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Abstract. In the deformation space of once punctured tori, we investigate the slice
determined by moduli equation such that the first and the second moduli are complex
conjugate. We show the figure of the slice to some extent.

§1. Introduction.

We recall some terminology from [1] and [5].  As usual, we identify PSL(2, C) with
the group of all Mobius transformations. Let 4 and B be loxodromic elements of
PSL(2,C) with no common fixed point. Let G = {4, B) be the group generated by 4
and B. Let x=1tr(A4), y=1tr(B) and z = tr(4B), where tr(x) is the trace of x. The
triple (x, y,z) is called a moduli triple of G. A triple determines a group G uniquely up
to conjugation such that the moduli triple of G is identical with the original one. So, G
is identified with its moduli triple. If G is a quasi-Fuchsian group and if the moduli
triple (x, y,z) of G satisfies the equation

(%) x* 4y + 22 = xyz,

V2+1 0 )and
0 V2-1

and put Gy =<{4yp,By>. Then G, is a Fuchsian group and

then G represents a pair of once punctured tori. Let Ay = (
w7 )
1 V2
(v/8,/8,4) is a moduli triple of Gy satisfying (). The deformation space D(G)) is the
set of all quasi-Fuchsian groups which are quasiconformal deformations of Gy. Let

T :{(x7y72)|x2+y2+22:xyz} - C3.

Then, by the stability of quasi-Fuchsian groups, D(Gy) is an open subset of T*. There
are a lot of studies of the Bers slice of D(Gy), so called the Teichmiiller space of once
punctured tori. On the other hand, there are a little of studies of D(Gy) from a point of
view of moduli equations. From the latter point of view Keen studied symmetric
Riemann surfaces each of which is either a rectangle or a rhombus in [1I]. The case of
rectangle is studied also in [6] as a slice of D(Gy).

In this article we shall investigate D(Gy) by means of a slice which is given by the
equation

(%) X =7J.
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This is an extension of the case of rhombi. We put

S ={(x,7,2) € D(Go) | x = y}.

We shall call S the slice determined by (xx). Under the equation (xx) the equation (x)
turns to

(%)’ 22— x4+ 22+ 52 =0.
Putting
D=|x" —4(x* + %) = |x> — 4" — 16,

we see that the third module z is one of the following two.

(IxI* + VD)/2.

So, S is a double cover of its projection into the first module with branch curve over
D =0. The projection of the branch curve to x-plane is a lemniscate

(1.1) X+ 2| [x — 2| = 4.

In the outside or the boundary of the lemniscate [I.T}, the third module z is real. Note
that this is equivalent to D > 0. For such a real z the following is known in [T] and [4].

THEOREM 1.1 ([1], [4]). Let (x,y,z) be a moduli triple satisfying () and let G be a
group associated to it. Assume that x =3 and z is real. Then G is a quasi-Fuchsian

group if and only if
(1.2) z>2 and |x]*>z+2.

Inequalities (1.2) mean that both solutions of ()" are greater than 2. So, it is
equivalent to

(Ix|* = vD)/2 > 2
or
x| >2 and 2[x]* — (x4 %%) < 4.

The last inequality means that [Im(x)| < 1, where Im(x) means the imaginary part of x.
Therefore, putting

E={(x% (Ix* £ VD)/2) | |¥* — 4] = 4,|x] > 2, [Im(x)| < 1},
we have the following.
COROLLARY 1. SN{(x,y,z)||x*—4| >4} = E.

See Fig. 1 for the projection of E to the first coordinate.
So, the remaining place to investigate is the inside of the lemniscate [I.I)} That is,
the region determined by D < 0. In a case that x is real, the following is known.
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Figure 1

Figure 2

THEOREM 1.2 ([2]). Let (x,y,z) be a moduli triple satisfying (x). If
x>2 and y>2,
then the group G determined by (x,y,z) is a quasi-Fuchsian group.

says that if (x, y,z) satisfies (%) and () and if x lies in the interval
(2,/8), which lies in the inside of the lemniscate (1.1}, then G is a quasi-Fuchsian group
so that the lift of (2,v/8) into {(x, y,z) € T*|x = 7} is contained in S. We shall extend
these facts to the following.

THEOREM 1.3.  Let (x,y,z) be a moduli triple satisfying (x) and (xx). If

(1.3) Ix* — 4| < 4,
(1.4) 2z)* < |x|* and
(1.5) \/(41212 — XM @Ix* = 121*) < x|z + 4]z - 8]x],

then the group G determined by (x,y,z) is a quasi-Fuchsian group.

