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Codimension two nonsingular subvarieties of quadrics:
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Abstract. Let $X$ be a codimension two nonsingular subvariety of a nonsingular quadric
2“ of dimension $n\geq 5$ . We classify such subvarieties when they are scrolls. We also
classify them when the degree $d\leq 10$ . Both results were known when $n=4$ .

0. Introduction.

The paper [26] completes the classification of scrolls as codimension two subvarieties
of projective space $P^{n}$ . Ottaviani’s proof consists of three parts. First the sectional
genus $g$ is exhibited as a function of the degree $d$ of the scroll. The degree $d$ is then
bounded from above by the use of Castelnuovo-type bounds for $g$ . The final step
consists of the construction of varieties with prescribed low invariants which had been
accomplished by several authors.

In this paper we classify scrolls as codimension two subvarieties of $2^{n}$ ; see Theorem
3.1.2. The analysis is quite similar to the one of [26] with the following three dif-
ferences. The first one is that there are fourfolds scrolls on $2^{6}$ . The second difficulty is
that the method for bounding the degree of scrolls over surfaces on $2^{5}$ of [26] is not
sufficient; we go around the problem using lemmata 3.4.2 and 3.4.3. Lastly, once we
obtain a maximal list of invariants we must construct all the scrolls in question. This is
essentially the problem of constructing varieties of low degree and codimension two on
2 $n$ . We build on the results of [4] and [16] and obtain Theorem 2.1.1, i.e. the complete
classification in degree $d\leq 10$ and $n\geq 5$ . This result highlights the role that some
special vector bundles on quadrics play in the construction of subvarieties of quadrics.
AS a by-pass result of this classification in low degree we are able to construct all scrolls,
except for one case: when the degree $d=12$ and the base is a minimal $K3$ surface. We
construct an unirational family of these scrolls; see Theorem 3.4.5. We do not know
whether or not this is the only one.

AS it is explained in the introduction to [10], the Barth-Larsen Theorem and the
double point formulee put severe constraints on varieties embedded in projective space
with small codimension. The same is true for any ambient space, so that it is only
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natural to look at different spaces. In my dissertation I studied codimension two sub-
varieties of quadrics. This paper is an expanded and completed version of parts of
my dissertation [11] the results of which appear in [8], [9] and [10] and in the present
paper.

The paper is organized as follows. Section 1 contains preliminary results. Section
2 contains Theorem 2.1.1. Section 3 contains the main result of this paper, Theorem
3.1.2, the proof of which guides the reader through the rest of the section.

NOTATION AND CONVENTIONS. Our basic reference is [18]. We work over any
algebraically closed field of characteristic zero. A quadric $2^{n}$ , here, is a nonsingular
hypersurface of degree two in the projective space $P^{n+1}$ . Little or no distinction is
made between line bundles, associated sheaves of sections and Cartier divisors. $\lfloor t\rfloor$

denotes the biggest integer smaller than or equal to $t$ . $\sim_{n}$ denotes the numerical
equivalence of divisors on a surface. $0_{2^{n}}(1)$ denotes the sheaf $\mathcal{O}_{P^{n+1}}(1)_{|9^{n}}$ . If $F$ is a
coherent sheaf on $\ovalbox{\tt\small REJECT}^{n}$ and 1 an integer, then $F(l)$ denotes the sheaf $F\otimes \mathcal{O}_{9^{n}}(l)$ .

ACKNOWLEDGMENTS. It is a pleasure to thank my Ph.D. advisor A. J. Sommese,
who has suggested that I study threefolds in $2^{5}$ . I thank the C.N.R. of the Italian
Government and The University of Notre Dame for partial support. I wish to thank
K. Chandler and J. Migliore for valuable discussions conceming Proposition 3.4.3 and
E. Arrondo and G. Ottaviani for useful correspondences.

1. Preliminary material.

We now collect the various results that will be necessary in sections 2 and 3. In
this section $X$ is a codimension two, nonsingular subvariety of $2^{n},$ $d$ is its degree, $A_{X,9}’$ is
its normal bundle, $n_{i}$ is the $i^{th}$ Chem class of $y_{X,9^{n}}\iota:X\llcorner_{arrow 2^{n}}$ is the embedding, $L$ is the
restriction of $\mathcal{O}_{9^{n}}(1)$ to $X,$ $K_{X}$ is the canonical dualizing sheaf of $X,$ $S$ ( $C$, respectively)
is a surface (curve, respectively) section of $X$ obtained by intesecting $X$ with $(n-4)$

( $(n-3)$ , respectively) general hyperplanes of $P^{n+1}$ and $g=g(C)$ is the genus of $C$.

1.1. Miscelanea.
The cohomology ring of a nonsingular quadric of any dimension is described in [19].

Let $h$ be the class of any hyperplane section of $2^{n}$ .
We consider the odd dimensional case first: 2 $2n+1$ . One can describe $H^{*}(2^{2n+l}, Z)$

as follows. Let $\Lambda$ be the class of an $n$-dimensional linear space in 2 $2n+1$ . The relevant
information is, denoting the cup product by “ ‘’:
$H^{2i+1}(2^{2n+1}, Z)=\{0\},$ $\forall i;H^{2i}(2^{2n+l}, Z)=\{0\}$ , for $i>2n+1;H^{2i}(2^{2n+1}, Z)=Z[h^{i}]$ ,
$i=0,$ $\ldots,n;H^{2(n+j)}(2^{2n+1}, Z)=Z[\Lambda\cdot h^{j-1}],$ $j=1,$

$\ldots,$
$n+1;h^{n+1}=2\Lambda,$ $h^{2n+1}=2$ .

AS to the even dimensional case, we denote by $\Lambda_{1},$ $\Lambda_{2}$ the classes of two members of
the two rulings of 2 $2n$ in $n$-dimensional linear spaces. One has:
$H^{2i+l}(2^{2n}, Z)=\{0\},$ $\forall i;H^{2i}(2^{2n}, Z)=\{0\}$ , for $i>2n;H^{2i}(2^{2n}, Z)=Z[h^{i}],$ $i=0,$ $\ldots$ ,
$n-1;H^{2i}(\ovalbox{\tt\small REJECT}^{2n}, Z)=Z[\Lambda_{1}]\oplus Z[\Lambda_{2}];H^{2(n+j)}(2^{2n+1}, Z)=Z[\Lambda_{1}\cdot h^{j-1}]=Z[\Lambda_{2}\cdot h^{j-1}],$ $j=$

$1,$
$\ldots,$

$n;h^{n}=\Lambda_{1}+\Lambda_{2;}h^{2n}=2;[\Lambda_{i}]\cdot[\Lambda_{j}]=\delta_{ij}$ , where $\delta_{ij}$ is the Kronecker symbol.

REMARK 1.1.1. The above description of the cohomology ring of $2^{n}$ implies that,
for $n\geq 5,$ $d$ is an even integer.
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Mumford’s self intersection formula (cf. [14], page 103) gives, for $n\geq 5$ :

$n_{2}= \frac{1}{2}dL^{2}$ . (1)

Consider the twisted ideal sheaves $J_{X,\ovalbox{\tt\small REJECT}^{n}}(l):=J_{X,\ovalbox{\tt\small REJECT}^{n}}\otimes \mathcal{O}_{9^{n}}(l)$ . We write the total
Chem class of these sheaves as $1+ \sum_{i=1}^{n}\gamma_{i}h^{i}$ . The following is a standard consequence
of [14], Theorem and Lemma 15.3.

LEMMA 1.1.2. Let $X$ and $J_{X,9^{n}}(l)$ be as above, with $l$ fixed. Assume that $n\geq 5$ .
Then one has the following relations concerning the Chem classes of $J_{X,9^{5}}(l)$ :

$\gamma_{1}=l$ ; $\gamma_{i}=\frac{1}{2}(K_{X}+(5-l)L)^{i-2}\cdot L^{n-i}$ , $\forall i=2,$ $\ldots,n$ .

$WenowmakeexplicittheDoublePointFormulaefortheembedding\iota$ . The proof is
a standard consequence of [14] Theorem 9.3, once we use (1) and the fact that $n_{i}=0$ for
$i\geq 3$ . Denote by $c_{i}$ the Chem classes of the tangent bundle of $X$.

