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Abstract. In the deformation space of once punctured tori, we investigate the slice

determined by moduli equation such that the first and the second moduli are complex

conjugate. We show the figure of the slice to some extent.

§1. Introduction.

We recall some terminology from [1] and [5]. As usual, we identify PSLð2;CÞ with
the group of all Möbius transformations. Let A and B be loxodromic elements of

PSLð2;CÞ with no common fixed point. Let G ¼ hA;Bi be the group generated by A

and B. Let x ¼ trðAÞ, y ¼ trðBÞ and z ¼ trðABÞ, where trð�Þ is the trace of �. The

triple ðx; y; zÞ is called a moduli triple of G. A triple determines a group G uniquely up

to conjugation such that the moduli triple of G is identical with the original one. So, G

is identified with its moduli triple. If G is a quasi-Fuchsian group and if the moduli

triple ðx; y; zÞ of G satisfies the equation

x2 þ y2 þ z2 ¼ xyz;ð�Þ

then G represents a pair of once punctured tori. Let A0 ¼
ffiffiffi

2
p

þ 1 0

0
ffiffiffi

2
p

ÿ 1

� �

and

B0 ¼
ffiffiffi

2
p

1

1
ffiffiffi

2
p

� �

and put G0 ¼ hA0;B0i. Then G0 is a Fuchsian group and

ð
ffiffiffi

8
p

;

ffiffiffi

8
p

; 4Þ is a moduli triple of G0 satisfying ð�Þ. The deformation space DðG0Þ is the

set of all quasi-Fuchsian groups which are quasiconformal deformations of G0. Let

T
� ¼ fðx; y; zÞ j x2 þ y2 þ z2 ¼ xyzgHC

3
:

Then, by the stability of quasi-Fuchsian groups, DðG0Þ is an open subset of T �. There

are a lot of studies of the Bers slice of DðG0Þ, so called the Teichmüller space of once

punctured tori. On the other hand, there are a little of studies of DðG0Þ from a point of

view of moduli equations. From the latter point of view Keen studied symmetric

Riemann surfaces each of which is either a rectangle or a rhombus in [1]. The case of

rectangle is studied also in [6] as a slice of DðG0Þ.
In this article we shall investigate DðG0Þ by means of a slice which is given by the

equation

x ¼ y:ð��Þ
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This is an extension of the case of rhombi. We put

S ¼ fðx; y; zÞ A DðG0Þ j x ¼ yg:

We shall call S the slice determined by ð��Þ. Under the equation ð��Þ the equation ð�Þ
turns to

z2 ÿ jxj2zþ x2 þ x2 ¼ 0:ð�Þ 0

Putting

D ¼ jxj4 ÿ 4ðx2 þ x2Þ ¼ jx2 ÿ 4j2 ÿ 16;

we see that the third module z is one of the following two.

ðjxj2 G
ffiffiffiffi

D
p

Þ=2:

So, S is a double cover of its projection into the first module with branch curve over

D ¼ 0. The projection of the branch curve to x-plane is a lemniscate

jxþ 2j jxÿ 2j ¼ 4:ð1:1Þ

In the outside or the boundary of the lemniscate (1.1), the third module z is real. Note

that this is equivalent to DV 0. For such a real z the following is known in [1] and [4].

Theorem 1.1 ([1], [4]). Let ðx; y; zÞ be a moduli triple satisfying ð�Þ and let G be a

group associated to it. Assume that x ¼ y and z is real. Then G is a quasi-Fuchsian

group if and only if

z > 2 and jxj2 > zþ 2:ð1:2Þ

Inequalities (1.2) mean that both solutions of ð�Þ 0 are greater than 2. So, it is

equivalent to

ðjxj2 ÿ
ffiffiffiffi

D
p

Þ=2 > 2

or

jxj > 2 and 2jxj2 ÿ ðx2 þ x2Þ < 4:

The last inequality means that jImðxÞj < 1, where ImðxÞ means the imaginary part of x.

Therefore, putting

E ¼ fðx; x; ðjxj2 G
ffiffiffiffi

D
p

Þ=2Þ j jx2 ÿ 4jV 4; jxj > 2; jImðxÞj < 1g;

we have the following.

Corollary 1. S V fðx; y; zÞ j jx2 ÿ 4jV 4g ¼ E.

See Fig. 1 for the projection of E to the first coordinate.

So, the remaining place to investigate is the inside of the lemniscate (1.1). That is,

the region determined by D < 0. In a case that x is real, the following is known.
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Theorem 1.2 ([2]). Let ðx; y; zÞ be a moduli triple satisfying ð�Þ. If

x > 2 and y > 2;

then the group G determined by ðx; y; zÞ is a quasi-Fuchsian group.

