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Abstract. We prove an asymptotic formula for
P

nUN rðnÞrðnþmÞ using the spectral

theory of automorphic forms and we specially study the uniformity of the error term in

the asymptotic approximation when m varies. The best results are obtained under a

natural conjecture about the size of a certain spectral mean of the Maass forms.

We also employ large sieve type inequalities for Fourier coe‰cients of cusp forms to

estimate some averages (over m) of the error term.

§1. Introduction.

In this paper we shall deal with the sums

SðN;mÞ ¼
X

nUN

rðnÞrðnþmÞ

where rðnÞ denotes the number of representations of n as sum of two squares and

m A Z
þ.

The corresponding sums when rðnÞ is substituted by the divisor function, dðnÞ, were

considered firstly in 1927 by Ingham (see [In]), since then they have acquired growing

interest because of their relation with Kloosterman sums, spectral theory of automorphic

forms and the power moments of the Riemann zeta function (see the introduction

and references of [Mo1] and [Mo2]). Although the similarity between the two fore

mentioned sums (rðnÞ is the divisor function in Z½i �), the spectral analysis is di¤erent

and, as far as we know, a spectral approach to the asymptotics of SðN;mÞ for all values

of m has not been considered before (the odd case is treated in [Iw]).

In this paper we give an asymptotic formula with error term for SðN;mÞ studying

its uniformity in m. We also consider average results when m varies. This kind of

averages appear in the study of the mean value of the error term in the circle problem

(compare with [Ts]) which was our initial motivation and we intend to treat in other

occasion.

The structure and contents of the subsequent sections are as follows:

In §2 we give in Proposition 2.3 (see also Lemma 2.1 and Lemma 2.2) the spectral

expansion of SðN;mÞ in terms of non-holomorphic modular forms. The proof fol-

lows the lines of the Chapter 12 of [Iw], the novelty of our argument (apart from some

technical variations to include the range NUm) is to cover the case with even m.

In §3 we prove an asymptotic formula with error term for SðN;mÞ (see Theorem

3.1) assuming the following bound.
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Conjecture 1.1. Let fujðzÞg be the set of Hecke cusp forms of G ¼ PSL2ðZÞ or

G ¼ G0ð2Þ=fGIdg with respective eigenvalues flj ¼ 1=4þ t2j g, then for every e > 0 and

z A H
X

T<jtj jU2T

jujðzÞj
4 ¼ OðT 2þeÞ

where the O-constant depends on e and z.

Changing jujðzÞj
4 by jujðzÞj

p, the bound follows for any p > 0 from a general

conjecture of ‘‘arithmetic quantum chaos’’ (see Conjecture 3.10 in [Sa] or (0.8) in

[Iw-Sa]). On the other hand, for p ¼ 2 the bound is a consequence of Bessel inequality

(see Proposition 7.2 of [Iw]), and after expanding jujðzÞj
2 into Fourier series, it seems

that there is a primary technical di‰culty to treat the case p ¼ 4, namely, to find a

suitable asymptotic formula for the Bessel function KitðyÞ separating t from y, over all

in the range jtj1ÿe < y < jtj1þe. After overcoming this technical di‰culty, perhaps the

conjecture could be settled with a convenient application of Bruggeman-Kuznetsov

formula. Recently, N. Pitt has proved a summation formula which allows to deduce

the conjecture for some special values of z but not including those appearing in our

proof of Theorem 3.1 (I thank H. Iwaniec for some comments about this conjecture and

N. Pitt for communicating some unpublished results).

The bound of the error term in the asymptotic formula for SðN;mÞ reads in some

ranges as the one proved unconditionally by Y. Motohashi for
P

dðnÞdðnþmÞ (see

[Mo1] and use [Bu-Du-Ho-Iw]), but in our case the range of uniformity is larger. We

also obtain a bound assuming Ramanujan-Petersson conjecture (for non-holomorphic

cusp forms) instead of Conjecture 1.1.

In §4 we use estimates on linear forms of Fourier coe‰cients due to W. Luo [Lu]

(improving those of [De-Iw]) to obtain mean results for SðN;mÞ when m varies.

Finally, in §5 we give a weaker result for the error term in our asymptotic formula

but not depending on any conjecture.

The author acknowledges specially the unvaluable encouraging help given by E.

Valenti.

§2. Spectral analysis of SðN;mÞ.

The purpose of this section is to express SðN;mÞ in terms of Hecke operators acting

on automorphic kernels (see Lemma 2.1 and Lemma 2.2 below) and, via spectral

analysis, to expand them into eigenfunctions of the Laplace-Beltrami operator on the

upper half plane H (see Proposition 2.3).

First of all we shall give some basic definitions on harmonic analysis in Riemann

surfaces to fix the notation and facilitate references. We follow the notation of [Iw]

which is rather standard.

