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Abstract. We prove an asymptotic formula for ), _, r(n)r(n+m) using the spectral
theory of automorphic forms and we specially study the uniformity of the error term in
the asymptotic approximation when m varies. The best results are obtained under a
natural conjecture about the size of a certain spectral mean of the Maass forms.

We also employ large sieve type inequalities for Fourier coefficients of cusp forms to
estimate some averages (over m) of the error term.

§1. Introduction.

In this paper we shall deal with the sums

S(N,m) = Z r(n)r(n+ m)

n<N

where r(n) denotes the number of representations of n as sum of two squares and
meZ".

The corresponding sums when r(n) is substituted by the divisor function, d(n), were
considered firstly in 1927 by Ingham (see [In]), since then they have acquired growing
interest because of their relation with Kloosterman sums, spectral theory of automorphic
forms and the power moments of the Riemann zeta function (see the introduction
and references of [Mol] and [Mo2]). Although the similarity between the two fore
mentioned sums (r(n) is the divisor function in Z[i]), the spectral analysis is different
and, as far as we know, a spectral approach to the asymptotics of S(N,m) for all values
of m has not been considered before (the odd case is treated in [Iw]).

In this paper we give an asymptotic formula with error term for S(N,m) studying
its uniformity in m. We also consider average results when m varies. This kind of
averages appear in the study of the mean value of the error term in the circle problem
(compare with [Ts]) which was our initial motivation and we intend to treat in other
occasion.

The structure and contents of the subsequent sections are as follows:

In §2 we give in [Proposition 2.3 (see also [Lemma 2.1 and Lemma 2.7)) the spectral
expansion of S(N,m) in terms of non-holomorphic modular forms. The proof fol-
lows the lines of the Chapter 12 of [Iw], the novelty of our argument (apart from some
technical variations to include the range N < m) is to cover the case with even m.

In §3 we prove an asymptotic formula with error term for S(N,m) (see
3.1) assuming the following bound.
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CoNJECTURE 1.1.  Let {uj(z)} be the set of Hecke cusp forms of I' = PSL,(Z) or
I' =T)(2)/{ £ 1d} with respective eigenvalues {A; =1/4 + tlz}, then for every ¢ >0 and

zeH
Y @)l =o(r*)
T<|4|<2T

where the O-constant depends on & and z.

Changing |uj(z)\4 by |u;(z)|”, the bound follows for any p >0 from a general
conjecture of “arithmetic quantum chaos” (see Conjecture 3.10 in [Sa] or (0.8) in
[Iw-Sa]). On the other hand, for p = 2 the bound is a consequence of Bessel inequality
(see Proposition 7.2 of [Iw]), and after expanding |uj(z)|2 into Fourier series, it seems
that there is a primary technical difficulty to treat the case p =4, namely, to find a
suitable asymptotic formula for the Bessel function Kj(y) separating ¢ from y, over all
in the range |t|1_'S <y< |t|1+8. After overcoming this technical difficulty, perhaps the
conjecture could be settled with a convenient application of Bruggeman-Kuznetsov
formula. Recently, N. Pitt has proved a summation formula which allows to deduce
the conjecture for some special values of z but not including those appearing in our
proof of Theorem 3.1 (I thank H. Iwaniec for some comments about this conjecture and
N. Pitt for communicating some unpublished results).

The bound of the error term in the asymptotic formula for S(N,m) reads in some
ranges as the one proved unconditionally by Y. Motohashi for > d(n)d(n+ m) (see
[Mol] and use [Bu-Du-Ho-Iw]), but in our case the range of uniformity is larger. We
also obtain a bound assuming Ramanujan-Petersson conjecture (for non-holomorphic
cusp forms) instead of Conjecture 1.1.

In §4 we use estimates on linear forms of Fourier coefficients due to W. Luo
(improving those of [De-Iw]) to obtain mean results for S(N,m) when m varies.

Finally, in §5 we give a weaker result for the error term in our asymptotic formula
but not depending on any conjecture.

The author acknowledges specially the unvaluable encouraging help given by E.
Valenti.