Theorem 1.2 says that if ðx; y; zÞ satisfies ð�Þ and ð��Þ and if x lies in the interval

ð2;
ffiffiffi

8
p

Þ, which lies in the inside of the lemniscate (1.1), then G is a quasi-Fuchsian group

so that the lift of ð2;
ffiffiffi

8
p

Þ into fðx; y; zÞ A T � j x ¼ yg is contained in S. We shall extend

these facts to the following.

Theorem 1.3. Let ðx; y; zÞ be a moduli triple satisfying ð�Þ and ð��Þ. If

jx2 ÿ 4j < 4;ð1:3Þ

2jzj2 < jxj4 andð1:4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4jzj2 ÿ jxj4Þð4jxj4 ÿ jzj4Þ
q

< jxj2jzj2 þ 4jzj2 ÿ 8jxj2;ð1:5Þ
then the group G determined by ðx; y; zÞ is a quasi-Fuchsian group.

See Fig. 2 for the region of x satisfying the assumption of Theorem 1.3. In contrast

to Corollary 1, Theorem 1.3 gives us a partial view of S lying over the inside of the

lemniscate (1.1). Let i ¼
ffiffiffiffiffiffiffi

ÿ1
p

and let

I ¼ fðx; x; ðjxj2 G i
ffiffiffiffiffiffiffiffi

ÿD
p

ÞÞ j x satisfies ð1:3Þ; ð1:4Þ; ð1:5Þg:

Figure 1

Figure 2
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Corollary 2. S V fðx; y; zÞ j jx2 ÿ 4j < 4gI I .

Our strategy of the proof of Theorem 1.3 is to check an infinite number of

inequalities which appear in the following theorem.

Theorem 1.4 ([3]). Let A ¼ a 0

0 b

� �

and B ¼ a b

c d

� �

, bc0 0, be loxodromic

elements of PSLð2;CÞ such that ABAÿ1Bÿ1 is parabolic and let G ¼ hA;Bi. If, for each

integer n, the inequality

janaj þ jb ndj
janaþ bndj <

jaj þ jbj
jaÿ bjð1:6Þ

holds, then G is a quasi-Fuchsian group and represents a pair of once punctured tori.

It is well known that the assumption of Theorem 1.4 that ABAÿ1Bÿ1 is parabolic is

equivalent to ð�Þ. It is shown in §4 that (1.6) for n ¼ 0 and n ¼ G1 correspond to (1.4)

and (1.5), respectively. The rest of this article constitutes of the proof of Theorem

1.3. In §2 we make a normalization and then derive some equalities and inequalities in

§3. In §4 we shall check (1.6) for n satisfying jnjU 2. In §5 the cases of jnjV 4 are

checked. Lastly, we check the cases of jnj ¼ 3 in §6.

§2. Normalization.

We assume that five conditions for ðx; y; zÞ, that is, ð�Þ, ð��Þ, (1.3), (1.4) and (1.5)

hold. If the first module x is real then z ¼ ðx2 G i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8x2 ÿ x4
p

Þ=2 and jzj2 ¼ 2x2. Then

condition (1.4) implies that 4 < x2 so that A is neither elliptic nor parabolic. Hence

G is generated by loxodromic elements A and B. In order to use Theorem 1.4, we

normalize A and B as follows:

A ¼ a 0

0 b

� �

; ab ¼ 1; jaj > 1

and

B ¼ a b

c d

� �

:

Then

aþ b ¼ x; aþ d ¼ y; aaþ bd ¼ z:ð2:1Þ

The moduli equation ð�Þ implies that

ad ¼ aþ b

aÿ b

� �2

:ð2:2Þ

Let

x ¼ x1 þ ix2;

where x1 and x2 are real numbers. By the isomorphism of PSLð2;CÞ to the Möbius

transformation group, we may assume that

x1V 0:ð2:3Þ
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If x2 < 0, then ð��Þ implies that y ¼ x1 ÿ ix2 so that both real and imaginary parts of y

are non-negative. Then we change our normalization of A and B to each other. Of

course, this change keeps five conditions invariant. Hence hereafter we assume

x2V 0:ð2:4Þ

We shall write up a, b, a, d and z by x. Solving a2 þ 1 ¼ ðx1 þ ix2Þa under the

condition jaj > 1, one obtains

a ¼ 1

2
ðx1 þ X1 þ iðx2 þ X2ÞÞ;ð2:5Þ

where

X1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
1 ÿ x2

2 ÿ 4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2
1 ÿ x2

2 ÿ 4Þ2 þ 4x2
1x

2
2

q

2

v

u

u

t

and

X2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ÿðx2
1 ÿ x2

2 ÿ 4Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2
1 ÿ x2

2 ÿ 4Þ2 þ 4x2
1x

2
2

q

2

v

u

u

t

:

