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Abstract. For G =83 x --- x §3, let X be a space such that the p-completion (X )pA
is homotopy equivalent to (BG)pA for any prime p. We investigate the monoid of rational
equivalences of X, denoted by &(X). This topological question is transformed into a
matrix problem over Q@ ® Z”", since &(BG) is the set of monomial matrices whose
nonzero entries are odd squares. It will be shown that a submonoid of ¢(X), denoted by
00(X), determines the decomposability of X. Namely, if N, denotes the monoid of odd
natural numbers, shows that the monoid Jy(X) is isomorphic to a direct sum
of copies of N,4;. Moreover the space X splits into m indecomposable spaces if and only
if 0o(X) = (Noaa)™. When such a space X is indecomposable, the relationship between
[X,X] and [BG, BG] is discussed. Our results indicate that the homotopy set [X, X]
contains less maps if X is not homotopy equivalent to the product of quaternionic
projective spaces BG = HP* x --- x HP™,

0. Introduction.

The completion genus set of the classifying space of a compact connected Lie group
G, denoted by Genus(BG), is the set of homotopy classes of spaces X with (X ); o~
(BG); for any prime p and X, ~ (BG),. According to a result of Wilkerson [8], such
spaces X are classified by a double coset space, and there is a one-to-one corre-

spondence:
Genus(BG) = (r), Aut((BG)")\Caut(((BG)"),)/(f-c.), Aut((BG),)

Here we recall the argument. First Caut(((BG)"),) denotes the subgroup of
Aut(((BG)"),) which consists of homotopy classes of maps f such that each 7.(f) is
a O ® Z"-module map on 7.(((BG)"),). Next r denotes the rationalization, and f.c.
means the Sullivan’s formal completion. Note that if / in Aut(((BG)"),) is induced
from Aut((BG)") or Aut((BG),), then f is contained in Caut(((BG)"),).

Let 9(BG) = (r), Aut((BG)")\Caut(((BG)"),)/(f.c.), Aut((BG),) for simplicity.
Suppose X € Genus(BG), and let Ay denote the corresponding element (the gluing map)
in the coset space, that is, Ay € 4(BG). Then the space X is the homotopy pullback as
follows:
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X —— (BG)"

|

((BG)" )

[
(BG)y —— ((BG)"),

Of course, if Ay is the equivalence class of the identity map in %(BG), then X = BG.
We note, [5], that the genus set of BG is uncountably large whenever G is non-abelian.

The maps between classifying spaces [BG, BK] have been investigated extensively,
[1], [3], etc. We discuss a general problem; Determine the homotopy set [X, Y] if X €
Genus(BG) and Y € Genus(BK). For a map f: X — Y, let f*: X" — Y" be the
completed map and let f, : Xo — Y, be the rationalization. We note here that the map
f" X" — Y canonically splits into the product of maps f ; 1 X, — Y, [7]. The
maps f" and f, induce the maps from (X"), to (¥Y"),. We write these maps C(f)
and R(f) respectively. Notice that (X"), ~ ((BG)"), and (Y"), ~ ((BK)"), for X €
Genus(BG) and Y € Genus(BK). Using the above fibre square, we get the homotopy
commutative diagram

which we express in the equation

R(f) -Ax = Ay - C(f).

We discuss special cases about the homotopy sets [X, Y| where X € Genus(BG) and
Y € Genus(BK). First, suppose G =K and G is simple. One can show that, for
X, Y € Genus(BG), there is an essential map from X to Y, i.e. [X, Y] # 0, if and only if
X ~ Y. We sketch a proof of the statement that [X, Y] # 0 implies X ~ Y; For an
essential map f : X — Y, the above equation has the following form

R(f)-Ax = Ay - (Broy")

where 7 is expressed as a product of outer automorphisms and ¥* is an unstable Adams
operation, [3]. Hence we see y* = Bt 'A;'R(f)Ax € Caut(((BG)"),) so that o=
[[,% €Z"N(Q")". This implies o, € (ZPA)* for sufficiently large p. Thus we can
find N € N such that o/N € (Z")". Consequently X ~ Y is shown by the following:

Ay = (R(f)"y") Ay (Bry*N)
= Ay in 9(BG).

We note, however, that if G is not simple, the result can not be true, [2]. A
counter-example is given by a fibration BS® — X — BS® where X € Genus(BS? x BS?)
but X ¢ BS? x BS®. 1t is easy to see [BS® x BS* X]#0 and [X,BS? x BS?] # 0.
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In this paper we will consider the case that G is a finite product of S*s. From
now on, let G = S? x --- x §? so that BG is a product of quaternionic projective spaces
HP* x HP® x ---x HP*. We write rank(X)=n if X € Genus(BG) and G is the
product of n copies of S°. For X,Y e Genus(BG) let &(X,Y) denote the set of
rational equivalences f : X — Y, and ¢(X) the monoid of rational self-equivalences
f:X — X. Namely feeg(X,Y) means that its rationalization f;,: Xp — Yy is a
homotopy equivalence. Similarly eo(X,, Y,") and e (X, ) are defined.