§2. Spectral analysis of S(N,m).

The purpose of this section is to express S(N,m) in terms of Hecke operators acting
on automorphic kernels (see and below) and, via spectral
analysis, to expand them into eigenfunctions of the Laplace-Beltrami operator on the
upper half plane H (see |Proposition 2.3).

First of all we shall give some basic definitions on harmonic analysis in Riemann
surfaces to fix the notation and facilitate references. We follow the notation of
which is rather standard.

I" will denote a Fuchsian group of the first kind, in fact in this paper we shall only
consider I" =PSLy(Z) and I' = Ih(2)/{+1d} where I(2) is the Hecke congruence

group
Io(2) = {(j 2) e SLy(Z), 2|c}.
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The set of orbits of I"\H has a Riemann surface and Riemannian manifold structure in
which the element of area and the distance function are induced by du and p, given by

2
du(x +iy) = d);fy p(z,w) = arccosh(1 + 2u(z,w)) where u(z,w) = 2 = wl

4ImzImw’

The functions of L?>(I"\H) can be analysed in terms of the eigenfunctions of the
Laplace-Beltrami operator on H. In particular, under suitable regularity and decaying
conditions on a function k : [0,00) — C, it can be proved the so called pretrace formula

0

S k(u(yz,w)) th, ()9 ;ZJ W) E,(2,1/2 + it By (w, 172+ ) d

yel o0

where {u;(z)}, is an orthonormal system of eigenfunctions with respective ordered
eigenvalues {4, =1/4 + tjz}. This system is generated by Maass cusp forms and res-
idues of Eisenstein series, E,(z,-), associated to the cusp a. The function & represents
the Selberg-Harish-Chandra transform of k, given by

(1) = LI k(u(z, 1)) Imz) " du(z).

If I is a congruence group, Hecke operators T,,, me Z", are defined by (a more
proper definition can be given in a general context but this matches our purposes)

T.f Z Flyz) = Z Z f<az;b>

yeF]\F ad m (b mod d)

where I = SLy(Z) and I, is the set of 2 x 2 integral matrices whose determinant
equals m.

Hecke operators constitute one of the most important links between automorphic
forms and arithmetic. From the point of view of spectral theory, 7}, is self-adjoint in
L*(I'\H) if m and the level of I' are coprime, moreover, T,, commutes with Laplace-
Beltrami operator, hence, for a suitable choice of {u;(z)}, it holds

Tty (z) = A(m)uy(z) and  TpEq(z,1/2 + it) = 5,(m)Ea(z,1/2 + it).

The so chosen cusp forms are called Hecke cusp forms and Ramanujan-Petersson
conjecture in this context, asserts that |A;(m)| < d(m), but this bound is out of reach
with current methods. The best known bound, |4;(m)| < m>?d(m), is proved in [Bu-
Du-Ho-Iw] using quite advanced arguments. On the other hand the formula #,(m) =
Zd‘m(m/dz)” implies at once |n,(m)| < d(m).

A simple and direct relation between Hecke operators and S(N,m) is the content of
the following result.

LEmMMA 2.1. Let k be the characteristic function of [0,N]| and I' = I'y(2)/{ +1d},
then for any odd positive integer, m,

S(N,m) =2y/mTy|._., > k(mu(yz,z))

yel
where zy = (i —1)/2.
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Proor. It is not difficult to check that

b

Y= (a d) €SLy(Z) = 4u(yi,i) +2 = a*> + b> + > + d°.
c

To specify that a+d and b+ ¢ are even one can simply write

0 -1
yet y(2)r witht= (1 ) )

Note that

a-+d Z-I- c—b 2_ i
{a2+b2+c2+d2:4n+2 2 2 ) ="

&
ad —bc =1 a—d\?> [c+b\’
(27) (5) =
Hence, if k is the characteristic function of [0, N] we have

Z k(u(t 1yt i) = Z r(m)r(n+1).

yelh(2) n<N

By technical reasons we prefer to consider I = I'((2)/{ +£1d} which is covered twice by
I')(2). Substituting i = (i — 1)/2 we can write the previous formula as