G will denote a Fuchsian group of the first kind, in fact in this paper we shall only

consider G ¼ PSL2ðZÞ and G ¼ G0ð2Þ=fGIdg where G0ð2Þ is the Hecke congruence

group

G0ð2Þ ¼
a b

c d

� �

A SL2ðZÞ; 2jc

� �

:
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The set of orbits of GnH has a Riemann surface and Riemannian manifold structure in

which the element of area and the distance function are induced by dm and r, given by

dmðxþ i yÞ ¼ dx dy

y2
rðz;wÞ ¼ arc coshð1þ 2uðz;wÞÞ where uðz;wÞ ¼ jzÿ wj2

4 Im z Imw
:

The functions of L2ðGnHÞ can be analysed in terms of the eigenfunctions of the

Laplace-Beltrami operator on H . In particular, under suitable regularity and decaying

conditions on a function k : ½0;yÞ ! C , it can be proved the so called pretrace formula

X

g AG

kðuðgz;wÞÞ ¼
X

j

hðtjÞujðzÞujðwÞ þ
1

4p

X

a

ð

y

ÿy

hðtÞEaðz; 1=2þ itÞEaðw; 1=2þ itÞ dt;

where fujðzÞgyj¼0 is an orthonormal system of eigenfunctions with respective ordered

eigenvalues flj ¼ 1=4þ t2j g. This system is generated by Maass cusp forms and res-

idues of Eisenstein series, Eaðz; �Þ, associated to the cusp a. The function h represents

the Selberg-Harish-Chandra transform of k, given by

hðtÞ ¼
ð

H

kðuðz; iÞÞðIm zÞ1=2þit
dmðzÞ:

If G is a congruence group, Hecke operators Tm; m A Z
þ, are defined by (a more

proper definition can be given in a general context but this matches our purposes)

Tm f ðzÞ ¼ 1
ffiffiffiffi

m
p

X

g AG1nGm

f ðgzÞ ¼ 1
ffiffiffiffi

m
p

X

ad¼m

X

ðb mod dÞ
f

azþ b

d

� �

where G1 ¼ SL2ðZÞ and Gm is the set of 2� 2 integral matrices whose determinant

equals m.

Hecke operators constitute one of the most important links between automorphic

forms and arithmetic. From the point of view of spectral theory, Tm is self-adjoint in

L2ðGnHÞ if m and the level of G are coprime, moreover, Tm commutes with Laplace-

Beltrami operator, hence, for a suitable choice of fujðzÞg, it holds

TmujðzÞ ¼ ljðmÞujðzÞ and TmEaðz; 1=2þ itÞ ¼ htðmÞEaðz; 1=2þ itÞ:

The so chosen cusp forms are called Hecke cusp forms and Ramanujan-Petersson

conjecture in this context, asserts that jljðmÞjU dðmÞ, but this bound is out of reach

with current methods. The best known bound, jljðmÞjUm5=28dðmÞ, is proved in [Bu-

Du-Ho-Iw] using quite advanced arguments. On the other hand the formula htðmÞ ¼
P

d jmðm=d 2Þit implies at once jhtðmÞjU dðmÞ.
A simple and direct relation between Hecke operators and SðN;mÞ is the content of

the following result.

Lemma 2.1. Let k be the characteristic function of ½0;N � and G ¼ G0ð2Þ=fGIdg,
then for any odd positive integer, m,

SðN;mÞ ¼ 2
ffiffiffiffi

m
p

Tmjz¼z0

X

g AG

kðmuðgz0; zÞÞ

where z0 ¼ ði ÿ 1Þ=2.
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Proof. It is not di‰cult to check that

g ¼ a b

c d

� �

A SL2ðZÞ ) 4uðgi; iÞ þ 2 ¼ a2 þ b2 þ c2 þ d 2:

To specify that aþ d and bþ c are even one can simply write

g A tÿ1G0ð2Þt with t ¼ 0 ÿ1

1 1

� �

:

Note that

�

a2 þ b2 þ c2 þ d 2 ¼ 4nþ 2

ad ÿ bc ¼ 1
,

aþ d

2

� �2

þ cÿ b

2

� �2

¼ nþ 1

aÿ d

2

� �2

þ cþ b

2

� �2

¼ n:

8

>

>

>

>

<

>

>

>

>

:

Hence, if k is the characteristic function of ½0;N � we have

X

g AG0ð2Þ
kðuðtÿ1gti; iÞÞ ¼

X

nUN

rðnÞrðnþ 1Þ:

By technical reasons we prefer to consider G ¼ G0ð2Þ=fGIdg which is covered twice by

G0ð2Þ. Substituting ti ¼ ði ÿ 1Þ=2 we can write the previous formula as

SðN; 1Þ ¼ 2
X

g AG

k u g
i ÿ 1

2
;
i ÿ 1

2

� �� �

:

The same argument can be repeated replacing a; b; c; d by a=
ffiffiffiffi

m
p

, b=
ffiffiffiffi

m
p

, g=
ffiffiffiffi

m
p

, d=
ffiffiffiffi

m
p

with adÿ bg ¼ m and a; b; g; d A Z, getting

SðN;mÞ ¼
X

g AG 0
m

k mu g
i ÿ 1

2
;
i ÿ 1

2

� �� �

where G 0
m is the set of matrices ðaijÞ A Gm such that a21 is even. Note that the

representatives of G1nGm chosen in the definition of Tm, say gi, are also representatives

of G0ð2ÞnG 0
m, i.e. G 0

m ¼6G0ð2Þgi, and the result follows. r

Our objective is to expand Tmk in terms of eigenfunctions but the lack of regularity

of k leads to a non-absolutely convergent series. Another more serious di‰culty is that,

as we noticed before, Tm only behaves as a multiplier when m and the level are coprime,

i.e. when m is odd, which limits the interest of generalizing Lemma 2.1. This problem

is overcome thanks to the following result.

