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Abstract. We establish a uniform boundary Harnack principle for a uniform
domain. As applications we study the Holder continuity of the ratios of positive
harmonic functions, the Martin boundary and the Fatou theorem for a uniform domain.

1. Introduction.

There is an extensive literature on the boundary Harnack principle (ab-
breviated to BHP). BHP is a principle of the following type: Let D be a
domain in R" with a certain geometric property. Let V' be an open set and K
a compact subset of J intersecting dD. Then there is a positive constant
A= A(D,V, K) such that

(1.1) MSA for x,ye KND,

u(y)/v(y)
whenever u and v are positive harmonic functions on D with vanishing boundary
values on V' NaD.

By the symbol 4 we denote an absolute positive constant whose value is
unimportant and may change from line to line. If necessary, we use A4y, 41, ...,
to specify them. We shall say that two positive functions f; and f, are
comparable, written f; & f,, if and only if there exists a constant 4 > 1 such that
A7'fi < f, <Af,. The constant A4 will be called the constant of comparison.

2000 Mathematics Subject Classification. 31B05, 31B25.

Key Words and Phrases. Boundary Harnack principle, Martin boundary, Green function,
harmonic measure.

This work was supported in part by Grant-in-Aid for Scientific Research (B) (No. 09440062) and
(A) (No. 11304008, Japanese Ministry of Education, Science and Culture. The final revision was
made while the author visited the Mittag-Leffler Institute. He acknowledges the supports from the
Mittag-Leffler Institute, the Royal Swedish Academy of Sciencesand the Japan Society of Promotion
of Science.



120 H. Alkawa
Then (1.1) can read
———~——= for x,ye KND

with constant of comparison depending only on D, V and K. Let dp(x) =
dist(x,0D). If D is sufficiently smooth, then
u(x) op(x

_ .~
~

u(y)  op(y)

for a positive harmonic function u on D with vanishing boundary values on
V'NoD ([23]). Hence (1.1) follows in this case.

BHP for nonsmooth domains is not so easy. For a Lipschitz domain
BHP was obtained independently by Ancona [4], Dahlberg and Wu [24].
Caffarelli, Fabes, Mortola and Salsa proved BHP for positive solutions of
elliptic equations in divergence form with nonsmooth coefficients on a bounded
Lipschitz domain. Jerison and Kenig introduced NTA domains and ex-
tended BHP to NTA domains. Anderson and Schoen proved BHP for a
complete manifold of negative curvature. Bafluelos, Bass and Burdzy ([9],
and [8]) employed probabilistic techniques and proved BHP for Hélder domains.
The significant aspect of the work of Bainuelos, Bass and Burdzy is that they
proved BHP without any exterior condition. However, BHP of Bafuelos, Bass
and Burdzy is weaker than the previous BHP. It is not uniform. As was
observed by Jerison and Kenig [17], the uniform BHP is important for further
applications such as the Martin boundary, the Holder continuity of the kernel
functions, H” and BMO spaces.

The main aim of the present paper is to establish a uniform BHP for a
uniform domain. We say that D is a uniform domain if there exist constants 4
and A4’ such that each pair of points xj,x, € D can be joined by a rectifiable
curve y < D for which

~—

for x, ye KN D,

(1.2) /(y) £A|X1 —X2|,

(1.3) min{/(y(x1, y)),Z(y(x2, p))} < A'op(y) for all yey.

Here, /(y) and y(x;, y) denote the length of y and the subarc of y connecting
x; and y, respectively (See and [22]). Roughly speaking, a uniform domain
is a domain satisfying only the interior conditions for an NTA domain (see [17]).
We have

Lipschitz & NTA & uniform & John.

By B(x,r) we denote the open ball with center at x and radius r. A simple
example of a uniform domain is the unit ball minus a closed line segment, e.g.
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B(0,1)\L with L = {(x1,0,...,0) : |x;| < 1/2} for n > 3. For another example
see [Proposition 1. In fact, a uniform domain enjoys only an interior condition
and so it may admit irregular boundary points. Moreover, a surface ball
DN B(&,r) may be a polar set. Hence, we always consider a generalized
Dirichlet problem, i.e. boundary values have meaning outside a polar set. For
simplicity, we shall say that a property holds g.e. (quasi everywhere) if it holds
outside a polar set. We show the following uniform BHP.

THEOREM 1. Let D be a uniform domain. Then there exists a constant
Ay > 1 depending only on D with the following property: Let € dD and let
R > 0 be sufficiently small. Suppose u and v are positive harmonic functions on
DN B(&, AoR), bounded on DN B(E, AyR) and vanishing q.e. on DN B(E, AgR).
Then

— uniformly for x,x" € DN B(&, R)

where the constant of comparison depends only on D.

ReEmARK 1. We emphasize that the domains of positive harmonic functions
u and v are localized to DN B(& ApR). We use localized Green functions and
represent positive harmonic functions as localized Green potentials. This lo-
calization will be useful for the Holder continuity of the ratio u/v. It enables us
to avoid the deep geometric localization theorem due to Jones [18].

COROLLARY 1. Let D be a uniform domain. Then the global BHP holds.
That is, for an open set V and a compact subset K of V there is a positive constant
A= A(D,V ,K) with the following property: if u and v are positive harmonic
functions on D, bounded on DNV and vanishing q.e. on 0DNV, then (1.1) holds.

Theorem 1 has several applications. With the aid of the classical technique
due to Moser [19, Section 5], we can show the Holder continuity of u/v at the
boundary. In general, by oscg f we denote supp f — infg f, the oscillation of f
over E.