We will investigate ¢ (X). When X = BG, it is known that &(BG) is the set of
monomial matrices whose nonzero entries are odd squares, and eo(BGIf) consists of
monomial matrices with entries given by p-adic squares. Moreover, for p =2 these
entries have to be 2-adic units [3] or [6].

For example, &(BS> x BS?) consists of the following types of 2 x 2 matrices:

a 0 0 ¢
or
0 b d 0
where a, b, ¢ and d are squares of odd numbers. In general, if f € ¢y(X), then we get
the homotopy commutative diagram

(BG)" )y — ((BG)"),

Since ((BG)"),=K(EP"Q",4) when G is the product of n copies of S*, the maps
C(f), R(f) and Ay can be regarded as n x n matrices over Q". Consequently the
equation R(f)-Axy = Ax - C(f) can be understood in terms of matrix multiplication.

For every X € Genus(BG) there are always the Adams operations of odd degree
contained in &(X). An Adams operation y* : BG, — BG, is represented by a scalar
matrix k2 - Id. The matrix is central, and we get the identity y* - Ay = Ay - y*, which
establishes a self map y*: X — X. Because only odd degrees of Adams operations
occur, we denote the set of Adams operations by N,;;, the monoid of odd natural
numbers, and express the above fact by N4 < ¢ (X).

There is a canonical embedding & (X) < eo(X, ). Since X' ~ BG,, we see &(X,")
~ 80(BG; ). If G is the product of n copies of S*, there is a split short exact sequence
of groups

D(p) — &(BG,) = Z,

where 2, denotes the symmetric group regarded as a subgroup of GL(n,Z) by per-
mutation representation. For example, if » =2, the map r is as follows:

(o )=o) morlaa)= (i)

The kernel D(p) consists of diagonal matrices whose nonzero entries are squares in Z;.
Notice that &(BG; ) = Aut(BG5 ), and this group consists of non-singular monomial
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matrices. Hence, for p =2, these squares have to be units. Since &(X) < & (BG) ),
this exact sequence induces the following commutative diagram

r

Dp) — w(BG) L %,
U U U
do(X,p) — alX) — ao(X)
where do(X, p) = & (X) N Ker r is an abelian monoid and where ay(X) = r(e(X)).

Let do(X) =do(X, p) for p=2. If X = BG, the monoid Jdy(BG) is isomorphic to
the direct sum of n copies of N,4;. The following result shows the structure of dy(X).

TueOREM 1. Let X € Genus(BG) where G is a finite product of S°. The monoid
00(X) consists of diagonal matrices whose non-zero entries are squares of odd numbers.

The monoid Jdy(X) reveals the decomposability of X as the next result shows. We
say X € Genus(BG) splits if there exist spaces U e Genus((BS*)*) and V e Genus-
((BS®)" ") such that X ~ U x V. Otherwise we call X indecomposable.

THEOREM 2. Let X be as in Theorem 1. Then the following holds:

(1) The space X splits into a product of indecomposable spaces X| x --- x X, with
X; € Genus((BS3)"") for some r;.

(2) The monoid 6o(X) is isomorphic to a direct sum of copies of N ,4q.

(3) The space X splits into m indecomposable spaces if and only if 6o(X) = (Noaa)"".

For X with rank(X) =2, classifies ¢(X). Note that a map f with
- f =y¥ is denoted by \/yk. Of course k has to be an odd number. The notation

{Noaa, V/¥*> means the monoid generated by N,u and /Y.

THEOREM 3. Let X € Genus(BS® x BS®). The monoid of rational quivalences ey(X)
is isomorphic to one of the following four types of monoids:

(1) Nod (i) <Noaa; VW*y (k- odd)
(ii1)  Noga X Noaa (iv)  (Nodd X Noga) X 2>
All above monoids are realized as e)(X) for some X € Genus(BG).
Next we consider g (X) in the general case that G = S° x --- x S3.
THEOREM 4. Suppose
X=X"xX"x--- X"
where each X; is indecomposable and X; + X; for i # j. Then

N

So(X) = H(t‘)O(AXl) ~ Zni)'

i—1
If X is indecomposable, there is a strong relationship between [X, X] and [BG, BG].

THEOREM 5. Let X be as in Theorem 1. If X is indecomposable, for any f € &(X),
there is a homotopy equivalence between X, and BG5 so that we can find a self-map h of
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BG which makes the following diagram homotopy commutative:

x . x

Lo

Xz/\ f 2 XQ/\

|

BG; N BGé\

[

BG -5 BG

The following result shows that not every type of extension dy(X) — &(X) — go(X)
can be realized for some X € Genus(BG). If A, denotes the alternating group, we have
the following result:

THEOREM 6. Let X be as in Theorem 1. If A, < &(X), then X, < &(X).

