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Abstract. We prove that if X is a connected H-space with at most three cells of positive
dimension, then the self homotopy set of X becomes a group relative to the binary
operation induced from any multiplication on X, and we determine it’s group structure in
some cases.

1. Introduction.

Throughout the paper we work in the category of topological spaces of the based
homotopy type of connected CW-complexes. The base point of any Hopf space is
taken to be the unit. When (X, u) is a Hopf space and A is any space, we denote by
[4, X;u] the based homotopy set [A4, X] with the binary operation induced from the
multiplication u. A result of James asserts that the set [4, X; u] forms an algebraic
loop which is a group if u is homotopy associative. O’Neill proved that it is a
group if the (normalized) Lusternik-Schnirelmann category of A, cat 4, is less than 3 (see
2.1 below). It is not in general a group. Indeed, [X x X x X, X; 4] is a group if and
only if x is homotopy associative. For example, neither [S7 x S7 x S7,S7;u] nor
(ST x 87 x 87,87 x 8" x ST x ux u is a group for every u, since u is not homotopy
associative (in this case cat(S7 x S7 x §7) = 3). Therefore the answer to the
following Problem 1 is negative in general.

PrOBLEM 1. Is [X,X;u| a group for every multiplication pu?
PROBLEM 2. If so, compute [X,X;u|.

According to Arkowitz and Lupton [4, Corollary 4.4], the answer to Problem 1
is negative for exceptional simple Lie groups of rank 6 and almost all classical
groups. The purpose of this paper is to give an affirmative answer to Problem 1 and
partial answers to Problem 2 when X is a connected CW-complex with at most three
cells. According to Browder [7], Hilton and Roitberg and Zabrodsky [25], such a
Hopf space i1s homotopy equivalent to one of the following fifteen complexes:

(1.1) S',8° 8", 8" x S" (m,ne{1,3,7}, m<n), SO3),SUB3), E,(n=1,34,5),

where, for every integer m, E,, is the principal S3-bundle over S’ induced by mw e
n7(BS?) = Z/12{w} and E; = Sp(2). Note that SO(3) = P*(R), the real projective
space of dimension 3.
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If x, y are elements of an algebraic loop, then their commutator is the element
Ix, y] = (xy)(yx)"", where (yx)~' is the right inverse of yx. If (X,u) is a Hopf space,
then, by [14], it has a homotopy right inverse, say o, and we write xy = u(x, y), x| =
o(x) and [x, y] = (xy)(yx)"'. For each integer r, we define x’, the r-th power of x € X,
to be (... ((xx)x...)x) (r-times power) if r > 0, the base point if r =0, and (x~ )" if
r <0, and we define a multiplication u) by

:u(r) (X, y) = (Xy) [X, y] "

We denote by g, the ‘standard’ multiplication if it exists. If P is a set of primes and
D is a nilpotent CW-complex or a nilpotent group, then we denote by Dp the P-
localization of D, and we write n € P if n is a product of primes in P. We denote by
ged{ki, ..., k;} the greatest common divisor of integers ki,...,k;. For integers m > 2
and n, we denote by ¥(x, y,z;m,n) or simply by ¥(m,n) the group with generators x,
¥, z and relations

xz=1zx, yz=zy, z"=1, [x,y]=:z"
Our first result gives an affirmative answer to Problem 1.

THEOREM 1. Let X be one of the spaces of (1.1) and let A be E, or one of the spaces
of (1.1). If P is a set of prime numbers, then [A, Xp;u| is a P-local group of nilpotency
class <2 for every multiplication u on Xp, and [A,Xpjup| = [4,X;u1']p for every
multiplication u' on X.

The following four results give partial answers to Problem 2.

THEOREM 2. Let E) = S°> x S* and E| = SU(3). Then, for each integer r, m and
[ =0,1, we have

(1) E),SU3); 1] =~ w(12,2r + 1),
(2) (B, Sp(2): 1] = (120, 1225 4 1)).

THEOREM 3. There exists a multiplication u, on Es such that [E,,Es; ,u(()r)] ~
Y(120,12(2r 4+ 1)) for every m and r.

THEOREM 4. Let Py U P, be a partition of the set of all prime numbers. If ne P,
and 12/ged{n,12} € Py, then E, has a multiplication u such that [E,,E,;u"] =
VY (A2By, A2(2r + 1)) @ (£/30 ® Z/24), for every m and r, where Ay and By are the P-
components of 12 and 10, respectively.

COROLLARY 1. There exist multiplications u, on E3 and E4 such that
(1) [E, E3; 1)) = W(40,42r +1)) @ Z/3® Z/3,
2) [En, Exi i) = w(15,32r + 1) ® Z/2® Z/8
for every m and r.

As an application of our calculations, we have
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COROLLARY 2. Let (A,(X,u)) be one of the following:

(B (SUG) ) (s (SP2)stt)))s (Emy (Esott))): (B, (Esoi))).

Then none of the following functions is a homomorphism:
[S4,ZX] <[4, X1 25 [4,87).

Here X is the suspension, n is 5 or 7 according as X is SU(3) or not, p: X — S" is
the bundle projection, and the abelian group structure on [A,S"] is given so that X :
[4,8"] — [XA4,2S"] is an isomorphism.

In §2, we recall some general results for later use and give a result about a group of
nilpotency class <2. In §3, we study the cases S™ x S” for m,ne {1,3,7}. In §4, we
prove [Theorem 1. In §5, we prove Theorems 2 and 3. In §6, we prove Theorem 4,
Corollaries 1 and 2. In §7, we study the composition operation in [X, X; z,], when X is
SU(3) or Sp(2), and prove

CoroLLARY 3. ([19, Example 4.5]). Let &(X) be the group of self homotopy
equivalences of a based space X. Then we have

E(SU)) = {of™ 0y, By, f1p4:0 < ¢ < 12}
=y xt =y =22 =1, xy = yx, xz = zx, zyz = D,
6(Sp(2)) = {By.p~'7*:0 < ¢; < 120}
=z 2P =1,y =1, 22 = p),
where o, [ and y are elements in Theorem 5.1 below, x is the complex conjugation,

y=p"", z=PBy, and {x1,...,x5;11,...,11)> denotes the group with generators xi,...,x
satisfying relations ry,...,r.

In the final section, §8, we give an invariant of Hopf spaces.

We do not distinguish notationally between a map and its homotopy class. To
indicate the multiplication u considered, we denote respectively the commutator and the
Samelson product by [—, —] 4 and {—, —», which are defined from the commutator map.

We thank K. Morisugi who simplified our original proof of Theorem 2.

2. General results.

Let cat A be the (normalized) Lusternik-Schnirelmann category of a space 4 such
that cat 4 = 0 if A4 is contractible. Results of O’Neill [20] and Whitehead [24, p. 464]
imply the following:

THEOREM 2.1. If (X, u) is a Hopf space and A is a space with cat A < 3, then [A, X;
u) is a group of nilpotency class <cat A.