THEOREM 2. Let D be a uniform domain. Then there exist A > 0 and ¢ > 0
depending only on D with the following property: Let & € 0D and let 0 < r < R be
sufficiently small.  Suppose u and v are positive harmonic functions on D
B(&, AgR), bounded on DN B(E, AgR) and vanishing q.e. on dDN B(E, AgR).
Then

u
v

1.4 - <Al
(1.4) VB - (R) Dﬂ%s(g,R)
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This result is rather surprising since the functions # and v themselves are not
continuous on dD if D has an irregular boundary point. Combining
2 and the known interior Holder continuity, we obtain the following Holder
continuity. See Jerison and Kenig [17, Theorem 7.9]

COROLLARY 2. Let D be a uniform domain. Then there exist positive
constants A and ¢ depending only on D with the following property. Let V be an
open set and K a compact subset of V intersecting 0D. If u and v are positive
harmonic functions on D, bounded on DNV and vanishing q.e. on 0DNV, then

SN

u r\°
1.5 - <A|-=
(1) DﬂOBS(():c,r)U - (R) DﬂOBS(g,R)

for xe DNK and 0 <r < R < dist(K,V°®). In particular,

w0/
20) o) 1‘£A| y|” for x,ye DNK.

Moreover, the ratio u/v extends to DNK as a Hdlder continuous function.

We shall show that the Martin boundary of a bounded uniform domain is
homeomorphic to the Euclidean boundary. In general by Gy we denote the
Green function for the Laplacian for an open set U. For simplicity we write G
for the Green function for D.

THEOREM 3. Let D be a uniform domain. For each & € 0D there exists a
unique minimal Martin boundary point, i.e. the limit

e G y)
K(x,&) = Dgg <Gl )

exists and is a minimal harmonic function on D, where xy is a fixed point in D.
Moreover, the Martin kernel K(x,&) is a Holder continuous function of &€ 0D.

COROLLARY 3. The Martin boundary of a bounded uniform domain is ho-
meomorphic to its Euclidean boundary. Each boundary point is minimal.

The coincidence of the Martin boundary and the Euclidean boundary was
given by Hunt and Wheeden for a Lipschitz domain and by Jerison and
Kenig for an NTA domain. Our proof of is different from those
in and [17]. They regarded the Martin kernel as the limit of the ratio of the
harmonic measures. In the present setting, the harmonic measure of a surface
ball may vanish. Hence we regard a kernel function as the ratio of the Green
functions and we estimate them directly by using BHP. In fact, if D = B(0,1)\L
for n > 3 as before [Theorem 1, then L is polar, so that D and B(0,1) have the
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same Green function and the same harmonic measure. It is easy to see that the
Martin boundary of D is the union of the unit sphere and L. From the ratios of
the harmonic measure, we cannot retrieve the Martin kernel with pole on L.

So far, we have observed that a uniform domain enjoys the same properties
as an NTA domain, although it satisfies only the interior conditions. However,
the harmonic measure of a uniform domain does not satisfy the doubling
property. The lack of the doubling property of the harmonic measure causes
strange phenomena. As an illustration let us consider the Fatou theorem. This
1s just on the border line; the global Fatou theorem holds and yet the local
Fatou theorem does not hold. For £edD we let I',({)={xeD:|x—-¢ <
(1 +a)dp(x)} where o > 0. This is a nontangential approach region to . We
say that a function u defined on D has nontangential limit ¢ at ¢ if for any «,
u(x) restricted I',(&) converges to ¢ as x — £, Let wp be the harmonic measure
of D. We have the following global Fatou theorem.

THEOREM 4. Let D be a uniform domain. Then every positive harmonic
function u on D has nontangential limits a.e. wp on 0D, i.e. there is a set E < 0D
with wp(E) =0 such that u has nontangential limits for ¢ € 0D\E.

Let us consider a local Fatou theorem. A truncated nontangential approach
region at ¢ is denoted by I'*(&) = I',(&)NB(&E h). We say that a function u
defined on D is nontangentially bounded from below at & e dD if there exist
positive constants o, 4 and A such that u(x) > —A4 for all xeI'"(&). Let
F < dD. We say that a function u is nontangentially bounded from below on F
if u is nontangentially bounded from below at every point of F. Jerison and
Kenig [17, Theorem 6.4] proved the following.

THEOREM A. Let D be an NTA domain. Assume that u is harmonic in D
and nontangentially bounded from below on F < dD. Then u has nontangential
limits a.e. wp on F.

For a uniform domain such a local Fatou theorem does not necessarily hold.

PrROPOSITION 1. There exist a bounded uniform domain D, a countable set
E < 0D, and a harmonic function u on D nontangentially bounded on 0D\E which
fails to have nontangential limits on 0D\E.

PrLaN.  Our proofs are different from the previous ones, since we assume no
exterior conditions. Traditionally, BHP is proved by the Carleson estimate for
positive harmonic functions vanishing on a portion of the boundary ([11]) and the
comparison of harmonic measures of a ‘box’; the Fatou theorem is proved by the
maximal function with respect to the harmonic measure. In the present settings,
however, the Carleson estimate for a general harmonic function is not available
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at first (see Remark 2 below); the harmonic measure of the domain does not have
the doubling property, so that the maximal function is irrelevant. Our approach
must be different. The main ingredients are as follows:

(i) Dominate the harmonic measure of the intersection of the domain and a
ball by the local Green function with pole near the ball (Lemma 2).

(ii) Compare the ratios of the local Green functions with the aid of the
Carleson estimate for the Green function (Lemma 3).

(iii) Represent a harmonic function as a local Green potential and use the
above comparison (Proof of [Theorem 1)).

(iv) Use the classical Moser technique to obtain the Holder continuity.
Avoid the deep geometric localization due to Jones. (Proof of Theorems 2
and 3).

(v) Invoke the general minimal fine limit theorem and compare the minimal
fine filter and nontangential filter in order to prove the Fatou theorem (Proof of
Theorem 4).

The most difficult part is (i), for which we borrow the probabilistic idea of
Bass and Burdzy [9]. The next section will prepare some technical materials for
this part. In fact, Bass and Burdzy employed a deep probabilistic argument for
their BHP. Their deep argument can be avoided by our (ii) and (iii).

ACKNOWLEDGMENT. The author would like to thank Tomohiko Mizutani
and Torbjorn Lundh for careful reading of the manuscript of the paper and
valuable discussions. He also would like to thank Stephen Gardiner for a
suggestion in the exposition of Proposition 1. He is very grateful to the referece
for many useful comments.