ð2:6Þ

We put

X ¼ aÿ b:ð2:7Þ
Then, since b ¼ ðx1 ÿ X1 þ iðx2 ÿ X2ÞÞ=2, we have

X ¼ X1 þ iX2 and X 2 ¼ x2 ÿ 4:ð2:8Þ

We also have

jX j4 ¼ ðx2
1 ÿ x2

2 ÿ 4Þ2 þ 4x2
1x

2
2 :ð2:9Þ

Now, ðjxj2 G i
ffiffiffiffiffiffiffiffi

ÿD
p

Þ=2 are the solutions of ð�Þ 0, so if we choose

z ¼ ðjxj2 þ i
ffiffiffiffiffiffiffiffi

ÿD
p

Þ=2;ð2:10Þ

then another solution of ð�Þ 0 is z, where D ¼ jxj4 ÿ 4ðx2 þ x2Þ. So, we have

jzj2 ¼ x2 þ x2 ¼ 2ðx2
1 ÿ x2

2Þ:ð2:11Þ

Remark. If hA;Bi is a quasi-Fuchsian group, then hA;Bÿ1i is so, too. The

converse is also true. If ðx; x; zÞ is the moduli triple of hA;Bi, then ðx; x; zÞ is that of

hA;Bÿ1i, too. So, we may only consider the triples of the form ðx; x; zÞ.

Proposition 2.1. 4jzj2 ÿ jxj4 ¼ ÿD > 0.

Proof. Since D ¼ jx2 ÿ 4j2 ÿ 16, inequality (1.3) implies that ÿD > 0. Hence it

su‰ces to show

4jzj2 ÿ jxj4 ¼ ÿðjxj4 ÿ 4ðx2 þ x2ÞÞ:

This follows from (2.11). r
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We shall write z such that

z ¼ z1 þ iz2; z1 ¼
jxj2

2
and z2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4jzj2 ÿ jxj4
q

2
:ð2:12Þ

By (2.9) and (2.11), the equality (2.6) can be written as follows:

X1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jX j2 ÿ 8þ jzj2
q

2
and X2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jX j2 þ 8ÿ jzj2
q

2
ð2:13Þ

Also by (2.9) and (2.11) we have

jX j4 ¼ jxj4 ÿ 4jzj2 þ 16:ð2:14Þ

By (2.8), (2.13) and (2.14) we have

4x1x2 ¼ 4X1X2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4jxj4 ÿ jzj4
q

:ð2:15Þ

Solving the equations

aþ d ¼ x1 ÿ ix2 ¼ x

ad ¼
aþ b

aÿ b

� �2

¼
x
2

X 2
;

8

>

>

<

>

>

:

we have

a ¼
x

2
G

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4jzj2 ÿ jxj4
q

2X
¼

x

2
G

iz2

X
:

The third equality of (2.1) insists that

a ¼
x

2
þ
iz2

X
and d ¼

x

2
ÿ
iz2

X
:ð2:16Þ

§3. Equalities and inequalities.

In this section we compute some quantities related to jan
aj þ jb n

dj, jan
aþ b n

dj and

jaj þ jbj which appear in (1.6). By (2.5), (2.7) and (2.8) a straight forward calculation

shows that

jaj2 ¼
1

4
ðjxj2 þ jX j2 þ 2ðx1X1 þ x2X2ÞÞ and

jbj2 ¼
1

4
ðjxj2 þ jX j2 ÿ 2ðx1X1 þ x2X2ÞÞ:

ð3:1Þ

So, we have

jaj2 þ jbj2 ¼
jxj2 þ jX j2

2
:ð3:2Þ
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By (2.16) and (2.12) we have

jaj2 ¼
jxj2jX j2 þ 4ðx1X2 ÿ x2X1Þz2 þ 4jzj2 ÿ jxj4

4jX j2
and

jdj2 ¼
jxj2jX j2 ÿ 4ðx1X2 ÿ x2X1Þz2 þ 4jzj2 ÿ jxj4

4jX j2
:

ð3:3Þ

So, we have

jaj2 þ jdj2 ¼
jxj2jX j2 þ 4jzj2 ÿ jxj4

2jX j2
¼

jxj2jX j2 þ 16ÿ jX j4

2jX j2
:ð3:4Þ

Proposition 3.1. jajV jdj.

Proof. By (3.3) we may show that ðx1X2 ÿ x2X1Þz2V 0. By (2.3), (2.4), (2.6),

(2.12) and Proposition 2.1 we see that five numbers x1; x2;X1;X2; z2 are non negative.

