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Expansive invertible onesided cellular automata

By Mike Boyle and Alejandro Maass
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Abstract. We study expansive invertible onesided cellular automata (i.e., expansive

automorphisms of onesided full shifts) and ®nd severe dynamical and arithmetic con-

straints which provide partial answers to questions raised by M. Nasu [N2]. We employ

the images and bilateral dimension groups, measure multipliers, and constructive com-

binatorial characterizations for two classes of cellular automata.

1. Introduction.

Let A be a set of cardinality N, let N denote the nonnegative integers, and denote

an element of AN as x � x0x1x2 � � � : An invertible onesided cellular automaton (c.a.) is

a bijection F :A
N !AN given by some local rule f :A

r !AÐfor all n, �Fx�n �

f �xn � � � xn�rÿ1�. The onesided full shift on N symbols, SN , is the local homeomorphism

A
N !AN de®ned by setting �SNx�i � xi�1 for all i. F and SN commute; in the

language of symbolic dynamics, F is an automorphism of SN .

We prove that if F is assumed to be a shift of ®nite type (which we show follows

from weaker assumptions), then F must be shift equivalent to some twosided full shift

on J symbols, where the same primes divide J and N, and the maps F and SN have

a common measure of maximal entropy. These results are proved in Section 4 by

studying the relationship between the images dimension group of SN (introduced in

[BFF]) and the bilateral dimension group of F (introduced in [Kr1]), which are reviewed

in Section 3.

In Section 6 we prove that if F is assumed to be a shift of ®nite type and N

is a power of a prime p, then the number J above satis®es JV p2. The proof uses

``measure multipliers'' (reviewed in Section 5), developed in [B] to generalize Welch's

theory [H ] of compatible extension numbers to shifts of ®nite type.

In Section 7, we make three conjectures about the possible dynamics of an

expansive automorphism of SN . Two of these were originally introduced by M. Nasu

in the form of questions, to which our results give partial answers.

In Section 8 we give a constructive combinatorial characterization of the invertible

onesided cellular automata F such that the shortest local rules for F and Fÿ1 have radius

1. (Any invertible onesided c.a. is in an obvious way topologically conjugate to such an

F.) In Section 9 we use this characterization to develop a constructive combinatorial
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characterization of a certain class of expansive c.a., and for this class we verify all our

conjectures.

In our situation, F is expansive and S � SN is positively expansive (corresponding

to F and not S being invertible). For the case that F and S are both positively

expansive, see [N2], [N3], [Ku], [BM] and [BFF]. For the case that F and S are both

expansive, see [N2] and [BL]. This last case is much less rigid and at present much

more mysterious than the others (see Remark 4.7).

The ®rst-named author thanks the Departamento de IngenierõÂa MatemaÂtica of the

Universidad de Chile for ®nancial support and warm hospitality in his December 1998

visit to Santiago, which made this collaboration possible.

2. Symbolic background.

In this section we recall some elementary facts about symbolic dynamics. For a

thorough introduction to the symbolic dynamics, see [K2] or [LM].

For a positive integer J, let J be a set of cardinality J; our default choice will be

f0; 1; . . . ; J ÿ 1g. Let SJ denote the space
Q

n AZ J. We view a point x in SJ as a

doubly in®nite sequence of symbols from J, so x � � � � xÿ1x0x1 � � � : The space SJ is

compact metrizable; one metric compatible with the topology is dist�x; y� � 1=�jnj � 1�,

where jnj is the minimum nonnegative integer such that xn 0 yn. The shift map

s : SJ ! SJ is the homeomorphism de®ned by the rule �sx�i � xi�1. The topological

dynamical system �SJ ; s� is called the full shift on J symbols (J is the symbol set). If S

is a nonempty compact subset of SJ and the restriction of s to S is a homeomorphism,

then �S; sjS� is a subshift. (We may also refer to either S or sjS as a subshift, also we

may suppress restrictions from the notation.) Equivalently, there is some countable set

W of ®nite words such that S equals the subset of SJ in which no element of W

occurs. A subshift �S; s� is a shift of ®nite type (SFT) if it is possible to choose a ®nite

set to be a de®ning set W of excluded words.

A homomorphism j of subshifts is a continuous map between their domains which

commutes with the shifts. A homomorphism is N-to-1 if every point in the range space

has exactly N preimages. The map is constant-to-1 if it is N-to-1 for some integer

N. An endomorphism is a homomorphism from a subshift to itself. (Thus a one-

dimensional cellular automaton map is the same thing as an endomorphism of some full

shift on J symbols.)

Two continuous maps F and G are topologically conjugate, or isomorphic, if there

exists a homeomorphism h such that Fh � hG. In this case the map h is a topological

conjugacy. A topological conjugacy or isomorphism of subshifts is a bijective homo-

morphism between them.

Now suppose that X and Y are subshifts, m and a are nonnegative integers

(standing for memory and anticipation), F is a function from the set of X-words of

length m� a� 1 into the symbol set for Y, and j is a homomorphism from X to Y

de®ned by the local rule j�x�i � F�xiÿm � � � xi�a�. The homomorphism j is called a

block code (a k-block code if k � m� a� 1). The ``Curtis-Hedlund-Lyndon Theorem''

is that every homomorphism of subshifts is a block code.
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If A is an m�m matrix with nonnegative integral entries, let Graph�A� be a

directed graph with vertex set f1; . . . ;mg and with A�i; j� edges from i to j. Let EA be

the edge set of Graph�A�. Let SA be the subset of �EA�
Z obtained from doubly in®nite

walks through Graph�A�; that is, a bisequence x on symbol set EA is in SA if and only if

for every i in Z, the terminal vertex of the edge xi equals the initial vertex of the edge

xi�1. Let sA � sjSA
. The SFT �SA; sA� (or SA or sA) is called an edge shift. The edge

shift s�J� is a full shift sJ . Any SFT is topologically conjugate to some edge SFT.