S(N,1)=22k<u(y%,%)>.

yel

The same argument can be repeated replacing a,b,c,d by o/\/m, f/\/m, y//m, 6//m
with a0 — fy =m and o, f,y,0 € Z, getting

S = 3 k(ﬂ/m(yi;l,i;l))

\ ’
/ € Fﬂ‘l

where I') is the set of matrices (a;) €I, such that ay is even. Note that the
representatives of I\, chosen in the definition of T,,, say y;, are also representatives
of Iy(2)\I'),, ie. I, =|JI0(2)y;, and the result follows. O

Our objective is to expand 7,k in terms of eigenfunctions but the lack of regularity
of k leads to a non-absolutely convergent series. Another more serious difficulty is that,
as we noticed before, T, only behaves as a multiplier when m and the level are coprime,
i.e. when m is odd, which limits the interest of generalizing Lemma 2.1. This problem
is overcome thanks to the following result.

LemmA 2.2. For me Z" even, let 2% be the greatest power of 2 dividing m, then
S(N,m)=S(N/2,m/2) if k=1,
and
S(N,m)=2A(N,m) —24A(N/2,m/2) +2A(N /4,m/4)

o+ 2(=D)TPAN 252 m 2R (=D S(N 2K my 2R i k> L
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where

A(4N  4m) = 2/mTy|._; > " k(mu(yi,z))

yel
with I' = PSL,(Z) and k the characteristic function of [0, N].

Proor. If m is even, 4 ym and r(n)r(n+m) # 0 then n is even and the equality
r(2l) = r(I) implies the first part of the lemma.
For the second part it is enough to prove

(2.1) 24(N,m) = S(N,m) + S(N/2,m/2) for k > 1.

Let a(n,m) be the number of integral solutions a,b,c,d of

a+b* 4+ +d>=n+m)2
(2.2) {

ad — bc =m/4.
Proceeding as in the proof of

Z a(n,m) = A(N,m).

n<N

Writing A =a+d, B=c—b, C=a—d, D=c+b in [2.2), we have that a(n,m) is the
number of integral solutions A, B, C, D, of

A>+ B =n+m
(2.3) C’+D*>=n
2|4-C, 2|B— D.

If n=2 (4) or n=0 (4) then 4,B,C,D are simultaneously odd or even. Hence the
third condition in is superflous and we get

(2.4) a(n,m) =r(n)r(n+m) =r(n/2)r(n/2+m/2) if nis even.

If nis odd then 4 # B (2) and C # D (2). Hence, perhaps exchanging C and D, we
can omit the third condition and we have

(2.5) a(n,m) = %r(n)r(n +m) if 2 fn.
Note that

Z r(n)r(n +m) = Z r(n)r(n+m) — Z r(n)r(n+ m)

2kn n 2|n
= rmr(n+m) = r(n/2)r(n/2+m/2).
n 2|n
Hence, from (2.4) and (2.5) it is deduced (2.1). O

The following result performs the needed smoothing and gives the spectral ex-
pansion of the involved automorphic kernels.
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PrROPOSITION 2.3, Let I be PSLy(Z) or Iy(2)/{+1d}. Let k be the characteristic
Sunction of [0,N] and X = arccosh(l +2N/m). Then for every 0 < 4 <min(l, X /2)
there exists Ay, |4o| < 4, such that

Toles S ma(2,) = 32 4 m) ) g S [ H Oz 2 i)

yel

where me Z*, 2ym if I =1Ty(2)/{+1d}, and H(t) is the Selberg-Harish-Chandra
transform of the kernel K defined by

B 1 Nu(z,v) Nu(v,w) .
Ktz ) = a2 JH g <sinh2((X + o) /2)) g (sinh2(A /2)> an)

Although the definition of K seems very complicated, its Selberg-Harish-Chandra
transform, H, can be easily described in terms of special functions which can be es-
timated by standard arguments. All the needed bounds are contained in the following
result.