Lemma 2.2. For m A Z
þ even, let 2k be the greatest power of 2 dividing m, then

SðN;mÞ ¼ SðN=2;m=2Þ if k ¼ 1;

and

SðN;mÞ ¼ 2AðN;mÞ ÿ 2AðN=2;m=2Þ þ 2AðN=4;m=4Þ

þ � � � þ 2ðÿ1Þkÿ2
AðN=2kÿ2;m=2kÿ2Þ þ ðÿ1Þkÿ1

SðN=2kÿ1;m=2kÿ1Þ if k > 1:
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where

Að4N; 4mÞ ¼ 2
ffiffiffiffi

m
p

Tmjz¼i

X

g AG

kðmuðgi; zÞÞ

with G ¼ PSL2ðZÞ and k the characteristic function of ½0;N �.

Proof. If m is even, 4am and rðnÞrðnþmÞ 6¼ 0 then n is even and the equality

rð2lÞ ¼ rðlÞ implies the first part of the lemma.

For the second part it is enough to prove

2AðN;mÞ ¼ SðN;mÞ þ SðN=2;m=2Þ for k > 1:ð2:1Þ

Let aðn;mÞ be the number of integral solutions a; b; c; d of

�

a2 þ b2 þ c2 þ d 2 ¼ nþm=2

ad ÿ bc ¼ m=4:
ð2:2Þ

Proceeding as in the proof of Lemma 2.1

X

nUN

aðn;mÞ ¼ AðN;mÞ:

Writing A ¼ aþ d, B ¼ cÿ b, C ¼ aÿ d, D ¼ cþ b in (2.2), we have that aðn;mÞ is the

number of integral solutions A;B;C;D, of

A2 þ B2 ¼ nþm

C 2 þD2 ¼ n

2jAÿ C; 2jBÿD:

8

>

>

<

>

>

:

ð2:3Þ

If n1 2 (4) or n1 0 (4) then A;B;C;D are simultaneously odd or even. Hence the

third condition in (2.3) is superflous and we get

aðn;mÞ ¼ rðnÞrðnþmÞ ¼ rðn=2Þrðn=2þm=2Þ if n is even:ð2:4Þ
If n is odd then A2B (2) and C2D (2). Hence, perhaps exchanging C and D, we

can omit the third condition and we have

aðn;mÞ ¼ 1

2
rðnÞrðnþmÞ if 2an:ð2:5Þ

Note that

X

2an

rðnÞrðnþmÞ ¼
X

n

rðnÞrðnþmÞ ÿ
X

2jn
rðnÞrðnþmÞ

¼
X

n

rðnÞrðnþmÞ ÿ
X

2jn
rðn=2Þrðn=2þm=2Þ:

Hence, from (2.4) and (2.5) it is deduced (2.1). r

The following result performs the needed smoothing and gives the spectral ex-

pansion of the involved automorphic kernels.
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Proposition 2.3. Let G be PSL2ðZÞ or G0ð2Þ=fGIdg. Let k be the characteristic

function of ½0;N � and X ¼ arc coshð1þ 2N=mÞ. Then for every 0 < DUminð1;X=2Þ

there exists D0, jD0jUD, such that

Tmjw¼z

X

g AG

kðmuðgz;wÞÞ¼
X

j

ljðmÞHðtjÞjujðzÞj
2þ

1

4p

X

a

ð

htðmÞHðtÞjEaðz; 1=2þitÞj2 dt

where m A Z
þ, 2am if G ¼ G0ð2Þ=fGIdg, and HðtÞ is the Selberg-Harish-Chandra

transform of the kernel K defined by

Kðuðz;wÞÞ ¼
1

2p sinh2ðD=2Þ

ð

H

k
Nuðz; vÞ

sinh2ððX þ D0Þ=2Þ

 !

k
Nuðv;wÞ

sinh2ðD=2Þ

 !

dmðvÞ:

Although the definition of K seems very complicated, its Selberg-Harish-Chandra

transform, H, can be easily described in terms of special functions which can be es-

timated by standard arguments. All the needed bounds are contained in the following

result.

Lemma 2.4. Let H be as in Proposition 2.3, then

a) Hði=2Þ ¼ 4pNmÿ1 þOðDNmÿ1 þ DN 1=2mÿ1=2Þ,

b) HðtÞf ð1þ jtjÞÿ3=2
N 1=2mÿ1=2 minðlogN; ðDjtjÞÿ3=2Þ if NVm and t A R

c) HðtÞfNmÿ1ð1þNt2=mÞÿ3=4 minð1; ðDjtjÞÿ3=2Þ if NUm and t A R.