See Fig. 2 for the region of x satisfying the assumption of [Theorem 1.3. In contrast
to |Corollary 1), [Theorem 1.3 gives us a partial view of S lying over the inside of the
lemniscate [I.I). Let i=+/—1 and let

I ={(x, %, (|x|* + ivV/—D))| x satisfies [1.3), (1.4), [T.5)}.
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COROLLARY 2. SN{(x,y,z)||x* —4| <4} oL

Our strategy of the proof of is to check an infinite number of
inequalities which appear in the following theorem.

a b
c d
elements of PSL(2,C) such that ABA~'B~" is parabolic and let G = {A, B). If, for each
integer n, the inequality

THEOREM 1.4 ([3]). Let A= (g 2) and B=< ), bc #0, be loxodromic

n nd
|«"al + |Bd| _ |l + ||

(16) wat fd] "~ Ja f

holds, then G is a quasi-Fuchsian group and represents a pair of once punctured tori.

It is well known that the assumption of that ABA~'B~! is parabolic is
equivalent to (x). It is shown in §4 that for n =0 and n = +1 correspond to (1.4)
and [1.5), respectively. The rest of this article constitutes of the proof of
1.3. In §2 we make a normalization and then derive some equalities and inequalities in
§3. In §4 we shall check for n satisfying |n| <2. In §5 the cases of |n| >4 are
checked. Lastly, we check the cases of |n] =3 in §6.

§2. Normalization.

We assume that five conditions for (x, y,z), that is, (), (xx), (1.3), (1.4) and
hold. If the first module x is real then z = (x2 + iv/8x% — x#)/2 and |z|* = 2x2. Then
condition (1.4) implies that 4 < x? so that A is neither elliptic nor parabolic. Hence
G is generated by loxodromic elements 4 and B. In order to use we
normalize 4 and B as follows:

0
A:(“ ) B=1, |o>1

0 p
and
a b
B = .
(< 4)
Then
(2.1) o+pf=x, a+d=y, oaa+pd=r:.
The moduli equation () implies that
o+ p 2
2.2 = .
22 = (355)
Let

X = X1 + ixy,

where x; and x; are real numbers. By the isomorphism of PSL(2,C) to the Mobius
transformation group, we may assume that

(2.3) x1 > 0.
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If x, <0, then (xx) implies that y = x| — ix; so that both real and imaginary parts of y
are non-negative. Then we change our normalization of 4 and B to each other. Of
course, this change keeps five conditions invariant. Hence hereafter we assume

(2.4) X, > 0.

We shall write up o, 8, a, d and z by x. Solving «®> 4+ 1 = (x| + ixy)a under the
condition |«| > 1, one obtains

1
(25) OCZE(XI + X +i(X2+X2)),
where
x2—x2— A4/ (xF — X2 — 4+ 4x3x2
X, = \ 1% \/ 12 2 ™ d
(2.6)
—(x?—x2—-4)+ \/(x2 — x2 — 4)* 4 4x2x2
1~ 1~ 12
X, = \ 5 :
We put
(2.7) X=ua-p.

Then, since f = (x; — X; +i(x; — X2))/2, we have
(2.8) X=X +iX, and X?>=x>—-4.
We also have
(2.9) X|* = (xF — 53 — 4)* +4x3x3.
Now, (|x|* + iv/=D)/2 are the solutions of (x)’, so if we choose

(2.10) z= (x> + V=D)/2,

/

then another solution of ()" is z, where D = |x|* —4(x2+ %%). So, we have

(2.11) 2|* = x* + % = 2(x? — x2).

REMARK. If (4,B) is a quasi-Fuchsian group, then {(4,B~'> is so, too. The
converse is also true. If (x,X,z) is the moduli triple of <A, B), then (x,X,Z) is that of
{A,B7"), too. So, we may only consider the triples of the form (x,X,z).

ProPosITION 2.1. 4)z)* — |x|* = =D > 0.