LemMA 2.4. Let H be as in Proposition 2.3, then

a) H(i/2) = 4nNm™' + O(ANm™" + AN'2m~1/?),

b) H(t) < (14 ) *N'2m~ 2 min(log N, (4)¢))**) if N>m and t€ R
) H(f)<Nm (14 Ni2/m)"*min(1, (4)¢))'*) if N <m and t € R.

Proor. Note that K is the convolution of two kernels, then its Selberg-Harish-
Chandra transform is given by (see (2.13) in [Ch])

H(f) = (4n)" " sinh2(4/2) Iy (0)ha(2)

where /) and h, are respectively the Selberg-Harish-Chandra transforms of the char-
acteristic functions of the intervals [0,sinh? Ry] and [0,sinh? R,] with Ry = (X + 4,)/2
and R, = 4/2.

In of asymptotics formulas are given for the Selberg-Harish-
Chandra transform of a characteristic function in several ranges which imply the needed
bounds. L]

We conclude this section proving [Proposition 2.3,

PrOOF OF ProposiTION 2.3. We proceed as in Lemma 2.3 of considering K+
and K~ defined as K but replacing 4y by 4 and —4, respectively.

Note that f(v) = k(Nu(v,w)/sinh?(4/2)) vanishes if p(v,w) > A. Using the tri-
angle inequality for p one deduces that the supports of K~ (u(z,w)) and K (u(z,w)) are
p(z,w) <X and p(z,w) < X + 24, respectively, which combined with [ f(v)du(v) =
4msinh?(4/2) proves

ZK u(yz,w)) < Zk(mu(yz, w)) < ZK+(L£())Z, w)).
y y
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Applying T, (note that it is a monotone operator) by mean value theorem there exists
Ay, —4 < Ay < 4, such that

Tm =W Z k(mu(yw, Z)) = Tm|z:w Z K(u(yw7 Z))?
yel yel
and the result is a consequence of the pretrace formula. ]

§3. An asymptotic formula with error term.
The main results of this section are the following theorems.

TueoreM 3.1. If 2K is the greatest power of two dividing m, we have under
Conjecture 1.1

_QInk+l m\ N
S(N,m) = 8|2 310( 2k> — 4+ E(N.m)

where @ indicates the sum of positive divisors and
E(N,m) <<£N2/3+s +N1/2+8m3/14 + min(N1/2m1/4+8,N1/4m13/28+£)
for every &> 0.

RemarRk. The bound for the error term is quite similar to the one for
> d(n)d(n+ m) obtained from the work of Y. Motohashi [Mol] after substituting the
bound of [Bu-Du-Ho-Iw]| in his Theorem 5. In our case, not only the statement of the
result, but the proof is technically much simpler (although the underlying ideas are
similar). We find it surprising taking into account the analogies between r(n) and
d(n) and perhaps it reveals an unsuspected straight relation in this context between
Bruggeman-Kuznetsov formula and pretrace formula.

Compare the previous result with Theorem 12.5 of and note the absence of a 2
factor because in Chapter 12 of the spectral calculations are implicitly done in
subgroups of PSL,(Z) and each element corresponds to two integral matrices in SL,(Z).

TueoreM 3.2. If 2K is the greatest power of two dividing m, we have under
Ramanujan-Petersson conjecture

m\ N . .
S(N,I’H) — 8|2k+1 . 3|G<ﬂ> E_f_ 0£(N2/3+ —I—N1/3m1/3+ )

for every ¢ > 0.

The auxiliary results that we shall use in the proofs of these theorems are sum-
marized in the following lemma.

Lemma 3.3, Ifz=iand I' =PSLy(Z) (or z=(i—1)/2 and I" = I'1(2)/{ £ 1d}), let
us define for T > 1

S = > |hmly) yeR

T<|y|<2T
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then for every & >0

P o« m5/28+8T2+8

and under Conjecture 1.1
P« m8T2+8 +m1/4+3T1+8.

REMARK. The second bound of this lemma is somehow weaker than Conjecture 1.1
but, actually, it is the only conjectural result needed in the proof of [Theorem 3.1.

PrOOF. By the result of [Bu-Du-Ho-Iw]| (in the general form stated in p. 128 of [Iw])
we have

S < md/e Z lu;(z)|?