Proof. Note that K is the convolution of two kernels, then its Selberg-Harish-

Chandra transform is given by (see (2.13) in [Ch])

HðtÞ ¼ ð4pÞÿ1 sinhÿ2ðD=2Þh1ðtÞh2ðtÞ

where h1 and h2 are respectively the Selberg-Harish-Chandra transforms of the char-

acteristic functions of the intervals ½0; sinh2 R1� and ½0; sinh2 R2� with R1 ¼ ðX þ D0Þ=2

and R2 ¼ D=2.

In Lemma 2.4 of [Ch] asymptotics formulas are given for the Selberg-Harish-

Chandra transform of a characteristic function in several ranges which imply the needed

bounds. r

We conclude this section proving Proposition 2.3.

Proof of Proposition 2.3. We proceed as in Lemma 2.3 of [Ch] considering Kþ

and Kÿ defined as K but replacing D0 by D and ÿD, respectively.

Note that f ðvÞ ¼ kðNuðv;wÞ=sinh2ðD=2ÞÞ vanishes if rðv;wÞVD. Using the tri-

angle inequality for r one deduces that the supports of Kÿðuðz;wÞÞ and Kþðuðz;wÞÞ are

rðz;wÞUX and rðz;wÞUX þ 2D, respectively, which combined with
Ð

f ðvÞ dmðvÞ ¼

4p sinh2ðD=2Þ proves

X

g

Kÿðuðgz;wÞÞU
X

g

kðmuðgz;wÞÞU
X

g

Kþðuðgz;wÞÞ:
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Applying Tm (note that it is a monotone operator) by mean value theorem there exists

D0, ÿDUD0UD, such that

Tmjz¼w

X

g AG

kðmuðgw; zÞÞ ¼ Tmjz¼w

X

g AG

Kðuðgw; zÞÞ;

and the result is a consequence of the pretrace formula. r

§3. An asymptotic formula with error term.

The main results of this section are the following theorems.

Theorem 3.1. If 2k is the greatest power of two dividing m, we have under

Conjecture 1.1

SðN;mÞ ¼ 8j2kþ1 ÿ 3js
m

2k

� �N

m
þ EðN;mÞ

where s indicates the sum of positive divisors and

EðN;mÞfe N
2=3þe þN 1=2þem3=14 þminðN 1=2m1=4þe;N 1=4m13=28þeÞ

for every e > 0.

Remark. The bound for the error term is quite similar to the one for
P

dðnÞdðnþmÞ obtained from the work of Y. Motohashi [Mo1] after substituting the

bound of [Bu-Du-Ho-Iw] in his Theorem 5. In our case, not only the statement of the

result, but the proof is technically much simpler (although the underlying ideas are

similar). We find it surprising taking into account the analogies between rðnÞ and

dðnÞ and perhaps it reveals an unsuspected straight relation in this context between

Bruggeman-Kuznetsov formula and pretrace formula.

Compare the previous result with Theorem 12.5 of [Iw] and note the absence of a 2

factor because in Chapter 12 of [Iw] the spectral calculations are implicitly done in

subgroups of PSL2ðZÞ and each element corresponds to two integral matrices in SL2ðZÞ.

Theorem 3.2. If 2k is the greatest power of two dividing m, we have under

Ramanujan-Petersson conjecture

SðN;mÞ ¼ 8j2kþ1 ÿ 3js
m

2k

� �N

m
þOeðN

2=3þe þN 1=3m1=3þeÞ

for every e > 0.

The auxiliary results that we shall use in the proofs of these theorems are sum-

marized in the following lemma.

Lemma 3.3. If z ¼ i and G ¼ PSL2ðZÞ (or z ¼ ði ÿ 1Þ=2 and G ¼ G0ð2Þ=fGIdg), let

us define for TV 1

S ¼
X

T<jtj jU2T

jljðmÞj jujðzÞj
2

tj A R
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then for every e > 0

S f m5=28þeT 2þe

and under Conjecture 1.1

SfmeT 2þe þm1=4þeT 1þe:

Remark. The second bound of this lemma is somehow weaker than Conjecture 1.1

but, actually, it is the only conjectural result needed in the proof of Theorem 3.1.

Proof. By the result of [Bu-Du-Ho-Iw] (in the general form stated in p. 128 of [Iw])

we have

Sfm5=28þe
X

T<jtj jU2T

jujðzÞj2

and the first bound follows from Proposition 7.2 of [Iw].