PROOF. Since D = |x2 — 4]> — 16, inequality implies that —D > 0. Hence it
suffices to show

421> = |x* = —(|x* - 4(x? + £7)).
This follows from [2.1T). ]
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We shall write z such that

2 4
. x| 42" = x|
(2.12) z=1z1+4izn, z1= - and z; = s

By [2.9) and (2.11), the equality (2.6) can be written as follows:

V2AX2 =8+ V2AXP+8— 2
(213) X1 = 3 and X2 = 3

Also by and we have
(2.14) 1X|* = |x|* - 4]z]* + 16.
By (2.8), (2.13) and (2.14) we have

(2.15) 4x1xy = 4X1 Xy = \/4|x]* — |2 ",

Solving the equations

a+d=x1—ix; =X

ad = <°‘ +ﬁ>2: x?

—pf) X%
we have
Xy WAL 5 i
2 = 2X 27 X
The third equality of insists that
(2.16) azg—l—izyz and d:%_c_izyg.

§3. [Equalities and inequalities.

In this section we compute some quantities related to |«"a| + |5"d|, |«"a + p"d| and
|of| + |f| which appear in (1.6). By [2.5), (2.7) and (2.8) a straight forward calculation
shows that

1

laf* = 7 (Ix” + [X]* + 2(x1 X1 + x2X2))  and
(3.1)

1

BI* = Z(|X|2 FX] = 2(x1X) +x00X2)).

So, we have
2 2
X

(32) o+ g2 = L IXE

2
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By (2.16) and (2.12) we have

2 P IXP A+ 400X — 0o X1)z +4)2° — ¢

a 2 and
41x|
33
(3.3) _ o
2 pr— _ - —_
d| _|x| | X" —4(x1 X2 — x2X1)z2 +4)z|” — |x]| |
4lx|?
So, we have
(3.4) a4 |dP? = X 4z ol P 16 [x)*

21x? 2/x|?

ProrosiTION 3.1. |a| > |d|.

3717

Proor. By (3.3) we may show that (x;X; —x2X))z; > 0. By (2.4), (2.6),
(2.12) and [Proposition 2.1l we see that five numbers xj, x», X1, X3,z are non negative.

Hence it suffices to show that
X1 X3 = x5 X7
By (2.13) this is written as
XX +8 = [27) = (21X |7 — 8 + |z]°).
Since |z|* = 2(x} — x3) by [2.11), this is written as
8l = (|x1* — [X[")|=I%
2

Because of |z|> = 2(x} —x3) < 2|x|?, it suffices to show

4> |x* - |X]%

By (2.8) we have ||x]*—|X|*|<|x?— X2/ =4, so that we have the desired

inequality.

Here we note that by (2.12) and [2.15) we have

VR = @] = 24 = x5,

which is the left hand side of [1.5]. We shall put

(3.5) = \/(4|zy2 — %M @[x]* = |2*) = 8x1x225.
ProrosiTION 3.2.

2 2 2
2 2 2 2 |Z| |X‘ +4’.X| +t
ol “|lal” + |pI7|d|” =
ool + 6Pl o

and
E R R
2(x|? '

2 12 2 52
Bl lal” + [a|d]

O]
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Proor. Writing temporarily

PP sXinds o X4
4 -2 - 2
41X
and D:(xle—XzXl)Zz

Y

| X?
we see by (3.1) and (3.3) that
o> =A4+B, |f*=A4-B, |ad*=C+D and |d*=C-D
so that
|« *|al” + |BI*|d|* = 2(AC + BD).

Making use of (2.14), we have

2 4 4 2 2 2 2 2 2
7O — ") + 4z (] + [XT7) 271X + 4)x]
16| X2 41X

Making use of (2.11), (2.13) and [2.15), we have

AC =

ap — (O =) X1 X0 — xio(XF — X))z (|2 X1 + x10(8 — |2)2
2| x| 41 x?
B 8x1x7227 B t
417 4x*

Thus we have the first equality. The second is shown similarly.

Since 2|x|?/|X|* = 2|ad|, we have by [Proposition 3.J]

0 < (1Bllal = |el [d])* = [B1|al* + [of*|d|* — 2|ad]| =

Hence we have
(3.6) r < |z]21 X
ProrosITION 3.3.

212 2

5 s 0 27X 2]+
dl =

lo“a + pd| 7

and

|2l + 24x|* — ¢

a4 o2d|* = 5

ProOF. Since

wa+ p*d = (a+ p)(ea+ pd) — (a+d) = xz — X,
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we have by and (2.12)
oPa+ | = |27 |x]? + ¥ = (P2 + ¥72)
= [2P[x]® + |x]> = 2(xF — x3)z1 + 41 X220
= 2P + [xI* = |22l /2 + 12
Thus we have the first equality. The proof of the second equality is similar. ]
For later uses, we note by that (1.4) is equivalent to the following.
(1.4)’ 16 < |x|* + x|

Also for later uses we prepare the following lemma. Of course we are assuming five

conditions, especially, (1.3), (1.4) and (1.5).
Lemva 3.4, |x]*>2v5-2, ¥} <1 and 2 < x}.

