collar.

This proves that E 0
t F
di¤eo

Et as fibrations over qDt.

4) Let Ft : E
0
t ! Et and lt : ½0; 1� � qFt �Dt ! ‘Et ¼ ‘Ft �Dt be the dif-

feomorphisms of fibrations obtained in 3). Assume Ftðltð0; z; uÞÞ ¼ ltð1; z; uÞ.

We also have a di¤eomorphism of fibrations

Ct : qB0 VXt V f �1
t ðDtÞ ! qBt VXt V f �1

t ðDtÞ

and Ft and Ct are equal at the points where both of them are defined.

Furthermore

ltð0� qFt � 0Þ ¼ qB0 VXt V f �1
t ð0Þ F

di¤eo
ltð1� qFt � 0Þ ¼ qBt VXt V f �1

t ð0Þ
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under Ct. By [15, Proposition 5.4] and its proof, there is a homeomorphism

½Bt VXt V f �1
t ðqDtÞ�U ½qBt VXt V f �1

t ðDtÞ� ! qBt VXt

preserving qBt V f �1
t ð0Þ. We have

qBt VXt V f �1
t ð0Þ F

homeo
qB0 VXt V f �1

t ð0Þ F

homeo
qB0 VX0 V f �1

0 ð0Þ;

where the second homeomorphism comes from G2. Hence

ðBt VXt;Bt VXt V f �1
t ð0ÞÞ

F

homeo
ðBt VXt;ConeðqBt VXt V f �1

t ð0ÞÞÞ

F

homeo
ðB0 VXt;ConeðqB0 VXt V f �1

t ð0ÞÞÞ

F

homeo
ðB0 VX0;ConeðqB0 VX0 V f �1

0 ð0ÞÞÞ

F

homeo
ðB0 VX0;B0 VX0 V f �1

0 ð0ÞÞ;

where the first and the last homeomorphisms were proved by Iomdin [9], the

second and the third homeomorphisms follow from the above discussions.

Finally, returning to the case dimXt ¼ 2, the proof of 3) and 4) follows from

c) and d) of Lemma 3.3 together with the fact that a real two-dimensional

homology cobordism is a product.

3.4.

Proof of Lemma 3.3. The proof of b) is essentially contained in the proof

of Lemma 2.11.

a) In this special case, the map j defined in §2.3 is in fact the inclusion map

Ft ,! F0. It follows from Lemma 2.11 that the inclusion Ft ,! F0 induces an

isomorphism of their fundamental groups. By Proposition 2.16, it also induces

an isomorphism on the homology of the universal coverings of the spaces. Then

we use Whitehead’s theorem [28].

c) Since H�ðF0;FtÞ is trivial, by using excision theorem we have

H�ð‘Ft; qFtÞ ¼ 0. The proof of c) is finished.

d) The isomorphism in d) mainly comes from the Poincaré-Lefschetz duality

theorem (see e.g. [23]). r

Example 3.5. Let Xt be the Briançon-Speder surfaces ([2], see also Example

2.9) defined by ht ¼ z3 þ ty2aþ1zþ xy3aþ1 þ x6aþ3 ¼ 0 ðab 1Þ. These surfaces

are quasi-homogeneous. Consider the function ft ¼ xya þ zþ tz2 on Xt. The

critical locus of ft is the solutions of the following system of equations:
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að3z2 þ ty2aþ1Þxya�1 � ðð2aþ 1Þty2azþ ð3aþ 1Þxy3aÞð1þ 2tzÞ ¼ 0ð1Þ

ð3z2 þ ty2aþ1Þya � ðð6aþ 3Þx6aþ2 þ y3aþ1Þð1þ 2tzÞ ¼ 0ð2Þ

ty3azþ xy4a � 3ax6aþ3ya�1 ¼ 0ð3Þ

xya þ zþ 2tz2 ¼ 0ð4Þ

ht ¼ 0ð5Þ

The equations (1)–(3) come from the minors of the Jacobian of ð ft; htÞ and (4)

comes from the di¤erential of ft by the Euler derivation.

Note that if any one of the x; y, or z is zero, then the other two are also

zero. So we may assume xyz0 0. From (3), (4) and (5), one has

z ¼ ox2aþ1
; ya ¼ �oux2a

; 3ax2 ¼ o
3u2ðt� uÞy;

where u :¼ 1þ 2tz and o
3
:¼ �ð3aþ 1Þ. From this we obtain that tz ¼ cðtÞ

with cð0Þ0 0. This means that the non-zero solutions of the above equations

tend to infinity as t tends to 0. We conclude that, for small t, the singularity of

ðX0; f0Þ does not split in a neighborhood of the origin. By Theorem 3.2, the

local topological type of ft and the homotopy type of the Milnor fibration of ft
are constant.
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UFR Mathématiques

UMR 8524 CNRS
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