For instance, if an extension Jdo(X) — &(X) — A4, splits, one can show that up to
conjugate the image in & (X) is expressed as the permutation representation. The above
theorem tells us that such a split extension does not exist.

A part of the work in this paper was done when the first two authors visited SFB
170 in Gottingen. They wish to express their gratitude for the hospitality.

1. Rational self equivalences.

In this section we always assume that X and Y are in the genus of BG. Recall that
¢(X, Y) denotes the set of all homotopy classes of maps X — Y which induce rational
equivalences.

1.1 ProposITION. Let feey(X,Y). Then f; : X, — Y is an equivalence for
almost all primes.

Proor. Recall that the map f induces the equation R(f)-Axy = Ay -C(f) as
matrices. In the denominators and numerators of the entries of R(f) occur only a finite
number of primes. For all the others, f induces an isomorphism in mod-p cohomology
and hence, a p-adic equivalence. ]

1.2 LemMMA. Let fee(X,Y). Then there exist gluing maps Ay and Ay such that
Ay = Ay -yT, ie. R(f)=id and C(f) is a product of unstable Adams operations.

ProoF. There exist gluing maps A} and 4% and matrices R'(f) and C'(f) such
that R'(f)4y = AyC'(f). As a self map of BG, the map C,(f) =a(pyS? is a
product of a permutation and an Adams operation. We can split S(p) into a product
S1(p)S2(p) such that the entries of S»(p) are powers of p, and that the entries of S|(p)
are p-adic units. Here, the product is taken in the components. Because for almost all
primes C,(f) is an equivalence by [Proposition 1.1}, almost all tuples S»(p) are of the
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form {1,...,1}. Now let 7:=]],S2(p) be the product of all tuples S>(p), which is
finite, and let Q(p) := T/S>(p) be the quotient of T by S»(p). Then Q( p}l consists of
p-adic units. Now we define Ay:=R'(f)dY, Ay := A} L, (@(py> V) ) R(f) =
id and C(f):=y". Then we see the equations Ay = R'(f)d} = A,C'(f) =
A’YH(O'(p)lﬂSI(p)l//SQ(p)) = Ay H(I/JQ(p)l//SZ(p)) = AyyT. This proves the statement. []

1.3 COROLLARY. Let fee(X,Y). Then there exists g € &(Y,X), such that fg =
gf = y*, ie both compositions are unstable Adams operations of the same degree.

Proor. We choose gluing maps as in Lemma 1.2. Moreover, for 7 = {z,...,1,}
we define k := lem(ty,.. .,tn), S:=k/T, R(g):=vy"* and C(g):=y>5. Then, the
equations Axy® = Axy* T = Ay Ty*y T = y¥ 4y define a rational equivalence
g:Y — X. Obviously, the compositions fg and ¢gf are unstable Adams operations of
degree k. L]

The last result allows to speak of y*-inverse maps.

1.4 DeriNiTION.  The rational equivalence g : ¥ — X of the Corollary 1.3 is called
the y*-inverse of f: X — Y.

Let fee(X,Y), and let g be a y*-inverse. Then, we have maps (which are not
maps of monoids)

c:e(X)—e(Y):h— fhg and c:e(Y) — e(X):k— gkf.

The composition is multiplication by wkz. Thus, both maps are injective. Choosing
gluing maps Ay and Ay as in [Lemma 1.2, the matrices C,(f) and C,(g) are given by
products of unstable Adams operations. Therefore, we get a commutative diagram

o(X,p) —— ealX) — 2,
oo(Y,p) —— &(¥Y) — 2
As mentioned the conjugation ¢ is not a map of monoids and, of course not an
isomorphism in general. One would like to improve this by considering npl/ ke, Then,
the composition becomes the identity. This doesn’t work because we can’t divide by y*
in the image of ¢. But if we restrict ¢ to the kernels dy(X, p) and dy(Y, p), then we
have only to deal with products of Adams operations, which is an abelian monoid.
Therefore, for hedy(X,p), we have wl/ka(f)Cp(h)Cp(g) = Cp(h)lpl/ka(f)C(g) =
Cp(h), and Y'/* fhg € &(Y).
On the other hand, we can pass to the associated Grothendieck groups K (e (X))
and K(g(Y)), where we can also multiply by /% This proves the following statement

1.5 PROPOSITION. Let [ €&y (X,Y), and let g be a y* inverse. Then there exist
isomorphisms

K(eo(X)) — K(eo(Y)) and do(X, p) — do(Y, p),

given by conjugation.
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2. Characteristic polynomials of self maps.

If fee(X), we see, as before, that R(f) - Ay = Ay - C(f) as matrices. Actually
R(f) is a matrix over Q@ and C(f) is a matrix over Z" :HZ;. The map C(f)
canonically splits so that C(f) =[] C,(f). Hence C,(f) is regarded as a monomial
matrix over Z; whose nonzero entries are squares.