LEMMA 1.1.3. Let $\iota$ : $X->2^{n}$ be as above with $n\geq 5$ . Then one has the following
relations in the Chow ring of $X$:

$\frac{1}{2}dL^{2}=\frac{1}{2}(n^{2}-n+2)L^{2}-nc_{1}\cdot L+c_{1}^{2}-c_{2}$ ; (2)

$c_{3}= \frac{1}{6}(n^{3}-3n^{2}+8n-12)L^{3}+\frac{1}{2}(-n^{2}+n-2)c_{1}L^{2}+n(c_{1}^{2}-c_{2})L+2c_{1}c_{2}-c_{1}^{3}$ ; (3)

$c_{4}=22L^{4}-24L^{3}c_{1}+16L^{2}(c_{1}^{2}-c_{2})+12Lc_{1}c_{2}-6Lc_{1}^{3}-6Lc_{3}+2c_{1}c_{3}+(c_{1}^{2}-c_{2})^{2}-c_{1}^{2}c_{2}$ .
(4)

For $n=5$ we have:

$K_{X}\cdot L^{2}=2(g-1)-2d$ , (5)

$K_{X}^{2} \cdot L=\frac{1}{4}d^{2}+\frac{3}{2}d-8(g-1)+6\chi(\mathcal{O}_{S})$ , (6)

$K_{X}^{3}=- \frac{9}{2}d^{2}+\frac{27}{2}d+gd+18(g-1)-30\chi(\mathcal{O}_{S})-24\chi(\mathcal{O}_{X})$ , (7)

$c_{2} \cdot L=-\frac{1}{4}d^{2}+\frac{5}{2}d+2(g-1)+6\chi(\mathcal{O}_{S})$ (8)

$c_{3}= \frac{1}{4}d^{2}-\frac{1}{2}d-10(g-1)+gd+24\chi(\mathcal{O}_{S})-30\chi(\mathcal{O}_{X})$ . (9)

TO prove (5) we use the genus formula. (6) follows from [4], Proposition 2.1, after
having realized that $K_{X}^{2}\cdot L=K_{X|S}^{2}=(K_{S}-L_{|S})^{2}$ . The formula for $K_{X}^{3}$ follows by
“cutting” (2) with $K_{X}$ and by using the above expressions for $K_{X}\cdot L^{2},$ $K_{X}^{2}\cdot L$, and the
fact that, by Hirzebruch-Riemann-Roch on a threefold, $c_{1}c_{2}=24_{Z}(0_{X})$ . The proof of
(8) is similar. (9) is obtained from (3) by first plugging the expression for $(c_{1}^{2}-c_{2})$ that
one gets form (2) and then by plugging the above relations into it.
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Finally we record the expression for the Hilbert polynomial of a threefold $X\subseteq 2^{5}$ :

$\chi(\mathcal{O}_{X}(t))=\frac{1}{6}dt^{3}+[\frac{1}{2}-\frac{1}{2}(g-1)]t^{2}+[\frac{1}{3}d-\frac{1}{2}(g-1)+\chi(\mathcal{O}_{S})]t+\chi(\mathcal{O}_{X})$ , (10)

which is an easy consequence of Hirzebruch-Riemann-Roch on a threefold (cf. [18], page
437) and of the formulee above.

FACT 1.1.4 (Unirationality of the Hilbert scheme). Let $H$ be the connected
component of the Hilbert scheme of $2^{n}$ containing the point corresponding to a fixed
$X\subseteq 2^{n}$ . Denote by $\mathfrak{H}$ the open subscheme of $H$ corresponding to nonsingular sub-
varieties. Assume that every subvariety, $X’\in \mathfrak{H}$ , admits a resolution of its ideal sheaf
of the following form:

$0arrow \mathcal{O}_{9}^{s}arrow Earrow J_{X’}(c_{1}(E))arrow 0$ ,

where $E$ is a fixed, locally free sheaf independent of $X’$ and $s$ is a fixed positive
integer. Under the above assumptions $\mathfrak{H}_{red}$ is integral and unirational. In fact it is
enough to observe that the natural rational map $P(\wedge^{s}H^{0}(E)^{\vee})-->\mathfrak{H}$ is a dominant
one.

In the present context, Lemma 2.3 of [4] gives the following:

FACT 1.1.5 (Smoothness and dimension of the Hilbert Scheme). If $h^{i}(O_{X})=0$ ,
$i\geq 1$ , then $h^{i}(\Lambda_{X,9^{n}}’)=0,$ $\forall i\geq 1,$ $\mathfrak{H}$ is nonsingular and of dimension $h^{0}(\mathcal{N}_{X,9^{n}})$ at $X$.
Riemann-Roch on a threefold, $n_{1}=K_{X}+5L,$ $n_{2}=(d/2)L^{2}$ , and formulae (5), (6), (8)
give, for $n=5$ :

$\chi(\chi_{X,9^{n}})=-\frac{5}{4}d^{2}+10d+10(g-1)+5\chi(\mathcal{O}_{S})$ .

FACT 1.1.6 (The Hilbert scheme of complete intersections). If $X\subseteq 2^{n}$ is a complete
intersection of type $(2, i,j)$ in $P^{n+1}$ , then the corresponding Hilbert scheme $\mathfrak{H}$ is integral,
nonsingular and rational.

For $i<j$ :

$\dim 5=P(n;i,j):=[B(n+1+i,n+1)-B(n+1+i-2,n+1)-1]$

$+[B(n+j, n)-B(n+j-2,n)-1]$ ,

where $B(a, b):=a!/[b!(a-b)!]$ , is the usual binomial coefficient.
For $i=j$ :

$\dim 5=Q(n;i):=2[B(n+1+i, n+1)-B(n+1+i-2,n+1)-2]$ .

The following gives: 1) a method to construct codimension two subvarieties of $2^{n}$

using vector bundles; 2) a way to reconstruct the ideal sheaf of a codimension two
subvariety, $X$, given enough sections of twists of its dualizing sheaf $K_{X}$ .

FACT 1.1.7. The following is a Bertini-type Theorem due to Kleiman; see [22].
Let $E,$ $F$ two vector bundles on $2^{n}$ of rank $m$ and $m’$ respectively, such that $E^{\vee}\otimes F$ is
generated by its global sections. Let $\emptyset$ : $Earrow F$ be an element of $H^{0}(E^{\vee}\otimes F)$ . Define
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$D_{k}(\emptyset)$ to be the closed subscheme of $2^{n}$ defined, locally, by the vanishing of the
$(k+1)\cross(k+1)$ minors of a matrix representing $\emptyset$ . For the general $\emptyset$ and for every $k$ :

a) either $D_{k}$ is empty or it has codimension $(m-k)(m’-k)$ and $D_{k}(\emptyset)_{sing}\subseteq$

$D_{k-1}(\phi)$ ; in particular, for $n<(m-k+1)(m’-k+1),$ $D_{k}(\emptyset)$ is nonsingular;
b) for $n\geq 5,$ assumin $g$ that $D_{k}(\emptyset)$ has codimension two, $D_{k}(\emptyset)$ is connected (see the

remarks following Theorem 2.2 of [28] $)$ .
The following fact, proved by Vogelaar, stems from an idea of Serre’s; see [24],

Theorem I.6.4.2 or [4] \S 2.3. Let $X\subseteq 2^{n}$ be a local complete intersection of codimen-
sion two and $a$ be an integer such that the twist $\omega_{X}(a)$ is generated by $s$ of its global
sections. Then we have an exact sequence

$0arrow \mathcal{O}_{9^{n}}^{s}arrow Farrow J_{X}(n-a)arrow 0$ ,

with $F$ locally free.

1.2. A lifmg criterion and bounds for the genera of curves on 2 3.
The following is well known when $2^{n}$ is replaced by $P^{n}$ , see [7] for example. The

case of $2^{4}$ is proved in [4], Lemma 6.1. The general case can be proved in the same
way. We used it as a tool to prove the finiteness of the number of families of
nonsingular codimension two subvarieties of $2^{5}$ not of general type. See [9], where we
prove a more general statement.

PROPOSITION 1.2.1. Let $X$ be an integral subscheme of degree $d$ and codimen-
sion two on $\ovalbox{\tt\small REJECT}^{n},$ $n\geq 4$ . Assume that for the general hyperplane section $Y$ of $X$

we have $h^{0}(J_{Y,\ovalbox{\tt\small REJECT}^{-1}}(\sigma))\neq 0$ , for some positive integer $\sigma$ such that $d>2\sigma^{2}$ . Then
$h^{0}(J_{X,9^{n}}(\sigma))\neq 0$ .