T<|t|<2T

and the first bound follows from Proposition 7.2 of [Iw].

As a consequence of Bruggeman-Kuznetsov formula (apply Theorem 9.3 of [Iw],
(8.43) and Weil’s bound for Kloosterman sums) one gets the following estimate due to
N. V. Kuznetsov

S m)? < T m! 2,
T<|lj‘§2T

and the result follows from Conjecture 1.1 after Cauchy’s inequality. O

PrOOF OF THEOREM 3.1. After Lemma 2.1, [Lemma 2.2 and |[Proposition 2.3, we can
write S(N,m) as a sum involving Maass wave forms and integrals of Eisenstein series,
coming respectively from the discrete and continuous part in spectral resolution of
Laplace-Beltrami operator. For a sake of notational simplicity we shall separate these
contributions writing

S(N,m)=9+%.

Obviously, the result follows from

(3.1) g = §[2k+! —3|a<%)%+ O(%)
and

(3.2) € = O(R)

where

R — N2/3+s +N1/2+sm3/14 —|—min(N1/2m1/4+6,N1/4m13/28+8).

Note that the contribution in [Proposition 2.3 of zero eigenvalue of Laplace-Beltrami
operator (corresponding to fo = i/2, up = (|I'\H|)""/?) is by [[emma 2.4 a))

a(m) _ 4no(m)N

S S A— ="V 4 O(AN; —1/2+¢ ANI/Z &y
\H]m ) = [ 0N AN

Ao(m)H (to) uo(2)|*
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Substituting in [Lemma 2.1 and [Lemma 2.2 after some calculations (use |PSL,(Z)\H|
=n/3 and |(I((2)/{+Id})\H| = n), the sums of the main terms is for k > 1

%(480(;%/4) — 48a(m/8) + - - - + (=1)2486(m/2%) + (=1)*'8a(m/2%))

which equals 8(2¥*! — 3)a(m/25)N/m. The cases k =0 and k =1 are easily treated
separately giving 8a(m)N/m and 8a(m/2)N/m. After these considerations it is enough
to prove that each error term is O(#%) which, after dividing into dyadic intervals in
[Proposition 2.3, reduces (3.1) to prove

(3.3) NA+ NY2m'24 4 \/m sup |6(N,m, T)| = O(R)
T
where
EN,m,T)= > Ji(m)H(t)lu(w)|”
T<\z,|<2T
J#0

with 4 and H as in [Proposition 2.3 and w=1i or w= (i — 1)/2.

It is known (see for instance Theorem 11.4 of [Iw]) that for j #0, 1 /4+lj2 >
1/4+c¢* with ¢>0 in I'=PSLy(Z) and I' = I(2)/{+1d}, then we can assume
tie R—{0}.

If N>m, implies

(3.4) E(N,m, T) « N2 om 2T 2 min(1,(4T) 7)) > [4(m)] [y (w)|*.
T<|y|<2T

By and choosing 4 = N~'/3, we get

E(N,m,T) « N2 em 1 RT3 min(1, N2 T2 min(m> T2, 7> + m"/*T).

The size of the maximum of the right hand side is reached at 7 = N'/3 or T = m!/14,
getting and hence (in fact, only the two first terms of # are needed).

/l

The case N < m is formally similar but replacing by (see Lemma 2.4)

(35)  E(N,m,T) < Nm~'(1+NT*/m)"*min(1,(4T) ) 3" [z(m)] |y (w)*.
T<|y|<2T

We can assume m < N? (otherwise the result is trivial) and then 4 = N~!/6p~1/¢ js
under the hypothesis of [Proposition 2.3. With this choice of 4, by we have

E(N,m, T) < Nm "1+ NT?*/m)>* min(1, N m A T3 \m®3 72 if T <m'/*
EN,m, T)<Nm (1+NT?/m)* min(1, NV 4Am A T3\ (T*4m AT if T>m'/M,

The right hand side of the first inequality reaches its maximum at 7 = m'/™, then it
is enough to consider the second inequality (because both bounds coincide when 7 =
m'1%) in which the maximum order is reached at T =m!'2N~12 if N <m®7 and
at T=m"1 if N >m®7. These maximal orders are N'/2m~1/4+¢ and N14p~1/28+
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respectively, then we can write
é[)(N, m, T) < n’ﬁn(]\/'1/2,7,1*1/44%7 N1/4m71/28+£).