As a consequence of Bruggeman-Kuznetsov formula (apply Theorem 9.3 of [Iw],

(8.43) and Weil’s bound for Kloosterman sums) one gets the following estimate due to

N. V. Kuznetsov

X

T<jtj jU2T

jljðmÞj2 fT 2þe þm1=2þe;

and the result follows from Conjecture 1.1 after Cauchy’s inequality. r

Proof of Theorem 3.1. After Lemma 2.1, Lemma 2.2 and Proposition 2.3, we can

write SðN;mÞ as a sum involving Maass wave forms and integrals of Eisenstein series,

coming respectively from the discrete and continuous part in spectral resolution of

Laplace-Beltrami operator. For a sake of notational simplicity we shall separate these

contributions writing

SðN;mÞ ¼ Dþ C:

Obviously, the result follows from

D ¼ 8j2kþ1 ÿ 3js m

2k

� �N

m
þOðRÞð3:1Þ

and

C ¼ OðRÞð3:2Þ

where

R ¼ N 2=3þe þN 1=2þem3=14 þminðN 1=2m1=4þe;N 1=4m13=28þeÞ:

Note that the contribution in Proposition 2.3 of zero eigenvalue of Laplace-Beltrami

operator (corresponding to t0 ¼ i=2, u0 ¼ ðjGnH jÞÿ1=2) is by Lemma 2.4 a))

l0ðmÞHðt0Þju0ðzÞj2 ¼
sðmÞ

jGnH j ffiffiffiffi

m
p Hðt0Þ ¼

4psðmÞN
jGnH jm3=2

þOðDNmÿ1=2þe þ DN 1=2meÞ:
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Substituting in Lemma 2.1 and Lemma 2.2, after some calculations (use jPSL2ðZÞnH j
¼ p=3 and jðG0ð2Þ=fGIdgÞnH j ¼ p), the sums of the main terms is for k > 1

N

m
ð48sðm=4Þ ÿ 48sðm=8Þ þ � � � þ ðÿ1Þkÿ248sðm=2kÞ þ ðÿ1Þkÿ18sðm=2kÞÞ

which equals 8ð2kþ1 ÿ 3Þsðm=2kÞN=m. The cases k ¼ 0 and k ¼ 1 are easily treated

separately giving 8sðmÞN=m and 8sðm=2ÞN=m. After these considerations it is enough

to prove that each error term is OðRÞ which, after dividing into dyadic intervals in

Proposition 2.3, reduces (3.1) to prove

NDþN 1=2m1=2
Dþ

ffiffiffiffi

m
p

sup
T

jEðN;m;TÞj ¼ OðRÞð3:3Þ

where

EðN;m;TÞ ¼
X

T<jtj jU2T
j 6¼0

ljðmÞHðtjÞjujðwÞj2

with D and H as in Proposition 2.3 and w ¼ i or w ¼ ði ÿ 1Þ=2.
It is known (see for instance Theorem 11.4 of [Iw]) that for j 6¼ 0, 1=4þ t2j >

1=4þ c2 with c > 0 in G ¼ PSL2ðZÞ and G ¼ G0ð2Þ=fGIdg, then we can assume

tj A Rÿ f0g.
If NVm, Lemma 2.4 implies

EðN;m;TÞfN 1=2þemÿ1=2Tÿ3=2 minð1; ðDTÞÿ3=2Þ
X

T<jtj jU2T

jljðmÞj jujðwÞj2:ð3:4Þ

By Lemma 3.3 and choosing D ¼ Nÿ1=3, we get

EðN;m;TÞfN 1=2þemÿ1=2Tÿ3=2þe minð1;N 1=2Tÿ3=2Þminðm5=28T 2;T 2 þm1=4TÞ:

The size of the maximum of the right hand side is reached at T ¼ N 1=3 or T ¼ m1=14,

getting (3.3) and hence (3.1) (in fact, only the two first terms of R are needed).

The case N < m is formally similar but replacing (3.4) by (see Lemma 2.4)

EðN;m;TÞfNmÿ1ð1þNT 2=mÞÿ3=4 minð1; ðDTÞÿ3=2Þ
X

TUjtj j<2T

jljðmÞj jujðwÞj2:ð3:5Þ

We can assume mUN 2 (otherwise the result is trivial) and then D ¼ Nÿ1=6mÿ1=6 is

under the hypothesis of Proposition 2.3. With this choice of D, by Lemma 3.3 we have

EðN;m;TÞfNmÿ1ð1þNT 2=mÞÿ3=4 minð1;N 1=4m1=4Tÿ3=2Þm5=28þeT 2 if TUm1=14

EðN;m;TÞfNmÿ1ð1þNT 2=mÞÿ3=4 minð1;N 1=4m1=4Tÿ3=2ÞðT 2þeþm1=4T 1þeÞ if TVm1=14:

The right hand side of the first inequality reaches its maximum at T ¼ m1=14, then it

is enough to consider the second inequality (because both bounds coincide when T ¼
m1=14), in which the maximum order is reached at T ¼ m1=2Nÿ1=2 if N < m6=7 and

at T ¼ m1=14 if N > m6=7. These maximal orders are N 1=2mÿ1=4þe and N 1=4mÿ1=28þe
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respectively, then we can write

EðN;m;TÞfminðN 1=2mÿ1=4þe;N 1=4mÿ1=28þeÞ:

Therefore (3.3) also holds in the range N < m.