1.2.2. $C$ is an integral curve lying on a smooth three-dimensional quadric $2^{3},$ $k$ is a
positive integer, $S_{k}$ is an integral surface in $|\mathcal{O}_{9^{3}}(k)|$ containing $C,$ $d$ and $g$ are the degree
and the geometric genus of $C$, respectively.

DEFINITION 1.2.3. Define $n_{0}$ and $\epsilon$ when $d>2k(k-1)$ and $\theta_{0}$ and $\epsilon’$ when $d\leq$

$2k(k-1)$ as follows:

$n_{0}:= \lfloor\frac{d-1}{2k}\rfloor+1$ , $d\equiv-\epsilon(mod 2k)$ , $0\leq\epsilon\leq 2k-1$ ;

$\theta_{0:=}\lfloor\frac{d-1}{2k}\rfloor+1$ , $d\equiv-\epsilon’(mod 2\theta_{0})$ , $0\leq\epsilon’\leq 2\theta_{0}-1$ .

The following class of curves plays a central role in the understanding of the curves
whose genus is the maximum possible. Arithmetically Cohen-Macaulay is denoted by
a.C.M..

DEFINITION 1.2.4. A curve $C$ as in (1.2.2) is said to be in the class $\mathfrak{S}(d, k)$ , if it is
nonsingular, projectively normal and linked, in a complete intersection on $2^{3}$ of type
$(k, n_{0})$ if $d>2k(k-1)$ (of type $(\theta_{0},$ $k)$ if $d\leq 2k(k-1)$ ), to an afortiori a.C.M. curve

$D_{\epsilon}$ ( $D_{\epsilon’}$ , respectively) of degree $\epsilon$ ( $\epsilon’$ respectively) lying on a quadric surface hyperplane
section of $2^{3}$ .
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PROPOSITION 1.2.5 (Cf. [8].) Notation as in (1.2.2) and Definition 1.2.3. Assume
first that $d>2k(k-1)$ . Then

(a)

$g-1\leq\pi(d, k)-\Xi$

where

$\pi(d,k)=\{$

$\frac{d^{2}}{4k}+\frac{1}{2}(k-3)d-\frac{\epsilon^{2}}{4k}-\epsilon(\frac{k-\epsilon}{2})$ , $\iota f0\leq\epsilon\leq k$ ,

$\frac{d^{2}}{4k}+\frac{1}{2}(k-3)d-(k-\tilde{\epsilon})(\frac{\tilde{\epsilon}}{2}-\frac{\tilde{\epsilon}}{4k}+\frac{1}{4})$ , $\iota fk+1\leq\epsilon\leq 2k-1,\tilde{\epsilon}:=\epsilon-k$;

and

$--=\Xi(d, k)=\{$
$0$ if $\epsilon=0,1,2,2k-1$ ,
1 if otherwise.

(b) The bound is sharp for $\epsilon=0,1,2,3,2k-2,2k-1$ . A curve achieves such a
maximum possible genus if and only if it is in the class $S(d, k)$ , except, possibly, the cases
$\epsilon=3,2k-2$ . Assume $d\leq 2k(k-1)$ . Then statements a) and b), with $\pi’(d, k)=$

$\pi(d, \lfloor(d-1)/2k\rfloor+1)=\pi(d, \theta_{0})$ and with $--$
, ”, $(\theta_{0}, k)$ and $D_{\epsilon’}$ replacing $--\epsilon,$ $(k, n_{0})$

and $D_{\epsilon}$ , respectively, hold.

COROLLARY 1.2.6 (See [4], Proposition 6.4 for the case $d>2k(k-1).$ ) Notation as
above. Then

$g-1 \leq\frac{d^{2}}{4k}+\frac{1}{2}(k-3)d$ .

PROPOSITION 1.2.7 (Cf. [4], Proposition 6.4.) Let $C$ be an integral curve in $2^{3}$ , not
contained in any surface of degree strictly less than $2k$ . Then:

$g-1 \leq\frac{d^{2}}{2k}+\frac{1}{2}(k-4)d$ .

1.3. An inequality.
In this section we prove an inequality which is an essential tool for our proof of the

classification of scrolls over surfaces on $2^{5}$ .
Let $X\subseteq 2^{5}$ be a three dimensional, nonsingular variety, $\sigma$ be the smallest integer for

which there exists a hypersurface $V$ in $|J_{X,9^{5}}(\sigma)|$ and vif the normal bundle of $X$. By
the minimality of $\sigma$, the natural section $\mathcal{O}_{X}arrow\Lambda^{r}(\sigma)$ is not the trivial one. The
transposed of this section defines the sheaf of ideals of $\mathcal{O}_{X}$ of the singular locus of $V$

restricted to $X$. Let us denote by $\tilde{\Sigma}$ the associated scheme. We obtain the surjection
$\swarrow Varrow J_{\Sigma^{-}}(\sigma)$ .

DEFINITION 1.3.1. Let $D$ be the divisorial component of $\tilde{\Sigma}$ , i.e. the unique effective
Cartier divisor of $X$ whose sheaf of ideals is the smallest sheaf of principal ideals
containing $J_{\Sigma^{-}};D$ may be empty. Let $\Sigma$ be the one dimensional component of $\tilde{\Sigma}$ , i.e.
the scheme associated with the sheaf of ideals $J_{\Sigma^{-}}(D);\Sigma$ is either empty or of pure
dimension one.
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From the above we get that the following two facts hold.

FACT 1.3.2. The sheaf $J_{\Sigma}$ is either $\mathcal{O}_{X}$ or it has homological dimension one.
FACT 1.3.3. $J_{\Sigma}(\sigma L-D)=J_{\Sigma^{-}}(\sigma L)$ ; in particular, $J_{\Sigma}(\sigma L-D)$ is generated by

global sections since it is a quotient of $\Lambda’$ which is a quotient sheaf of the globally
generated sheaf $\mathscr{F}_{9^{5}}$ .

PROPOSITION 1.3.4. Let $s_{i},$ $i=1,2,3$ be the Segre classes of $J_{\Sigma}(\sigma L-D)$ . Then
$s_{1}s_{2}\geq s_{3}\geq 0,$ $s_{1}$ and $s_{1}^{2}-s_{2}$ are represented by effective cycles. Moreover,

$\chi(\mathcal{O}_{S})\geq\frac{1}{6\sigma}[(d-12\sigma)(g-1)+(\frac{1}{4}\sigma+\frac{3}{2})d^{2}-\frac{13}{2}\sigma d]-\frac{1}{6\sigma}[\frac{1}{2}dL^{2}-(K_{X}+5L)^{2}]D$ . (11)

PROOF. By Fact 1.3.3 there is a $su\dot{\eta}ection\mathcal{O}_{X}^{m}arrow J_{\Sigma}(\sigma L-D)$ , for some $m$ . By
Fact 1.3.2 the kemel, $F$, of this surjection is locally free. By the definition of Segre
classes, $s_{i}=c_{i}(\check{F})$ . The first part of the proposition follows from [7], Lemma 5.1.

AS to the proof of the last inequality, first we compute the Chem classes $C_{i}$ of
$J_{\Sigma}(\sigma L-D)$ using the following exact sequence which is the Koszul resolution of
$J_{\Sigma}(\sigma L-D)$ :

$0arrow \mathcal{O}_{X}(K_{X}-\sigma L+D)arrow\Lambda’arrow J_{\Sigma}(\sigma L-D)arrow 0$ ;
we get

$C_{1}=\sigma L-D$ ,

$C_{2}= \frac{1}{2}dL^{2}-(K_{X}+5L)(\sigma L-D)+(\sigma L-D)^{2}$ ,

$C_{3}=- \frac{1}{2}dL^{2}(K_{X}+5L)+\frac{1}{2}dL^{2}(\sigma L-D)+(K_{X}+5L)^{2}(\sigma L-D)$

$-2(K_{X}+5L)(\sigma L-D)^{2}+(\sigma L-D)^{3}$ .

The Segre classes of $J_{\Sigma}(\sigma L-D)$ are $s_{1}=C_{1},$ $s_{2}=C_{1}^{2}-C_{2},$ $s_{3}=C_{1}^{3}-2C_{1}C_{2}+C_{3}$ .
We make explicit these Segre classes using the formulee for the $C_{i}$ . Then we use (6)
and (5). We now use the part of the proposition that we have just proved: (11) is
$s_{3}\geq 0$ . $\square$

1.4. Special vector bundles on quadrics.

FACT 1.4.1 (Spinor Bundles). Here we collect some properties of spinor bundles on
quadrics. See [1].