2. Preliminaries.

In the previous paper [1] (see [2] for other applications), we introduced the
notion of capacitary width. Let U be an open set with Green function Gy.
Define the Green capacity Cap;(E) for a Borel set £ < U by

Capy(E) =sup{u(E) : Gyu <1 on U,u is a Borel measure supported on E}.
In the usual way Capy(E) extends to a general set E < U.

DerINITION. Let 0 <y < 1. For U < R" we define the capacitary width
wy(U) by
Capp(y, 2 (B(x,1)\U)
CapB(x, 2r) (B(x,r))

Fundamental properties of capacitary widths are given in [1]. For the
completeness we repeat them. We note that the constant #, 0 < # < 1, is not so

wn(U)—inf{r>O: >y for aller}.
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important. In fact, if 0 <#; <, <1, then
wy, (U) <w,,(U) < Aw, (U) for any U < R",

where 4 depends only on the dimension n, #, and 7, ([1, Proposition 2]).
Hereafter, we fix #, 0 <z < 1.
In view of the definition of a uniform domain, it is easy to see that

(2.1) wy({xe D :0p(x) <r}) <Ar for small r >0,

whenever D is a uniform domain.

We denote the harmonic measure of E for an open set U by wy(E) or by
o(-,E,U). We write C(x,r) and S(x,r) for the closed ball and the sphere of
center at x and radius r, respectively. Harmonic measures and capacitary widths
are related as in the following key lemma. This lemma is implicitly proved in [1,
Proposition 2].

Lemma 1. There is a positive constant A, depending only on the dimension
with the following property: if U # & is open, x€ U and R > 0, then

(2.2) w(x, UNS(x,R), UNB(x,R)) < exp (2 — 4 w,fU)) .

Proor. For an arbitrary ¢ > 0 we have r, w,(U) <r < w,(U) + ¢ such that

CapB(y,Zr) (B(y7 l’)\ U)
CapB(y72r) (B(y7 I"))

(2.3) >y forall yeU.

For a moment we fix y € U and let E = B(y,r)\U and Gj the Green function for
B(y,2r). Let uy be the capacitary measure of E, i.e.

U is supported on E,

”:uE || = CapB(y,Zr) (E)7

Gpug =1 q.e. on E.
We claim
(2.4) Gpug = Aon on C(y,r),

where A, depends only on the dimension. To this end let v be the capacitary
measure of B(y,r). Then v is supported on S(y,r) and ||v|| = Capg, 2,y (B(y,7)).
By the Harnack inequality

GB(-,X)%GB(-,J/) on S(ya%r)

uniformly for xe C(y,r). Hence
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Gitp(2) = jﬁ Ga(z, %) dyy (%) = Ga(z, ) el

Gpr(z) = j Gp(z,x) dv(x) ~ Gy(z, )]
S(y,r)

uniformly for z e S(y,3/2r). Since Ggv~1 on S(y,3/2r), it follows from (2.3)
that

- Gpug N 14l _ CapB(yﬂr)(E) >

Goptp ~ —2oE ~ WEER — >
E Gpv ||VH CapB(er)(B(y:r))

on S(y,3/2r). By the maximum principle (2.4) follows.

Now let us move on to the proof of [2.2]. For simplicity we write Q for
o(-,UNS(x,R),UNB(x,R)). Without loss of generality we may assume that
R/w,(U)>2 and let k be the positive integer such that 2kw,(U) < R <
2(k +1)w,(U). Take r>w,(U) so close to w,(U) that 2kr < R holds. We
claim

(2.5) sup Q< (1— Ay’
UnC(x,R-2jr)

for j=0,1,...,k. Since k ~ R/w,(U), (2.5) implies [2.2). Thus we have only
to show [2.5). Let us prove by induction. Obviously, [2.5) holds for
j=0. We assume that holds for j — 1 and we shall prove for j > 1.
In view of the maximum principle, it is sufficient to show that

(2.6) sup Q< (1— Ayp)’.
UNS(x,R—2jr)

Let ye UNS(x,R—2jr). Then C(y,2r) = C(x,R—2(j — 1)r), so that for
j—1 implies

Q< (1—4ay)”™ on UNC(y,2r).

Since @ vanishes q.e. on dUNB(x,R) 2 dUNB(y,2r), it follows from the
maximum principle that

27) Q< (1—Am) o, UNS(y,2r),UNB(»,2r)) on UNB(y,2r).

Let us compare w(-, UNS(y,2r), UNB(y,2r)) and 1 — Gguy, where Gpuy is as
in (2.4). Then

o, UNS(y,2r),UNB(y,2r)) <1 — Ggury on UNB(y,2r)
by the maximum principle. In particular,

o(y, UNS(y,2r), UNB(y,2r)) <1 — Gpug(y) <1— Ay
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by (2.4). Substituting this to (2.7), we obtain 2(y) < (I — 4yy)’. Hence
and so follows. The proof is complete. ]

3. Proof of Theorem 1.

The proof of is based on uniform estimates of the Green
function. Throughout this section we assume that D is a uniform domain and
we let £ e dD and R > 0. We shall give uniform estimates independent of ¢ and
R. All constants, implicit and explicit, will be independent of & and R, unless
otherwise specified.

To facilitate the argument we introduce the quasi-hyperbolic metric
kp(x1,x;) defined by

ds
kp(x1, x> :ian —,
( ) 7 ), op(x)
where the infimum is taken over all rectifiable arcs y joining x; to x, in D. We
observe that the shortest length of a Harnack chain connecting x; and x; is
comparable to kp(xj,x2). Hence, in view of the Harnack inequality, there is a
positive constant A3 depending only on the dimension n such that

(x1)
h(x2)

for every positive harmonic function /.