THEOREM 2.2. ([24, p. 465]). Let (X,u) be a Hopf space and let

{x}=PycPic---cP.=4
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be a sequence of subcomplexes of a CW-complex A such that the boundary of each cell of
P; is contained in Pi_y (i=1,...,c). Let I'; be the set of all homotopy classes of maps
f:A— X such that f|P; is null homotopic. Then [[g,I';] < I'iyy for 0 <i<c—1,
where 'y = [A, X; .

Although the hypothesis in 2.1 and 2.2 are weaker than in [24], the proof is same.
The following result is due to James and Whitehead.

THEOREM 2.3. ([16], [15]). Let X be the total space of an S™-bundle over S" with
n>2. Then X has a cell structure S™U,e" U, e such that

(2.4) Xp=2ioJ(y),

where i:S™ — X is the inclusion, J is the Hopf-Whitehead J homomorphism, y €
m,—1(O(m+ 1)) is the characteristic element of the bundle, and o is the image of y under
the obvious homomorphism m,_1(O(m+ 1)) — m,_1(S™).

Let (G,u) be a group. For simplicity, we write xy = u(x, y) as usual. We define
1 (x, y) = xy[x, y]" for each integer r.

Lemma 2.5. If (G, u) is a group of nilpotency class <2, then (G,u")) is a group of
nilpotency class <nil(G,u) and |x,y|, = [x, Y] where [x, yl, is the commutator with
respect to ).

ProorF. We write x- y = u")(x, y). Recall that in a group of nilpotency class <2
the following formulas hold:

e, vzl = [yl 2l Beyy2l = [zl 2l xly, 2] = [y, 2]
We then easily have

(x-p)-z=x-(y-2), x-x'=x1.x=1, [x,y]r:[x,y]zrﬂ.
Hence (G,u") is a group and [x, v, z],], =[x, [y72]2r+1]2r+1 =[x, [y,z]](2r+l)2 =1.
Therefore nil(G, ) < nil(G, p). O

3. Products of spheres.

Let m,ne {1,3,7}. Since cat(S” x S”) =2, Problem 1 is affirmative for S” x S”
by 2.1. Let u, x4’ be multiplications on S™, S”, respectively. The product multi-
plication u x ' on S$™ x S" is the composition of

IxTx1 xu!
SmXSnXSmXSn—>SmXSmXSnXSnLSmXSn,

where T is the switching map. Then we have the splitting
[S™ x 8", 8" x 8" ux u'] =[S x S", S™ u @ [S" x §", S u].

Let gy :S"xS"— S" be the complex multiplication for n =1, quaternionic
multiplication for » = 3 and Cayley multiplication for n = 7. As usual, we write xy =
Lo(x, ) and p, = ,u(()r) . Then {x,;0 <r <[} is the set of all the multiplications on S” up

to homotopy, where / is 1, 12 or 120 according as n is 1, 3, or 7. We abbreviate
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[, =], to [=,—], and (=, =), to (=, —),. Then n6(S*) = Z/12{<13,133¢}, ma(S") =
Z/120{<17,17)¢} and iy, 100, = (2r 4+ D)<ty 1,09 by (cf. [14]). Let ¢:S" xS" —
S™ A S"™ be the quotient map, and p;:S”" xS"— 8", p,: 8" xS" - S" the
projections.

ProrosiTiON 3.1. We have

) O i

(2) [S' % 8", 8" ] =Z{p,} ®Z/2{q"n,} (ne{3,7}),

(3) [S? % 8%,8% ] = ¥(py, 2,3 12,2r + 1),

(4) [S7 x 87,87 1,] = W (py, P2y 7 120,2r + 1),

(5) [S7 % 8%, 8% 1] = Z{p,} ®Z/2{V" oo p1} ® Z/15{¢*y"},
(6) [S7x 8%, 8" 1] = Z{p\} ® Z/24{q"y"},

where y = q*y" with y' a generator of m,(S"), y" is a generator of m(S*) =Z/15, v' €
76(S?), 1, € mur1(S™) are elements in (23], and y" is a generator of mo(S’) = Z/24.

ProOF. Let ke {m,n}. By 2.1 and 2.2, we have a central extension of groups:
0 = pen(S) L [S™ x 8", 8% 1] — [S™ v S", 8% 1] — 0.

Hence we have (1) and (2). We also have (3) and (4), since [S”" x S",S";u,| is
generated by py, p,, q¢*<in, 1) and since [py, p,], = ¢*(in,1,),. We have (5), since the
group [S7 x S3,8% ] is generated by p,, v/ onso py, ¢*y" and since <13,V o>, =0
and hence [p,,v' ong0 py], = q¢* <13,V oy, = 0. We have (6), since [S7 x S3 S7;1,] is
generated by p, and ¢*y”. O

4. Proof of Theorem 1.

For n e {1,3,7} the real projective space P"(R) has Hopf structures and satisfies the
following which contains a part of and is maybe well-known.

PrOPOSITION 4.1. If P is a set of prime numbers and ne {1,3,7}, then
Ind : [P"(R), P"(R),; ] — Hom(H, (P"(R)), Hu(P"(R),)),
defined by Ind(f) = f, is an isomorphism for every multiplication u on P"(R),.

ProoF. The case n =1 is trivial. Let n e {3,7}, P any set of prime numbers, and
u any multiplication on P"(R)p. First, consider the case 2¢ P. We easily have
[P"~1(R),P"(R),) =0 and [XP"2(R),P"(R),]=0. Let y:S"2— P"2(R) be the
canonical covering map and ¢’ : P"“2(R) — S"~2 the quotient map. Then ¢’ oy =21, »
and so (X?y)*o(2%¢")* : m,(P"(R)p) =7,(P"(R)p). Hence (X?y)" : [Z2P"2(R), P"(R) ]
— 7,(P"(R)p) is surjective so that [XP"!(R),P"(R)p) =0. Thus ¢*:7,(P*(R)p) =
[P"(R), P"(R)p; 1| and, by using the Hurewicz homomorphism, we see that Ind is an
isomorphism.
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Second, suppose 2e€ P. Let c¢:P"(R) — P"(R) v S" be a cooperation [9, p.
99]. For f €[P"(R),P"(R)p] and & € m,(P"(R)p), we denote by f*° the composition of
the following:

P"(R) —— P"(R) v " %, P"(R), v P"(R), —— P"(R),,

where V is the folding map. Let e: P"(R) — P"(R), be the P-localizing map. Since
[P""'(R), P"(R) p; i) = Z/2{j}, where j: P""'(R) = P"(R) == P"(R),, it follows from
Puppe’s theorem [9, p. 175] that [P"(R), P"(R),] = {0¢,e%; ¢ € m,(P"(R) )}, where 0 is
the constant map to the base point. We then easily have that Ind is a bijective

homomorphism of loops and hence of abelian groups. O
Consider the following pull-back diagram:

E. - Sp)

(4.2) Pnl Jﬂ

sT X s
Let O, = S Uy e’, where o is the generator of 75(S?) identified with 77(BS?) =~ Z/12.
Then E, = 0,U, e¢'° by 2.3. Recall from that E, ~ E, if and only if m= +n
(mod 12) and from that E, admits a Hopf structure if and only if n # 2 (mod
4). We denote by i, the inclusions of S* into Q, and E,, by j, the inclusion Q, — E,,
and by ¢, the quotient maps Q, — S” and E, — S'°. Observe that g, = p,0j,. Let
2, be the characteristic element of E,. Then y, = ny,.