2.1 LemMA. The matrices R(f) and C,(f) have identical characteristic polynomials
which are monic and have integral coefficients.

Proor. The identity R(f)- Ay = AxC(f) shows that all matrices are conjugate.
Hence the characteristic polynomials are identical. It is a polynomial over Z; for all p
and over Q and has therefore integral coefficients. Obviously it is monic. ]

2.2 DernNTION. Let f: X — X be an element of ¢(X). Then we define the
characteristic polynomial y ,(z) € Z[t] of f as the characteristic polynomial of R(f") or of
Cy(f). It is well defined because R(f) and C,(f) are unique up to conjugation.

2.3 LeMMA. For every element f €e&(X) the characteristic polynomial y ((t) is
always of the form [[,(t" —a;), where Y ki =n and a; € Z is an odd square.

ProOF. Recall that &(BG, ) = R1ZX,, where R consists of the squares of 2-adic
units or nonzero p-adic squares if p is odd. In particuliar, C,(f) = a(y’) with L=
(/1,...,4y). Here, g is a permutation. The characteristic polynomial of C(f') is of the
desired form. To show that «; is always a square, we first observe that an unstable
Adams operation y* induces in 74 a multiplication by k2. Therefore, a; is always
a square in Z; for all p, and hence a square over the integers. It is an odd
square because only Adams operations of odd degrees are realizable as self maps over
BS?, . O

Let fee(X) and y, =[](+" —a]) = [1(t* —a;)" (in the last expression we just
collected equal terms). Then there are two associated partitions of n, namely P'(f) =
{/1,...,¢n} and P(f) = {kir1,...,kqyry}. We also associate to every permutation ¢ a
partition P(c) given by the length of the cycles.

24 Lemva. If y, =T[,(t" — ), then C,(f) = oyX, where P(c) is a subpartition

of P'(f). Every ¢; splits into a partition {my,...,m;} where m; occurs q; times and
qim; = ;.
Proor. This follows from the calculation of y,, (7). O

2.5 ReMARkK. The existence of roots of unity may cause a splitting in a sub-
partition, e.g. H;‘: (1" —w’) =t — 1, where  is a primitive k-th root of the unity.
Because Z5 contains no roots of unity besides +1, we have P(g) = P'(f) for p=2.

2.6 LemMa. If Cy(f) is a diagonal matrix, then C,(f) also is a diagonal matrix for
every prime.

ProoF. The assumptions imply that y(¢) =[[;(t—a;) is a product of linear
factors. Thus, the associated partition P’(f) is given by {1,...,1}. By [Lemma 2.4, all
matrices C,(f) are diagonal.
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2.7 COROLLARY. The kernel 6o(X) is a subset of oo(X, p) for all primes.

ProOF. Let f €do(X). Then Cy(f) =y is a product of Adams operations and
therefore a diagonal matrix. By all the matrices C,(f) are diagonal. Thus,
for all primes, we have f €dy(X,p).

This result shows, as one have might-expected, that most of the information about
the spaces in the genus of BG is concentrated at the prime 2.

PrOOF OF THEOREM 1. If f €dy(X), then the Z5 -matrix C,(f) is diagonal. By
[Lemma 2.6, the Z; -matrix C,(f) is also diagonal. Since the characteristic polynomial
Xy splits into linear factors in Z; for any prime p, this monic integer-coefficient
polynomial splits over Z as well. Recall that the polynomial ring Z; [f] is U.F.D.
(unique factorization domain). Thus all C,(f) are diagonal matrices over Z, indeed.
Their main diagonals are the same up to permutation. Finally shows that
each entry of the main diagonal of C,(f) is the square of an odd integer. ]

3. Decomposition of spaces and a filtration on the genus of BG.

Recall G = (S3)". For any partition K = {ky,...,k.} of n, there is an obvious
inclusion

Dk = H Genus((BS*)") — Genus(BG).

We say, that an element X € Genus(BG) has filtration K if X is in the image of
®k. The space X is indecompasable if X does not have the filtration K for any proper
partition K of n. In this section we will discuss the relation between the filtration of X
and the monoid dy(X) of self maps.

3.1 PrOPOSITION. Let f €6y(X) and let y (1) = [1Z,(t = a)" be a splitting into |
pairwise coprime factors. Then the space X has filtration R with R = {ry,...,r}. In
particular, X ~X| x --- x X, splits into a product of | spaces X; with X; € Genus((BS>)").