Let XA be the space of onesided sequences obtained by erasing negative coordinates

in SA: that is, if a point x is in SA, then the onesided sequence x0x1x2 � � � is in XA, and

XA contains only such points. The shift map rule �sx�i � xi�1 de®nes a surjective local

homeomorphism SA : XA ! XA. The system �XA;SA� is a onesided shift of ®nite type.

We will write a onesided full shift on N symbols as �X�N� � XN ;SN�, where XN �AN

for some alphabet A with N symbols. If X is a nonempty compact subset of XN and

the restriction of SN to XN is an endomorphism, then �X ;SN� is a onesided subshift.

Every homomorphism of onesided subshifts is given by a r� 1-block code or local rule

with memory m � 0.

Williams [W] explained how to associate to a onesided SFT SA an essentially

canonical matrix, the ``total amalgamation'' of A. Correspondingly, onesided SFTs are

much more rigid than twosided SFTs ([W], [BFK], [N2], [BFF]). One striking result in

this direction is due to Nasu: if F is a totally transitive (every power of F has a dense

orbit) automorphism of a onesided SFT S, then S must be topologically conjugate to a

onesided full shift ([N2], Thm. 3.12). [This is essentially because F induces a map on

the vertices of the total amalgamation (by Lemma 3.10 of [N1], or (2.23) and (2.25) of

[BFK]), so some power of F ®xes those vertices.] This result of Nasu justi®es a focus on

the dynamics of automorphisms of SN vs. other onesided SFTs.

An SFT is called irreducible if it has a dense forward orbit, and it is mixing if

whenever words U and W occur in points of the SFT, for all but ®nitely many positive

n there is a word V of length n such that UVW occurs. A nonnegative matrix A is

irreducible if for every i; j there exists n > 0 such that An�i; j� > 0, and it is primitive if

n can be chosen independent of �i; j�. An irreducible matrix A de®nes an edge shift

which is an irreducible SFT, and a primitive matrix A de®nes an edge shift which is a

mixing SFT.

The (topological) entropy h�s� of a subshift �X ; s� (twosided or onesided) is the

growth rate of its words, that is, lim�1=n� logafx1x2 � � � xn : x A Xg. For an SFT sA, the

entropy is log�lA�, where lA is the spectral radius of A. An irreducible SFT sA has a

unique measure m of maximal entropy; that is, m is a sA-invariant Borel measure, its

measure theoretic entropy equals h�sA�, and there is no other such measure.

Twosided SFTs sA, sB are shift equivalent if their de®ning matrices satisfy certain

equations which are equivalent to the following condition: for all su½ciently large k,

�sA�
k and �sB�

k are topologically conjugate. An SFT sA is shift equivalent to a full

shift on J symbols i¨ for some k the characteristic polynomial of A equals xk�xÿ J�.

It is still unknown whether such SFTs must be conjugate to full shifts (contrast [KR]).

A continuous map j from a compact metric space X to itself is positively expansive

if there exists e > 0 such that whenever x and x 0 are distinct points in X, there is a
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nonnegative integer k such that dist�jk�x�; jk�x 0�� > e. This property does not depend

on the choice of metric compatible with the topology. Now if j is an endomorphism

of a twosided subshift S and k A Z�, then let x̂�k� denote the sequence of words

��j i�x�ÿk � � � j
i�x�k� : i � 0; 1; 2 . . .�. It is easy to check that j is positively expansive i¨

there exists k A Z� such that the map x 7! x̂�k� is injective i¨ j is conjugate to a

onesided subshift.

Similarly, a homeomorphism F from a compact metric space to itself is expansive

if there is some e > 0 such that for all distinct x; x 0, there is an integer k such that

dist�F k�x�;F k�x 0�� > e. Expansiveness is an important ([Hi], [AH ]) and multifaceted

([BL], Sec. 5) dynamical property. If F is an automorphism of a onesided subshift X

and k A N , let ~x�k� denote the sequence of words ��F i�x�0 � � �F
i�x�k� : i A Z�. Then F

is expansive i¨ there exists k A N such that the map hk : x 7! ~x�k� is injective i¨ F is

conjugate to a twosided subshift. If F is expansive with local rule f : x0 � � � xr 7! �Fx�0,

r > 0, then the map hrÿ1 must be injective. (If hrÿ1 collapses x and y, and W � W0 � � �

Wj, then one easily checks that hr�j collapses Wx and Wy.)

3. Two dimension groups.

In this section we review the information we will need on two dimension groups

arising in symbolic dynamics.

Let S be a local homeomorphism of a compact zero dimensional metrizable space

X. Let CO�X � be the collection of clopen subsets of X. Let ZCO�X� denote the

free abelian group with generators CO�X �. Let H�S� be the subgroup of ZCO�X �

generated by the following relations:

(i) SCi @C if C is the disjoint union of the clopen sets Ci.

(ii) C@D if C and D are clopen sets and there exists n > 0 such that jnjC and

jnjD are injective and jnC � jnD.

The images group Im�S� de®ned in [BFF] is the quotient ZCO�X�=H�S�. To an

n� n integral matrix A, associate the direct limit group

G�A� � lim
�!
A

Z
n:

The group G�A� can be presented concretely as a subgroup of a ®nite dimensional vector

space (see pp. 14±15 of [BMT] and Sec. 7.5 of [LM]). For a onesided SFT SA, we

have Im�SA�GG�A� ([BFF], Thm. 4.5). For S � SN , let m be the uniform measure

(the measure of maximal entropy), i.e. if x�0; k� denotes fy A XN : yi � xi; 0U iU kg,

then m�x�0; k�� � Nÿ�k�1�. Then there is an isomorphism Im�SN� ! Z�1=N� given by

�SniCi� 7! Snim�Ci�.