Hence it su‰ces to show that

x2
1X

2
2 V x2

2X
2
1 :

By (2.13) this is written as

x2
1ð2jX j2 þ 8ÿ jzj2ÞV x2

2ð2jX j2 ÿ 8þ jzj2Þ:

Since jzj2 ¼ 2ðx2
1 ÿ x2

2Þ by (2.11), this is written as

8jxj2V ðjxj2 ÿ jX j2Þjzj2:

Because of jzj2 ¼ 2ðx2
1 ÿ x2

2ÞU 2jxj2, it su‰ces to show

4V jxj2 ÿ jX j2:

By (2.8) we have j jxj2 ÿ jX j2jU jx2 ÿ X 2j ¼ 4, so that we have the desired

inequality. r

Here we note that by (2.12) and (2.15) we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4jzj2 ÿ jxj4Þð4jxj4 ÿ jzj4Þ

q

¼ 8x1x2z2;

which is the left hand side of (1.5). We shall put

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4jzj2 ÿ jxj4Þð4jxj4 ÿ jzj4Þ

q

¼ 8x1x2z2:ð3:5Þ

Proposition 3.2.

jaj2jaj2 þ jbj2jdj2 ¼
jzj2jX j2 þ 4jxj2 þ t

2jX j2

and

jbj2jaj2 þ jaj2jdj2 ¼
jzj2jX j2 þ 4jxj2 ÿ t

2jX j2
:
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Proof. Writing temporarily

A ¼
jxj2 þ jX j2

4
; B ¼

x1X1 þ x2X2

2
; C ¼

jxj2jX j2 þ 4jzj2 ÿ jxj4

4jX j2

and D ¼
ðx1X2 ÿ x2X1Þz2

jX j2
;

we see by (3.1) and (3.3) that

jaj2 ¼ Aþ B; jbj2 ¼ Aÿ B; jaj2 ¼ C þD and jdj2 ¼ C ÿD

so that

jaj2jaj2 þ jbj2jdj2 ¼ 2ðAC þ BDÞ:

Making use of (2.14), we have

AC ¼
jxj2ðjX j4 ÿ jxj4Þ þ 4jzj2ðjxj2 þ jX j2Þ

16jX j2
¼

jzj2jX j2 þ 4jxj2

4jX j2
:

Making use of (2.11), (2.13) and (2.15), we have

BD ¼
ððx2

1 ÿ x2
2ÞX1X2 ÿ x1x2ðX

2
1 ÿ X 2

2 ÞÞz2

2jX j2
¼

ðjzj2X1X2 þ x1x2ð8ÿ jzj2ÞÞz2

4jX j2

¼
8x1x2z2

4jX j2
¼

t

4jX j2
:

Thus we have the first equality. The second is shown similarly. r

Since 2jxj2=jX j2 ¼ 2jadj, we have by Proposition 3.2

0U ðjbj jaj ÿ jaj jdjÞ2 ¼ jbj2jaj2 þ jaj2jdj2 ÿ 2jadj ¼
jzj2jX j2 ÿ t

2jX j2
:

Hence we have

tU jzj2jX j2:ð3:6Þ

Proposition 3.3.

ja2aþ b2
dj2 ¼

jzj2jxj2 þ 2jxj2 þ t

2

and

jb2
aþ a2dj2 ¼

jzj2jxj2 þ 2jxj2 ÿ t

2
:

Proof. Since

a2aþ b2
d ¼ ðaþ bÞðaaþ bdÞ ÿ ðaþ dÞ ¼ xzÿ x;
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we have by (2.11) and (2.12)

ja2aþ b2dj2 ¼ jzj2jxj2 þ jxj2 ÿ ðx2zþ x2zÞ

¼ jzj2jxj2 þ jxj2 ÿ 2ðx2
1 ÿ x2

2Þz1 þ 4x1x2z2

¼ jzj2jxj2 þ jxj2 ÿ jzj2jxj2=2þ t=2:

Thus we have the first equality. The proof of the second equality is similar. r

For later uses, we note by (2.14) that (1.4) is equivalent to the following.

16 < jxj4 þ jX j4:ð1:4Þ 0

Also for later uses we prepare the following lemma. Of course we are assuming five

conditions, especially, (1.3), (1.4) and (1.5).

Lemma 3.4. jxj2 > 2
ffiffiffi

5
p

ÿ 2, x2
2 < 1 and 2 < x2

1 .

Proof. By (1.5) we have

8jxj2

jxj2 þ 4
< jzj2:

Then (1.4) insists that

jxj4 þ 4jxj2 ÿ 16 > 0:ð3:7Þ
So, we have jxj2 > 2

ffiffiffi

5
p

ÿ 2.