For a uniform domain the following observation is important: if dp(x;) >
aR, dp(x2) > bR and |x; — x| < ¢R, then kp(x;,x;) < 4, where A depends only
on a, b, c and D. Hence h(x;) = h(x;) for any positive harmonic function /# on
D, where the constant of comparison depends only on a, b, ¢ and D. Moreover
observe that there 1s A4, 0 < A4 < 1 such that

=

CXp(—A3kD(X1 , XZ)) <

< CXp(A3kD(X1 , XQ))

AsR < sup  op(x) <R
xeDNS(ER)

for £edD and R >0 sufficiently small, say 0 < R<8R*. Let us take
Ere DNS(E,4R) with 444R < Jp(ER) < 4R for 0 < R < 2R*. Then, it is not so
difficult to see that

(3.1) kp(x,ER) SAIOglo—R for xe DN B(&,9R),
dp(x)
where A4 1s independent of the choice of &;. In the sequel, estimates will be
independent of the choice of ¢p.
In view of the definition of a uniform domain, we find 45 > 9 depending
only on D such that DN B(E,9R) is included in a connected component of
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DNB(¢, AsR) and
(3.2) kpn.asry (X, ) < kp(x,y)+4 for x,ye DNB(E,IR).

For simplicity we let Dg = DN B(&, (As 4+ 7)R) and D, = DN B(&, AsR). By Gg
and G, we denote the Green functions for Dg and Dp, respectively. Obviously,
Gr > G on Dy x D,. Note that D} needs not be connected and so Gg(-,&g)
may vanish on some component of D,. However, in view of (3.1) and (3.2),
DN B(&,9R) is included in the component containing g, and hence Gg(-,&¢g) > 0
on DN B(E,9R).

Let us begin with a comparison of the Green function and the harmonic
measure.

LEMMA 2. Let E€0D and 0 < R < 2R*. Then
w(-,DNS(&2R), DN B(E,2R)) < AR *Gy(-,ér)
< AR"2Gg(-,&g) on DNB(£R),
where A depends only on D.

Proor. It is sufficient to show the first inequality. We follow the idea of

[9]. Since
it follows from the maximum principle that

Gr(-,&r) < sup Gr(y,£r) on DNB(&2R).
yeS(Er,270p(Er))

It is easy to see that the right hand side is comparable to R>™”. Hence we
can find 46 >0 depending only on D such that AgR"2Gj(-,¢éR) < 1/e on
DN B(&2R). Then

(3.3) DNB(2R) = | ) D;NB(E,2R),

j>0
where
D ={xeD: exp(—2/"") < AgR"2Gp(x,&x) < exp(—27)}.

Let U; = (,o; D) N B(E,2R). We claim

» it = aneo( -2

with some 4> 0 depending only on D. Suppose xe U;. Observe from (3.1)



Boundary Harnack principle 129

and (3.2) that if z e S(&g,1/20p(Eg)), then

I10R
dp(x)

Since Gi(z,Er) ~ R*™ for ze S(Ex,1/20p(ER)), it follows from the Harnack
inequality that

k(e (%,2) < kpr (x,Eg) + 4 < A log

exp(—2j) > A¢R"? Gr(x,CR)

Sp(x)\
> ARn_zGI/{(Z’ fR) exp(—A3ka\{5R}(x,z)) > ( D( )>

with 4 > 0 depending only on D. Hence
2J
op(x) < 10Rexp (— 7)

This, together with (2.1), yields (3.4).
Now we use an inductive argument. Let Ry = 2R and

6 <~ 1

k=1

for j>1. Then R; | R and

© , R | — R,
3.5 2t /
3 2. (2 rea2i)

- . 6 2/
— 2]+1__ .2 ~ )
;exp( A7[2] exp<i>> < o0

We emphasize that the value of the series in is independent of R. Let
wy=ow(-,DNS(E2R), DN B(E,2R)) and

sup ()
di = { xeDNBER) R"2Gr(x,&R)

0 if D;NB(ER)=(.

if DiNB(E R)) # O,

In view of it is sufficient to show that

(3.6) sup d; < A < o0,
j=0

where A4 is independent of R.
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Figure 1. Maximum principle over U;NB(&, R;_y).

Let j > 0. Then the maximum principle yields that
(3'7) wo(x) < w(x7 Uin S(é Rj—1)7 Uin B(é’ Rj—l)) + dj—an_zG;Q(x? éR)

for xe UyNB({,Ri—1). See Figure 1. If xe B(¢ R;), then B(x,Ri_;1 — R;)N
S(&, Ri—1) = I, so that the first term in the right hand side of (3.7) is not greater
than

CO(X, (]] N S(x, Rj—l — Rj), (]] ﬂB(X, Rj—l - RJ))

R | — R - 27
< Ry, P i 2— Aj? -
se(2- a8 ) <en(2- 4 ew(T))

by [Lemma 1 and [3.4). Moreover, AgR">G(x,Eg) > exp(—2/T1) for x e D; by
definition. Hence (3.7) becomes

2J
on(v) < exp(2 - 4 ewp(% ) ) + 4 R Gyl o

. 2J
< (A6 exp <2 +277 — 4j P exp (7)) + dj—l) R"2Gg(x,p)

for xe D;NB(¢ R;). Dividing both sides by R"2G(x,¢z) and taking the
supremum over x € D; N B(, R;), we obtain

. 27
d; < Agexp (2 + 277 — 4% exp <7>> +d;

and hence
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d; < Aéz exp<2-|—2f+1 — 4572 exp<7>> +dy < oo

J=1

by [3.5) By definition dy < Age?. Thus follows and the lemma is
proved. [

We need an estimate for the Green function which will substitute the
Carleson estimate. We have

Gr(x,y) < AR*™ uniformly for x € DN B(&,2R), y € DN B(E,9R)\B(&,3R),

where A 1s independent of R, since the diameter of Dy 1s bounded by R up to a
multiplicative constant. It is important to localize the Green function. If we
replace G by G, then the above inequality holds for n > 3, but not for n =2 in
general.