Let .9‘ be the spinor bundle on an odd-dimensional quadric and $\mathscr{L}$‘, $\mathscr{L}’’$ be the two
spinor bundles on an even dimensional quadric; if $n$ is the dimension of the quadric, the
rank of these bundles is $2^{\lfloor(n-1)/2\rfloor}$ .

For $n=2m+1$ (odd) we have an exact sequence:
$0arrow \mathscr{L}arrow \mathcal{O}_{9^{n}}^{2^{m+1}}arrow \mathscr{L}(1)arrow 0$ ;

for $n=2m$ (even) we have exact sequences:
$0arrow Sarrow 0_{9^{n}}^{2^{m}}arrow S(1)arrow 0$ ,

where $S$ denotes either $\mathscr{L}’$ or $\mathscr{L}’’$ .
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For $n=2m+1$ we have $\mathscr{L}^{\vee}\simeq \mathscr{L}(1)$ . For $n=4m$ we have $\mathscr{L}^{\prime v}\simeq \mathscr{L}’(1)$ and
$\mathscr{L}^{\prime\prime v}\simeq \mathscr{L}’’(1)$ ; for $n=4m+2$ we have $\mathscr{L}^{\prime v}\simeq \mathscr{L}’’(1)$ and $\mathscr{L}^{\prime\prime\vee}\simeq \mathscr{L}’(1)$ . Let $i$ :
2 $2k-larrow 2^{2k}$ be a nonsingular hyperplane section; then $i^{*}\mathscr{L}’\simeq i^{*}\mathscr{L}’’\simeq \mathscr{L}$ . Let
$j:2^{2h}arrow 2^{2h+:}$ be a nonsingular hyperplane section; then $j^{*}\mathscr{L}\simeq \mathscr{L}’\oplus \mathscr{L}’’$ .

An analogue of Horrocks splitting criterion holds on quadrics; recall that spinor
bundles carry no intermediate cohomology:
let $E$ be a vector bundle on $2^{n}$ then $h$ ‘$(E(t))=0,0<i<n,$ $\forall t\in Z$ if and only if $E$ splits
as the direct sum of line bundles and twists of spinor bundles of $2^{n}$ .

The Chem polynomial of $\mathscr{L}(l)$ on $2^{5}$ is:

$c(\mathscr{L}(l))=1+(4l-2)h+(6l^{2}-6l+2)h^{2}+(4l^{3}-6l^{2}+4l-1)h^{3}$

$+(l^{4}-2l^{3}+2l^{2}-l)h^{4}$ .

The Chem polynomial of $\mathscr{L}’(l)$ on $2^{6}$ is:

$c(\mathscr{L}‘(l))=1+(4l-2)h+(6l^{2}-6l+2)h^{2}+[(4l^{3}-6l^{2}+4l)h^{3}-2\Lambda_{1}]$

$+[(l^{4}-2l^{3}+2l^{2})h^{4}-2l\Lambda_{1}h]$

Replacing $\Lambda_{1}$ by $\Lambda_{2}$ in the formula above, we get $c(\mathscr{L}^{\prime/}(l))$ .

FACT 1.4.2 (Cayley bundles). See [25]. On $\ovalbox{\tt\small REJECT}^{5}$ there is a family of rank two stable
vector bundles, called Cayley bundles. Each Cayley bundle $\mathscr{C}$ has Chem classes $c_{1}=$

$-1,$ $c_{2}=1$ and $\mathscr{C}(2)$ is generated by global sections. Every stable 2-bundle on $2^{5}$ with
Chem classes $c_{1}=-1,$ $c_{2}=1$ is a Cayley bundle. Cayley bundles are parameterized by
a fine moduli space isomorphic to $P^{7}\backslash 2^{6}$ . A Cayley bundle restricts, on a $2^{4}$ , to a
bundle of type $\dot{E}$ which appears in the description of Type 10) of [4], page 44. The
Chem polynomial of a $\mathscr{C}(l)$ is: $c(\mathscr{C}(l))=1+(2l-1)h+(l^{2}-l+1)h^{2}$ .

2. Classifi ation for $d\leq 10$ .
2.1. The list.
In what follows:
$-((a, b, c), \mathcal{O}(1))$ denotes the polarized pair given by a complete intersection of type

$(a, b, c)$ in $P^{n+1}$ and the restriction of the hyperplane bundle to it;
$-(X, L)$ denotes the polarized pair given by a variety $X\subseteq 2^{n}$ and $L:=\mathcal{O}_{9^{n}}(1)_{|X}$ ; if

we do not explicitly say the contrary, the embeddings are projectively normal in $P^{n+1}$ ;
this fact follows from the cohomology of the presentation of the ideal sheaf;

-by a presentation of the ideal sheaf $J_{X}$ we mean an injection of locally free
coherent sheaves on $2^{n},$ $\phi:Earrow F$ , such that coker $(\phi)\simeq J_{X}(i)$ , where $i=c_{1}(F)-c_{1}(E)$ ;
we write the presentations so that the integer $i$ is the smallest for which the sheaf $F$ is
generated by global sections, so that for that $i$ so will be the sheaf $J_{X}(i)$ ;

$-\mathfrak{H}$ denotes the Hilbert scheme of $2^{n}$ of a variety fixed by the context; see Fact 1.1.4;
$-P(n;i,j)$ and $Q(n;i)$ are defined in Fact 1.1.6;
-a digit “

$\#$ ) refers to the type of the surface section as in [4], page 44 (where
$d\leq 8)$ ; type $Z_{10}^{F}$ refers to the paper [16];

$-g,$ $q$ and $p_{g}$ denote the sectional genus of the embedding line bundle, the
irregularity and geometric genus of a surface section, respectively.
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THEOREM 2.1.1. Let $X\subseteq 2^{n},$ $n\geq 5$ , a codimension two nonsingular subvariety of
degree $d\leq 10$ . Then the pair (X, $L$), a presentation of the ideal of $X$ on $2^{n}$ and the
Hilbert scheme, $\mathfrak{H}$ , of $X$ on $2^{n}$ are as follows.
$(\cdot)d=2$

Type $A$ ) $:((1,1,2), \mathcal{O}(1));0_{9^{n}}(-1)arrow \mathcal{O}_{9^{n}}^{2}$ ; $\mathfrak{H}$ is integral, nonsingular, rational, of
dimension $Q(n;1);2);g=q=p_{g}=0$ .
$(\cdot)d=4$

Type $B$) $:((1,2,2), \mathcal{O}(1));\mathcal{O}_{9^{n}}(-1)arrow \mathcal{O}_{9^{n}}(1)\oplus \mathcal{O}_{9^{n};}\mathfrak{H}$ is integral, nonsingular, rational
and of dimension $P(n;1,2);6);g=1,$ $q=p_{g}=0$ .

Type $C$ ) $:n=6,$ $(P^{1}\cross P^{3}, \mathcal{O}(1,1));\mathcal{O}_{9^{6}}^{3}arrow \mathfrak{S}(1)$ , with $\mathfrak{S}\simeq \mathscr{L}’,$ $\mathscr{L}’’;\mathfrak{H}$ consists of two
connected components, which are both nonsingular, integral, unirational and of dimension
15; 5); $g=q=p_{g}=0$ .

Type $D$ )$:n=5,$ $(P(\mathcal{O}_{P^{1}}(1)^{2}\oplus \mathcal{O}_{P^{1}}(2)), \xi);\mathcal{O}_{\ovalbox{\tt\small REJECT}^{6}}^{3}arrow \mathscr{L}(1);\mathfrak{H}$ is integral, nonsingular,
unirational and of dimension 15; 5); $g=q=p_{g}=0$ .

$(\cdot)d=6$

Type $E$): $((1,2,3), \mathcal{O}(1))$ ; $\mathcal{O}_{9^{n}}(-1)arrow \mathcal{O}_{9^{n}}(2)\oplus \mathcal{O}_{9^{n}}$ ; $\mathfrak{H}$ is integraI, nonsingular,
rational and of dimension $P(n;1,3);12);g=4,$ $q=0,$ $p_{g}=1$ .