LemmA 4.3. (1) The space Q, is a co-Hopf space if and only if n is even. Hence
(cat Q,,catE,) is (1, 2) or (2, 3) according as n is even or odd.

(2) We have cat P*(R) =3 and cat X <2 if X is one of the spaces of (1.1) except
P3(R) and E,.

Proor. (2) It is well-known that cat X is 1, 2 or 3 according as X is S, S” x S”"
or P3(R). Also, as is well-known, SU(3)=QUe%, where Q= X(S?Ue*) is the
suspension of the complex projective plane. It follows that catQ =1 and
catSU(3) = 2.

(1) By the method of 4.4 in [21], if n is odd, then cat Q, =2 and cat E, = 3. Recall
that a space X is a co-Hopf space if and only if cat X < 1, so it follows that Q, is not a
co-Hopf space for n odd. Let 0:S* — S* v S* be the co-multiplication. Under the
identification 7,,(S* v S3) = 7,,(S?) ® 7,(S?) @ 7 1(S? x $3,5° v $3), we have fog
=g®g® H(g) for every g € m,(S?), where # is the Hopf f-invariant of [5]. It then
follows from Theorem 3.20 of [5] that #(w) is the generator of 77(S° x S3,83 v S%)
~ Z./2 for the generator w of 7¢(S?), and that Q, is a co-Hopf space if n is even. One
can construct a co-multiplication of @, for n even by using Theorem 15.4 of [9],
although details are omitted. Since the cup length of H*(E,) is 2, we have catE,
> 2. Since catE, <1+ catQ,, we then have catE, =2 for n even. O
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Notation: ¢(n) = 12/ged{n, 12}, c(m,n) = gcd{n, 12} /gcd{m,n, 12} and c(m,n; P)
is the P-component of c¢(m,n) for P a set of primes.

Recall from that 710(S”) = Z/8 ® Z./3{01(7)}, 79(S?) = Z/3{21(3) 0 21(6)},
no(S7) = Z/2{n3}, and m5(S?) = Z/2{v" o 5}

LemmA 4.4. (1) We denote by [&] € mi(E,) an element such that p, [£] = & e m(S7).
We abbreviate |ki7] to [k]. Then

(1-1) n3(En) = Z{in} = n3(Qn), [, (in) = i;
(1-2) n4(En) = Z/2inns},  m6(En) = Z/ged{n, 12}{iy, o};
(1-3) n1(E,) = Z{[c(n)]} ® {5/2{1» e Z i (1) Eﬁiﬁ 3
where f, [c(n)] = (n/ged{n, 12})[12];
0 n=1,5 (mod 6)
Z/2{[n3]} n=24 (mod6)
(1-4) mo(En) = Z/3{i*;1(3) oo (6)} n =3 (mod 6)

Z/3{i.1(3) 01 (6)} ® Z/2{[n3]} n =0 (mod 6);

Z/3{[1(7)]} n=0 (mod 3)
0 n # 0 (mod 3),

15 molB) = 2/150x) © 2/8(7)) @ {

where m10(S?) = Z/15{x};

(1-6) 2], iry,, = 12y, where mo(Sp(2)) = Z/120{y'}.
(2) The following is exact:

0 — 71(Enp) 2 [Os Enp) 2 c(m, n: P)ms(Epp) — 0.

Proor. (1) By [17], we have [I-1), (1-2), (I-3) and (1-5) when n=1. We then

easily have [1-1), and (1-3) by (4.2) and the homotopy exact sequences of
the bundles. When n#0 (mod 3), (1-5) follows from the equation 4;(o(7)) =

a1(3) o1 (6) and the following commutative diagram:

0:7111(S7) - 7'£10<S3) l—> 72?1()(En) —_— 72710(57) L 72?9(53)

l | e | H

0=m1(S7) — mo(S?) — m0(S,(2)) — mo(S7) —2s me(S3).

Let n =0 (mod 3). Then 4,(2;(7)) =0 by the diagram. If there exists an element
yem(E,) with 3y =i,0(3), then i,05(3) = f, i,2%2(3) =3, (y) =0. This is a con-
tradiction. Hence (1-5) is proved. Consider the exact sequence:

110(S7) —5 79(S%) — 79 (Ey) — 70(S7) —5 m5(S3).
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We have Aoy (7) =nn'o(3) ooy (6) and Ay? =n(v' on?), where o =n'e;(3) (mod ')
with n’ # 0 (mod 3). Hence (1-4) follows. By [6], we have (1-6).
(2) Consider the exact sequence of based sets:

(Zmw)” i (mw)*
n4(En) —_— 7'57(En) —_— [meEn] —_— 7Z3(En) —_— 7Z6(En)

Since @ = xv' + ya;(3) with x =1 (mod 2) and 730 2V =0 by [23], we have (Zmw)”
=0 by [I-2). We have Im(i}) = Ker(mw)" = ¢(m,n)n3(E,) by [1-2]. O
The proof of is divided into four steps:

(Step 1) [4, Xp; 1] is a nilpotent group.
(Step 2) [4, Xp; 1] is P-local.

(Step 3) [A, Xp; up] = [4, X 1]p.

(Step 4) nil[4, Xp; u| < 2.

PrOOF OF THEOREM 1-PART I. We prove these steps here except Step 4, whose
proof is postponed until the end of this section.

(Step 1) If 4 is 8™ with m e {1,3,7}, S x S" with m,ne {1,3,7}, SU(3), or E,
with m even, then cat 4 < 2 so that [4, Xp; 4] is a group of nilpotency class <2 by 2.1.

Let 4 be P}(R) or E, with m odd. It suffices to prove that [4, Xp;u] is asso-
ciative. Let f; € [4, Xp| for i =1,2,3 and consider the following commutative diagram:

T
mli’

A — 9 AxdAxd Iy X x Xp
ql lq

ANANA MXP/\XP/\XP,

where 7= Xp x Xp x {x} UXp x {*} x XpU{x} x Xp x Xp, d is the diagonal map, and
g is the quotient map. Let x be any multiplication on Xp. To simplify the notation,
we denote the binary operation in [—,Xp;u] by ‘+°. Since po(l xu)oi' =
po(ux1)oi’, there exists a map o: Xp A Xp A Xp — Xp such that po(l x u) =
po(ux1l)+ooq. Hence we have

H+UL+H)={i+H)F it +oo(fi A fanf3)oqod.

Let (a,b) be (10, 3) if A = E,, and (3, 1) if 4 = P>(R). By a cell structure of 4, the
map ¢ od factors into

!

AT g9 g _ b Agb A Sh NN A A A A

for some g, where ¢’ is the quotient and i is the inclusion. Hence

go(fiAfonfy)ogod=ao(finfonfy)o(inini)ogogq .
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We prove the assertion by showing

(4.5) go(finfonfi)o(inini)og=0.