To finish the proof we have to prove (3.2). It reduces to establish

ffiffiffiffi

m
p

sup
T>1

jE 0ðN;m;TÞj ¼ OðRÞð3:6Þ

where

E
0ðN;m;TÞ ¼

X

a

ð2T

T

htðmÞHðtÞjEaðw; 1=2þ itÞj2 dt:

Using Lemma 2.4, the bound jhtðmÞjU dðmÞ and Proposition 7.2 of [Iw], one gets

E
0ðN;m;TÞfN 1=2þemÿ1=2T 1=2 minð1; ðDTÞÿ3=2Þ if NVmð3:7Þ

and

E
0ðN;m;TÞfNT 2mÿ1 minð1; ðNT 2=mÞÿ3=4Þminð1; ðDTÞÿ3=2Þ if N < m:ð3:8Þ

The choice done for the discrete part forces D ¼ Nÿ1=3 in (3.7) and D ¼ Nÿ1=6mÿ1=6

in (3.8). In any case (3.6) is fulfilled. r

Proof of Theorem 3.2. Arguing as in the proof of Theorem 3.1 (see (3.3) and

(3.6)), it is enough to prove

NDþN1=2m1=2Dþ
ffiffiffiffi

m
p

sup
T

ðjEðN;m;TÞjþjE 0ðN;m;T ÞjÞ¼OðN2=3þeþN1=3m1=3þeÞ:ð3:9Þ

Under Ramanujan-Petersson conjecture jljðmÞjU dðmÞ, hence (use Proposition 7.2 of

[Iw])

jEðN;m;T Þj þ jE 0ðN;m;TÞjfT 2þe sup
T<jtjU2T

jHðtÞj:

Now, using Lemma 2.4 b), c), substituting in (3.9) and choosing D ¼ Nÿ1=3 if NVm

and D ¼ Nÿ1=6mÿ1=6 if N < m, the result is proved. r

§4. Averaging over m.

If we average SðN;mÞ over m, some cancellation is hoped due to the oscillation of

ljðmÞ. Some of the results of [De-Iw] (see specially §6) and [Lu] quantify the can-

cellation in m and spectral aspect induced by this oscillation in certain sums. In this

section we shall use this latter work to prove the following theorem.

Theorem 4.1. Let EðN;mÞ be defined as in Theorem 3.1 and let am be arbitrary

complex numbers, then for N > M 2 > 1 we have under Conjecture 1.1

X

M<mU2M

amEðN;mÞfe kak2N eðN 2=3M 1=6 þM 2Þ:
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Choosing

am ¼ EðN;mÞ
X

M<kU2M

jEðN; kÞj2
 !ÿ1=2

it is deduced at once.

Corollary 4.2. For N > M 2 > 1 and under Conjecture 1.1

X

M<mU2M

jEðN;mÞj2 fe N
eðN 4=3M 1=3 þM 4Þ:

Even without taking into account the oscillation of ljðmÞ it is possible to improve

Theorem 4.1 in some ranges using that Ramanujan-Petersson conjecture is true on

average. Namely

Theorem 4.3. Let EðN;mÞ and am as before, then for N, M > 1

X

M<mU2M

amEðN;mÞfe kak2ðN
2=3þeM 1=2 þN 1=3M 5=6þeÞ:

In the proof of Theorem 4.1 it will be important to consider the dependence on m

of the function HðtÞ defined in Proposition 2.3. The needed result is contained in the

following lemma.

Lemma 4.4. For N > M, M < mU 2M and 1 < jtjUT , t A R, we have

HðtÞ ¼ F ðtÞ þ F ðÿtÞ

with

FðtÞ ¼ mÿit f1ðD; tÞ f2ðN;D; t;mÞð1þOðð1þNTÿ1Mÿ1Þÿ1ÞÞ

where f2 is decreasing in m.

Remark. Note that by Lemma 2.4

f1ðD; tÞ f2ðN;D; t;mÞfTÿ3=2N 1=2Mÿ1=2 minðlogN; ðDTÞÿ3=2Þ:

Proof. As we mentioned in the proof of Lemma 2.4, HðtÞ can be written as (see

[Ch])

HðtÞ ¼ ð4pÞÿ1 sinhÿ2ðD=2Þh1ðtÞh2ðtÞ

where h2 ¼ f1ðD; tÞ is even in t and h1 is the Selberg-Harish-Chandra transform of the

characteristic function of ½0; sinh2ððX þ D0Þ=2Þ� with X ¼ arc coshð1þ 2N=mÞ. By (2.8)

and (2.9) of [Ch]

h1ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p sinhðX þ D0Þ
p

ð f ðtÞ þ f ðÿtÞÞ with f ðtÞ ¼
e itðXþD0ÞGðitÞ

Gðitþ 3=2Þ
ð1þOðM 2Tÿ1Nÿ2ÞÞ;
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and noting that

e itX ¼ 1þ
2N

m
þ
2N

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
m

4N

r
� �it

¼
4N

m

� �it

ð1þOðð1þNTÿ1Mÿ1Þÿ1ÞÞ;

the proof is finished. r

Proof of Theorem 4.1. Separating the contribution corresponding to discrete and

continuous spectrum as in the proof of Theorem 3.1, it is enough to prove

NM 1=2Dkak2 þM 1=2 sup
T>1

jEaðN;M;TÞj þM 1=2 sup
T>1

jE 0
aðN;M;TÞj ¼ OðRaÞð4:1Þ

where

EaðN;M;TÞ ¼
X

T<jtj jU 2T

X

M<mU2M

amljðmÞHðtjÞjujðwÞj
2;