Next, let F : X ! X be a subshift. We will similarly de®ne the bilateral dimension

group Bilat�F � as a quotient of ZCO�X�. Let K�F � be the subgroup of ZCO�X �

generated by the following relations:

(i) SCi @C if C is the disjoint union of the clopen sets Ci.

(ii) x�i; j�@ y�i; j� if for all sequences w � � � �wiÿ2wiÿ1 and z � zi�1zj�2 . . . ; the

point wxi � � � xjz is in X if and only if the point wyi � � � yjz is in X.

Then Bilat�F� is the quotient group ZCO�X�=K�F�. This is one of the dimension
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groups introduced to symbolic dynamics by Krieger [Kr1]. The de®nition of Bilat�F �

in ([Kr1], Section 2) appeals to a larger theory; we have given an equivalent but more

direct de®nition suitable to our needs. Following Krieger (personal communication),

we use the adjective ``bilateral'' to distinguish this dimension group from the past and

future dimension groups of [Kr1], which involve onesided splittings.

The groups Im�S� and Bilat�F� carry order structures which make them dimension

groups. We will not need to consider these order structures in the current paper.

If F is SFT and S is a local homeomorphism such that SF � FS, then there is an

induced homomorphism S� : Bilat�F� ! Bilat�F�, given by �SniCi� 7! �SniS�Ci�� when

the restriction of S to each Ci is injective. If F is an SFT sA, with A n� n, then from

Prop. 3.1 of [Kr1] we have

Bilat�F �GG�AnA t�:�3:1�

Here the tensor product AnA t is an n2 � n2 matrix with �AnA t���i; j�; �i 0; j 0�� �

A�i; i 0�A t� j; j 0�. When sA is shift equivalent to a full shift sJ , this means

Bilat�F�GZ�1=J �:�3:2�

Let G be a torsion free abelian group. We will say G has ®nite rank if it is

isomorphic to a subgroup of Qk for some k < y. In this case, the rank of G is the

minimal such k. If a : H ! G is a group homomorphism, where H has rank k and G

has rank l, then (after identifying G and H with subgroups of Qk and Ql) it is easily

checked that the map a is the restriction of a unique rational vector space homeo-

morphism ~a : Qk ! Ql. Consequently, we have the following well known

Fact 3.1. Suppose H and G are countable torsion free abelian groups of equal ®nite

rank and a : H ! G is a surjective group homomorphism. Then a is injective, and

therefore an isomorphism.

For any subshift �S; s�, let W�s� denote the set of words fxi � � � xj : x A Sg. De®ne

an equivalence relationA on W�s� by setting V AV 0 i¨ for all words U and W,

UVW A W�s� , UV 0W A W�s�:

A subshift is so®c i¨ the set ofA equivalence classes is ®nite. It is easy to see that for

F so®c, the rank of Bilat�F� is ®nite.

Proposition 3.2. Suppose s is so®c and rank Bilat�s� � 1. Then s is SFT and s is

shift equivalent to some full shift.

Proof. If s is isomorphic to an SFT sA, then by equation (3.1) the matrix A has

just one nonzero eigenvalue, and therefore sA is shift equivalent to a full shift.

To deduce that s must be SFT we will sketch an argument which requires some

familiarity with so®c systems. There is an SFT sB which is a topologically canonical

``follower set cover'' of the so®c shift s, and here G�B� is isomorphic to the future

dimension group of s ([Kr2], Thm. 3.5). It is easy to check that the future dimension

group of s must have rank 1 if Bilat�s� has rank 1. This forces the SFT sB to be

irreducible. However, for a nonSFT so®c shift, this SFT sB must be reducible, because

a nonSFT so®c shift has ``non-F-®nitary'' points ([Kr2], Prop. 4.3). r
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Open Problem 3.3. Suppose s is a subshift and Bilat�s� has ®nite rank. Must s be

so®c?

Open Problem 3.4. Suppose s is a subshift and the rank of Bilat�s� is 1. Must s

be SFT?

Of course an answer yes to the former problem implies an answer yes to the latter.

4. Full shifts and primes.

Throughout this section, let S � SN denote the onesided full shift on N symbols

with domain X � XN �
Q

y

i�0f0; 1; . . . ;N ÿ 1g, and let F be an expansive automorphism

of S. We will use some dimension group techniques to prove that if F is SFT, then F is

shift equivalent to some twosided full shift on J symbols, sJ , where N and J are divisible

by the same primes.

Let �i0i1 � � � ir�S denote fx A X : xj � ij; 0U jU rg. Any clopen set in X is a ®nite

union of sets of this form. Let S� denote the homomorphism Bilat�F� ! Bilat�F �

induced by �C � ! �SC �, when SjC is injective, as described in the previous section.

Proposition 4.1. (i) The homomorphism S� : Bilat�F� ! Bilat�F� is surjective.

(ii) If S� is injective then Bilat�F �GZ�1=N�.

(iii) If Bilat�F � has ®nite rank (in particular, if F is SFT or so®c), then S� is an

isomorphism.