Let A =E, with m odd. Then 2g=0. If X is S! or S!x S!, then is
obviously satisfied. If X is S°, S! x §3, §* x S3, SU(3), P*(R) or Ej3, then 37m9(Xp) =
0 by and and (1-4) of 4.4 so that go (f{ A f3 A f3) 0 (im A iy Ady)og=0. If
Xis 7, S' x 87 or 87 x §7, then f; 0iy € m3(Xp) =0 so that (f; A f A f3) 0 (im A in
A i) =0. If Xis E| or Es, then n9(Xp) =0 by (1-4) of 44 so that go (f; A f5 A f3)o0
(im Ay AN By) =0. If X =E4 and 2 ¢ P, then 7n9(Xp) =0 by (1-4) of 4.4 so that
go(fin fo~NS3)o(imAimAiy) =0, If Xis Eqy or Ey and 2 € P, then ¢(m,4;P) =0
(mod 4) and hence f; o i, = 4ayi, for some a; € Zp by (2) of 4.4 so that (f; A fo A f3)o0
(im A iy Aim)og=0. Let X =Ey=58>xS". If2,3¢P, then no(Xp) =0 by (1-4) of
44 sothatago (fiy A fa A f3)0(im Aidm Aiy)=0. If2¢ Pand 3 e P, then 3n9(Xp) =0
by (1-4) of 4.4 so that o (f; A f A f3) 0 (im A im A iy)og=0.

Let 4 =P3(R). If n;(Xp) =0, then f; 0i =0 so that is satisfied. The case
X = P3(R) was checked in [Proposition 4.1. If X is S!, S!xS!' or S'xS7,
then [P3(R),Xp]=0. If X is S! x §3, then [P?>(R),Xp| =0, whence ¢*:m3(Xp) —
[P3(R), Xp; u] is surjective so that [P3(R), Xp;u] is an abelian group.

(Step 2) We give the proof only for 4 = E,, because other cases are sim-
ilar. Consider the following exact sequence of groups:

q; i (mw)*
n7(Xp) —— [Om, Xp; ] —— m3(Xp) —— 76(Xp).

The subgroup Img is central by 2.2. Obviously this group and Ker(mw)" are P-

local. Hence [Qy, Xp; ] is P-local by 1.2 on page 4 in [10]. By applying this method
to the following exact sequence of groups, we see that [E,, Xp;u| is P-local:

I Jm Pm
m10(Xp) —— [Em, Xp; ] —— [Om, Xp; pt] —— 79(Xp).

(Step 3) Let e: X — Xp be the P-localizing map. Then e, : [4, X;u'] — [4, Xp; up]
is a P-isomorphism by Theorem 6.2 on page 90 in and hence [4, Xp;up| =
[A7 X7 /u/]P' I:l

REMARK 4.6. The above proof shows that if A is a CW-complex, then, for every
multiplication u, [A, X; 1 is a group provided (1) X = E; (k=0,1,3,4,5) and dim A4 < 12
or X =SU(3) and dim 4 < 10.

Let 4 be a principal S*-bundle over S” with m =15 or 7. Its cell structure is
S3UemUe™3 by 2.3. Leti:S?— A be the inclusion, p: A — S” the projection, and
q:A— S™ the quotient map. Let (X,u) be a Hopf space.

LemMa 4.7.  For every g € my,(X) and every map h: A — X, the following diagram
commutes:

{g,hoi)
4 — T . gmAsh R x

dl lidm’ TC#

A/\AM S™ A A — X A X,
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where ¢ is 1 or —1 and C, is the commutator map with respect to u. Hence
lgop,hl, =elg,hoi), oq.

Proor. The first square commutes for some ¢ with |¢] =1, since (id A i) o g and
(p A id) od induce the same homomorphism up to sign on the integral cohomology.
By definitions so does the second one. O

LemMmA 4.8. (1) For every multiplication p on S* and S7, we have

()[04 8%u = Z{<cn))} @ Z/2{ ongopoj}, i*(c(n)) = cln)is;
(12) (B S%u] = Z{n)} @ Z/30, i*(e(n)) = cln)i:
(13) 008"l = Z{a}, [Ew STl = Z{p,} ® Z/24.

(2) If P is a set of primes, then every multiplication u on Sy and S}, is integral, that is,
[=pp for some multiplication w' on S3 and S’.

PrOOF. (1) We omit the proof of [I-3], since it is easy. By applying the functor
[—,83; 44 to the cofibering S =% §* — Q,, (1-1) follows from 2.1, 2.2 and the equality
ny02Znw =0 in [23].

We show that the following is exact:

(4.9) 0— 110(S%) 5 [E, 83 25 [0,, 8% — 0.

By 2.4, (Zp,)" : [20s, S?] — m10(S?) is trivial, since 74(S®) = Z/2 and 710(S?) = Z/15.
To prove the triviality of p : [0, S?] — m9(S?), we consider the following commutative
square:

0,57 s 7o(S?)

zl lz

Z n .
20,54 L q(s)
We have easily
(4.10) Im{Zi* : [2Q,, S — m(SH} = c(n)my(SH).

By 6.1 of [18], we have J(x,) = 2v] + such that the order of § is 3. Hence J(x,) =
nJ(x,) =2nvi +nd. By (8.10) on page 537 in [24], kisovs = k?vs + Zo for some o,
whence ki 0 v} = k?v], and

kg 00 = ko + <§> ([1a, 1a] © f10(6))

= ko + k(k — 1)(1/4 Oho(&)) + (;C) (ZOC, O//lo(é))

for some «’, where Ay is the 0-th Hopf-Hilton homomorphism. Given any integer a, let
a=ac(n). We have
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J(3,) " (a1g) = 2n(arg o v3) + n(ay 0 9)

= 2na*vi 4+ nad + a(a—1)(v4 o ho(6)) + n(Z) (Za' o hy(6))
=0,

since 2nc(n) = 0 (mod 8), nc(n) =0 (mod 3) and the orders of v4 0 hy(d) and Za' o hy(0)
are 1 or 3. Thus (Xp,)" in the square is trivial by [2.4] and [4.10), whence so is p;,
since the suspension homomorphism X2 on the right hand side is injective by the EHP-
sequence. Therefore 1s exact.

/l

As was proved, [E,, S?; 4] is a group. Hence this is generated by {c(n)),¢*y" and

v' o6 0 p, where y” is a generator of mo(S?). By 2.2, the element ¢*y” is in the center.

We have

[V/ ©HgC P, <C<l’l>>]ﬂ = <V/ SR/ C(I’Z) °© l3>[u °0qg= 07
since 2<v’ o g, c(n)13), = 0 in m9(S*) = Z/15.

(2) Let n be 3 or 7. Then Sp v Sp=(S"v S"), and Sp A Sp=(S" A S")p by
1.11 on page 58 in [10]. Consider the following commutative diagram:

0 —— [S" A S", 8" — [S"x 8", 8" — [S" v S"S] — 0

| | |

0 — [Sp A Sp,Spl — [Sp < Sp, Sp| — [Sp v Sp, Sp] — 0.

Since the first vertical arrow is surjective and the third one is injective, we
have (2). ]

We denote by d(m,n) the order of the image of p! : [On, E,] — n9(Ey).