Proor. Because f €6y(X) all the matrices C,(f) are diagonal matrices by
2.6. The characteristic polynomial therefore splits integrally into linear factors.
Moreover, after reordering the entries, i.e. changing the gluing map, we can assume that
all the matrices C,(f) are identical and of the form [[,y“. Here, we have to interpret
Y as a diagonal matrix in GL(r;, Z ; ) with constant entries. The rational matrix R(f)
is also diagonalizable even over Q, because y /() has only integral zeros. Hence, after
changing again the gluing map, we also can assume that R(f) = C,(f). That is to say
that Ay centralizes [[,y“. Hence Ay = (A4;---A;) e [[GL(r;,Q") is a blockwise
diagonal matrix. Therefore X has filtration R. ]

3.2 PROPOSITION. A space X splits into ¢ factors if and only if 09(X) contains the
direct sum of ¢ copies of N,uq.

PROOF. Let us assume that (N,q)’ = do(X). Then we can find a map [ € y(X)

such that y () =[]/, (¢ — a;)" splits into / pairwise coprime factors. By
3.1, this shows that X splits at least into / factors.
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Now we assume that X splits into a product of / spaces X x --- x X;. Then
Adams operations exist as self maps on each X; and so does N,ys;. Thus, (Nodd)/, as a
set of diagonal matrices, is a subset of do(X).

On the way of proving we need the following special case.

3.3 LemMA. A space X € Genus(BG) is indecomposable if and only if 6o(X) =
Nodd-

Proor. The monoid N,y is always a subset of dyp(X). First suppose X is
indecomposable and f €dy(X). If fis not an Adams operation, then the characteristic
polynomial y () = [],(r — a;)" splits into at least two coprime factors. By
3.2, this would imply that X splits, which is a contradiction. Hence N, = do(X).

Conversely, if X splits into at least two factors, then Jdy(X) contains at least (NWM)2
as a submonoid. ]

PrROOF OF THEOREM 2. [Proposition 3.1 shows that if X; is a factor of X e
Genus((BS*)"), then X;e Genus((BS?)"") for some r;. Thus an argument using
[Proposition 3.2l and [Lemma 3.3 implies Part (1).

Let us assume that X ~ X; x --- x X}, is a splitting into m indecomposables. By
[Proposition 3.2] there exists an inclusion (NV,z)" = do(X). We want to show that this is
an isomorphism. Let f €dy(X). Let 4; be the gluing map of X;, andlet 4 = 4, --- A,,.
Then f establishes an equation R(f)-A4=A-C(f). The matrices C,(f) are always
diagonal matrices. Therefore, the matrix R(f) has the same block structure as
A and R= R; x --- X R,,, where each R; has the same size as 4;,. We can also write
C(f)=C; x---x C,, where C; also has the same size. That is to say that our above
equation splits into the equations R; - 4; = A4; - C; which establish self maps f; : X; — X..
The spaces X; are indecomposable. Thus, by [Lemma 3.3, the maps f; are Adams
operations. Therefore f € (N,4)™". This proves part (2) as well as the one half of (3).

Now let us assume that do(X) = (N,as)™. Then, by [Proposition 3.2, X = X x - -
X X, splits into m spaces. If one of these is not indecompsable, we could split X
further into more than m factors. By |Proposition 3.2 again this is a contradiction,
which finishes the proof. ]

3.4 PROPOSITION. Suppose that two spaces X and Y are contained in Genus(BG).
If there exists a map [ : X — Y which is rationally an equivalence, then X and Y have the
same filtration.

PrOOF. Let us assume that X has filtration R = {r,...,r}; ie. X =X X --- x X/
splits into / factors. Then there exists f €do(X) such that y(r) = [[,(t — ;)" splits
into / pairwise coprime factors. By [Proposition 1.5 there exists a map Jdo(X) — do(Y)
which is given by conjugation. Therefore the image g: Y — Y of f has the same
characteristic polynomial. Hence, by [Proposition 3.1 Y has also filtration R. O

4. Determination of & (X) with rank(X) = 2.

We investigate the type of the gluing map Ay for X € Genus(BS* x BS?). For f e
¢o(X), the trace of £, denoted by #r(f), is defined as the trace of the matrix R(f). Then
the following two cases occur.
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Case 1. Suppose there is f € &y(X) — Nogg with tr(f) # 0.

Take such an f. Suppose f'is represented by R € Aut((BG),), C € Aut((BG)") with
RA = AC where A4 € Caut((BG"),) represents X. Since tr(f) = tr(R) # 0 and rank(X)
=2, the 2 x 2 matrix C, must be diagonal for all p:

A;IRAP = diag(oc;,ﬁlf) %, f, € Zl/,\.

The characteristic polynomial for f then has the form

2p(0) = (t=r1)(t = 12)

for some odd squares r; and ry; replacing 4, by A,t if necessary (where 7 is the
involution), we may assume rj = o2, ra :ﬂ; for all p, i.e.

Vp: A;IRAP = C, = diag(r1,r2).
Since f is not an unstable Adams operation, r; # rp, and R is diagonalizable; i.e.

JU € GL(2, Q) with U"'RU = diag(r|,r,).

Since also the columns of A4, are eigenvectors for R with eigenvalues r; and 7,
respectively, they must be proportional to the columns of U,

A, = U diag(/p, 1,)

for some 4,, 1, € Q;. Since the entries of both 4, and U are p-adic units for p > 0, so
are 4, and w,. Therefore 4, ue (Q")". An equivalent representative for X is

U4 = diag(), 1) € GL(2,0").