Proof. (i) Every clopen set is a disjoint union of sets of the form C � �i0 � � � ir�S, so

every element of Bilat�F � has the form �SnCC �. Surjectivity of S� then follows from

the observation

S� : ��0i0 � � � ir�S� 7! ��i0 � � � ir�S�:

(ii) Suppose S� is injective. Then any two S-cylinders of equal length de®ne

equivalent elements of Bilat�F � (that is, ��i0 � � � irÿ1�S� � ��i 00 � � � i
0
rÿ1�S�), because

�S��
r��i0 � � � irÿ1�S� � �X � � �S��

r��i 00 � � � i
0
rÿ1�S�:

For every positive integer r, X is the disjoint union of N r S-cylinders of length r. Now

there is a unique homomorphism t : Bilat�F� ! Q such that t��X �� � 1; this injective

map t sends each ��x0 � � � xrÿ1�� to Nÿr. The image of this map is Z�1=N�.

(iii) If Bilat�F� has ®nite rank, then by the Fact 3.1, the surjection S� must be an

isomorphism. r

Corollary 4.2. If F is so®c (in particular, if F is SFT), then F is an SFT which

is shift equivalent to some two-sided full shift sJ .

Proof. If F is so®c, then Bilat�F � has ®nite rank. Then by Proposition 4.1, the

rank of Bilat�F � is 1. It follows from Proposition 3.2 that F is an SFT shift equivalent

to a full shift. r

Remark 4.3. Let J be the integer such that F is shift equivalent to sJ . Then SN

may be viewed as an N-to-1 endomorphism of some power of sJ , and it follows from
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Welch's theorem ([H ], Theorem 14.9) or its generalizations ([B], [T1], [T2]) that every

prime dividing N must also divide J. But to show the same primes divide N and J

requires more, since (for example) the rule �jx�n � 3xn � xn�1 (mod 6) de®nes a 2-to-1

but not positively expansive endomorphism j of s6.

Proposition 4.4. (i) The identity map on clopen subsets of X induces a group

epimorphism Bilat�F� ! Im�S�.

(ii) This epimorphism is an isomorphism if the rank of Bilat�F � is ®nite.

Proof. Recall from Section 3 the de®nitions

Bilat�F � � ZCO�X �=K�F �;

Im�S� � ZCO�X �=H�S�:

To prove (i), we will prove that H�S� contains K�F �. Suppose not. Then there is

a formal sum SniCi in ZCO�X� which lies in K�F� but not in H�S�. Using the

subdivision relation common to both K�F � and H�S�, after passing to a di¨erent sum

we may assume each Ci is an S-cylinder of the same length, r. Now Sni 0 0 because

SniCi B H�S�. But then �S��
r
: �SniCi� 7! Sni�X �0 0. This contradicts SniCi A K�F �,

and ®nishes the proof of (i).

If the rank of Bilat�F� is ®nite, then by Proposition 4.1 this rank is 1, and the

surjective homomorphism of rank 1 groups Bilat�F� !!! Im�S� must be an isomor-

phism. r

Theorem 4.5. If F is so®c, then F is SFT and F is shift equivalent to some sJ , a full

shift on J symbols, where J and N are divisible by the same primes.

Proof. After Corollary 4.2, it remains to show that J and N are divisible by

the same primes. However, Bilat�F�GZ�1=J� and Im�S�GZ�1=N�. Now the result

follows from Proposition 4.4. r

Theorem 4.6. Suppose F is SFT. Then F and S have the same measure of

maximal entropy.

Proof. In this case we have Bilat�F�G Im�S� as quotients of ZCO�X�, and

Im�S�GZ�1=N�. There is a unique homomorphism t from this group into R which

sends �X � to 1. Let mS and mF denote the measures of maximal entropy for S and F.

For �C � in Im�S�, it is known that t : �C � 7! mS�C� ([BFF], Sec. 9). Likewise for �C � in

Bilat�F�, since F is irreducible SFT, t : �C � 7! mF �C� ([Kr1], Theorem 3.2). Therefore

mS � mF .

Remark 4.7. A similar dimension group proof scheme was used ([BFF], Theorem

9.1) to show that commuting onesided mixing SFT's have the same measure of maximal

entropy. In contrast, Nasu ([N2], Sec. 10) has given an example of commuting

twosided mixing SFTs sA and sB such that Q�lA�0Q�lB�. This implies that the

measures of maximal entropy for sA and sB do not assume the same set of values on

clopen sets, and therefore are not equal. For this example, in addition G�A� and G�B�

do not even have the same rank.
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5. Multipliers.

In this section we give background for the ``multipliers'' we use for the entropy

constraints of the next section.

Let A be an irreducible nonnegative integral matrix with spectral radius l > 1. Let

sA : SA ! SA be the associated edge SFT. Let u and v be positive vectors such that

uA � lu, Av � lv and uv � 1. For a symbol (edge) e, we let u�e� denote ui where i is

the initial vertex of e, and similarly v�e� � vj where j is the terminal vertex of e.

Let x�a; b� � fy A SA : yi � xi; aU iU bg. Then the measure m of maximal entropy

for the edge SFT sA is determined by

m�x�a; b�� � u�xa�l
ÿ�bÿa�1�v�xb�:

For x � � � � xÿ1x0x1 � � � in SA, let pÿ�x� � � � � xÿ2xÿ1 and let p��x� � x0x1 � � � : Let

�e� denote fx A SA : x0 � eg. Let �e�� � p��e� and �e�ÿ � pÿ�e�. Then �e� � �e�ÿ � �e��.

On �e�ÿ determine a Borel measure me
ÿ by setting

me
ÿ�x�ÿn;ÿ1�� � u�xÿn�l

ÿn

and on �e�� determine a Borel measure me
� by

me
��x�0; n�� � lÿ�n�1�v�xn�:

De®ne the measure me as the restriction of m to �e�. (Abusing notation: m �
P

e m
e).