LemMa 4.11. (1) If n#£0 (mod 3), m=n=0 (mod 3) or n=0 (mod 12), then
d(m,n) =1 and the following is exact:

(1'1) O—>77510(En) ﬁ) [EI’VMEH] i’ [QmaEn]_’O'

(2) If n # 2 (mod 4), then, with respect to any multiplication u on E,, the sequence in
(2) of 4.4 for P the set of all primes is an exact sequence of abelian groups and (1-1) is a
central extension of groups under the hypothesis. The group structure of [Qm, En;u] is
independent of u.

(3) Let n#2 (mod 4). Then there exists fe€[E,, E, such that i‘f =
c(m,n)d(m,n)i,. Let o={[c(n)]op,, v=qy with y' a generator of iy mo(S*)+
Z/8{[v1]}, 0 = q,[01(7)] for n=0 (mod 3), and ¢ =i,ov' ongop, for n =0 (mod 4).
Then, for every multiplication u on E,, we have the following facts:

o, f3,7,0,¢& generate [E,, E,; ul,

y,0,¢ are in the center,

7,0 generate the image of g, : mo(E,) — [Em, En; 1],
2, 8], = c(m, myd(m, m<[e(n)],in>y © G
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Proor. Before proving (1), we prove that (1) implies (2) and (3).

(2) Let n # 2 (mod 4). Then E, is a Hopf space. Let u be any multiplication on
E,. Tt follows from 2.1 that [Q,,, E,; 1] is a group so that we have the following exact
sequence of groups:

7T4<En) M) 7Z7(En) ‘1—*) [QnﬁEn;,u] l—*) 7[3(En) —>7[6(En)

Since (mZw)" =0 by 4.4 and [23], ¢* is injective. The image of ¢* is a central
subgroup of [Q,,, E,; 1] by 2.2 and the image of i* is isomorphic to Z by 4.4. Hence
[Om, Eq; ) is an abelian group whose group structure is independent of u. Also
[En, En; 1] 1s a group as being proved above, and is a central extension of groups
under the hypothesis by 2.2. This proves (2).

(3) Let n#2 (mod 4). Since j («), j(f) (and j'(e) if n=0 (mod 4)) are
generators of Im(;"), it follows that «,f,y,0,¢ generate [E,, E,;u] and y,0 generate
Im(q;,). By 4.7, we have

[, B, = £<le)], Boimdy o gm = tc(m,n)d(m,n){[c(n)],id, o gm.

By 2.2, y and ¢ are in the center. We show that so is ¢&. Let C,: E, A E, — E, be the
commutator map with respect to x. Then

[or,2] = Cuo ([e(m)] A ino v ong) o (py A pp)od=0,

since (p,, A p,,) od =0 for dimensional reasons. Consider the commutative diagram:

E o §7 A S Cinov'ong c(mn)d (m,n)iny E
dl lid A c(mn)d(mn)i, )[Cﬂ
Ep A Ey — 20020 S7 A E, vt g, A E,
We have
e, B], = £ c(m,n)d(m,n)in 0 V' 015G, in, © Gm
= & c(m,n)d(m,n)i, o v’ o y,id> 1 0 gy

=0, since {v' o7, id), =0,

where 4’ is the multiplication on S° induced from u. Hence ¢ is in the center. This
proves (3).
In the rest of the proof we prove (1). Consider the exact sequence of based sets:

412),, (20w Ed 2 mo(E)) —2s (B B —2 (O, B —22 mo(E).

By and the equation 75 0J(y,) =0, we have
(me)* =0: [ZQm;En] - 7T10<En> for all m, n.

Thus it remains to prove the surjectivity of j; or equivalently the triviality of p; .
When n=1 (mod 2) and n# 0 (mod 3), j is surjective by 4.4 (1-4).
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Let n =0 (mod 2) and n # 0 (mod 3). Since ¢, 0p,, = P, °J,°p, =0 and ¢*:
n7(S7) — [Qm,S"] is surjective, we have p’ =0:[Qn,S7] — mo(S7). Hence p’ =0:
[Om, Ey] — m9(E,) by the following commutative square:

[QmaEn] p_;l> 759(En)

pn*l ;lpm
(0, ST] -2 79(S7).

Let n =1 (mod 2) and n = 0 (mod 3). In this case (4.12), , is an exact sequence of
algebraic loops. Take any x € [Q,, E,| and write i*(x) = ai with ae Z. Then x = aj+
q*(y) for some yen;(E,). Thus j*(id*-(yop)) =x. Hence j* is surjective.

Let =0 (mod 2) and n =0 (mod 3). When n =0 (mod 12), the bundle E, — S’
is trivial, whence j is surjective by of 4.8 and [4.9]. Let n =6 (mod 12). In this
case the diagram factors as

En i} En/2 —_— Sp(z)

b

S7 2 S7 n/2 S7

and

E, -2, E,s — Sp(2)

Lo !

s 2L 51 Mg
Since nw = 6w =2v' =53 = X(n3) by [23], it follows that Q, = X(S? U e%) and i:
S3— 0, and ¢g: Q, — S’ are suspension maps. Hence we have the following com-
mutative diagram of exact sequences of groups:

0 — 7T7(En) — [Qn;En] — 7T3(En) — 0

[ l I‘lk* ~ lgk*

0 — m(Ewi) — [On, Bkl — 73(Eyjx) — 0.

As is easily seen, the first g, is surjective for k = 2 and isomorphic for £ = 3, hence so is
the second ¢g,. Consider the commutative square:

G«

[On, Ex] —— [On, En/k]

Pu l J/’n*

ny(En) — 79 (Epyk)-

By 4.4 (1-4), we can show that the lower g;, is surjective. Hence the triviality of the
first p; follows from the following fact:

(4.13)  the image of the second p,; does not contain an element of order 3 for k =2
and of order 2 or 6 for k = 3.
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We prove (4.13) as follows. First, let k =2. In this case E,; is a Hopf space.
Take any xe[Q,, E,] and write j*(x)=aie€ n3(E,») = Z{i}. Then x=a(gsoj)+
q*(y) for some y e my(E,;») by the exact sequence

n7(Ey)2) R (0, Enja] — m3(Enpa).

Since j* : [Ey, Ey2] — [On, Enj2] is @ homomorphism, we have j*(g5(y o p)) = a(g2 o j)
+yopoj=x. Thus j* is surjective and hence p, = 0: [Qy, E,n] — m9(E,).
Second, let k = 3. Consider the commutative square:

[0 Enj]l 2 [0, 8]

P J l/’;‘

m9(E,)3) L me(ST).

Since the lower p, is surjective by 4.4 (1-4) and since p;(q) = p o jo p, =0, the image of
the first p; does not contain an element of order 2 or 6. O

PrOOF OF THEOREM 1 — PART II. We proceed to Step 4. It remains to prove that
nil[4, Xp; 4] <2 when 4 is P*(R) or E, with m odd.

Let A= P*(R). If X = P3(R), then [P*(R), Xp;u] = Zp by [Proposition 4.1. If X
is S!, S' x S' or S' x 87, then [P?*(R), Xp;u] =0 as seen in Part I. If X is S7 or
S7 x 87, then [P3(R), Xp;u) =0. If Xis 3, S' xS, $3 x 83, §° x S7, SU(3) or E,
with m # 2 (mod 4), then [P?(R),Xp] =0, hence ¢*:m3(Xp) — [P>(R), Xp; 4 is sur-
jective so that [P3(R), Xp;u] is abelian.