Therefore also holds in the range N < m.
To finish the proof we have to prove [3.2). It reduces to establish

(3.6) Vm sup|6'(N,m, T)| = O(%)
T>1
where
2T
£'(Nm, T) =3 JT 0, (m) H(0)| Ea(w,1/2 + if) | dt.

Using [Lemma 2.4, the bound |n,(m)| < d(m) and Proposition 7.2 of [Iw], one gets

(3.7) &' (N,m,T) < N/~ 2T 2 min(1, (4T) ) if N >m

and

3.8) &' (N,m,T) < NT>m "' min(1, (NT?/m)"** min(1, (4T)*/*) if N < m.
The choice done for the discrete part forces 4 = N~!/3 in (3.7) and 4 = N~1/6m~1/6
in (3.8). In any case is fulfilled. O

/)

PrOOF OF THEOREM 3.2. Arguing as in the proof of Theorem 3.1 (see 3.3) and
3.6)), it is enough to prove

(3.9) NA+NY2m'2A+/m sup(|6(N,m, T)|+|&"(N,m, T)|)= O(N*>*+ N'3m!/3+¢),
T

Under Ramanujan-Petersson conjecture |4;(m)| < d(m), hence (use Proposition 7.2 of

[Iw])
|E(N,m, T)| +|6"(N,m, T)| « T** sup |H(1)].

T<|t|<2T
Now, using Cemma 2.4 b), c), substituting in (3.9) and choosing 4 = N~'/3 if N > m
and 4 = N"Yom~1/¢ if N < m, the result is proved. 0

§4. Averaging over m.

If we average S(N,m) over m, some cancellation is hoped due to the oscillation of

Zj(m). Some of the results of (see specially §6) and quantify the can-
cellation in m and spectral aspect induced by this oscillation in certain sums. In this

section we shall use this latter work to prove the following theorem.

THEOREM 4.1. Let E(N,m) be defined as in Theorem 3.1 and let o,, be arbitrary
complex numbers, then for N > M? > 1 we have under Conjecture 1.1

> omE(N,m) < ||l ,N (N> M6+ M?).
M<m<2M
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Choosing

-1/2

M<k<2M
it is deduced at once.
COROLLARY 4.2. For N > M? > 1 and under Conjecture 1.1
> |E(Nm)P <, NY(N*M' + M.
M<m<2M

Even without taking into account the oscillation of A;(m) it is possible to improve
Theorem 4.1 in some ranges using that Ramanujan-Petersson conjecture is true on
average. Namely

THEOREM 4.3. Let E(N,m) and o,, as before, then for N, M > 1

Z o E(N, m) <<8||OC||2(N2/3+8M1/2+N1/3M5/6+8).
M<m<2M

In the proof of [Theorem 4.1 it will be important to consider the dependence on m
of the function H(t) defined in [Proposition 2.3. The needed result is contained in the
following lemma.

LEmMMA 4.4, For N> M, M <m<2M and 1 <|t| < T, te R, we have
H(t) =F(t)+ F(—1)
with
F(t) =m " fi(4,0) fy(N,4,t,m)(1 + O((1 + NT"'M~")"))
where f, is decreasing in m.

ReMARK. Note that by [Lemma 2.4
Si4,0 (N, 4,1,m) « TN M~ min(log N, (4T) ).