For any Borel set C in XA, de®ne

mÿ�C� �
X

e

me
ÿ�C V �e��;

m��C� �
X

e

me
��C V �e��:

Then for any Borel set C,

mÿ�sAC� �
1

l
mÿ�C�;

m��sAC� � lm��C�:

We will call �mÿ; m�� a conditional decomposition of m. (The conditional decom-

position is a simpli®ed version of ideas from the ergodic theory of smooth hyperbolic

systems [Ma], [S ]. The measures me
ÿ and me

� can be viewed as conditional measures

obtained from me, related closely to the conditional measures on stable and unstable sets

discussed in Sec. 3 of [B].)

We made a concrete choice of �mÿ; m�� with respect to a particular Markov

partition f�e�g and choice of associated eigenvectors u; v. We could have obtained

another conditional decomposition of m with another Markov partition. We could

also have obtained a conditional decomposition above using the vertex sets fx A XA :

the initial vertex of x0 is ig in place of the edge sets �e�. In any of these cases, for the

resulting conditional decomposition �~mÿ; ~m�� of m, one can see from Prop. 3.2 of [B] that
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there will be a constant c > 0 such that

~mÿ � cmÿ; ~m� �
1

c

� �

m�:

For the special case that sA � sJ , a full shift on J symbols, we have an especially simple

choice of �mÿ; m��:

mÿ�x�ÿn;ÿ1�� � Jÿn;

m��x�0; n�� � Jÿ�n�1�:

We can now summarize the background we need.

Theorem 5.1. Suppose sA is an irreducible SFT, A has spectral radius l > 1, and j

is an N-to-1 local homeomorphism commuting with sA. Let �mÿ; m�� be a conditional

decomposition of the measure of maximal entropy m of sA. Let C be any nonempty

clopen set such that the restriction of j to C is injective.

(i) The ratios lj � �mÿ�jC��=�mÿ�C��, rj � �m��jC��=�m��C�� do not depend on C

or the particular choice of conditional decomposition.

(ii) ljrj � N.

(iii) m�jC� � Nm�C�.

(iv) The numbers lj and rj are units in the ring Ol�1=l�. (If l is an integer J, then

this means the numbers lj and rj are products of integral powers of primes dividing J.)

(v) If c is also a local homeomorphism commuting with sA, then ljc � ljlc and

rjc � rjrc.

(vi) Suppose V is homeomorphism such that VjVÿ1 � ~j and VsAV
ÿ1 � s~A, so l~j

and r~j may be computed w.r.t. s~A. Then lj � l~j and rj � r~j.

Remark 5.2. If sA is an irreducible SFT and j is a continuous map such that

jsA � sAj, then j is open i¨ j is constant to 1 i¨ j is a local homeomorphism (this is

contained in Nasu's Theorem 6.5 in [N1]).

Example 5.3. Let sA � sJ , the full shift on J symbols. If N is a positive integer

dividing a power of J, and l; r are units on Z�1=J� such that lr � N, then there exists an

N-to-1 endomorphism j of sJ with lj � l, rj � r (this can be proved by the method of

Proposition 7.4). Here are a few examples.

(1) j � s. Then lj � 1=J, rj � J, N � 1.

(2) �jx�n � xnÿ1 � xn�2 (mod J). Then lj � J, rj � J 2, N � J 3.

(3) �jx�n � xn�1 � xn�3 (mod J). Then lj � 1=J, rj � J 3, N � J 2.

(4) J � 6 and �jx�n � 3xn � xn�1 (mod 6). Then lj � 1=3, rj � 6, N � 2.

Remark 5.4. For sA a full shift, everything in Theorem (5.1) is a translation of

(some of ) Welch's results as reported by Hedlund (Sections 14±15 of [H ]). Those

results have combinatorial statements which do not generalize to arbitrary irreducible

SFT's. The generalizations, using measures, are in Sec. 3 of [B]. The results in [B] like

Welch's are more general than the consequences collected in Theorem 5.1, but proofs for

Theorem 5.1 can be obtained from the results of [B]. Caveat: our numbers lj, rj are

the reciprocals of the numbers L�j�, R�j� used in [B].
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Remark 5.5. In the next section we only need consider endomorphisms j of sA in

the case that sA is shift equivalent to some full shift. This means that for large enough

k; �sA�
k is conjugate to a full shift. The multipliers lj; rj obtained by considering j an

endomorphism of sA are the same as those obtained by considering j as an endo-

morphism of �sA�
k, so here one may recover the full shift description of the multipliers

by passing to a power of sA.

6. Entropy and primes.

Below, S is the full onesided shift on N symbols and F is an automorphism of

S such that F is conjugate to an irreducible SFT sA; that is, there is a homeomorphism

U such that UFUÿ1 � sA. Then USUÿ1 � j is an N-to-1, positively expansive local

homeomorphism commuting with sA. We regard �sA; j� as simply another presentation

of �F ;S�. By Theorem 5.1(vi), the numbers lj; rj do not depend on the choice of sA

and U, so we may de®ne lS � lj, rS � rj.

Theorem 6.1. Let F be an automorphism of S, the onesided full shift on N symbols

with N > 1. Suppose F is conjugate to some SFT sA. Then lS > 1 and rS > 1. If N is

a power of a prime p, then so are lS and rS.