Case 2. Suppose tr(f) =0 for any f €¢&y(X) — Noyga-
For fee(X)— Nygas with tr(f) =0 we have

Vp: A;lRA,, = diag(aj,ﬁj)rgﬂ

for some o= (x,), f=(f,)eZ"N(Q")" and ¢ =0 or 1. Since #r(f)=0, the
characteristic polynomial has the form

2r(0) = (t=7)(1+7)
for some natural number y € N. We may assume
2= p2 ife,=
V:{Z@ ’ ﬁzzg
Also, R is diagonalizable:
JU € GL(2, Q) with U"'RU = diag(y, —).

Suppose ¢, =0. Then o) = —ﬁlf so V—l1eZ) and p=1mod 4. As

A ' RA, = diag(y, —)
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the columns of A, are eigenvectors for R, so
A4, = U diag(7p, 1,)

for some 4,1, € @) (€ (Z,)" if p>0).
Suppose next ¢, = 1. Put

Mp:<ﬁp _ﬁ[’

%p %p

> e GL(2, Q; ).
Then
(AyM,) ' R(ApM,) = M, diag (e, B;)eM, = diag(y, —)
so again we conclude that
Ap,M, = U diag(/,, 1t,)

where 4,, 1, € @, (€ (Z,)" if p > 0).
The matrix

U-1 4 — {diag(/l,,u) if ¢, =0 (then p = 1 mod 4)
- \diag(, )M~ if e, =1

1s another representative for X. Note that

11
MPZ(i” _ﬁf;):ﬁ z
P P ﬂ ﬁ
1 1\
diag(2, i))M," = diag(ip~" ") - | & —a
BB

so by absorbing the 7! into (4,u) we may always assume that M, has the form

<”l )
M —
P 4

for some m, € @) (€ (Z,)" if p>0).

4.1 LemMA. Suppose q# 1 mod 4. If Cq(f):diag(ocz,ﬂz), then, for any p,
Co(f) = diag(k?,£*) for some integers k,/ € Z.

Proor. First let C, = Cy(f), C, = C,(f) and R= R(f). Since q # 1 mod 4, we
see tr(C,) = o> 4+ f* # 0. This implies that C, and R must be diagonal. Here consider
the characteristic polynomials. Since y(C,) = ¥(R) and the polynomial ring Q;\ (7]
is UFD, «? is contained in the localized integer Z,. Analogous results for the
other primes enable us to see o> € Z. Suppose that «®> = +p{'--- p% and that p is
one of the p’s (1 <i<r). When C, = diag(o2,,), we can write o, = p“u for some
ue(Z,)". Since o> = oy = p*u?, we see each ¢; must be an even number. Therefore
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a? = i(ple'/2 ---pf"/z)z. If o = _(p1e1/2 o ‘pf"/z)z, then o + (pfl/2 X -pf"/z)z = 0. This

i1s a contradiction, since v —1 ¢Z; for g # 1 mod 4. O
4.2 LemMA. Let X € Genus(BS® x BS?) and X is indecomposable. Suppose f,g €

2
eo(X) are represented at p=2 as follows: Cy(f)= (kz(; 5 O:) ), Cy(g) =
) o
(/;;ﬁz [); ) If g is divisible by " for some n # 1, then [ =g.

Proor. Notice that the following product

202
0 o 0 4 U
2 | 2 _| #
Kk 0 oy 252
2 2 0o KP

o2

is scalar, since X is indecomposable. It follows that («2/2)/f* = (k*f*)/a?, and hence
o2 = (k//)B* and > = (¢/k)a®. If k =/, then o> = > and hence f=g. We now
assume k # /. Since the product is diag(k/,k/), we see k/ is a square. Consequently
either k// or //k contains square which is not equal to 1. Note that

)
Colg) = /i)/ K or </ 0 )
%p
This implies g is divisible by ". This contradiction completes the proof. ]

4.3 LemMA. For any odd positive integer k there is X € Genus(BS® x BS®) such
that 80(X) = {Noaa, \/ Wk>

Proor. Express the p part of a gluing map Ay by A4,. Take

a b
4, = | b a
o o
for some a #0, b #0. Then

0 1 O o
_ -1
<k2 o)‘A” i 0 4,
o

for the fixed «. Note that

. (5
A= | —pk? .
o

and X is indecomposable. We see that A, - diag(s*,*) - A,' € GL(2,Q) if and only if
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s2 = 1%, since

20 a b sa  s*b
o o o o
az b 20 sa t*h
% g 0 12 o * *
o o
az b 20 2a  s*b
% a 0 s2 B * * ‘
o o

This shows &y(X) = {Noga, /Y*). 0

PrOOF OF THEOREM 3. CASE 1. Suppose there is f € ¢y(X) — Nyga with tr(f) # 0.
Then X = Y| x Y,. If there is g € &y(X) — Noqq with #r(g) = 0, Cemma 4.1 implies that
C>(g) is not diagonal so that there is an essential map between Y; and Y,. Thus Y| =
Y, and hence ¢ (X) = & (BG) = (Noda X Nogq) X 2>. Otherwise Y; # Y, and &(X) =
Noda X Noda.