Let A = E,, with m odd. If X = S, then nil[E,,, Xp;u] =1 by 48. If X is S7 or
S7 X S7, then [Em,Xp;,u] = [Em/S3,XP;,u] = 727(Xp) (—B 7'[10(Xp) so that Ilﬂ[Em,Xp;,u] =1.
If X =SU(3), then [Q,,, Xp; 1] = Zp so that nil[E,,, Xp; x| <2 by 2.2, since 77(X) =0
and 7g(X) is finite. If X is S' or S! x S!, then [E,, Xp] =0. If X =S! x S7, then
(O, Xp; ] is abelian so that nil[E,,, Xp;u] <2. If Xis S x 3, 3 x S3, P*(R) or E,
with n # 2 (mod 4), then we can prove the assertion by the almost same method. So
we give a proof only for E,. Let X = E, with n % 2 (mod 4). By (4.12) and 2.2, it
suffices to prove that [Q,,, Xp; x| is abelian. Take any x;, x; € [Qy, Xp; 1. By (2) of
4.4, we can write i’ x; = axc(m,n; P)i, with ay € Zp. There exists a map g : S’ — S°
which makes the following diagram commute:

Qm L)QMAQW! M>)(P/\AXP

ql U Tim A im lcﬂ
§7T 9, S AS3 Xp,

where C, is the commutator map with respect to u. Write a; = @)/ /a; with a; € P¢ (the
complement of P), af € Z, and put h = C,o ((1/a})i, A (1/a})i,). We have

[x1,x2] = Cy 0 (X1 A X2) 0 (i A iy)ogog= a{’aé’c(m,n;P)zh ogogq,

which is a 2-torsion element. We show that this is trivial. If 2 ¢ P, then n7(Xp) = Zp
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so that hog=0. Assume 2eP. If n=1,5, then hens(Xp) =0. If n=3, then

3n6(Xp) =0 so that hog=0. If n=0,4, then c¢(m,n;P)=0 (mod 4) so that

c¢(m,n; PYhog=0. Thus [x],x;] =0 and hence [Q,,, Xp; x| is abelian. O
5. Proofs of Theorems 2 and 3.

In this section, we use the notation in 4.11. We recall from and [6] the
following:

m(SUB)) = Z{i}, =s(SUQ3)) = Z{[2]} with po[2] = 2s,
mg(SU(3)) = Z/12{<[2], i, }-
We define elements in [E/,SU(3)| as follows:

_ 2lop, =0 B iop, [=0 B .
s={pen 2 p={a” D) =@

where p, is the projection from S° x S3 to the k-th component, and ¢ : E — S 8 is the
quotient map. Then we have the following result which contains Theorem 2.

THEOREM 5.1. If [ =0,1 and n=1,4,5, then for every integer m,r, we have
(1) E[, SU3); "] = ¥ (a0, ,7;12, £ (2r + 1)ky),
where {[2],i), = k,{[2],i},,, and

(2) [Epy En; 1) = W (01, B, 75120, + c(m, n) (2r + 1)ky)
Z/2{i,ov' ongop,t n=4
0 n = 17 5:

where o,y are elements defined in 4.11(3) and <{[c(n) i), = k' in mo(E,) =
Z/120{y"}.

Proor. We have (2) by 2.5 and 4.11. By the same methods, we can prove (1) and
so we omit the details. ]

To prove [Theorem 3, we need the following.
Lemma 5.2, For ke {0,1,3,4,5}, let

+k (mod 12) if k=1,3,5

0 (mod 48) if k=0
16,32 (mod 48) if k = 4.

Then there exists a multiplication u on E, such that the projection f,: (E,,u) —
(Sp(2), 1) is a Hopf map.

Proor. It follows from the S’-version of Theorem A in that there exist
multiplications ', #” on S” such that ni7 : (S7,1’) — (S”, 1) is a Hopf map. Then the
existence of u follows from [I]. ]



86 M. MiMurRa AND H. OsHiMA

REMARK 5.3. In the situation of 5.2, E, ~ E}.

PrOOF OF THEOREM 3. Let n,k,u be as in 5.2. Let k =5. The sequence in
4.11 is a central extension of groups, and [E,, E,;u| is generated by o« = [12]o p,,, S
and y, where foi, =1, y=gq.y', ' is a generator of mo(E,) = Z/120. By 4.7, we
have [o, ] = +<[12], In)y © qm- Also fn*<, )y = <fn*[12],fn*(in)>ﬂ0 = <{n[12], 1 Do
= n{[12},i1,. Hence the order of <,in>u is 10/ged{n,5} and

(En, Epy 1) = ¥ (o, B,7;120,12 - ged{n, 5}).

By letting n =7, we obtain from 2.5. O

6. Proofs of Theorem 4, Corollaries 1 and 2.
Recall H*(Sp(2)) = A(x3,x7).

ProprosITION 6.1.  Let Py U P, be a partition of the set of all primes and n an integer
with n#2 (mod 4). If ne Py and c¢(n) =12/gcd{n, 12} € P,, then for any multi-
plications u, on S}Jl X SI7’1 and p, on Sp(2)p, there is a multiplication p on E, such that,
for each integer r, the following is a weak pullback diagram [2] of Hopf spaces and Hopf
maps

(Enpd?) =2 (Sp(2)p,, 1)

h’l lh

(S3, % S}ou) = (K(Q,3) x K(Q,7), ),
where h' = (1/¢(n))<c(n)) x p, h=x3 X x7, i is the localization of the inclusion S™ —
K(Z,m), and p, is the unique multiplication on K(Q,3) x K(Q,7). Moreover the
following is the pullback diagram of algebraic loops:

1 ,
(X, Ey; 1] R X, Sp(2)p,; 1]

| -

’ (ixni),
X, 83 x Sp] (X, K(Q,3) x K(Q,7); f)-

Proor. It suffices to prove the assertions for r = 0. In fact, if f': (X,u) — (X', )
is a Hopf map, then so is f: (X, u") — (X', 1/")). Consider the following homotopy
pullback diagram:

S}, x Sh, % K(0,3) x K(Q,7).

Note that i x ni and & are Hopf maps with respect to any Hopf structures on S;’,l X SZ,I
and Sp(2)p,, respectively. Hence by (cf. [2]) there is a multiplication on W with
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respect to which 4" and f7 are Hopf maps. Since ko f, = (i x ni) o h’, there is a map
g : E, — W such that f, og = f, and h” og =h'. By [Theorem 5.1 on page 82 in [10],
n.(W) is the pullback of

m. (S}, x S}) — m(K(Q.3) x K(Q.7)) — m.(Sp(2)y,).

By localizing g at P; (i = 1,2), we see that g is a weak homotopy equivalence and hence
a homotopy equivalence. The last assertion of 6.1 now follows from the theorem in
[10] referred to as above. 0

The following can be proved easily, so we omit its proof.

LeMMA 6.2. If (X, u) is a Hopf space and P is a set of primes, then (up)" = (1),
for every integer r.