Type $F$ ) $:n=5,$ $(P(\mathcal{T}_{P^{2}}), \xi)$ , embedded using a general codimension one linear system
I $\subseteq|\xi ff_{P^{2}}|;\mathcal{O}_{\ovalbox{\tt\small REJECT}^{5}}arrow \mathscr{C}(2);\mathfrak{H}$ is integral, nonsingular, unirational and of dimension 20; 10);
$g=1,$ $q=p_{g}=0$ .

Type $G$ ) $:n=5,$ $f$ : $Xarrow P^{1}\cross P^{2}=:Y$ a double cover, branched along a divisor of
type $\mathcal{O}_{Y}(2,2),$ $L\simeq p^{*}\mathcal{O}_{Y}(1,1);\mathcal{O}_{9^{5}}(-1)^{2}arrow \mathcal{O}_{\ovalbox{\tt\small REJECT}^{5}}^{3}$ ; $\mathfrak{H}$ is integral, nonsingular, unirational and
of dimension 30; 11); $g=2,$ $q=p_{g}=0$ .

$(\cdot)d=8$

Type $H$ ): $((1,2,4), \mathcal{O}(1))$ ; $\mathcal{O}_{9^{n}}(-1)arrow \mathcal{O}_{9^{n}}(3)\oplus \mathcal{O}_{9^{n}}$ ; $\mathfrak{H}$ is integral, nonsingular,
rational and of dimension $P(n;1,4);20);g=9,$ $q=0,$ $p_{g}=5$ .

Type $I$ ) $:((2,2,2), \mathcal{O}(1));0_{9^{n}}(-2)arrow \mathcal{O}_{9^{n}}^{2}$ ; $\mathfrak{H}$ is integral, nonsingular, rational and of
dimension $Q(n;2);19);g=5,$ $q=0,$ $p_{g}=1$ .

Type $L$)$:n=5,$ $(P(E), \xi),$ $E$ a rank two vector bundle on $2^{2}$ as in [21]; $\mathcal{O}_{9^{5}}^{4}arrow$

$\mathscr{L}(1)\oplus \mathcal{O}_{9^{5}}(1);\mathfrak{H}$ is integral, nonsingular, unirational and of dimension 35; 18); $g=4$ ,
$q=p_{g}=0$ .

$(\cdot)d=10$

Type $M$ ): $((1,2,5), \mathcal{O}(1))$ ; $\mathcal{O}_{9^{n}}(-1)arrow 0_{9^{n}}(4)\oplus \mathcal{O}_{9^{n}}$ ; $\mathfrak{H}$ is integral, nonsingular,
rational and of dimension $P(n;1,5);g=16,$ $q=0,$ $p_{g}=14$ .

Type $N$ )$:n=5,$ $f_{|K_{X}+L|}$ : $Xarrow P^{1}$ is a fibration with generalfiber a $Del$ Pezzo surface
$F,$ $K_{F}^{2}=4,$ $K_{X}=-L+f^{*}\mathcal{O}_{P^{1}}(1);0_{9^{5}}(-1)^{2}arrow \mathcal{O}_{9^{5}}(1)\oplus \mathcal{O}_{9^{5}}^{2}$ ; $\mathfrak{H}$ is integral, nonsingular,
unirational and of dimension 60; type $Z_{10}^{F};g=8,$ $q=0,$ $p_{g}=2$ .

REMARK 2.1.2. In this remark, by the symbol $Q^{(a}\sim^{b)}R$ , we mean that every variety
of Type Q) is linked to $a$ variety of Type R) in a complete intersection of type $(a, b)$ on
$2^{5}$ . Using Lemma 3.4.7 and the presentations of the ideals of the varieties of the above
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theorem we see that: $A^{(1}\sim^{2)}A,$ $A^{(1}\sim^{3)}B,$ $A^{(1}\sim^{4)}E,$ $A^{(2}\sim^{2)}G,$ $A^{(1}\sim^{5)}H,$ $A^{(1}\sim^{6)}M,$ $A^{(2}\sim^{3)}N$ ,
$B^{(2}\sim^{2)}B,$ $B^{(2}\sim^{3)}I,$ $G^{(2}\sim^{2)}A,$ $G^{(2}\sim^{3)}G,$ $G^{(2}\sim^{4)}N,$ $I^{(2}\sim^{3)}B,$ $I^{(2}\sim^{4)}I,$ $I^{(3}\sim^{3)}N,$ $N^{(3}\sim^{3)}I$ .

The simple details are left to the reader. As for Type F), see Proposition 3.4.8.

2.2. The proof.

PROOF OF THEOREM 2.1.1. The degree $d$ is always an even integer by Remark 1.1.1.
The statements of the Theorem conceming complete intersections follow from Fact 1.1.6
and [18], III.9. $Ex$ . $9.6$ . In the sequel, we do not deal with complete intersections.

CLAIM. The only nonsingular surfaces on $2^{4}$ which can be a general hyperplane
section of a threefold on $2^{5}$ of degree $d\leq 10$ are: types 5), 10), 11) and 18) from [4] and
type $Z_{F}^{10}$ from [16].

PROOF OF THE CLAIM. Let $d\leq 8$ . [4] page 44 contains the complete list of
nonsingular surfaces on a $2^{4}$ of degree $d\leq 8$ . Not all of them can be a general
hyperplane section of a threefold on $2^{5}$ . The complete list of linearly normal, non-
singular subvarieties of projective space of degree $d\leq 8$ is given in [20] and [21]. We
are going to use these results jointly.

Since $H^{2}(\ovalbox{\tt\small REJECT}^{5}, Z)\simeq Z\langle h^{2}\rangle$ , the surface section, $S$, of a degree $d$ threefold $X\subseteq 2^{5}$ has
cohomology class $[S]=(d/2)\Lambda_{1}+(d/2)\Lambda_{2}$ . This implies that the surfaces of type 1),
3), 4), 7), 8), 13), 14), 15) and 16) of [4] page 44 cannot be nonsingular hyperplane
sections of any threefold on $2^{5}$ . Types 2), 6), 12), 19) and 20) are complete inter-
sections.

In what follows, assume that $S$ is a surface of a given type and that $X\subseteq 2^{5}$ is a
threefold with general surface section $S$ . We now exclude types 9) and 17). Type 9).
If $X$ existed, a comparison with Ionescu’s list [20] would force $X$ to be a rational scroll
over a curve contradicting Proposition 3.3.1. Type 17). This type has sectional genus
$g=3$ so that, according to Ionescu’s list [21], $X$ would have to be either a scroll over an
elliptic curve, a scroll over $P^{2}$ or $X$ would have to admit a morphism onto $P^{1}$ with all
fibers quadric surfaces. We exclude the first case because type 17) is simply connected,
the second one by Proposition 3.4.4. The last one would imply, after having cut (2)
with a general fiber $F\simeq 2^{2}$ , the contradiction $d=6$ .

It follows that, except for the case of complete intersections, only the following types
are admissible as surface sections of codimension two nonsingular subvarieties of quadrics
when $d\leq 8:5$ ), $10$), $11$ ), $18$ ).

Let $d=10$ . We employ the same technique as above using [16] and [12] instead of
[4] and [20], [21]. Looking at the list in [16] we exclude cases $Z_{A}^{10}$ and $Z_{B}^{10}$ since they do
not have a balanced cohomology class. Cases $Z_{D}^{10}$ and $Z_{E}^{10}$ cannot occur by [12], since
they have sectional genus $g=7$ .

The case $C_{A}^{10}$ , where the sectional genus $g=4$ and the irregularity $q=1$ is excluded
since, by [12], we would have $q=0$ . The cases $C_{B}^{10}$ and $C_{C}^{10}$ are excluded in a similar
way.

The case $Z_{C}^{10}$ , which is a rational surface with $g=6$ is excluded as follows.
According to [12] there are only two types of threefolds of degree $d=10$ with sectional
genus $g=6$ ; the first is a Mukai manifold (i.e. $K_{X}=-L$), the second one a scroll over
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$P^{2}$ . In the $fo$rmer case the surface section would have trivial canonical bundle,
contradicting its being rational. The latter case is excluded by Proposition 3.4.4.

The proof of the Claim is complete.
We now show that all the types of the claim occur as nonsingular surface sections of

threefolds on $2^{5}$ , that type 5) is the only one that can occur as a section of a fourfold on
$2^{6}$ and that none of these types can occur as a surface section of any $(n-2)$ -fold on $2^{n}$ ,
for $n\geq 7$ .