E
0
aðN;M;TÞ ¼

X

a

ð2T

T

X

M<mU2M

amhtðmÞHðtÞjEaðw; 1=2þ itÞj2 dt

and Ra is the allowed error, i.e.

Ra ¼ kak2N
eðN 2=3M 1=6 þM 2Þ:

By Lemma 2.4 b) and the bound htðmÞfme

E
0
aðN;M;TÞf kak2T

ÿ3=2N 1=2þe minð1; ðDT Þÿ3=2Þ
X

a

ð2T

T

jEaðw; 1=2þ itÞj2 dt:

Note that at the points involved in Lemma 2.1 and Lemma 2.2 ðz ¼ i; z ¼ ði ÿ 1Þ=2Þ we

have Eaðz; sÞ ¼ zQð1=2þ itÞ where zQ is the Epstein zeta-function associated to a certain

binary quadratic form. Using standard arguments (follow the steps in the proof for

k ¼ 2 of Theorem 4.2 of [Iv] replacing z2 by zQ and using the corresponding functional

equation) the second-power moment of zQð1=2þ itÞ, T < t < 2T , can be bounded by

T 1þe, hence

E
0
aðN;M;TÞf kak2T

ÿ1=2þeN 1=2þe minð1; ðDTÞÿ3=2Þ:ð4:2Þ

Estimating EaðN;M;TÞ, we shall use the main result of [Lu]. First of all, note that

considering real and imaginary parts and separating them according their signs, we can

always assume that amV 0. Under this assumption we can take the same D0 for every

M < mU 2M, because of the monotonicity in D of
P

Kðuðz;wÞÞ (see the proof of

Proposition 2.3). By Lemma 4.4 and partial summation

EaðN;M;TÞfTÿ3=2N 1=2þeMÿ1=2 minð1; ðDTÞÿ3=2Þ � ðEa1 þ TMNÿ1
Ea2Þ

where

Ea1 ¼
X

T<jtj jU2T

jujðwÞj
2

�

�

�

�

X

M<mUM 0

amljðmÞmÿitj

�

�

�

�

Ea2 ¼
X

T<jtj jU2T

jujðwÞj
2

X

M<mU2M

jamj jljðmÞj
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for some M 0 < 2M. Under Conjecture 1.1, Theorem 1 of [Lu] (extended to G0ð2Þ)

implies

Ea1 f kak2ðTMÞeðT 2 þ T 7=4M 1=4 þ TM 5=8Þ:

On the other hand, by Theorem 8.3 and Proposition 7.2 of [Iw]

Ea2 f kak2T
2þeM 1=2:

Hence

EaðN;M;TÞf kak2ðTN=MÞ1=2þe minð1; ðDTÞÿ3=2Þð4:3Þ

� ð1þ Tÿ1=4M 1=4 þ Tÿ1M 5=8 þ TM 3=2Nÿ1Þ:

We can also bound EaðN;M;TÞ taking absolute values of the function under sum-

mation. With the same results used estimating Ea2, we have

EaðN;M;TÞf kak2ðTNÞ1=2þe minð1; ðDTÞÿ3=2Þ:ð4:4Þ

Finally, choosing D ¼ Nÿ1=3Mÿ1=3, by (4.3) we get for M 1=8 < T < N=M

EaðN;M;TÞf kak2N
eðN 2=3Mÿ1=3 þM 3=2Þ;

and (4.4) gives a better bound for the rest of the values of T . Substituting this bound

and (4.2) in (4.1), the proof is finished. r

Proof of Theorem 4.3. As we pointed out before, this result is based on that

Ramanujan-Petersson conjecture is true on average, so the proof follows in the same

lines as the proof of Theorem 3.2.

In this case it is enough to prove

kak2ðNM 1=2
DþN 1=2MDÞ þM 1=2 sup

T

ðjEaðN;M;TÞj þ jE 0
a
ðN;M;TÞjÞ ¼ OðTaÞ;

where we have used the notation in the proof of Theorem 4.1 and

Ta ¼ kak2ðN
2=3þeM 1=2 þN1=3M 5=6þeÞ:

Using Cauchy’s inequality and Theorem 8.3 of [Iw] we have

X

M<mU2M

amljðmÞf kak2M
1=2þejtjj

e:

Hence

jEaðN;m;TÞj þ jE 0
a
ðN;m;TÞjf kak2M

1=2T 2þe sup
T<jtjU2T

jHðtÞj:

The proof is now finished as that of Theorem 3.2, using Lemma 2.4 b), c) and choosing

D ¼ Nÿ1=3 if NVm and D ¼ Nÿ1=6mÿ1=6 if N < m. r

§5. Some unconditional results.