Case 2. Suppose #r(f) =0 for all f eey(X)— Nogg. Then f*>=y* for some k.

implies &(X) = (Noaa, V*>.
Using [Lemma 4.3, one can show that each of the monoids is realized as &(X) for
some X € Genus(BG). O

5. Integrality of rational equivalences.

5.1 LemMMA. For X,Y € Genus(BG), if ¢(X,Y) is non-empty, then X ~ Y.

ProOF. For feg(X,Y), we have an equation

R(f) - Ax =Ay-o- (HW%)

where ¢ is a permutation. An argument similar to the one we used in the introduction
to show a result associated with a simple group will complete the proof. ]

PrOOF OF THEOREM 4. Let f e¢y(X). Identify f as C,(f) so that regard f as a
monomial Z5 -matrix relative to a basis B. Consider the subbasis B; corresponding to
Xi (1 <i<ys) so that

S n;
.y (U ﬂsi>.

i=1
It is convenient to write as follows:

n;

OB =%,Us,U-- Us.,
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Let f be the image of f under the projection & (X) — go(X). Recall that go(X) is a
subgroup of X,. Suppose the order of f is m. For a subbasis B, if e e B;; and
f™= fo---of, then f"(e) = ke for suitable k. Fix such a basis element e) € B, ;.
We will inductively define m maps {f;} in &(X). Let f; = f and, for b e B, we define

¢ f(b) if f;_i(eo) € (B, ;,» and be B, ;
o ={ .
f(b) otherwise

where (B;, j,» means the vector space spanned by B;, ;,. Let f, =f,0---0f;. Thus
Sy(eo) = (" k-ey. For eeB;; we claim that f;_ (ep) € (B, > if and only if
fi—1(e) € {Bj, ;,». If not, we would have f,(e) = /?k - e for some ¢ <m —1. Thisis a
contradiction, since each X; is indecomposable. Consequently C(f) is expressed as a
block-wise monomial matrix. Each non-singular block induces a rational equivalence.
By [Lemma 3.1, we obtain the desired result. O

RemARk. There are essential self-maps of an indecomposablefspace X which are
not rational equivalences. Here is an example: When BS® — X = BS? is a fibration
and X % BS? x BS?, the space X must be indecomposable, since S° is a simple Lie
group. It is not hard to construct an essential self-map of X as a composite map

Vil
X = BS° — X.

For f ee(X), the induced Z3-matrix C,(f) is monomial. With respect to a
suitable basis, i.e. up to Aut(BG5 ), we can write
D,

D,
G(f) =

DI‘H

where each D; is an n; x n; monomial matrix of the following form for i <m — 1:

and D,, is a diagonal matrix. Consequently, taking a suitable representative for Ay, we
may assume that C,(f) has the above form.

52 LemMA. Let P(x)e Z[x]. If P(x)=][._, Pi(x) where each P:(x) is a monic
polynomial over Q, then P;(x) e Z[x]| for any i.

PrOOF OF THEOREM 5. Since X is indecomposable, we see y, = [[/_; (" + b;)¥ with
ny > np > --- > n,, where each a;, which i1s an entry of the above monomial mratrix D;,
is equal to one of {—b;}’s. It suffices to show b; € Q. The coefficient of OV
term, which is the second largest term of Ve is e.b,. Since eb, € Z, it follows that
b, € Q. Inductively, we see that each b; e Q. Consequently a; € Z(5) for all i. Since
%r € Z[t], Lemma 5.2 implies ;€ Z. Thus Cy(f) is a Z-matrix. O
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6. Some results about g)(X), the types of rational equivalences.
If X € Genus(BG), then we obtain the short exact sequence of the monoids
5()(X) — EQ(X) — O'()(X).

Here g¢(X) is a subgroup of the symmetric group X,. For example, we see go(BG) =
2,. It is natural to ask if any subgroup of X, is realizable as gy(X) for some X €
Genus(BG). The answer is no. We will show that if 4, < ¢(X), then X, < g(X).

Let p: A, — GL(n,Z) be the permutation representation and let U belong to
GL(n, Q; ). We recall that U~ !p(x)U is a monomial matrix for any x € 4, if and only
if the set of columns of U, say {uj,...,u,}, is 4,-invariant up to scalar multiplication.
Let {u;> denote the Q; -line containing u;,. Then the set of lines {<{u;),...,<u,>} is
invariant under the A,-action. We will determine all of the A,-invariant sets S =
{vi), .., vy}, where {vi,...,v,} is linearly independent. To do so, we first in-
vestigate the orbits 4, - {v) for ve @”Q; with |4, - <v)| <n. Of course such a orbit
can be a part of S.