The case of Type 5).
Assume that $X\subseteq 2^{6}$ is a fourfold with surface section of type 5). By Swinnerton-

Dyer’s classification of varieties of degree $d=4$ (see [20] for example), (X, $L$) is of Type
C); such a type occurs as a subvariety of $2^{6}$ as pointed out in Proposition 3.3.1.
$K_{X}=0_{X}(-2, -4)$ , so that $K_{X}(4)$ is generated by three global sections. Fact 1.1.7 gives
us the following exact sequence:

$0arrow \mathcal{O}_{9^{6}}^{3}arrow Farrow J_{X}(2)arrow 0$ , (12)

where $F$ is locally free. We want to prove that $F$ is isomorphic to either $\mathscr{L}_{6}’(1)$ or to
$\mathscr{L}_{6}’’(1)$ , where the subindices refer to the fact that the bundles are the spinor bundles of
$2^{6}$ . Consider a general threefold section $T$, which is of type D), and a general surface
section $S\subset T$ . We have $K_{T}\simeq K_{X}(1)\otimes \mathcal{O}_{T}$ and $K_{S}\simeq K_{X}(2)\otimes \mathcal{O}_{S;}$ there is a canonical
identification between $H^{0}(K_{X}(4)),$ $H^{0}(K_{T}(3))$ and $H^{0}(K_{S}(2))$ so that the bundles $\mathscr{F}_{F}$

and $\mathscr{F}_{9’}$ , that we obtain repeating for $T$ and $S$ the construction we have done for $X$

using Fact 1.1.7, satisfy $\mathscr{F}_{T}\simeq F_{|T}$ and $\mathscr{F}_{S}\simeq F_{|S}$ .
We know, from [4], that, on $2^{4},$

$F_{|S}\simeq \mathscr{L}$
‘

$($ 1 $)_{4}\oplus \mathscr{L}_{4}’’(1)$ . Recall that spinor bundles
have no intermediate cohomology. Let us look at the long cohomology sequences
associated with the exact sequences:

$0arrow \mathscr{F}_{T}(-1+t)arrow \mathscr{F}_{T}(t)arrow \mathscr{F}_{S}(t)arrow 0$ , $t\in Z$ .

Firstly we deduce that $H^{1}(\mathscr{F}_{T}(-\tau+t))$ surjects onto $H^{1}(\mathscr{F}_{T}(t))$ , for every fixed $t$ and
every $\tau\geq 0$ ; Serre Duality and Serre Vanishing imply that $h^{1}(\mathscr{F}_{T}(t))=0,$ $\forall t$ . The
vanishing of $h^{i}(\mathscr{F}_{T}(t))$ for $2\leq i\leq 4$ are dealt with similarly. We have proved that
$\mathscr{F}_{T}(t)$ has no intermediate cohomology, so that, by the analogue of Horrocks criterion
in Fact 1.4.1, $\mathscr{F}_{T}$ splits as a direct sum of line bundles and twists of spinor bundles on
$2^{5}$ . Since the rank of .9‘ is four we see that either $\mathscr{F}_{T}\simeq \mathscr{L}(j)$ or it splits completely as
the direct sum of line bundles $\mathscr{F}_{T}\simeq\oplus_{i=1}^{4}\mathcal{O}_{9^{5}}(a_{i})$ . Using the Castelnuovo-Mumford
$0$-regularity criterion for global generation (see [4], where it is proved for sheaves on
$2^{4}$ ; the case of any $2^{n}$ is analogous) we see that $\mathscr{F}_{T}$ is generated by global sections
as soon as $h^{5}(\mathscr{F}_{T}(-5))=0$ which follows from the cohomology sequence associated
with the sequence (12) twisted by $-5$ once we observe that $h^{4}(J_{T,\ovalbox{\tt\small REJECT}^{5}}(-3))=3$ and
$h^{5}(J_{T,9^{5}}(-3))=0$ . Recall that 1 is the smallest integer $j$ for which the spinor bundles
twisted by $j$ are generated by global sections. It follows that, for the splitting type of
$\mathscr{F}_{T}$ , we have either $j\geq 1$ or $a_{i}\geq 0,$ $\forall i$ .

We can compute the Chem classes of $\mathscr{F}_{T}$ using (12), the invariants of $T$ and Lemma
1.1.2. Comparing Chem polynomials we deduce that $\mathscr{F}_{T}$ cannot split as the direct sum
of line bundles, and that, once it is a twist of the spinor bundle $\mathscr{L},$ $j=1$ : $\mathscr{F}_{T}\simeq \mathscr{L}(1)$ .
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We repeat the argument, replacing $S$ with $T$ and $T$ with $X$, to see that either
$F\simeq \mathscr{L}’(1)$ or $F\simeq \mathscr{L}’’(1)$ .

We have proved that every fourfold on $2^{6}$ with surface section of type 5) is as in
Type C) and has the prescribed presentation for its ideal sheaf; we have also proved that
every threefold on $2^{5}$ with surface section of type 5) is of Type D) and has the prescribed
presentation for its ideal sheaf. Conversely, since $\mathscr{L}(1),$ $\mathscr{L}’(1)$ and $\mathscr{L}’’(1)$ are globally
generated, we use Fact 1.1.7 and our maximal list of varieties of degree $d=4$ to prove
that the variety $D_{2}(\emptyset)$ is as in C) or D), where $\emptyset$ is a general element of $H^{0}(S(1)^{3})$ and
$S$ one of the three spinor bundles in question. To be precise, Fact 1.1.7 implies that,
for a general $\emptyset$ on $2^{6},$ $D_{1}(\phi)$ is either empty or has the expected codimension six and
$D_{2}(\emptyset)$ will be nonsingular outside $D_{1}(\emptyset)$ . Porteous’ formula, [2], II.4.2 gives $[D_{1}(\phi)]=$

$c_{3}(S(1))^{2}-c_{2}(S(1))c_{4}(S(1))=0$ ; the Chem classes of the spinor bundles are listed in
1.4.1. It follows that $D_{1}(\emptyset)=\emptyset$ .

Using facts (1.1.4) and (1.1.5) we conclude the proof for type D). To complete the
proof for type C) we remark that $\mathscr{L}’(1)$ distinguishes, via the choice of three general
sections, a nonsingular, integral component, say $\mathfrak{H}’$ , of $\mathfrak{H}$ . The same is true for $\mathscr{L}’’(1)$

which defines another, distinct, nonsingular component $\mathfrak{H}’’$ . Since $\mathfrak{H}$ is nonsingular,
$\mathfrak{H}=\mathfrak{H}’u\mathfrak{H}’’$ .

The dimension of the two components, which are abstractly isomorphic, can be
computed using Riemann-Roch and Fact 1.1.5. The fourfold C) cannot be the
hyperplane section of a fivefold; see [20].

The case of Type 10).
Assume that $X$ is a threefold on $2^{5}$ whose general surface section, $S$, is of type

10). Since $K_{S}=-L_{|S}$ and the natural map $Pic(X)arrow Pic(S)$ is injective by Lefschetz
theorem on hyperplane sections, we have $K_{X}=-2L$ . Looking at [20] for degree $d=6$

we see that either (X, $L$) is as in Type F) or $X$ is a scroll over $2^{2}$ ; the latter case is not
possible by Proposition 3.4.4. We have $K_{X}=-2L$ . Fact 1.1.7 yields an extension:

$0arrow \mathcal{O}_{9^{5}}arrow Farrow J_{X}(3)arrow 0$ ,

with $F$ locally free of rank two. By [24], 2.1.5 one shows that $F(-2)$ is stable. Using
Lemma 1.1.2 we deduce that, for the Chem classes of $F,$ $c_{1}(F(-2))=-1$ and
$c_{2}(F(-2))=1$ . By Fact 1.4.2 we see that $F(-2)$ is a Cayley bundle. Conversely, [25],
Theorem 3.7 ensures that the general section of a normalized Cayley bundle twisted by
$\mathcal{O}_{9^{5}}(2)$ vanishes exactly along a variety of type F). As in [3], page 209, we see that our
scrolls are parameterized by an open dense set, $U$ of a projective bundle over the fine
moduli space, $P^{7}\backslash 2^{6}$ , of these Cayley bundles. This space is clearly rational and it has
dimension 20.