LEMmA 3. Let £€0D and 0 < R< R*. Then

Gr(x,y) _ Gr(x,)')
GR(xla y) GR(xlv y/)

with the constant of comparison depending only on D.

for x,x e DNB(¢,R) and y,y" € DNS(E 6R)

Proor. Let us take x*e DNS(ER) and y*e DNS(E,6R) such that
AsR <Jp(x*) < R and 644R <0p(y*) < 6R. It is sufficient to show

~ GR(X*ay)
(3.8) Galx. ) > Gl
for xe DNB(E R) and y e DN S(E,6R).

First we show that the left hand side of is not less than the right hand
side of up to a multiplicative constant. To this end we fix y e DNS(&,6R)
and observe that

(1) u(x) = Gr(x,y) is a positive harmonic function on Dg\{y} with
vanishing qg.e. on 0Dg;

(i1) o(x) = (Gr(x*,»))/(Gr(x*, y*))Gr(x, y*) is a positive harmonic func-
tion on Dg\{y*} with vanishing q.e. on dDg.

Since y*e DNS(,6R) and 6A44R <Jp(y*) <6R, it follows that
B(y*,344R) = DN B(&,9R)\B(&,3R).

Let us prove u>Av on S(y*, 4A4R). Take ze S(y*, A4R). Then
kpp(y(z,x*) < A, so that

GR(X7 y*)

~ Gr(x",y)

GR(X*ay)
= Gr(z,y") ~
Gr(x*, y*) Rz ")

~ ) g * * e * <AR27n.
GR(X*,)/*) R(x Y ) R(x 7y) =

(3.9) v(z)
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Figure 2. kp,\(y1(z,x*) < A4 for ze S(y*, A4R).

If yeB(y*,244R), then u(z) = Gr(z,y) = AR*™", so that u(z) > Av(z). If
y € D\B(y*,244R), then

kpo (3 (2, X7) < kpg(z,x) + A4 < kp(z,x*) + 4" < A",
so that
v(z) & Gr(x*, y) ~ Gr(z, y) = u(z)

by (3.9). Hence we have u > Av on S(y*, A4R) in any case. By the maximum
principle u > Av on Dg\B(y*, A4R) > DN B({, R). Thus the left hand side of
is not less than the right hand side of up to a multiplicative constant.
See Figure 2.

For the opposite estimate of we make use of [Lemma 2. It is clear
that Ggr(x,z) < AR*>™" ~ Gg(x*,y*) for xe DNC(&,2R) and ze DN B(E,9R)\
B(&,3R). Regarding Ggr(x,z) as a harmonic function of x, we obtain from the
maximum principle that

Gr(-,2) < AGr(x", y)oo(-, DN S(E,2R), DN B(E,2R)) on DN B(E,2R).
We obtain from and the Harnack inequality that
(3.10) Gr(x,2) < AGR(x*, y*")R"2Gr(x, &) < AGr(x, y*)

for xe DNB(&,R) and ze DNB(E,9R)\B(E,3R). Here we have used the
comparison Ggr(x*,y*) ~ R*" and Gg(x,&g) ~ Gr(x,y*). Now fix xeDN
B(¢,R) and y e DNS(E,6R). 1If dp(p) =271 44R, then Gr(x, y) ~ Gr(x, y*) and
Gr(x*,y) ~ Ggr(x*, y*) by the Harnack inequality, so that follows. Hence,
we may assume that dp(y) < 27'44R. Then we find a point ¢’ € dD such that
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Figure 3. The case dp(y) <2 144R.

&' —y| <27'44R. Observe that ye DNB(E',27'44R) = DNB(E',R); 5R<
6R —27'A4R < |¢ —&'| <6R+27'44R < TR and B(&',2R) = B(¢,9R)\B(E,3R).
Hence [3.10) implies Gg(x,z) < AGg(x, y*) for ze DN B(¢',2R), so that

Gr(x,y) < AG(x, y*)o(y, DN S(E',2R), DN B(E',2R)).

Let us invoke with replacing & by ¢&'. Since |&—¢&'| < TR, it
follows that DN B(&', AsR) =« DN B(E, (As +7)R) = Di.  Hence

w(y,DNS(E2R), DN B(E',2R)) < AR"*Gppper asry (1, ER)
< AR"?Gr(y,&R) = AR ?Gr(&y, ¥)

with &, e DNS(E',4R) such that 444R < Jp(ER) <4R. Here we have used the
symmetry of the Green function. Hence

Gr(x,y) < AGr(x, y" ) R"*Gr(&, »).
Observe that |, — y| = 0p(ER) — Ip(y) = 4A44R — 1/2A44R = 7/2A4R and |x* —y|
= 5D(x*) — 5]_)()/) > A4R — 1/2A4R = 1/2A4R, so that kDR\{y}(f;e,x*) < A.
Hence Gr(¢z,») ~ Gr(x*,y) by the Harnack inequality. See Figure 3. Since
Gr(x*,y*) ~ R*™", it follows that

Ggr(x", y)
G <4 G *
Thus the opposite estimate of is proved. The proof is complete. O

In order to prove [Theorem 1, we represent u and v as regularized reduced
functions and then as Green potentials. In general let £ be a subset of Dg and
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let u be a positive superharmonic function on Dg. Let @F be the family of all
positive superharmonic functions v on Dg such that v > u on E and let

RE(x) = inf{v(x) : ve &F}.

The lower regularization RE of RY is called the regularized reduced function of
u to E relative to Dg. It is known that RE =u qe. on E and that RF is
superharmonic on Dz and harmonic on DR\E. For these account we refer to
Helms [15, Chapters 7 and 8]. Here, we emphasize that the global positivity and
superharmonicity of u over Dy is essential. If u were positive and superharmonic
only on a neighborhood of E, then the class @ could be empty.