6.1 LEMMA. For positive integers {n;} we have m!---m! < (28, m) —k+1)\.

1

Proor. If k=1, both sides are n;!. So this statement holds. If k=2, then
(m+m—1)=m+nm—1)(n+n—-2)-(n+1)>n!n!. Assume now that the
statement holds up to k — 1 with k > 2. Then n!---n ! =ny! - np_Ing ! < ((Zlk;ll n;) —

(k= 1)+ Dlmd <(C5 m) = (k= 1)+ m)l = (X m) — k + DL O

6.2 LemMA. Suppose n>5 and {ey,...,e,} is the canonical basis of (—BnQ; If
|4, - V)| < m, then up to permutation {v) = {e;) or {ae| + be;, + --- + be,) for some a
and b.

Proor. If v=>3"", e and k of the coefficients {/;}, are zero, then the isotopy
subgroup (An)<v> is included in (X} x X, ;)N A,. Hence
45|

Ay VY| =
A = T

\Y

Thus |4, - {v)| <n implies k =0,1,n— 1.

If k=n—1, then {(v) = {e;» for some i. So we’re done. Suppose k =1. With-
out loss of generality, we may assume v= le; + Ae,+---+ 4, 1€,_1. Note that
An-1 = (An) yy since |4, - <v)[ < n. We will consider two cases.

CASsE 1. n 1s even.

Notice that, since the cycle 7= (12---n—1) € (4,),, we see T-v=oav for some
nonzero elements o in Q;, and 7-v=/11eo + Ae3+---+4,0e,.1+4,_1€;. Hence
ali=Ai1 (1 <i<n-—1)and aly = 4,1. This implies that if f = 1/a, then 4; = ﬁi_l/ll
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and "' =1. Thus <v>=<e; +fes+---+ " 2e,_1)>. Since (12)(34)€ (An)<v> and
n > 6, we can show =1 using an analogous result.

CaSE 2. n is odd.

Since t=(12---n—2)€ (A,,)<v>, we can show 4y =4, =---=/,_5. The element
(12)(n—2n—1)€e(A4y), enable us to see A =4,-1. We therefore conclude that
vy =<ej+e +---+e,.1) up to permutation.

It remains to show the case Kk =0. For v= Ae; + A&, +---+ A,e,, we consider
the set of the n — 1 coefficients {4;,4s,...,4,-1}. Suppose this set consists of k elements
{ms oy} Let my=card{j|%; =u;} (1 <i<k). Notice that if o€, and
g-{v) =<v), then o-v=v. Hence, using [Lemma 6.1, we have the following:

|4 |44 1|2
’An ) <V>’ = = =3
[(An) vyl — 1)l 2 1(Z0) ]

(n—1)! 1
—2_
m!-m! = 2 (n—k)!

| 1
Z §|2n,1 ‘V| :E

(m=1)---(n—k+1).

N —

Consequently if k > 3, then |4, - {v)| > n since n > 5. We may conclude that the
set of all coefficients {4, 4,,...,4,} contains at most two elements. It is not hard to
show <{v)=<ae| + be; +---+ be,» up to permutation. This completes the proof. []

6.3 LemMA. Let p:2X, — GL(n,Z) be the permutation representation and let U
belong to GL(n, Q; ). If U'p(x)U is a monomial matrix with entries in Z; for any
x €A, then U \p(y)U is a monomial matrix with entries also in Z; for any yel,.

ProoF. According to [Lemma 6.2, the matrix U can be taken as

a b b
o
b
or .
b
O
b b a
up to permutation. Suppose first that
o
U=
O

Let t = (i j)(k /) € A,. Then the (i, j)-th entry of the monomial matrix U~!zU is equal
to oj/a;.  Since der(U~'tU) = 1, any entry of U~'tU is a unit in Z,. Consequently
for any j there is a unit u; € Z; such that o; = aqu;. Hence U = o diag(1,uy, ..., uy,).
If Uy = (1/u)UeGL(n,Z,), then U~'p(y)U = U 'p(y)U, € GL(n, Z,)) for any y € X,
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Next suppose

a b b
b
U=
b
b b a
Then U~!'p(y)U = p(y) for any yeX,. O

ProOOF OF THEOREM 6. Note (RA = AC equation) that R(x)A4; = Ax for x € 4,,.
We recall that two Q-representations are similar if and only if they afford the same
character, since char(Q) = 0. Thus there is Q € GL(n, Q) such that 0~'xQ = R(x) for
any x € 4,. Consequently QA4, belongs to the centralizer of the alternating group, and
hence of the symmetric group. Notice, for other p, that C,(x) :A;IQ‘leAp s a
monomial matrix with entries in Z; for any x € 4,,. shows that if C,(y) =
A,'07'y0A, and R(y) = Q"' yQ, then R(y)Ap = A,C,(y) for any y € X,. This means
T, < e(X) since Cy(y) € GL(n, Z). n
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