The purpose of this section is to illustrate how unconditional (but weaker) estimates

can be obtained for EðN;mÞ in Theorem 3.1. We shall be schematic in the proof of our

Correlated sums 249



result because the involved ideas are the same as in Theorem 3.1 and we do not consider

Conjecture 1.1 (or, more precisely, the second part of Lemma 3.3) to be unreachable.

The di¤erence with respect to the proof of Theorem 3.1 is that Conjecture 1.1 is

replaced by the following weaker unconditional result derived from a deep Ly bound

for cusp forms due to H. Iwaniec and P. Sarnak (see [Iw-Sa]).

Lemma 5.1. With the notation of Conjecture 1.1, we have

X

T<jtj jU 2T

jujðzÞj
4 ¼ OðT17=6þeÞ:

Proof. By Proposition 7.2 of [Iw]

X

T<jtj jU2T

jujðzÞj
4
U sup

T<jtj jU2T

jujðzÞj
2

X

T<jtj jU2T

jujðzÞj
2
fT2þe sup

T<jtj jU2T

jujðzÞj
2

and the result follows from Theorem 0.1 of [Iw-Sa]. r

Theorem 5.2. With the notation of Theorem 3.1 we have

EðN;mÞfN e minðN 2=3m5=42;N 17=23 þN 1=2m47=196Þ if NVm

and

EðN;mÞfN 7=24m11=24þe if NUm:

Corollary 5.3. If 2k is the greatest power of two dividing m, then for every e > 0 it

holds uniformly in mUN

SðN;mÞ ¼ 8j2kþ1 ÿ 3js
m

2k

� �N

m
þOeðN

145=196þeÞ

and the asymptotic formula for large values of N

SðN;mÞ@ 8j2kþ1 ÿ 3js
m

2k

� �N

m

is valid uniformly in the range 1UmUN 17=11ÿe.

Remark. Note that the exponent 145=196 ¼ 0:739 . . . for mUN is rather close to

the conditional exponent 5=7 ¼ 0:714 . . . derived in the same range from Theorem 3.1.

Proof of Theorem 5.2. Lemma 5.1 and the first part of Lemma 3.3 provide the

bound (see the proof of Lemma 3.3)

X

T<jtj jU2T

ljðmÞjujðzÞj
2
f ðmTÞe minðm5=28T 2; ðT þm1=4ÞT 17=12Þ:ð5:1Þ

With the notation of the proof of Theorem 3.1, the first bound of (5.1) assures for

NVm

EðN;m;TÞ;E 0ðN;m;TÞfN 1=2þemÿ1=2Tÿ3=2 minð1; ðDT Þÿ3=2Þ �m5=28T 2þe:ð5:2Þ
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Choosing D ¼ Nÿ1=3m5=42 one gets

EðN;m;TÞ;E 0ðN;m;TÞfN
2=3þe

m
ÿ8=21:ð5:3Þ

On the other hand, if N < m23=14, choosing D ¼ Nÿ6=23 and noting that the second

bound of (5.1) is better that the first one in the range m6=49 fT fm3=7,

EðN;m;TÞ;E 0ðN;m;TÞfN
1=2þeðmÿ51=196 þm

ÿ1=2
T

ÿ3=2 minð1; ðDTÞÿ3=2Þ

� ðTþm
1=4ÞT 17=12Þ;

hence

EðN;m;TÞ;E 0ðN;m;TÞfN
1=2þe

m
ÿ51=196 þN

17=23þe
m

ÿ1=2:ð5:4Þ

Combining (5.3) and (5.4), we conclude that in any case, if NVm the quantity

NDþN
1=2

m
1=2

Dþ
ffiffiffiffi

m
p

sup
T

ðjEðN;m;TÞj þ jE 0ðN;m;TÞjÞ

is controlled by the bound of the first part of the theorem, and then (see the proof of

Theorem 3.1) the same applies to EðN;mÞ.
The case NUmUN 17=11 is analogous. We do not pursue the best possible result

in every range (but the wider uniformity) and we shall only use the second bound of

(5.1). With D ¼ Nÿ5=24mÿ1=24 we have that the right hand side of (5.2) is in this case

Nm
ÿ1þeð1þNT

2=mÞÿ3=4 minð1;N 15=48
m

3=48
T

ÿ3=2ÞðT 29=12þe þm
1=4

T
17=12þeÞ

whose maximum order is N 7=24mÿ1=24, reached at T ¼ Nÿ1=2m1=2 or T ¼ D
ÿ1, hence

NDþN
1=2

m
1=2

Dþ
ffiffiffiffi

m
p

sup
T

ðjEðN;m;TÞj þ jE 0ðN;m;TÞjÞfN
7=24

m
11=24þe

and the second part of the theorem follows. r
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