PrOOF. As we mentioned in the proof of Lemma 2.4, H(¢) can be written as (see
[Ch])

H (1) = (4n) " sinh™2(A4/2)hy (0)ha (1)

where /1y, = f,(4,t) is even in ¢ and h; is the Selberg-Harish-Chandra transform of the
characteristic function of [0, sinh?((X + 4¢)/2)] with X = arccosh(1 +2N/m). By (2.8)

and (2.9) of

e”(X“'O)F(iZ)
(it +3)2)

hi(t) = /2esinh(X + 4o)(f () + f(—1)) with (1) = (1+ O(M*T~'N72)),
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and noting that

ON 2N )\
L+ = [T o

the proof is finished. ]

<%N>”<1 +O((1+NT'M™)7h),

ProOOF OF THEOREM 4.1. Separating the contribution corresponding to discrete and
continuous spectrum as in the proof of [Theorem 3.1, it is enough to prove

4.1)  NM'Y*A|o), + M/ sup|c§ (N, M, T)| + M"Y sup |§L(N, M, T)| = O(%,)
T>1

where

EWNMT)= > 3T au(m)H () w(w)],

T<|t|<2T M<m<2M

2T

&/(N, M, T):ZJ > o (m)H(0)|Ey(w, 1/2 + it)|* dt

T M<m<2M

and Z, is the allowed error, i.e.
%1 — HO(||2N8(N2/3M1/6 +M2)
By Lemma 2.4 b) and the bound #,(m) « m*

27

&' (N, M, T) < |||, T-3>N** min(1, (4T)">/?) Zj |E,(w,1/2 + it)|* dt.
T
Note that at the points involved in and (z=i,z=(i—1)/2) we
have E,(z,s) = {y(1/2 + it) where {, is the Epstein zeta-function associated to a certain
binary quadratic form. Using standard arguments (follow the steps in the proof for
k =2 of Theorem 4.2 of [Iv] replacing (* by (o and using the corresponding functional
equation) the second-power moment of {y(1/2 +it), T <t < 2T, can be bounded by
T'*¢ hence

4.2 &'(N,M,T) « ||af|, TNV emin(1, (4T) /).
o 2

Estimating &,(N, M, T'), we shall use the main result of [Lu]. ~First of all, note that
considering real and imaginary parts and separating them according their signs, we can
always assume that o, > 0. Under this assumption we can take the same 4, for every
M < m <2M, because of the monotonicity in 4 of ) K(u(z,w)) (see the proof of
[Proposition 2.3). By and partial summation

E(N, M, T) « TNV =12 min(1, (AT) ™) - (64 + TMN16,)

Ea= Yy

T<|y|<2T

Z Sy 2 ()™

M<m<M'

ba= 3 lw)P 3 fol 12,0m)]

T<|y|<2T M<m<2M
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for some M’ <2M. Under Conjecture 1.1, Theorem 1 of (extended to Iy(2))
implies

&y < o)l (TM) (T 4+ T4 MY* + TMP?),
On the other hand, by Theorem 8.3 and Proposition 7.2 of

&y < |atl|, T M2,
Hence

(4.3) E(N, M, T) < ||a]l,(TN/M)" > min(1, (4T) /%)
% (1 + T—1/4M1/4 + T—1M5/8 + TM3/2N_1).

We can also bound &,(N,M,T) taking absolute values of the function under sum-
mation. With the same results used estimating &,,, we have

(44) E(N, M, T) < ||al,(TN)/*** min(1, (47)?).
Finally, choosing 4 = N~'3M~173 by we get for M8 < T < N/M
N, M, T) < ol ,N (NP MY 4 M),

and gives a better bound for the rest of the values of 7. Substituting this bound
and in (4.1), the proof is finished. O

ProOOF OF THEOREM 4.3. As we pointed out before, this result is based on that
Ramanujan-Petersson conjecture is true on average, so the proof follows in the same

lines as the proof of Theorem 3.2

In this case it is enough to prove

ol ,(NMY2A + N'V2MA) + MY? sup(|6,(N, M, T)| + |6L(N, M, T)|) = O(7,),
T

where we have used the notation in the proof of Mheorem 4.1 and
T, = HaHZ(N2/3+aM1/2 —{—N1/3M5/6+8).
Using Cauchy’s inequality and Theorem 8.3 of we have

Z oAy (m) < |||, M V28|

M<m<2M
Hence
(6N, m, T)| + |E0(N,m, T)| < |, M'PT* sup  [H(1)].
T<|f<2T
The proof is now finished as that of [Theorem 3.2, using b), ¢) and choosing
A=N"13if N>m and 4=N"om V6 if N <m. O

§5. Some unconditional results.