ProOOF OF THEOREM 4. We use the notation in 4.11 and 6.1. For convenience, we
denote by ‘+’ the group operation in [E,,, Sp(2); ,u(()")]. Let x4 be a multiplication on E,
making f, and 4" Hopf maps with respect to the product multiplication u, X up on
Sp, x Sp and (uy)p, on Sp(2),, where x4’ and " are any multiplications on S* and S7,
respectively. Then, by 6.1 and 6.2, [E,,, E,; "] is isomorphic to the pullback of

Ens SpQ2)p,: (145))5,]
(6.3) lh*

(ixni),

[Em, Sp, % Sps (1) p, % (1")p] —— [Em, K(Q,3) x K(Q,7T); o).
Recall that H*(E,,) = A(y;, y7) with f (x3) = y; and f (x7) = my,.
By (cf. [8]) and 4.8, we have

[Ems 3 (W) p ] = [Emy 8% 1/ p, = Zp {<c(m)>} @ (Z/30),,
By SP(2)p,: (15”)p,) = [Ems SP(2): 115,
Also we have [E,, ST (1"0)p ] = [En/S?, ST (1")p] = 77(ST)p, @ m10(S7)p,. Hence

1
[En Spi (1) 5] = Zp {0} @ (Z/24),.
We have (i x ni), (a’'{c(m))+b'p+ ") =c(m)a’y; +nb"y, for every a', b’ € Zp, and
c'e(Z/30® Z/24)p . Since the Pp-localization preserves central extensions of nil-
potent groups, every element of [E,,, Sp(2); ,u(()r)] p, can be uniquely written as ax + b +
cy with a,be Zp, and 0 < ¢ < A»B,, where 4, and B, are the P,-components of 12
and 10 respectively. We have (x3 x x7), (a0 + bfi + ¢y) = by; + (12a + mb)y,. Hence
(a'{c(m)y +b'p+c') x (aw+ b+ ¢y) is in the pullback of if and only if
c¢(m)ya'=b, nb'=12a+mb fora,be Zp, and da' b €Zp,.
The last relations hold if and only if
(6.4) 12a € AyZ, bec(im;P))Z,
(6.5) 12a 4+ mb e nZ,

a'=b/c(m), b = (12a+ mb)/n,
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where c¢(m; P;) stands for the Pj-component of c¢(m). Let
C = A,/ged{m,A,} and D =mA,/ged{m,12},
where 4; = 12/A4,. Then C and D are prime to each other. Hence there exist integers
C’, D' with CC'+DD'=1. Let ®(m,n)={(x,y)eZ x Z; xC+ yD =0 (mod n)}.
Then ®(m,n) = {(kD+InC',—kC + InD'); k,l e Z}. If is satisfied, then
holds if and only if (A4ya,b/c(m; P)) € ®(m,n).
Suppose that 4ja = kD + InC' and b/c(m; Py) = —kC + In D" with k,/l € Z. Then
av+ bf = kDa/ Ay + In C'a) Ay — ke(m; Py)CP + Inc(m; Py)D'B
= kDo/Ay — ke(m; Py)CB+ InC'a/Ay + Inc(m; P1)D'f (mod y)
= k(Da/Ay — ¢(m; Py)CP) + [(nC'a/ Ay + ne(m; Py)D'B) (mod y).

Here we have used the following facts:

sofAy +tf =tf+sa/A| + stAyy (s,te Z),
(xy)" = x"y" (mod [G,G]) in any group G.

Hence the pullback of is isomorphic to the sum of (Z/30@® Z/24), and
the subgroup of [Em,Sp(2);,zzé")]P2 generated by Da/A; — c(m; P1)CB, nC'ajA; +
nc(m; P1)D'f and y. As is easily seen, we have
Do/ Ay — ¢(m; Py)CB,nC'o/ Ay + ne(m; Py)D'B] = (ne(m; Py)/Ay) e, B
= nc(m; Py)A2(2r + 1)y.

Hence, by setting x = Du/A; — c¢(m; P1)Cp, y=nC'a/A;+ nc(m;P1)D'f and z=
ne(m; Py)y, we have [E,, E;u"] = ¥(x,v,2;42B:, 4,2r +1)) @ (Z/30 ® Z[24)p,.
This completes the proof of Theorem 4. O

ProOOF OF CorROLLARY 1. Consider the following two cases:

(1) 3e P17 2€ Pz,
(11) 2€P1, 3€P2.
By applying [Theorem 4 to these cases, we obtain [Corollary 1. In fact, (1) follows from
(i); (2) follows from (fii). O

PROOF OF COROLLARY 2. It follows from the following commutative diagram that if
2 [A, X;u] — [ZA,2X] is a homomorphism, then so is p, : [4,X;u] — [4,S"]:

EA
z4,5x] 2 (54,85,

Hence it suffices to prove that p, is not a homomorphism. To induce a contradiction,
we assume on the contrary that p, is a homomorphism. For simplicity, we denote by
O the spaces Q,, and Q in §4. Consider the following commutative diagram of exact
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sequences (cf. 4.11 and its SU(3)-version):

0 — ms(X) - [4,x] 5 [0,X] — 0

p*l lp* lp*

0 — muys3(S") 1 (4,87 — (0,87 — 0.
Here the lower sequence is in the stable range so that it is short exact by [2.4). Let
x,y€e[A,X;u]. Then [x,y]e Ker(j*)=1Im(q*), whence [x,y]=¢*(z) for some ze€
Tui3(X). Then 0= [p.x,p.y]=p.x,y]=¢"p.(z), whence p,(z)=0. When X =
SU(3), we have z = 0, since the first p, in the diagram is injective by [17], so that [x, y]
=1 and [4,SU(3); u] is commutative. This contradicts [Theorem 2. When X is Sp(2),
E; or Es, we have 15z = 0, since Ker{p, : m10(E,) — m10(S7)} = Z/15 by 4.4, hence in
particular [x, y]15 = 1, which contradicts [Theorem 2| [Theorem 3 and [Corollary 1, since
the order of [x,y] is 2 or 10 for some x and y. In either case we have a contra-
diction. Therefore p, is not a homomorphism. O

7. Composition.

In this section, (G,[,n) stands for (SU(3),2,5) or (Sp(2),12,7). We use the
notation in and study only the standard multiplication x,. We denote by
‘+’ the group operation in [G, G;u,]. By [Theorem 5.1, every element of [G, G] can be
written as ao + bf + ¢y where a,b,c are integers.

We fix generators s, € H'(S”) for r =n,3. Define x, € H'(G) by p*s, = x, and
i*(x3) =s3. Then H*(G)= A(x3,x,). Orient S"" by ¢*s,;3 = x,x3. We need the
following.

Lemma 7.1. (1) Given f,g,h€[G,G], we have

(f+g)oh=foh+goh and (f+g)"(x;)=/f"(x)+g"(x).
(2) O(*(X3) =0, OC*<xn) = Ixy, ﬂ*<xr) = X, and V*(xr> =0.

PrOOF. Since x, is primitive, we have the second assertion of (1). The rest is
obvious by definitions. Ol

Thus it suffices for determining the composition operation to compute o o (ax + bff
+c¢y) and po (ax+ bf + cy). We are able to determine only the following.