Proof. Let XN �
Q

nV0f0; 1; . . . ;N ÿ 1g, so F and S act on XN . Let �i0 � � � ir�S
denote fx A XN : xj � ij; 0U jU rg. Then �i0 � � � ir�S 7! �0i0 � � � ir�S induces a map g0 on

clopen sets, g0C � �Sÿ1C�V �0�S. Now view g0 in the �sA; j� presentation and consider

C any nonempty clopen set. For k > 0, the restriction of j
k to g

k
0C is injective, and

j
k�gk0C� � C. Because the diameter of gk0C goes to zero as k goes to y, for large k we

must have

m��g
k
0C�

m��C�
< 1;

and therefore

�rj�
k �

m��j
k�gk0C��

m��g
k
0C�

�
m��C�

m��g
k
0C�

> 1;

so rj > 1. Similarly lj > 1. For N a power of a prime p, Theorem 5.1(iv) now implies

that lj and rj must be positive integers divisible by p. r

Corollary 6.2. Suppose S is the onesided full shift on N symbols, such that N is

a power of a prime p and S has some automorphism F which is conjugate to a so®c shift.

Then p2 divides N.

Proof. By Corollary 4.2, F must be conjugate to an SFT sA such that sA is shift

equivalent to a full shift on J symbols, where J is also a power of p. By Theorem 6.1,

the numbers lS; rS must be positive powers of p. By Theorem 5.1(iii), N � lSrS, so p2

divides N. r

So for example, no automorphism of the onesided full shift on 5 symbols can be

conjugate to an SFT (or so®c shift).
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7. Conjectures.

We will make three conjectures. Let SN be the onesided full shift on N symbols.

Conjecture 7.1. Suppose F is an expansive automorphism of SN . Then F is SFT.

Conjecture 7.2. Suppose F is an automorphism of SN and F is conjugate to an

SFT. Then F is conjugate to a full shift.

Conjecture 7.3. Suppose there exists an automorphism F of SN � S, such that F

is conjugate to an SFT and p is a prime dividing N. Then p divides both lS and rS, and

in particular p2 divides N.

The conjectures 7.1, 7.2 are possibilities introduced by Nasu as questions (Question

3.a(2), p. 46, and Question 3.b, p. 50, in [N2]). Independently, Nasu [N2] and

Shereshevsky and Afraimovich [SA] proved Conjecture 7.2 in the case that �F ;S� is

conjugate to a pair �sJ ; f� such that f is given by a local rule xi � � � xj 7! �fx�0 such that

i; j are positive integers and the local rule is bipermutive. Our Theorems 4.5 and 6.1

support 7.1 and 7.2. From Theorem 9.2 it follows that all the conjectures hold for the

class of expansive automata we consider in Section 9 (those satisfying r�F� � r�Fÿ1� �

~r�F � � 1). The rigid combinatorics underlying Theorem 9.2 suggest rigid combinatorics

in general, as in the algebraic expansive situation considered by Kitchens [K1].

Therefore we elevate Nasu's questions to conjectures, and add the third conjecture.

The conjectures together with our results imply the following: if F is an expansive

homeomorphism of SN , then F is conjugate to a full shift sJ , such that

(i) J and N are divisible by the same primes, and

(ii) if p is a prime dividing N, then p2 divides N.

Proposition 7.4. Suppose J and N satisfy the conditions (i) and (ii) above. Then

there is an automorphism F of SN such that F is conjugate to sJ .

Proof. First suppose N � pk and J � pl, with lV 1 and kV 2. De®ne an N-

to-1 endomorphism j of sp by the rule �jx�n � xÿ1 � xkÿ1 (mod p). Then j is conjugate to

SN and it commutes with �sp�
l which is isomorphic to sJ .

Next suppose N � p
k�1�
1 � � � p

k�t�
t , with each k�i�V 2, and J � p

l�1�
1 � � � p

l�t�
t with each

l�i�V 1. Let N�i� � p
k�i�
i and J�i� � p

l�i�
i . Construct Fi as in the preceding para-

graph, with Fi an automorphism of SN�i� and Fi conjugate to sJ�i�. Now F �
Q t

i�1 Fi is

an automorphism of S �
Q t

i�1 SN�i�. Here S is conjugate to SN , and F is conjugate

to sJ . r

8. Construction of one-sided invertible cellular automata.

Let F : A
N ! A

N be a onesided invertible cellular automaton. Let r�F� denote

the radius of the shortest local rule de®ning F: that is, r�F � is the minimal nonnegative

integer r such that for all x, the symbol �Fx�0 is determined by x0 � � � xr; analogously we

de®ne r�Fÿ1�. In this section we give a constructive combinatorial characterization of

the invertible F such that r�F � � r�Fÿ1� � 1. We remark, it is possible to have r�Fÿ1�

larger than r�F �.
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For any positive integer k, by grouping symbols into k-blocks we can view F as a

map F �k�
: �Ak�N ! �Ak�N ; and if 0 < r�F�U k, then r�F k� � 1. So any onesided

invertible c.a. is topologically conjugate to a c.a. F such that r�F� � r�Fÿ1� � 1.

Let A� be the set of words appearing in A
N . We say that a word w 0 A A

� is an

F-successor of w A A
�, and we use the shorthand w !

F
w 0, if there are x; x 0 A A

N such

that F�wx� � w 0x 0. From F we de®ne an equivalence relation on the alphabet A : a@F

b if and only if bn A N , ba0; a1; . . . ; an A A, bb0; . . . ; bnÿ1 A A, such that a0 � a, an � b,

ai !
F

bi and ai�1 !
F

bi, for i A f0; . . . ; nÿ 1g. For a A A, we denote by cF �a� its equi-

valence class with respect to@F . This gives a partition of A into equivalence classes,

PF � fcF �a� : a A Ag. Given F with r�F� � 1, de®ne pF : A ! A by pF �a� � F�aa�.

With r�F� � 1, the map F is left permutive if for all a and b in A, there is a unique

a in A such that F�ab� � a. In this case we let pF ;b denote the permutation a 7! F �ab�.

For simplicity we will abbreviate pF ;b as pb when the context is clear.

Lemma 8.1. Suppose F is a onesided invertible c.a. such that r�F � � r�Fÿ1� � 1.