In terms of x1 and x2, (1.3) is written as

x4
2 þ 2ðx2

1 þ 4Þx2
2 þ x4

1 ÿ 8x2
1 < 0:

A manipulation shows that

x2
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
1 þ 1

q

ÿ 2

� �2

< 1:

This implies that x2
2 < 1.

We shall prove the last inequality by dividing into two cases.

Case I: x2
2V 2

ffiffiffi

5
p

ÿ 4. By (1.5) we have

jxj2jzj2 þ 4jzj2 ÿ 8jxj2 > 0:

Then by (2.11) we have

x4
1 ÿ x4

2 ÿ 8x2
2 > 0:

Hence by the assumption that x2
2V 2

ffiffiffi

5
p

ÿ 4 we have

x4
1 > x4

2 þ 8x2
2V 4;

so that x2
1 > 2.
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Case II: x2
2 < 2

ffiffiffi

5
p

ÿ 4. By the first inequality we have

x2
1 þ x2

2 > 2
ffiffiffi

5
p

ÿ 2:

Hence we have

x2
1 > 2

ffiffiffi

5
p

ÿ 2ÿ x2
2 > 2: r

§4. Check for the cases of jnjU 2.

Under the assumption of Theorem 1.3, we prove (1.6) of Theorem 1.4 in this and

subsequent two sections. In this section we treat the cases of jnjU 2.

We shall put

LðnÞ ¼ janaj þ jb ndj
janaþ b ndj and R ¼ jaj þ jbj

jaÿ bj :

Then (1.6) is written as

LðnÞ < R:ð4:1Þ

By (2.7) and (3.2) we have

R2 ¼ jaj þ jbj
jaÿ bj

� �2

¼ jxj2 þ jX j2 þ 4

2jX j2
:ð4:2Þ

Proposition 4.1. Inequality Lð0Þ < R is equivalent to (1.4).

Proof. By (2.2) and (3.4) we have

L2ð0Þ ¼ jaj þ jdj
jaþ dj

� �2

¼ jaj2 þ jdj2 þ 2jadj
jxj2

¼ jxj2jX j2 þ 4jzj2 ÿ jxj4 þ 4jxj2

2jxj2jX j2
:ð4:3Þ

Hence by (4.2) and (4.3) we see that the inequality Lð0Þ < R is equivalent to

4jzj2 ÿ jxj4 < jxj4:
Clearly this is equivalent to (1.4). r

Thus we have proved that (1.6) holds for n ¼ 0.

Proposition 4.2. Inequality Lð1Þ < R is equivalent to (1.5).

Proof. By (2.1), (2.2) and Proposition 3.2 we have

L2ð1Þ ¼ jaj2jaj2 þ jbj2jdj2 þ 2jadj
jaaþ bdj2

¼ jzj2jX j2 þ 8jxj2 þ t

2jzj2jX j2
:

Making use of (3.5) and (4.2), we see easily that Lð1Þ < R is equivalent to (1.5). r

Thus we have proved that (1.6) holds for n ¼ 1.

Proposition 4.3. Lðÿ1ÞULð1Þ.
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Proof. By (2.12) we have zþ z ¼ jxj2. Hence we have

jbaþ adj ¼ jtrðABÿ1Þj ¼ jtrðAÞtrðBÞ ÿ trðABÞj ¼ j jxj2 ÿ zj ¼ jzj ¼ jaaþ bdj:

Since

jaaj þ jbdj ÿ jbaj ÿ jadj ¼ ðjaj ÿ jbjÞðjaj ÿ jdjÞV 0;

we have

Lðÿ1Þ ¼ jbaj þ jadj
jbaþ adj U

jaaj þ jbdj
jaaþ bdj ¼ Lð1Þ: r

Propositions 4.2 and 4.3 imply that (1.6) holds for n ¼ ÿ1.

Proposition 4.4. Lðÿ2Þ < R.

Proof. By Proposition 3.3 and by the equality

ðja2aj þ jb2djÞ2 ¼ ðjaj2 þ jbj2Þðjaj2jaj2 þ jbj2jdj2Þ ÿ ðjaj2 þ jdj2Þ þ 2jadj

it is not di‰cult to see that Lðÿ2Þ < R is equivalent to

t < jzj4 ÿ jxj4 þ jzj2jxj2 ÿ 2jzj2:ð4:4Þ
By (1.5) it su‰ces to show that

jxj2jzj2 þ 4jzj2 ÿ 8jxj2 < jzj4 ÿ jxj4 þ jzj2jxj2 ÿ 2jzj2

or

ðjxj2 ÿ 4Þ2 < ðjzj2 ÿ 3Þ2 þ 7:ð4:5Þ

By Lemma 3.4 we have ÿ
ffiffiffi

7
p

< 2
ffiffiffi

5
p

ÿ 6 < jxj2 ÿ 4. Hence we may show this only for

those which satisfy jxj2 > 6. For those x, we have by Lemma 3.4

jzj2 ÿ 3 ¼ 2ðx2
1 ÿ x2

2Þ ÿ 3 ¼ 2jxj2 ÿ 4x2
2 ÿ 3 > 2jxj2 ÿ 7 > 5:

Hence, in order to show (4.5), it su‰ces to show

ðjxj2 ÿ 4Þ2 < ð2jxj2 ÿ 7Þ2 þ 7

or

0 < 3jxj4 ÿ 20jxj2 þ 40:

Clearly this inequality is true. Thus we have (4.5) so that (4.4) holds. r

Proposition 4.5. Lð2Þ < R.

Proof. By Proposition 3.3 it is not di‰cult to see that Lð2Þ < R is equivalent to

ÿt < jzj4 ÿ jxj4 þ jzj2jxj2 ÿ 2jzj2:ð4:6Þ

Since tV 0, we have (4.6) by (4.4). r
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Propositions 4.4 and 4.5 imply that (1.6) holds for jnj ¼ 2. Therefore we have

shown that (1.6) holds for each integer n satisfying jnjU 2.

§5. Check for the cases of jnjV 4.

In this section we prove that (1.6) holds for the cases of jnjV 4. Instead of (4.1) we

shall use another inequality. For each integer n, we set

AðnÞ ¼ jaj2njaj2 þ jbj2njdj2:

Proposition 5.1. If the inequality

8jxj2jX j2 < ðjxj2 ÿ jX j2 þ 4ÞðjX j2AðnÞ ÿ 2jxj2Þð5:1Þ

holds for an integer n, then (1.6) holds for n.

Proof. Since

L2ðnÞU
AðnÞ þ 2jadj

AðnÞ ÿ 2jadj
and jadj ¼

�

�

�

�

x

X

�

�

�

�

2

;

in order to show LðnÞ < R, it su‰ces to show that

AðnÞ þ 2jx=X j2

AðnÞ ÿ 2jx=X j2
< R2:

Since R2 is given by (4.2), a calculation shows that this is equivalent to (5.1). r

Proposition 5.2. Let n0 be a negative integer. If (5.1) holds for n ¼ n0, then (1.6)

holds for each integer n satisfying jnjVÿ n0.

Proof. By Proposition 5.1 it su‰ces to show that Aðn0ÞUAðnÞ for jnjV ÿ n0. It

also su‰ces to show that

Aðn0ÞUAðÿnÞUAðnÞ

for each positive integer nV ÿ n0. By Proposition 3.1 we have

AðnÞ ÿ AðÿnÞ ¼ ðjaj2n ÿ jbj2nÞðjaj2 ÿ jdj2ÞV 0:

Hence we have AðÿnÞUAðnÞ for each positive integer n.

Next we shall show that AðÿnÞUAðÿnÿ 1Þ for each positive integer n. Since

Aðÿnÿ 1Þ ÿ AðÿnÞ ¼ ðjaj2 þ jbj2ÞAðÿnÞ ÿ Aðÿnþ 1Þ ÿ AðÿnÞ

¼ ðjaj ÿ jbjÞ2AðÿnÞ þ AðÿnÞ ÿ Aðÿnþ 1Þ

> AðÿnÞ ÿ Aðÿnþ 1Þ;

it su‰ces to show that Aðÿ1ÞUAðÿ2Þ. Since

Aðÿ2Þ ÿ Aðÿ1Þ ¼ ðjaj2 þ jbj2 ÿ 1Þðjbj2jaj2 þ jaj2jdj2Þ ÿ ðjaj2 þ jdj2Þ;
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we see by (3.2), (3.4) and Proposition 3.2 that, in order to show Aðÿ1ÞUAðÿ2Þ, it

su‰ces to show

2ðjxj2jX j2 þ 16ÿ jX j4Þ < ðjxj2 þ jX j2 ÿ 2Þðjzj2jX j2 þ 4jxj2 ÿ tÞ:

Since tU jzj2jX j2 by (3.6), it also su‰ces to show

jxj2jX j2 þ 16ÿ jX j4 < 2jxj2ðjxj2 þ jX j2 ÿ 2Þ

or

16 < jxj4 þ jX j4 þ jxj2ðjxj2 þ jX j2 ÿ 4Þ:

By ð1:4Þ 0 we see easily that jxj2 þ jX j2 > 4. Hence the above inequality holds by