The purpose of this section is to illustrate how unconditional (but weaker) estimates
can be obtained for E(N,m) in [Theorem 3.1. We shall be schematic in the proof of our
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result because the involved ideas are the same as in and we do not consider
Conjecture 1.1 (or, more precisely, the second part of [Lemma 3.3) to be unreachable.

The difference with respect to the proof of is that Conjecture 1.1 is
replaced by the following weaker unconditional result derived from a deep L”* bound
for cusp forms due to H. Iwaniec and P. Sarnak (see [Iw-Sa]).

LemmA 5.1.  With the notation of Conjecture 1.1, we have

Y @)l = o),

T<|] <2T
PrROOF. By Proposition 7.2 of

Z w()* < sup  |u(z)) Z w(2)* « T>* sup  |u;(z)|*

T<|y|<2T T<|y|<2T T<|y;|<2T T<|y|<2T
and the result follows from Theorem 0.1 of [Iw-Sa]. ]

THEOREM 5.2. With the notation of Theorem 3.1 we have

E(N,m) < N&‘min(N2/3mS/42,N17/23 +N1/2m47/196) if N>m

and

E(N,m) <« N"/*m!\/2e it N <m.
COROLLARY 5.3. If 2% is the greatest power of two dividing m, then for every & > 0 it
holds uniformly in m < N

QK+l m\ N 145/196+¢
S(N,m) = 8|2 3\0(2k) — 4+ 0N )

and the asymptotic formula for large values of N

Rkl _ m E
S(N,m) ~ 8|2 3|0<2k)m

is valid uniformly in the range 1 <m < N'7/11-¢,

REMARK. Note that the exponent 145/196 = 0.739 ... for m < N is rather close to
the conditional exponent 5/7 = 0.714... derived in the same range from [Theorem 3.1.

ProOF OF THEOREM 5.2. [Lemma 5.1 and the first part of provide the
bound (see the proof of [Cemma 3.3)

(5.1) Z 2i(m)|u;(2)|* < (mT)* min(m>> T2 (T + m"4)T"7/12),
T<|y|<2T

With the notation of the proof of Theorem 3.1, the first bound of assures for
N=>m

(52) EWN,m,T),& (N,m, T) « N> m= 2732 min(1,(AT) /) - m*> 7%+,
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Choosing 4 = N~'3m>/*2 one gets

(5.3) EN,m,T),& (N,m,T) « N¥3Fep=8/21,

On the other hand, if N < m?/*  choosing 4 = N~%% and noting that the second
bound of is better that the first one in the range m%% « T «m?/7,

&(N,m, T),ﬁ’(N,m, T) « N1/2+6(m751/196 +m 12732 min(1, (AT)_3/2)
% (T—l—m1/4)T17/12),
hence

(5.4) EN,m,T), & (N,m,T) « N/ >Fopyg=31/196 L N17/23%%,,=1/2,

Combining [5.3) and [5.4), we conclude that in any case, if N >m the quantity

NA+N"2m' 24+ /m sup(|§(N,m, T)| + |&' (N, m, T)|)
T

is controlled by the bound of the first part of the theorem, and then (see the proof of
Theorem 3.1) the same applies to E(N,m).

The case N <m < N'7/! is analogous. We do not pursue the best possible result
in every range (but the wider uniformity) and we shall only use the second bound of
(51) With 4 = N~5/%m~1/2* we have that the right hand side of (5.2) is in this case

N~ '2(1 + NTZ/m)*3/4 min(l’N15/48m3/48T—3/2)(T29/12+s AT T2

whose maximum order is N7/2*m~1/24 reached at T = N""2m'/2 or T = A", hence

NA+N"2m'2 A+ /m sup(|E(N,m, T)| + |&" (N, m, T)|) « N7/ %pm!1/24+e
T
and the second part of the theorem follows. Ol
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