PrOOF. By we have

8|X|2 | |2
x* +4

Then (1.4) insists that

(3.7) Ix|* +4|x]* — 16 > 0.

So, we have |x|* > 2v/5—2.
In terms of x; and xp, (1.3) is written as

x5 +2(x7 +4)x3 + x} — 8x7 < 0.

A manipulation shows that
2
x§+oﬁﬁ+1—2><1.
This implies that x3 < 1.

We shall prove the last inequality by dividing into two cases.
Case I. x}>2V5-4. By we have
x|z + 4]z — 8]x|* > 0.
Then by we have
X} — x5 — 8x3 > 0.
Hence by the assumption that x7 > 2v/5 — 4 we have
x?>x§+8x§ >4,

so that x7 > 2.
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Case II: x3 < 2v/5 —4. By the first inequality we have

XP 4+ x5 >2V5 -2,

Hence we have

X2 >2V5-2—x3>2. ]

§4. Check for the cases of |n| < 2.
Under the assumption of Theorem 1.3, we prove [1.6) of MTheorem 1.4l in this and

subsequent two sections. In this section we treat the cases of |n| < 2.
We shall put

L(n) = —lrafcli,’é);daﬂ and R= ’ro’c j|ﬁﬂ|’ :
Then is written as
(4.1) L(n) < R.
By (2.7) and we have
(42) R (Ioc! + |ﬁ|)2: x* 4+ X"+ 4
oo — B 2| X2

PrOPOSITION 4.1.  Inequality L(0) < R is equivalent to (1.4).

Proor. By [2.2) and (3.4) we have

(4.3)

L2(0) = (!a\ + Id!)2: jaf + |d|” +2[ad| _ |x*|X]* +4]z” — x]* +4]x |
ja+d x|’ 22X

Hence by and (4.3) we see that the inequality L(0) < R is equivalent to
4z” = [x* < |x["
Clearly this is equivalent to (1.4). O
Thus we have proved that holds for n = 0.

PropoSITION 4.2.  Inequality L(1) < R is equivalent to (1.5).

Proor. By [2.1), and [Proposition 3.2] we have

_ |eflal® + 1B 1d)” +2lad]| _|2*| X + 8] + 1
joa + pd|? G

(1)

Making use of [3.5) and [4.2), we see easily that L(1) < R is equivalent to [I.5) O
Thus we have proved that holds for n = 1.

ProposiTiON 4.3. L(—1) < L(1).
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PROOF. By (2.12) we have z+z = |x|>. Hence we have

|pa + ad| = |tr(AB‘1)| = |tr(A)tr(B) — tr(AB)| = | |x|2 —z| = |Z| = |oa + pd)|.
Since
|owa| + [Bd| — |Bal — |od| = (|| = |B])(la] — |d]) = 0,

we have

1Bl + o] _ |l + 1] _
\Pa+ad| — |oa+ pd|

Propositions and imply that holds for n= —1.

L(-1) L(1). O

ProrosITION 4.4. L(-2) < R.

Proor. By [Proposition 3.3 and by the equality

(Joal + |57d])* = (|” + |B1%) (e * ) + BI*1d]*) = (lal* + |d]*) + 2]ad]|
it is not difficult to see that L(—2) < R is equivalent to
(4.4) t < |z* = |x|* + 2P = 20z
By it suffices to show that
(20 + 41217 = 8l < [z — Il + |2l ] = 22/
or
(4.5) (2 =4 < (|zI* =3 + 7.

By Cemma 3.4 we have —v/7 < 2v/5— 6 < |x|* —4. Hence we may show this only for
those which satisfy |x|*> > 6. For those x, we have by Lemma 3.4

2> =3 =20 —x2) =3 =2]x]" —4x} 3> 2x|* =7 > 5.
Hence, in order to show (4.5), it suffices to show

(X" —4)" < @ = 7)* +7

or
0 < 3|x|* = 20[x|? + 40.
Clearly this inequality is true. Thus we have so that holds. O
ProposiTION 4.5. L(2) < R.
Proor. By [Proposition 3.3 it is not difficult to see that L(2) < R is equivalent to
(4.6) —t < |2 = |x* + )2 |x)* = 2|2

Since ¢ >0, we have by (4.4). []
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Propositions 4.4 and imply that holds for |n| =2. Therefore we have
shown that holds for each integer n satisfying |n| < 2.
§5. Check for the cases of |n| > 4.