ð1:4Þ 0. Therefore, we have Aðÿ1ÞUAðÿ2Þ, so that AðÿnÞUAðÿnÿ 1Þ for each

positive integer n. Hence we have shown that Aðn0ÞUAðÿnÞ for n > ÿn0. Thus we

have shown that Aðn0ÞUAðÿnÞUAðnÞ for each positive integer nV ÿ n0. r

Now, we shall show that (5.1) holds for n ¼ ÿ4. To do this we need some in-

equalities. By (3.2) we have

jaj4 þ jbj4 ¼ ðjaj2 þ jbj2Þ2 ÿ 2 ¼
jxj4 þ jX j4 þ 2jxj2jX j2 ÿ 8

4
:

Then by ð1:4Þ 0 we have

jaj4 þ jbj4 >
jxj2jX j2 þ 4

2
:ð5:2Þ

Also by (3.4) and ð1:4Þ 0 we have

jaj2 þ jdj2 <
jxj2ðjxj2 þ jX j2Þ

2jX j2
:ð5:3Þ

Since ab ¼ 1, we have

jbj2jaj2 þ jaj2jdj2V 2jadj ¼
2jxj2

jX j2
:ð5:4Þ

Making use of (5.2), (5.3) and (5.4), we have

Aðÿ4Þ ¼ ððjbj2jaj2 þ jaj2jdj2Þðjaj2 þ jbj2Þ ÿ ðjaj2 þ jdj2ÞÞðjaj4 þ jbj4Þ ÿ ðjaj2 þ jdj2Þ

>
jxj2ðjxj2 þ jX j2Þðjxj2jX j2 þ 2Þ

4jX j2
:

Therefore, in order to show (5.1) for n ¼ ÿ4, it su‰ces to show the following.

32jX j2 < ðjxj2 ÿ jX j2 þ 4Þð2ðjxj2 þ jX j2 ÿ 4Þ þ jxj2jX j2ðjxj2 þ jX j2ÞÞ:

Since jxj2 þ jX j2 > 4 by ð1:4Þ 0, it su‰ces to show the following.

8 < jxj2ðjxj2 ÿ jX j2 þ 4Þ
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or

jxj2jX j2 < jxj4 þ 4jxj2 ÿ 8:

Squaring both sides of the above inequality and using (2.14), we have

ð2jxj2 þ jzj2 ÿ 4Þjxj4 ÿ 16jxj2 þ 16 > 0:

Since 2jxj2 þ jzj2 ÿ 4 ¼ 4ðx2
1 ÿ 1Þ by (2.11), the last inequality is written as

ðx2
1 ÿ 1Þjxj4 ÿ 4jxj2 þ 4 > 0:

Lemma 3.4 assures that this inequality is true. Thus we have proved that (5.1) holds

for n ¼ ÿ4. Then Proposition 5.2 implies that (1.6) holds for each integer n satisfying

jnjV 4.

§6. Check for the cases of jnj ¼ 3.

In this section we prove (6.1) for the cases of jnj ¼ 3. First we treat the case of

n ¼ ÿ3. There are two cases to consider which are divided by the use of inequalities

(4.1) or (5.1).

Case I: x
2
1V 3. In this case we shall prove (5.1). By (3.2), (3.4) and Proposition

3.2 we have

8jX j2Aðÿ3Þ ¼ ððjxj2 þ jX j2Þ2 ÿ 4Þðjzj2jX j2 þ 4jxj2 ÿ tÞ

ÿ 2ðjxj2 þ jX j2Þðjxj2jX j2 ÿ jX j4 þ 16Þ:

Since jzj2jX j2V t and jxj4 þ jX j4 > 16 by (3.6) and ð1:4Þ 0, respectively, we have

8jX j2Aðÿ3Þ > 4ððjxj2 þ jX j2Þ2 ÿ 4Þjxj2 ÿ 2ðjxj2 þ jX j2Þ2jxj2

¼ 2ððjxj2 þ jX j2Þ2 ÿ 8Þjxj2

> 4ð4þ jxj2jX j2Þjxj2:

Thus, in order to show (5.1) for n ¼ ÿ3, it su‰ces to show (5.1) with the replace of

jX j2Aðÿ3Þ by ð4þ jxj2jX j2Þjxj2=2. It is written as

jxj2jX j2 < jxj4 þ 4jxj2 ÿ 16:ð6:1Þ

Since jxj4 þ 4jxj2 ÿ 16 > 0 by (3.7), squaring the both sides of (6.1) and making use of

(2.14), we see that it su‰ces to show that

jxj6 ÿ 4jxj4 þ ðjzj2=2Þjxj4 ÿ 16jxj2 þ 32 > 0:

By (2.11) we see that the above inequality is equivalent to

ðx2
1 ÿ 2Þjxj4 ÿ 8jxj2 þ 16 > 0:

Since x
2
1V 3 and since if x2

1 ¼ 3 then jxj2 < 4 by Lemma 3.4, the above inequality holds.