Then the following hold.

1. F is left permutive and pF is a permutation.

2. If cF �a� � cF �b�, then pa � pb.

3. pb�cF �a�� � pF �cF �a��, for all a; b.

Proof. (1) F is left permutive because F is surjective. The map pF describes the

map on ®xed points of the shift, so the invertibility of F implies pF is a permutation.

(2) It su½ces to show F �ca� � F�cb� under the assumption a !
F

a and b !
F

a,

where a is some element of A. Let x; x 0; y; y 0 A A
N such that F�ax� � ay and F�bx 0� �

ay 0. Since r�F � � r�Fÿ1� � 1 and F �cax� � bay, we deduce that Fÿ1�ba� � c.

Therefore, Fÿ1�bay 0� � cbx 0 and F �cb� � b, which proves the lemma.

(3) Put a � F�ab�. Since F is invertible there is a unique a 0 A A such that

pF �a
0� � a. Then a is a common successor of a and a 0, which implies that a@F a 0.

This fact proves that a A fpF �a
0� : a 0 A cF �a�g. r

Theorem 8.2. Let P be a partition of A into equivalence classes, with c�a�

denoting the class containing a. Let F : A
N ! A

N be a cellular automaton with

r�F � � 1 satisfying the following conditions:

1. F is left permutive and pF is a permutation.

2. If c�b 0� � c�b�, then pb � pb 0 .

3. pb�c�a�� � pF �c�a��, for all a; b.

Then F is an invertible cellular automaton with r�Fÿ1� � 1.

Conversely, if F is a onesided invertible cellular automaton with r�F � � r�Fÿ1� � 1,

then the properties (1)±(3) hold for the partition PF .

Proof. Let a0; a1 A A. Using the assumption that pF is a permutation, we let b

be the symbol such that pF �b� � a1. Using the left permutivity, we let a be the unique

symbol such that F �ab� � a0.

Now if b 0 is any symbol in A such that b 0 !
F

a1, then by property (3) we have that

a1 is in pF �b
0�. Then pF �c�b�� and pF �c�b

0�� have nonempty intersection. Since pF is a

permutation, it follows that c�b 0� � c�b�. Then by property (2), F�ab� � F �ab 0� � a0.
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Because F is left permutive, it follows that a is the unique element in A such that

a !
F

a0a1. This exhibits the local rule Fÿ1�a0a1� � a.

The converse claim is the preceding lemma. r

In the preceding theorem, the partition PF re®nes P. This re®nement can be

proper (consider the identity map). The construction is practical. To construct, freely

pick any partition of A to be P, and freely pick any permutation of A to be pF . Then

for each class c�a� � �a�, freely pick as pa � p�a� any permutation p satisfying (i) p�b� � b

if b A �a� and (ii) for each class �a 0�, p : �a 0� 7! p�a 0�.

The following proposition relates the partitions PF and PFÿ1 .

Proposition 8.3. Let F : A
N ! A

N be an invertible cellular automaton with

r�F � � r�Fÿ1� � 1. Then for all a; b in A,

a@F b , pF �a�@Fÿ1 pF �b�:

In particular cFÿ1�pF �a�� � pF �cF �a��, and the rule cF �a� 7! cFÿ1�pF �a�� induces a bijec-

tion PF ! PFÿ1 .

Proof. Let a; b A A such that a@F b. By de®nition, there are b0; . . . ; bN A A and

c0; . . . ; cNÿ1 A A verifying: a � b0, b � bN and for i A f0; . . . ;N ÿ 1g bi !
F

ci, bi�1 !
F

ci.

On the other hand, since for a; b A A, a !
F

b if and only if b ��!
Fÿ1

a, we can deduce

that pF �b0� ��!
Fÿ1

b0, c0 ��!
Fÿ1

b0, c0 ��!
Fÿ1

b1, c1 ��!
Fÿ1

b1; . . . ; cNÿ1 ��!
Fÿ1

bNÿ1, cNÿ1 ��!
Fÿ1

bN ,

pF �bN� ��!
Fÿ1

bN . This fact implies that pF �b0� � pF �a�@Fÿ1 pF �bN� � pF �b�. Using

the same arguments with respect to Fÿ1 we conclude that a@F b if and only if

pF �a�@Fÿ1 pF �b�.

The concluding sentence of the proposition follows directly. r

9. A class of expansive examples.

In this section, F will denote an invertible onesided cellular automaton, F : A
N !

A
N , such that r�F � � r�Fÿ1� � 1. We write a point of A

N as x � x0x1 � � � : We let

~xi � �F ix�0, ~x � �~xi�i AZ , and
~X � f~x : x A A

Ng. Here the map F is expansive if and

only if the map x 7! ~x is injective, and if the map is injective then it de®nes a topological

conjugacy from �AN
;F � to the subshift � ~X ; s�. In this case the onesided shift on A

N

can be presented by some block code of radius ~r � ~r�F �, so ~xÿ~r � � � ~x~r determines x1.

We will give a constructive combinatorial characterization of those F for which

~r�F � � 1, and we will describe their dynamics. (For an interesting example in this class

giving an idealized physical model, see [C ]).