$U$ admits a natural morphism onto the Hilbert scheme $\mathfrak{H}$ of our scrolls. This
morphism is one to one. To conclude it is enough to observe that $\mathfrak{H}$ is nonsingular by
Fact 1.1.5, for then the morphism in question is an isomorphism by Zariski Main Theorem.

Note that, again by [20], this threefold is the hyperplane section of only one
fourfold, $P^{2}\cross P^{2}$ embedded via the Segre embedding; this latter can be projected
smoothly to $P^{7}$ but, after this embedding, it does not lie on a smooth quadric $2^{6}$ by
Proposition 3.5.1.
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The cases 11), 18), and $Z_{F}^{10}$ .
These cases are analogous to the one of type 5). If the general surface section, $S$,

of a threefold $X$ on $2^{5}$ is of type 11) then there is a morphism with connected fibers
$f$ : $Sarrow P^{1}$ all fibers of which are conics and $K_{S}(1)=f^{*}\mathcal{O}_{P^{1}}(1)$ , so that the former sheaf
is generated by two global sections.

CLAIM. $K_{X}(2)$ is generated by its global sections. Fix any point $x\in X$ . Take any
nonsingular hyperplane section $S$ of $X$ through $x$ ; there are plenty of them since the dual
variety $\hat{X}$ does not contain hyperplanes. Kodaira Vanishing implies that $H^{0}(X,K_{X}(2))$

$su\dot{\eta}ects$ onto $H^{0}(S,K_{S}(1))$ which in tum generates the stalk of $K_{S}(1)$ . The claim
follows.

A computation analogous to the one of type 5) allows us to conclude that if the
threefold in question exists than it is of type G). To prove its existence, we use Fact
1.1.7 for a general morphism $\emptyset$ : $\mathcal{O}_{9^{5}}^{2}arrow \mathcal{O}_{9^{5}}(1)^{3}$ . This threefold cannot be the hyper-
plane section of any fourfold by [20].

If the type of the general surface section is 18) then we have a morphism $f$ : $Sarrow 2^{2}$

which is the blowing up of $2^{2}$ at 10 points and $K_{S}(2)\simeq f^{*}O_{9^{2}}(1)$ is generated by four
global sections. We argue as above and get Type L).

If X is a threefold on $2^{5}$ with general section $S$ of type $Z_{F}^{10}$ then the sectional genus
$g=8$ . By looking at the list in [12], we see that $X$ is a Del Pezzo fibration $f$ : $Xarrow Y$

over a curve $Y$ and that $X$ is not the hyperplane section of any fourfold. By looking at
the proof of [12] Proposition 4.1 we see that the base of the fibration, $Y$, is a rational
curve and that $K_{X}(1)\simeq f^{*}\mathcal{O}_{P^{1}}(1)$ is generated by two global sections. We argue as
above and conclude that the type is N). $\square$

3. Scrols on quadrics.

3.1. Statement of the main result.
In this section we classify scrolls as codimension two subvarieties of $2^{n}$ , for $n\geq 5$ .

A scroll, here, is a nonsingular subvariety $X\subseteq 2^{n}\subseteq P^{n+1}$ which admits a surjective
morphism $p:Xarrow Y$ to a lower dimensional variety $Y$, such that $p$ has equidimensional
fibers and the general scheme theoretic fiber is a linear subspace of $P^{n+1}$ of the
appropriate dimension. The case $\dim Y=0$ is the theory of maximal dimensional
linear spaces in quadrics, a well known subject; see [19]. From now on we assume
$\dim Y>0$ .

By standard arguments, see [13] 2.7, we can assume, without loss of generality, that
$Y$ is nonsingular and that the polarized pair (X, $L$) $\simeq(P((\mathscr{F}), \xi_{f})$ , where $L$ is the
restriction of the hyperplane bundle to $X$ and 8 $:=p_{*}L$ is an ample, rank $\mu$ $:=$

$\dim X-\dim Y+1$ , locally free sheaf generated by its global sections.

REMARK 3.1.1. We assume that $n\geq 5$ since surfaces on $2^{4}$ which are scrolls over
curves have been classified by Goldstein in [15]. They correspond to the surfaces of
type 2), 3), 5), and 9) in [4].

In what follows the Types C), D), F) and I) below refer to Theorem 2.1.1; we say
that a nonsingular threefold, $X$, on $2^{5}$ is of Type O), if it has degree $d=12$ and it is a
scroll over a minimal $K3$ surface.



892 M. A. A. DE CATALDO

THEOREM 3.1.2. The following is the complete list of nonsingular codimension two
subvarieties of quadrics $2^{n},$ $n\geq 5$ , which are scrolls.

Type C), $n=6,$ $d=4$ , scroll over $P^{1}$ and over $P^{3}$ ;
Type D), $n=5,$ $d=4$ , scroll over $P^{1}$ ;
Type F), $n=5,$ $d=6$ , scroll over $P^{2}$ ;
Type L), $n=5,$ $d=8$ , scroll over $2^{2}$ ;
Type O), $n=5,$ $d=12$ , scroll over a minimal $K3$ surface.
PROOF. The proof is the consequence of the lengthy analysis that constitutes the

rest of the paper. Here we give the reader directions toward the various relevant
statements.

By Fact 3.2.1 we need to deal only with the cases $n=5,6$ .
Scrolls over curves are classified by Proposition 3.3.1. They correspond to types C)

and D).
There are no fourfolds which are scrolls over a surface, by Proposition 3.5.1.
The only fourfold which is a scroll over a threefold is of type C), by Proposition

3.5.2.
Threefolds which are scrolls over a surface have degree $d=6,8,12$ by Proposition

3.4.3 and the base surfaces are as in Proposition 3.4.4. The classification in degrees
$d=6,8$ is complete; correspondingly we get types F) and L).

For an example and for the general properties of varieties of Type O) see Section
3.4.1. $\square$

3.2. Preliminary facts.
The Barth-Larsen theorem implies that if $X$ is a nonsingular codimension two

subvariety of $2^{n}$ , then the fundamental group $\pi_{1}(X)$ is trivial for $n\geq 6$ , and $Pic(X)\simeq$

$Z$, generated by the hyperplane bundle, for $n\geq 7$ ; see [5]. Since $Pic(X)\simeq Z$ as soon as
$n\geq 7$ , we have:

FACT 3.2.1. There are no codimension two scrolls on $2^{n}$ for $n\geq 7$ and, for $n=6$ ,
any such is simply connected.

It is therefore enough to study threefolds on $2^{5}$ which are scrolls over curves and
surfaces and fourfolds on $2^{6}$ which are scrolls over curves, surfaces, and threefolds.

Let us begin the analysis by fixing some notation. We start with a scroll of degree
$d$; let $e_{i}:=c_{i}(d),$ $x_{i}:=c_{i}(X)$ and $y_{i}:=c_{i}(Y)$ . Since $p^{*}$ is injective it is harmless to
denote $p^{*}\alpha$ simply by $\alpha$ while perfoming computations in the cohomology ring of $X$.

The tautological relation is

$\sum_{i=0}^{\mu}(-1)^{i}L^{\mu-i}\cdot e_{i}=0$ . (13)

Finally, recall the usual exact sequence:

$0arrow \mathcal{O}_{X}arrow p^{*}(d^{\vee})\otimes Larrow \mathscr{F}_{X}arrow p^{*\varpi}J_{Y}arrow 0$ , (14)

which is obtained by pasting together the relative Euler sequence [18], II.8.13 and the
short exact sequence associated with the epimorphism $dp:9_{X}^{-}arrow p^{*}\mathscr{F}_{Y}$ .
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3.3. Scrolls over curves on $2^{5}$ and on $2^{6}$ .
The following is proved independently of Theorem 2.1.1.

PROPOSITION 3.3.1. Let (X, $L$) be scroll over a nonsingular curve $Y$, on $2^{n}$ . Then
(X, $L$) is one of the following:

(3.3.1.1) $n=6,$ $(P_{P^{1}}(d), \xi_{d}),$ $d:=\mathcal{O}_{P^{1}}(1)^{4}$ .

(3.3.1.2) $n=5,$ ( $P_{P^{1}}$ (if), $\xi_{f}$ ), $d:=\mathcal{O}_{P^{1}}(2)\oplus \mathcal{O}_{P^{1}}(1)^{2}$ ;

In particular, in both cases, $d=4$ and the embedding is projectively normal.