In this section we prove that holds for the cases of |n| > 4. Instead of we
shall use another inequality. For each integer n, we set

A(n) = |a*"|al* + |B|*"|d|”.
ProposITION 5.1. If the inequality
(5.1) 8Ix*1X|* < (Ix|* — |X17 +4)(|X A (n) — 2|x])
holds for an integer n, then (1.6) holds for n.

ProoF. Since

— A(n) — 2lad)|

)

-

and |ad| = ’

in order to show L(n) < R, it suffices to show that
A(n) +2x/XP s
5 < R°.
A(n) = 2|x/ X|
Since R? is given by [4.2), a calculation shows that this is equivalent to [5.T). OJ

PROPOSITION 5.2.  Let ny be a negative integer. If (5.1) holds for n = ny, then (1.6)
holds for each integer n satisfying |n| > — ny.

Proor. By [Proposition 5.1| it suffices to show that 4(ny) < A(n) for |n| > —ny. It
also suffices to show that

A(ng) < A(—n) < A(n)

for each positive integer n > —ny. By [Proposition 3.1 we have

A(n) = A(=n) = (jo|" = |p")(la|* = |d|*) = 0.

Hence we have A(—n) < A(n) for each positive integer n.
Next we shall show that A(—n) < A(—n — 1) for each positive integer n. Since

A(=n—1) = A(=n) = (| + |B]*)A(—n) — A(=n + 1) — A(-n)
= (o] = [B)*A(—n) + A(=n) — A(—n+1)
> A(—n) — A(-n+1),

it suffices to show that 4(—1) < 4A(—2). Since

A(=2) = A(=1) = (> + [ = DB lal” + lo|dI*) = (al* + |d]),
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we see by [3.2), [3.4) and [Proposition 3.2] that, in order to show A(—1) < A(-2), it
suffices to show

201221 + 16 — |X1*) < (Ix]* + X 17 = 2)(|=1%|X[* + 4lx]* = o).
Since 7 < |2)*|X]* by [3.6), it also suffices to show

X174+ 16 — |XT* < 20x*(1x1” + |X]* - 2)

or

16 < |x|* + [X|* + |x|*(|x]* + |X]* = 4).

By (1.4)" we see easily that |x|*+ |X|* >4. Hence the above inequality holds by
(1.4)". Therefore, we have A(—1) < A(-2), so that A(—n) < A(—n—1) for each
positive integer n. Hence we have shown that A(ny) < A(—n) for n > —ny. Thus we
have shown that A(ng) < A(—n) < A(n) for each positive integer n > — ny. O

Now, we shall show that holds for n=—4. To do this we need some in-
equalities. By we have

4 4 212
X 2 x|7|1 X" -8
R N

4
Then by (1.4)" we have
22
X|"+4
5.2 gt s DX
(52) o+ ot > 2
Also by and (1.4)" we have
(53) |a|2 + |d|2 < |X|2(|X|2 + |X|2)
21X
Since off =1, we have
e
(54 P+ 1 = 2 =2

Making use of (5.2}, [5.3) and [5.4), we have

A(=4) = (B [al” + |e*[d 1) (ol + 1) = (al* + 1) (20 * + 18%) = (al* + |d]*)

2 2 2 2 2
o PO+ (X (XX + 2)
4 x|*

Therefore, in order to show for n = —4, 1t suffices to show the following.

320X17 < (Ix® = X1 +4) (x> +1X 17 = 4) + <X (16 + [X]%).
Since |x|* +|X|* >4 by (1.4)’, it suffices to show the following.

8 < x| (Ix* = X" + 4)
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or
2117 < el + 4] = 8,
Squaring both sides of the above inequality and using [2.14), we have
Q2lx]2+ |2 = 4)|x|* = 16]x|* + 16 > 0.
Since 2|x|” + |z|> — 4 = 4(x} — 1) by [2.11), the last inequality is written as

(x? = D)|x|* — 4|x]* +4 > 0.

[Cemma 3.4 assures that this inequality is true. Thus we have proved that holds
for n = —4. Then [Proposition 5.2| implies that holds for each integer n satisfying
|n| > 4.