Theorem 9.1. Let F : A
N ! A

N be an invertible cellular automaton with r�F� �

r�Fÿ1� � 1. The cellular automaton F is expansive with ~r�F� � 1 if and only if

1. Ea; b A A, jcF �a�V cFÿ1�b�jU 1, and

2. Ea; b; b 0 A A, �F�ab� � F �ab 0� ) b@F b 0�.

In this case,

1*. Ea; b A A, jcF �a�V cFÿ1�b�j � 1,

2*. Ea; b; b 0 A A, �Fÿ1�ab� � Fÿ1�ab 0� ) b@Fÿ1 b 0�, and

3*. jAj � J 2 for some J in N such that jcF �a�j � J for all a in A.
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Proof. First let us see that property (2) implies property (2*). Suppose

Fÿ1�ab� � Fÿ1�ab 0�. Then there exist symbols a; b; g; b 0
; g 0 such that F �abg� � ab and

F �ab 0g 0� � ab 0. Now property (2) implies b@F b 0. Also b !
F

b and b 0 !
F

b 0, and

therefore b@Fÿ1 b 0, proving (2*).

For the su½cient conditions let us assume F is an invertible cellular automaton with

r�F � � r�Fÿ1� � 1 satisfying properties (1) and (2) (and therefore also (2*)). To prove

that F is expansive it is enough to show ~xÿ1~x0 ~x1 determines x1. Suppose x A A
N .

From properties (2) and (2*) we deduce there are unique classes cF A PF and cFÿ1 A PFÿ1 ,

depending on ~xÿ1~x0~x1, such that x1 A cF V cFÿ1 . Therefore, by property (1), x1 is the

unique element of cF V cFÿ1 . This procedure provides the required block map ~xÿ1 ~x0 ~x1
7! x1.

Now we turn to the necessary conditions. Suppose F is expansive with ~r�F� � 1.

Take a� A A such that jcF �a
��j � maxfjcF �a�j : a A Ag. It follows from Proposition 8.3

that jcF �a
��j � maxfjcFÿ1�a�j : a A Ag. On the other hand, from Theorem 8.2 we have

F �ba 0� � F �ba 00� for any b A A and a 0
; a 00 A cF �a

��, and since ~r�F� � 1, Fÿ1�ba 0�0

Fÿ1�ba 00�. Therefore, jcFÿ1�b�jVjfb 0 AA : b �!
Fÿ1

b 0gjVjcF �a
��j � maxfjcFÿ1�a�j : a AAg.

We conclude there is a positive integer J such that for any a in A, jcF �a�j � jcFÿ1�a�j �

J.

To prove property (2) holds, suppose it does not. Then there are b; b 0, a A A such

that F�ab� � F�ab 0� and cF �b�0 cF �b
0�. In this case, by using the same arguments as

in the last paragraph we deduce that jcFÿ1�a�jV 2J. This is a contradiction. This

veri®es property (2), and therefore also (2*).

Next note that for any x � x0x1 . . . ; the triple �x0; cF �x1�; cFÿ1�x1�� determines

~xÿ1~x0~x1, which determines x1. Therefore cF �x1�V cFÿ1�x1� � fx1g. This proves (1).

Now put m � jPF j � jPFÿ1 j. By property (1), every element of PF intersects J

distinct elements of PFÿ1 , so mV J. On the other hand, from property (2) we deduce

that for each symbol a, there are at least J distinct symbols b such that a !
F

b; these

F-successors of a must lie in the same element of PFÿ1 , so mU J. Therefore m � J.

Because A is the disjoint union of the J members of PF , and each member contains

exactly J symbols, we have jAj � J 2, and (3*) holds. Finally, by (1) each member of

PF must intersect at least J members of PFÿ1 , so each member of PF must intersect

every member of PFÿ1 . This veri®es (1*) and ®nishes the proof. r

Theorem 9.2. Let F : A
N ! A

N be an expansive invertible onesided cellular

automaton such that r�F� � r�Fÿ1� � ~r�F � � 1. Then SF is topologically conjugate to a

full shift on
��������

jAj
p

symbols.

Proof. By Theorem 9.1(3*),
��������

jAj
p

is a positive integer J � jPF j. Let SJ denote

the full shift on J symbols, with alphabet PF . We already have �AN
;F� topologically

conjugate to � ~X ; s�, so it su½ces to de®ne a shift commuting bijection c : ~X ! SJ . We

de®ne c�~x� � c~x by setting �c~x�i � cF �~xi�. By Theorem 9.1(2) and Lemma 8.1(2), we

have for all a; b in A that

cF �a� � cF �b� , pa;F � pb;F :�9:3�

If a !
F

b, then pb;Fÿ1 � �pa;F �
ÿ1. It follows that if a !

F
b, then cF �a� determines cFÿ1�b�,
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and therefore the pair �cF �a�; cF �b�� determines cF �b�V cFÿ1�b� � fbg. It follows that

for all ~x, the word cF �~xÿ1�cF �~x0� determines x0. This proves that the map c is injective.

By induction we also observe that for all n > 0 and for all ~x,

~x0 and �c~x�1 � � � �c~x�n determine ~x0 � � � ~xn:�9:4�

To prove that c is surjective, it su½ces to prove the claim: for all nV 0, there are

J n�1 distinct words �c~x�0 � � � �c~x�n. The claim is obvious for n � 0. Suppose n > 0 and

the claim holds for nÿ 1. Using the induction hypothesis, let E be a set of J n points

x such that the restriction to E of the map x 7! �c~x�0 � � � �c~x�nÿ1 is injective. Let E 0 �

fax : a AA; x A Eg, so jE 0j � J n�1. Using 9.3 above, one can see that the restriction

to E 0 of the map x 7! ~x0 � � � ~xn is injective. This shows there are J n�1 distinct words

~x0 � � � ~xn.

On the other hand, by 9.4 the number of words ~x0 � � � ~xn is at most jf~x0gj �

jf�c~x�1 � � � �c~x�ngjU �J��J n�, and equality implies that for every a AA and x AAN there

is some y such that ~y0 � a and �c~y�i � �c~x�i, 1U iU n. Thus there are J n�1 words

�c~x�0 � � � �c~x�n. r
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