ProposiTiON 7.2. (1) (d'a+b'f+ c'y) o (an+ bf + ¢y) = (laa’ + ab’ + a’b)o. + bb'p
(mody).

(2) yo(ax+bp+cy) = (la+Db)by.

(3) aocan=a(xoa)=laa.

4) ao(f+cy)=aof+aocy=a+2cy if G=SU(3).

(5) aocy=-c(aoy)=Ilcuy, where u is 1 or an odd integer according as G is SU(3)
or Sp(2).

ProoF. (1) We obtain (1), by looking at the induced homomorphism of the integral
cohomology.
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(2) Let f=ax+bp and g=cy. We have

{qouyo (f xg)od} spis = (la+ b)bx,xz = {(la + b)bi,3 0 q} 5,13

Hence go pyo (f x g)od = (la+ b)by,130q and then yo (f+¢g) =9 oqouyo(f xg)o
d=7y"o(la+b)biyi30q= (la+b)b(y' o q) = (la+ b)by.

(3) Let a>1. Denote by d“: X — X“=Xx---xX the a-fold diagonal
map, ui:G*— G the a-fold multiplication, and «** =0 x---xo: G — G* for a
map o:G— G. Then ao=ploa*od*=plo[l]™ op*@od'=ufoll]* odop=
a[l] o p and hence aoau = [l[]o poa[llo p=|l]olai, o p=la([l]o p) =lax. Thus oo ao
= lac, which holds also for a=0. Let I:G— G be the inversion. Then
(—a)o=Toan=1Toa[llop=(—a)[l]op and hence oo (—a)a=oo(—a)[lljop=1[I]o
po(=a)ll]op=I(—a).

(4) Let 6:SU(3) — SU(3) be the complex conjugation. Since o*(x3) = x3 and
o*(xs5) = —Xxs, it follows that ¢ = —a + f + xy for some x and the following diagram is
commutative:

s3 L, su@) L. 0SS

I

s3 1, su@E) L. ss

Hence oo <[2],i) =<0.[2],0.i) = {—[2],i> = —{[2],i). Since q*[S%] = xs5x3, we easily
have goo=(—13)oq. Hence goy=00{[2],ipoqg=<{[2],iyo(—13)og=y0a. We
have go (f+7) = (f+y) oo by the following commutative diagram:

SUB) —1 sUB3) x SUB) 22, sUuG) x SUB) -2 sU@3)

SUB) —1 sUG3) x SUB) 225 sU(3) x SUB) —“ sU®3).

Write oo (f+c¢y) =a+ f(c)y. Since (f+79)=p+cy for ¢>1, we then have
go(f+cy)=(f+cy)oa. We have —a+f+ (x—c)y=(f+cy)oa=0co(f+cy) =
—o+f+{c+x—f(c)}y by (2), whence f(c)=2c¢ as desired.

(5) Let ¢>1. Then aocy=oouioy“od =oaopuioy*odog=I]opocy
og. On the other hand, let /" be 2 or 3 according as G is SU(3) or Sp(2). Then
poy =1'v, where mn,3(S")=2Z/24{v}. It follows that oocy=cl'{[/]Jovog} =
c(aoy). If G=SU(3), then y' = [2]ov, since p,(y') =2v = p,([2] ov), whence a0y =
2{[2]ovogq} =2{y'oq} =2y and aocy=2¢y. Let G=Sp(2). By and [23], we
have the following exact sequence:

0— m10(S?) = Z/15 -5 m0(Sp(2)) 2= Z/8{3v} — 0.

We have p,([12] ov) = 12v = p,(4y’) so that ov=4y" + 8uy’ = 4(2u+ 1)y’ for some
integer u. Hence a0y =3([12]ovoq) =3{4(2u+ 1)y’ og} =12(2u+1)y. Thus aocy
= 12(2u+ 1)cy. ]
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ProposiTION 7.3. o, : [SU(3),SU(3)] — [SU(3),SU(3)] is not a homomorphism and
hence o is not a Hopf map.

Proor. By 7.2(1), there is a function y: Z/12 — Z /12 such that oo (a — f+ ¢y) =
a+ y(c)y. Then (x—p+c'p)o(a—f+cy)=F+{y(c)+1—c—c"}y by 7.1(1) and
7.2(2). So a—p+{y(c)+1—c}y is a left homotopy inverse, and hence a homotopy
inverse, of o —f+c¢y. Thus f=(ax—f+cp)o(a—f+{y(c)+1—cly) =B+ {yylc)
+1—c¢)—y(c)}y by 7.1(1) and 7.2(2). Therefore we have

(7.4) y((e) +1=c)=y(c).

On the other hand, if o, is a homomorphism, then oo (¢ — f+ ¢y) =ooa— o+ c{oaoy}
=o+2cy by (3) and (5) of 7.2, whence y(c) =2¢. But this does not satisfy [7.4].
Therefore o, is not a homomorphism. O

PROOF OF COROLLARY 3. Set f =aax+bf+cy. Then f*(x3)=bx3 and f"(x,) =
(la+b)x, by 7.1. Hence f™ is an isomorphism if and only if |la + b| = |b| = 1. Thus
by J. H. C. Whitehead’s theorem, we have &(SU(3)) ={+taFf+c¢y, xf+cp;1 <c
<12} and &(Sp(2)) ={+f+cy;1 <c<120}. Let |s|=|s'|=1. Then (sf+cy)o
(s'B+c'y) =ss'f+ (c+sc’)y by 7.1(1) and 7.2(2). Hence z=pf+c¢y and z°o y =
—f +c¢y. The assertion for Sp(2) then follows easily.

In the rest of the proof, let G =SU(3). We identify [Q, Q] with [Q,SU(3)| by
Jo Set ag=1[2]opojand fy=j. Then &(Q) ={tu F fy, +fo} = Z/2{—a0 + o}
@® Z/2{—p,}. Hence we have an exact sequence of groups:

-k

0—m5(SU3)) == &(SU(3)) L= 6(Q) — 0,

where A(f) =+ foq. A splitting 7: &(Q) — &(SU(3)) is defined by 7(—ap + ) = x
= g, the complex conjugation, and 7(—f,) = y = —f. Since, as is easily seen, X,y
and z=f+7y generate &(SU(3)), and xA(f) = A(f)x and yA(f) = A(—f)y, the as-
sertion follows. ]

8. A concluding remark.

For a Hopf space (X,u), we define cat(X, x) to be the maximum of integers n such
that [Y, X;u| is a group for every space Y with catY <n. We have
(1) cat(X,u) >2 by 2.1;
(2) cat(X,u) = oo if and only if x is homotopy associative;
(3) cat(X,u) <cat(X x X x X) if u is not homotopy associative;
3 _ [ r=0,1(mod 3) _
@) (S"u")_{Z r =2 (mod 3) by [13]
(5) cfat(S7,ﬂ) =2, since any x on S’ is not homotopy associative by [13].
It seems that cNat(X , /) measures the homotopy associativity of x. Let us propose

4) cat

PROBLEM 3. Compute cat(X, u).
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