PrROOF OF THEOREM 1. We prove the theorem with 49 = As + 7. Since u is
a positive harmonic function on Dg, it follows that R?"S(68) s a superharmonic
function on Dy such that RPMS(&6R) — 4 ge. on DN S(E 6R) and harmonic on
Dr\S(&,6R). Moreover, RPMS(6R) —( ge. on dDg by assumption. Hence
u= f?f NS(E6R) on DN B(£,6R) by the maximum principle; and f%f NS(E6R) s a
Green potential of a measure x supported on DN S(E 6R), ie.

u(x) = Gr(x,y)du(y) for xe DNB(E,6R).

JDHS(§,6R)
Let x,x’ e DNB(&,R) and y,y' e DNS(E,6R). Then

GR(xv yl)

WGR(X/J’)

GR(x7 y) ~

by Lemma 3. Hence

/ /
ux) > %Lms@,w) Grl(¥' 3) duly) = %u(x').
Therefore,
5(;/> ~ g}f((;” y,) uniformly for y’ € DN S(&,6R).
Similarly,
o) _ Galx )
o(x')  Gr(x',y')
Hence the theorem follows. ]

REMARK 2. The following Carleson estimate holds: If u is a positive
harmonic function on DN B(&, AgR), bounded on DN B(¢, AgR) and vanishing
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q.e. on dDNB(&, ApR), then
(3.11) u(x) < Au(ég) for xe DNB(E, R),

where 4 >0 depends only on D. In fact, let v= Gpnpe34,r)(-;Cx) With
EreDNS(E240R) and 2A40A4R <0p(Er) <24pR. Then v is a positive
harmonic function on DN B(&, ApR), bounded on DN B({, ApR) and vanishing
q.e. on DN B(&, AgR). Moreover, v < AR*™ < Av(¢g) on DN B(E, R). Hence
yields

u(x) v(x)

u(&r) =4 v(¢R)

This proves the Carleson estimate (3.11).

The Carleson estimate for the half space was proved by Carleson by the
ingenious use of the exterior condition. The same proof applies to an NTA
domain. The Carleson estimate was an important step of the proof of BHP for
an NTA domain ([17]). For a uniform domain, however, Carleson’s trick is not
applicable because of the lack of the exterior condition. In the present setting,
the Carleson estimate is not a tool for BHP, but one of the results of BHP.

<A for xe DNB( R).

Proor ofF CoroLLARY 1. By the compactness argument we can find a small
R >0 and finitely many boundary points ¢&;,..., ¢, € dD such that

KN{xeD:op(x) <R/2} c ODﬂB(éj,R),

DN B, A4)R) = DN V.

Fix x;e DNB(;, R). Then implies

" x x: for xe DNB(¢;, R).

Hence

=
=
<
o’
ﬁ
w
<
m
=
D)
)

The corollary is proved. [
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ReEMARK 3. By a similar method we can show a (nonuniform) BHP for
more wild domains, such as Holder domains and John domains. Thus we have
an analytic alternative proof of the results of Bafiuelos, Bass and Burdzy ([9],
and [8]). Balogh and Volberg [6] introduced a uniformly John domain, a
domain intermediate between a John domain and a uniform domain. They
proved a BHP for a planar uniformly John domain with uniformly perfect
boundary. Their BHP is uniform with respect to the internal metric. We can
show such a BHP for a uniformly John domain without uniform perfectness of
the boundary. This result will be treated elsewhere.

4. Proof of Theorems 2 and 3.

By and the classical technique due to Moser [19, Section 5], we
can show the Holder continuity of u/v at the boundary. Let
u

u
M(r)= sup -, m(r)= inf -—.
() DﬂB(pf,r)v () DNB(&r) D

Then oscpn e, u/v = M(r) — m(r). reads

where A7 > 1 depends only on D.

PrOOF OF THEOREM 2. We have already seen in [Theorem 1 that m(r) and
M (r) are positive and finite. Observe that M (r)v — u and u — m(r)v are positive

bounded harmonic functions on DN B(&,r) with vanishing q.e. on dD N B(E,r).
Hence Theorem 1 applied to these functions and v yields

M — ' M _
sup Mo —u A7 inf M,
DN B, r") v DNB(.r) v
sup u—m(r)v <A inf u—m(r)v7
DN B(,r) v DN B(E,r) v

where ' =r/A,. Hence

Adding the inequalities, we obtain

= M(Y) = () < 1 (M) - mlr)

A7 -1
= 0sC

Be A7+ 1 pnBEn

u
DNB(E ) U

u
.
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A7—|—1
8—10g<A7 — 1)/long.

The theorem is proved. ]

This shows with

RemArk 4. Dividing the both sides of by m(r), we obtain

oo~ = 4(5) 5 G 1) =) G =)

Since

sup
x,x'eDNBEr) U X)

it follows that

ulx) fux’) Ay ulx) fux’)
oo 1/ =4 (7) (X,XIEE%%@,R) 01/ o3 1)'

This is a multiplicative form of Hoélder continuity.

PrOOF OF COrROLLARY 2. Let xe D. The following interior Holder con-
tinuity 1s known:

osc - £A<L> osc L for 0<r<R <dp(x),
DN B(x,r) U R/ DnB(x,R)V

where A and ¢ depend only on the dimension. In particular,

(4.1) 0SC

u
DN B(x,;r) U

ro\ u
<A — for 0 <0 )
- (5D(X)) RS s OF 0 <r<dn()

We may assume that ¢ is the same as in [Theorem 2, if necessary ¢ making
smaller. The following two cases remain: dp(x) <r < R < dist(K, V) and
r<dp(x) < R < dist(K, V°).

Case 1. Jp(x) <r<R<dist(K, V). If r~R, then is obvious.
Hence we may assume that » < R’/4 with R’ = R/A4y. By definition there is
e dD with |x — | <dp(x). Observe that

B(x,r) = B(¢,2r) = B(¢,R'/2) = B(¢,AoR'/2) = B(x,R) = V.

Hence, yields
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0SC < osc u<A Y 0SC u<A a) 0SC -
DNB(x,) U — DNBE29Vv —  \R'/2) pnBER/)V — R) pnBxR)V

Thus follows.