Therefore, we have proved (5.1) so that in Case I (1.6) holds for n ¼ ÿ3 by Proposition

5.2.
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Case II: x2
1 < 3. In this case we prove (4.1). Making use of (2.12), (3.5) and the

equality b3aþ a3d ¼ zðx2 ÿ 2Þ ÿ z, we have

jb3aþ a3dj2 ¼ ðjzj2jxj4 þ 4jxj4 ÿ 2jzj4 þ 2jzj2 ÿ jxj2tÞ=2:ð6:2Þ

On the other hand, we have by Proposition 3.2 and (3.2)

2jX j2ðjb3aj þ ja3djÞ2 ¼ ðjzj2jX j2 þ 4jxj2Þððjxj2 þ jX j2Þ2 ÿ 8Þð6:3Þ

ÿ 4jzj2jX j2 ÿ ððjxj2 þ jX j2Þ2 ÿ 4ÞtÞ=4:

Inserting (6.2) and (6.3) into Lðÿ3Þ2 < R2 and making use of the identity

2ðjzj2jxj4 þ 4jxj4 ÿ 2jzj4 þ 2jzj2Þ ÿ ðjzj2jX j2 þ 4jxj2Þðjxj2 þ jX j2 ÿ 4Þ

¼ ðjxj2 ÿ jX j2 þ 4Þðjxj2jzj2 ÿ 4jzj2 þ 4jxj2Þ þ 4jzj2;

we have

4ð2jxj2 þ jzj2 ÿ 3Þtÿ 4ðjzj2jxj2 þ 4jzj2 ÿ 8jxj2Þð6:4Þ

< ðjxj2 þ jX j2 þ 4Þðjxj2 ÿ jX j2 þ 4Þðjxj2jzj2 ÿ 4jzj2 þ 4jxj2Þ

Since

ðjxj2 þ jX j2 þ 4Þðjxj2 ÿ jX j2 þ 4Þ ¼ 4ð2jxj2 þ jzj2Þ
by (2.14) and

tU jzj2jxj2 þ 4jzj2 ÿ 8jxj2

by (1.5) and (3.5), in order to show (6.4), we may show the following.

ð2jxj2 þ jzj2 ÿ 4Þðjzj2jxj2 þ 4jzj2 ÿ 8jxj2Þ < ð2jxj2 þ jzj2Þðjxj2jzj2 ÿ 4jzj2 þ 4jxj2Þ

or

3jxj4 ÿ jzj4 þ 2jzj2 ÿ 4jxj2 > 0:ð6:5Þ

We shall put x2
1 ¼ u and x2

2 ¼ v. Then jxj2 ¼ uþ v and jzj2 ¼ 2ðuÿ vÞ by (2.11). Note

that 2 < u < 3 by Lemma 3.4 and by our assumption x2
1 < 3. Now, (6.5) is written as

7uÿ 4ÿ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12u2 ÿ 14uþ 4
p

< v:ð6:6Þ

Thus, in order to show (4.1) for n ¼ ÿ3, it su‰ces to show (6.6) for 2 < u < 3. It is not

di‰cult to see by (1.4) that

7uÿ 4ÿ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12u2 ÿ 14uþ 4
p

< 17ÿ 2
ffiffiffiffiffi

70
p

< 2
ffiffiffi

7
p

ÿ 5 < v:

Hence we have shown that (4.1) holds for n ¼ ÿ3. Therefore, we have shown that in

Case II (1.6) holds for n ¼ ÿ3.

Thus we have shown that (1.6) holds for n ¼ ÿ3.

Lastly, we treat the case of n ¼ 3. By a similar calculation to (6.2) and (6.3) we

Slice determined by x ¼ y 385



have

ja3aþ b3dj2 ¼ jb3aþ a3dj2 þ jxj2t

and

2jX j2ðja3aj þ jb3djÞ2 ¼ 2jX j2ðjb3aj þ ja3djÞ2 þ ððjxj2 þ jX j2Þ2 ÿ 4Þt=2:

Then we see that Lð3Þ2 < R2 is equivalent to (6.4) with the replace of t by ÿt. Since

(6.4) is true, it clearly holds. Hence we have proved that (4.1) holds for n ¼ 3 so that

(1.6) holds for n ¼ 3.

Thus we have completed the check of (1.6) for the cases of jnj ¼ 3.

In conclusion, we have completed the proof of Theorem 1.3 by Theorem 1.4.
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