§6. Check for the cases of |n| = 3.

In this section we prove for the cases of |n| = 3. First we treat the case of
—3. There are two cases to consider which are divided by the use of inequalities

n—

Case I. x7 >3. In this case we shall prove [5.1)]. By [3.2), [3.4) and [Proposition]|
3.2 we have

81 X2 A(=3) = ((Ix|* + |XI*)* = 4)(|z*| X|* + 4[x|* — 1)
= 2(x* + 1XP) (121X = [ X + 16).
Since |z|*|X|* > and |x|* +|X|* > 16 by and (1.4)') respectively, we have
81X 1 A(=3) > 4((|x* +|X1%)* = 4)|x|* = 2(1x|” + |X|*)*|x|?
= 2((]x* + |X1%)* = 8)|x/?
> 4(4 + x| X[7)|x]*.

Thus, in order to show for n = —3, it suffices to show with the replace of
IX[2A(=3) by (4+ |x]*1X]%)|x]*/2. It is written as

(6.1) X2 X)* < |x|* + 4]x|* — 16.

Since |x|* +4|x|* — 16 > 0 by [3.7), squaring the both sides of and making use of
(2.14), we see that it suffices to show that

x|® = 4|x|* + (121 /2)|x[* = 16]x]> + 32 > 0.
By we see that the above inequality is equivalent to
(x? = 2)|x|* = 8]x|* + 16 > 0.

Since x2 > 3 and since if x> = 3 then |x|* < 4 by [Cemma 3.4, the above inequality holds.

Therefore, we have proved so that in Case | holds for n = -3 by
5.2.
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Case II: x7 < 3. In this case we prove [4.1)]. Making use of (2.12), and the
equality f?a+o’d = 2(x* —2) — z, we have
(6.2) B2a+ o3d|” = (|z]7[x]* + 4)x|* = 20z + 22> — |x]*0) /2.
On the other hand, we have by [Proposition 3.2 and [3.2)

(6.3) 21X *(18%] + |o?d])® = (12171 X 17 + 41x*) ((1x]* + [X]*)* = 8)
— 427X = ((Ix* + |X])° = 4)1) /4
Inserting and into L(—3)* < R? and making use of the identity
2127 [xl* + 4lxl* = 212+ 2020) — (271X + 4x*) (15l + [X]* = 4)

2 2 212 2 2 2
= (|2 = [X17 + ) (|x]7|z]" — 4]z|" + 4[x]7) + 4lz[",

we have
(6.4) 421x* + |27 = 3)t — 4(|z)*[x]* + 4]z)* — 8]x[?)

< (3PP + X+ 4) (> = 1X P+ 4) (121 — 4121 + 4)x]%)
Since

(Ix” + [XT* +4) (x> = |X]* +4) = 4Q2[x]* + |2)
by and
t < |2)*)x|* + 42> — 8|x|?

by [1.5) and [3.5), in order to show [6.4), we may show the following.

P + 121> = 4) (|2 x> + 4l21” = 81x]*) < 2Ixl* + [217) (x| |2 — 42| + 4[x])
or
(6.5) x|t = |2 +2|z)* — 4]x]* > 0.

We shall put x> = u and x2 = v. Then |x|* = u+ v and |z|* = 2(u —v) by [2.1T] Note
that 2 < u < 3 by Lemma 3.4 and by our assumption x < 3. Now, is written as

(6.6) Tu—4 — 23/ 12u2 — 14u + 4 < v.

Thus, in order to show for n = —3, it suffices to show for 2 <u < 3. Itis not
difficult to see by (1.4) that

Tu—4 21212 — 14u+4 <17 -2V70 < 2V/7 -5 < .

Hence we have shown that holds for n = —3. Therefore, we have shown that in
Case 11 holds for n = —3.

Thus we have shown that holds for n = -3.

Lastly, we treat the case of » =3. By a similar calculation to and we
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have
Pa+pd? = |Bla+ o d) + |5
and
2X P (|%al + |Bd])* = 21X (1P al + [o*d])* + (x> + | X]7)* = 4)¢/2.

Then we see that L(3)2 < R? is equivalent to with the replace of ¢ by —¢. Since
is true, it clearly holds. Hence we have proved that holds for n = 3 so that
holds for n = 3.

Thus we have completed the check of for the cases of |n| = 3.

In conclusion, we have completed the proof of [Theorem 1.3 by [Theorem 1.4l
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