CasE 2. r<op(x) <R<dist(K,V°. We obtain from Case 1 with
r=0p(x) that

<=

0SC gg%l(él)(x)) 0SC Z_
DN B(x,6p(x)) U R ) pnB(xR)V

This, together with (4.1), yields [1.5].

In the same way as in Remark 4 we obtain the multiplicative form of Holder
continuity, which readily implies the second required inequality in the corollary.
The remaining is obvious. The corollary is proved. ]

Let 2 be the family of all positive harmonic functions # on D vanishing
q.e. on 0D, bounded on D\B(¢,r) for each r > 0 and taking value A(xp) =1. A
function s in #: is called a kernel function at { normalized at xj.

LemMA 4. There is a constant A > 1 depending only on D such that

A<= <A for uve A:

S | =

Proor. Let wu,ve #: and let r>0. Then u and v be bounded on
DNB(E, 271r) for &' e 0DNS(E,r). Hence yields

u(x)  u(x")

for x,x' e DNB(E', 271/ Ay),

~
~

o(x)  ou(x')

where A, is as in [Theorem 1. This, together with the Harnack inequality, shows
that

(4.2) — X for x,x’ e DNS(&,r),

where the constant of comparison is independent of r. Fix x’ e DN S(¢&,r) for a
moment. By the maximum principle we have

for x e D\B(&,r).

In particular,




Boundary Harnack principle 139

Hence (4.2) becomes

% ~1 for xe D\B(¢,r).
Since r > 0 1s arbitrary small and the constant of comparison is independent of r,
the lemma follows. [

ProorF oF THEOREM 3. [Lemma 4 actually shows that J#; is a singleton.
This is proved by Ancona [4, Lemma 6.2]. For the reader’s convenience we give
a short proof below. Let

c= sup X
u,ve H; U(X)
xeD
Then 1 < ¢ < oo by Lemma 4. It is sufficient to show that ¢ = 1. Suppose to
the contrary ¢ > 1. Take arbitrary u, ve #;. Then v; = (cv —u)/(c —1) € H,
so that u < cvy = c(cv —u)/(c — 1), whence (2¢ — 1)u < ¢*v on D. This would

imply

u(x)< c? -
2170

¢ = Ssup
u,ve At U(X)
xeD

a contradiction. Thus ¢=1 and #; is a singleton. Moreover, the function
ue A is minimal. For if / 1s a positive harmonic function not greater than u,
then /1/h(xo) € #¢, so that h = h(xp)u.

Let K(x,y)=G(x,y)/G(xp,y) for xe D and ye D\{xo}. The Martin
kernel is given as the limit of K(x,y) when y tends to a boundary point. If
y — &€ 0D, then some subsequence of {K(-,y)} converges to a positive har-
monic function in #:. However, since #: is a singleton, it follows that all
sequences {K(-,y)} must converge to the same positive harmonic function, the
Martin kernel K(-,¢) at &, Therefore K(x,-) extends continuously to D\{xp}.
The kernel function K(-,¢) should be minimal. This shows the first part of the
theorem.

Let us show the Holder continuity of the kernel function. Take ¢’ € 0D and
let

y K(,¢) K(-.,¢)
M(r) N D\Sl;]ilgy),r) K( ) f) D(?g(%r) K( 75) 7
K(-,¢) ¢

o ki)
m(r) - D\lflgl(gr) K( 75) N DﬂHSl(fé,r) K( 75)
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for r > 2|¢ — &'|. In the same way as in the proof of [Lemma 4 we can show that

M(r)

b=

where 4 > 1 depends only on D. Then the same argument as in the proof of

Mheorem 2| shows that

K.y —m r (i F) —m(r) = A~ 8 0SsC K.
0B R K(-, &) = M(R) = () SA(R> (M) = m(r) _A(R) p\B(.r) K(-,&)

for R >r. Also we have a multiplicative form of Holder continuity,

K(x, &) /K(x’, &) <y (1) K(x, &) /K(x’, &
x,x'! ESDu\I:l)?(é,R) K(X, é) K(X/, f) = R x7x’esll)l\€3(g’,r) K(X, 5) K(xla é) '

Letting r = 2|¢ — &'|, we obtain that

K(-,&) &= &N
e xce <Aw )
K(x,f,)/K(x’,f')_l A(|5—5'I)8
x,x’esl)uig(é,R) K(x, é) K(X',f) = R

for R>2|¢—¢'|. Moreover, letting x’ = xo and observing K(xo,¢")/K(xo, &)
=1, we obtain

for xe D\B(, R) with R >2|¢ —¢&'|. This is the form of Hélder continuity
given by Jerison and Kenig [17, Theorem 7.1]. The theorem is proved.  []

5. Proof of Theorem 4.

Jerison and Kenig proved the Fatou theorem for an NTA domain by
using the maximal function argument. Since the harmonic measure of a uniform
domain need not satisfy the doubling property, the maximal function argument
is not applicable in our case. Instead we shall invoke the minimal fine limit
theorem and compare the minimal fine filter and nontangential filter. Without
loss of generality we may assume that D is bounded. Then the Martin boundary
of D is the Euclidean boundary dD and every boundary point is minimal
(Corollary 3). For every nonnegative harmonic function 4 on D there is a
unique measure £, on 0D such that i = Ky, = [, K(-, &) dw,(£). In this section
a regularized reduced function ﬁf is taken with respect to D. For simplicity we
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write Kz = K(-,¢). A set E < D is said to be minimally thin at & e dD if the
regularized reduced function R,ﬁ is a Green potential. Our proof of is
based on the minimal fine limit theorem (see [3, II, Appendix], and [20]).

THEOREM B. Let h = Ky, and H = Kuy; be positive harmonic functions on
D. Then, H/h has minimal fine limit duy/duw, for w, almost every boundary point
E. That is, there is a set E minimally thin at ¢ such that

. H(x) duy
im0 = dg,
xeD\E

will follow from Theorem B and the following lemma. Let
e dD. We say that {x;} is a nontangential sequence converging to ¢ if there is
o« > 0 such that x; € I',(¢) for all large j. For 0 < a <1 we consider the union
B = U x],aéD (x;)). This is a nontangential #-set introduced by Hunt and
Wheeden

LEMMA 5. Let # = Ujoil B(x;,adp(x;)) be a nontangential #-set at ¢ € 0D as
above. Then A is not minimally thin at .

ProOF. The proof is similar to [16]. However, we avoid the harmonic
measure of D, since it does not satisfy the doubling property. Without loss of
generality we may assume that 4 < DN B(&, R) and xo € D\B(, AR) for small
R >0 and sufficiently large 4 >0. Let a<a' <a” <1. By the Harnack
inequality K: ~ K¢(x;) on B(x;,adp(x;)) with constant of comparison independent
of j. Hence the regularized reduced function of K: to B(x;,adp(x;)) with
respect to B(x;,a"dp(x;)) is comparable to Kg(x;) on S(xj,a'dp(x;)) and so
S RK(X’ () Therefore, the Harnack inequality and the boundary Harnack

principle (Theorem 1) yield

R[lj(xj,aﬁp(xj))

¢

~K: on DNS(, (1+a)lx;— &),

since IQ,?EX"’WSD(X")) is a positive harmonic function on D\C(x;,adp(x;)) vanishing

g.e. on dD. By the maximum principle
(5.1) A = A7 K (x0) < RO () < AL

Now let %= U]. kB(xj,aép(xj)) and hy = ;?ck Then  /x(xp) >
ﬁgfx"’“%(xk))(xo) >A>0 by [5.I) Hence /i reduces to a positive harmonic
function / on D with A(x) > A. Observe that i1/h(x) is a kernel function at ¢.
Hence h/h(xo) = K: by the proof of Mheorem 3. It is known the balayage
operation is idempotent ([13, Section VI.3 (h)]), so that

R? —

p#h  _ pBr _
<
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Letting k — o0, we obtain R/ =h and hence R{ =K. Thus # is not
minimally thin at ¢, ’ O

PrROOF OF THEOREM 4. Observe that the harmonic measure wp of D is given
by dw} (&) = Ke(x) dpy (E), where g, is the representing measure of the constant
function 1. Hence wp and y; are mutually absolutely continuous. It follows
from Theorem B that u# has minimal fine limit at £ € 0D a.e. wp. Take such
e dD. Let us prove that u has nontangential limit at &, If u failed to have
nontangential limit at &, then there would exist nontangential sequences {x;}
and {x/} converging to ¢ such that limsup;_,, u(x;) <liminf; . u(x;). By the
Harnack inequality

limsup u(x) < lim i?f u(x),
— X—=
3cce’g xes'

where % = U;il B(xj,adp(x;)) and 4’ = U;; B(x},adp(xj)) with sufficiently
small a > 0. says that # and %’ are not minimally thin at &, This
would imply that u fails to have minimal fine limit at £, a contradiction. []

REMARK 5. The above proof says that if /=Ky, and H = Kuy are
positive harmonic functions on D, then, H/h has nontangential limit du /dy, for
W, almost every boundary point.

ProoF OfF ProposITION 1. The construction of D and E is easy. Consider
the unit ball B(0,1) with Whitney decomposition U]il Q; (see [21, Chapter VI]).
Let y; be the center of Q; and let D = B(0, 1)\U]f;1{y]} and E = U;il{yj} We
can easily observe that D is a uniform domain. In fact, suppose x;,x; € D. If
these points lie in the same Whitney cube, then it is easy to find a curve y
connecting x; and x; satisfying and (1.3). If these points lie in two different
Whitney cubes, say Q; and Q», then the boundaries of O, and @, can be joined
by a curve y satisfying and (1.3); and then each x; can be connected with the
boundary of Q; with an appropriate curve. See Figure 4.

Now let us construct a harmonic function # on D. By differentiating the
fundamental harmonic function j+ 2 —n times, we obtain a harmonic func-
tion H;(x) on R"\{0} homogeneous of degree —j for j>n—1. Let r; be
the distance from y; to the boundary of Q; and let M;(f) = supg g, |H;(x)|
for 0<p<1/2. By the maximum principle |H;(x— y;)| < M;(f) for
x € R"\C(y;,Br;). Let

~ Hilx - )

0= 2 )
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Figure 4. D = B(0,)\(JZ,{y;} and I',(¢).

Then u is a harmonic function on D such that

© N H (x — v 0 ©
(5.2) lu(x)| < 21% < 2_1:]12 < oo on D\}_Jl C(y;, prj).

Let a=p"-2>0. If xeI,(&) for £€5(0,1), then
rp<ly =&l <=yl +Ix =&l <lx =yl + (1 +2)dp(x)
< (2+a)fx -y =B x - Vil
whence x ¢ C(y;,fr;). Hence (5.2) means that u is nontangentially bounded on

S(0,1) = dD\E. Obviously, Ujoil{ y;} is of harmonic measure 0. Hence u is
nontangentially bounded a.e. wp on dD. On the other hand we have

wp V=20 Mi(B/2)

=2/,
sGpry)  Mi(B) M;(B)

Hence

2! 1
sup [u(x)] = 5= 5= o
S(yi ri/2) 2 j# i]2

as i — co. For every (e S(0,1) we find a subsequence {y;} nontangentially
converging to ¢ with respect to B(0,1). Then (), S(y;,pr;/2) is nontangential
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at ¢ with respect to D. Hence u fails to have nontangential limit at every
£e S(0,1) =0D\E. The proposition follows. O]

REMARK 6. Let 0 < p; <r;/2 be sufficiently small. Then

B(0, 1)\U;il C(y;,p;) is a bounded regular uniform domain for which the local
Fatou theorem does not hold.
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Note added in proof. After the submission of the final form of the paper, the
author was aware that F. Ferrari, (J. Fourier Anal. Appl. 4 (1998), 447-461)
gave an analytic proof of a boundary Harnack principle for a Holder domain.
His result is not scale invariant.
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