PROOF. Let $F\simeq P^{n-3}$ be any fiber of the scroll. We cut (2) with $F\cdot L^{n-5}$ and
solve in $d$. We get $d=4$ , so that the structure of (X, $L$) is given by Theorem 8.10.1
of [6].

In both cases it is easy to write down explicit equations for the morphism associated
with $|\xi|$ ; we can check directly that $\xi$ is very ample, that the image lies in a smooth
quadric and that the embedding is projectively normal. $\square$

REMARK 3.3.2. Case (3.3.1.1) above is the Segre embedding of $P^{1}\cross P^{3}$ . It is a
scroll over a curve if we look at the first projection. If we look at the second projection
it is a scroll over $P^{3}$ with associated vector bundle $\mathcal{O}_{P^{3}}(1)^{2}$ . Case (3.3.1.2) is a general
hyperplane section of (3.3.1.1); the natural morphism onto $P^{3}$ exhibits $X$ as the blow up
of $P^{3}$ along a line.

3.4. Threefolds on $2^{5}$ which are scrolls over surfaces.

LEMMA 3.4.1. Let $X\subseteq 2^{5}$ be a codimension two scroll over a surface Y. Then
either $d=8$ or we have:

$g-1= \frac{1}{8}d(d-6)$ ,

$\chi(\mathcal{O}_{X})=\chi(\mathcal{O}_{S})=\frac{1}{144}(d^{3}-18d^{2}+96d)$ ,

$e_{1}^{2}= \frac{3}{2}d$ , $e_{2}= \frac{d}{2}$ ,

$K_{Y} \sim_{n}\frac{1}{6}(d-12)e_{1}$ .

PROOF. We follow closely a procedure which can be found in [26]. By (14)

we get:

$x_{1}=2L-e_{1}+y_{1}$ ;

$x_{2}=2Ly_{1}-e_{1}y_{1}+y_{2}$ ;

$x_{3}=2y_{2}L$ .
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We plug the above equalities in (2) and (3) and get the following two equations:

$(5- \frac{d}{2})L^{2}+L\cdot e_{1}-3L\cdot y_{1}+e_{1}^{2}+y_{1}^{2}-e_{1}\cdot y_{1}-y_{2}=0$ ; (15)

$\frac{d^{2}}{2}-2d+(d-8)L^{2}\cdot e_{1}-(d-8)L^{2}\cdot y_{1}-4L\cdot e_{1}^{2}-4L\cdot y_{1}^{2}-2L\cdot y_{2}+8L\cdot e_{1}\cdot y_{1}=0$ .

(16)

We cut (15) and the tautological relation with $L,$ $e_{1}$ and $y_{1}$ respectively. This way we
get six relations which together with (16) and the relation $L^{3}=d$ give a system of eight
linear equations in the variables: $v:=$ ( $L^{3}$ ; $L^{2}e_{1}$ ; $L^{2}y_{1}$ ; $Le_{1}^{2}$ ; Le1 $y_{1}$ ; $Ly_{1}^{2};Le_{2};Ly_{2}$ ). The
matrix associated with the linear system is:

$M:=[101000$ $5-d/2d-8-100011$ $5-d/2-d+8-300001$ $-1-4000011$ $-1-3-100081$ $-4-3000001$ $00000001$ $-2-1000000]$

and the linear system can be expressed as $Mv^{t}=(0,0,0,0,0,0,0, d)$ .
Since $\det M=72-9d$ , the above system of equations has a unique solution if and

only if $d\neq 8$ .
Let us assume $d\neq 8$ . Then the unique solution is:

{ $L^{3}$ ; $L^{2}e_{11}:L^{2}y_{1}$ ; $Le_{1}^{2}$ ; Le $1y_{1}$ ; $Ly_{1}^{2}$ ; $Le_{2}$ : $Ly_{2}$ }

$= \{d;\frac{3d}{2};\frac{d}{4}(12-d);\frac{3d}{2};\frac{d}{4}(12-d);\frac{d^{3}}{24}-d^{2}+6d;\frac{d}{2};\frac{d^{3}}{24}-\frac{d^{2}}{2}+2d\}$ .
(17)

We can use (17) to compute the genus of a general curve section, $C$, of $X$. This genus
equals the arithmetic genus of the line bundle $e_{1}$ on $Y$; we get

2 $(g-1)=-e_{1}y_{1}+e_{1}^{2}=-Le1y_{1}+Le_{1}^{2}= \frac{1}{4}d(d-6)$ .

An analogous computation gives

$\chi(\mathcal{O}_{X})=\chi(\mathcal{O}_{Y})=(1/144)(d^{3}-18d^{2}+96d)=\chi(\mathcal{O}_{S})$ , (18)

where the first equality is a standard fact about projective bundles which can be proved
using the Leray Spectral sequence and the last one follows from the fact that $S$ is
birationally equivalent to $Y$.

TO prove that $K_{Y}$ is numerically equivalent to a rational multiple of $e_{1}$ , we use
Hodge index theorem for the surface $Y$: by (17), $K_{Y}^{2}e_{1}^{2}=(K_{Y}\cdot e_{1})^{2}$ , so that $K_{Y}\sim_{n}qe_{1}$

for some rational number $q$ which is straightforward to compute. $\square$
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LEMMA 3.4.2. Let $X$ be a threefold scroll over a surface on $2^{5}$ . Then $d\leq 42$ .
Moreover, if a general curve section, $C$, is contained in another quadric hypersurface of
$P^{6}$ , then $d\leq 12$ .

PROOF. By Lemma 3.4.1 we have $g-1=(1/8)d(d-6)$ .
Assume that a general curve section $C$ is not contained in any surface, in the

corresponding $2^{3}$ , of degree strictly less than 2 $\cdot 7$ . Then Proposition 1.2.7 implies
$d\leq 42$ .

Assume $C$ is contained in a surface $\mathscr{L}\subseteq 2^{3}$ of degree 2 $\cdot 6$ . Proposition 1.2.6
implies $d\leq 27$ . The same argument repeated for surfaces of degrees 2 $\cdot 5,2\cdot 4$ and 2.3
gives $d\leq 18$ in all three cases.

Let us assume that $C$ is contained in a surface of degree 2 $\cdot 2$ and that $d>8$ ; by
Proposition 1.2.1, $X$ is contained in another quadric hypersurface of $P^{6}$ . We now prove
that, under the above assumptions on $C,$ $d\leq 12$ . We plug $\sigma=2$ and the values of
$x(0_{S})$ and $g-1$ , from Lemma 3.4.1, in inequality (11); we get

$- \frac{1}{288}d(d+6)(d-12)\geq-\frac{1}{12}[\frac{1}{2}dL^{2}-(K_{X}+5L)^{2}]$ D. (19)

By Lemma 3.4.1 we have

$K_{X}=-2L+ \frac{1}{6}(d-6)e_{1}$ .

We now plug the above expression for $K_{X}$ in (19) using the following relations $e_{2}=$

$(d/2)f,$ $L^{2}D-Le_{1}D+e_{2}D=0$ , where $f$ is a fiber of the scroll. After simplifications
the result is

$-d(d+6)(d-12)\geq 12(d+6)Le_{1}D+d(d+6)(d-12)Df$ .

Since Le1 $D\geq 0$ and $Df\geq 0$ we get $d\leq 12$ . Moreover, if $d=12$ then $D$ must be
empty. Finally if $C$ were contained in a surface of degree 2 $\cdot 1$ then the same would
be true for $X$, by Theorem 1.2.1. But then $X$ would be a scroll on a quadric $\hat{2}^{4}$ of
$P^{5}$ with at most one singular point. Weil and Cartier divisors coincide on $\hat{2}^{4}$ and
$Pic(\hat{2}^{4})\simeq Z$ by [18] $\Pi.6$ Ex. 6.5. It would follow that $X$ is a complete intersection, a
contradiction. $\square$

LEMMA 3.4.3. Let $X$ be a threefold scroll over a surface on $2^{5}$ . Then $d=6,8$ or 12.

PROOF. By Lemma 3.4.2, $d\leq 42$ ; by Lemma 3.4.1, since the invariants there given
must be integers we see that the only possibilities for the pairs $(d, g)$ with $d>12$ are
$(18, 28)$ , $(24, 55)$ , $(30, 91)$ , $(36, 136)$ and $(42, 190)$ . We prove that the cases $d=18,24$ ,
30, 36, 42 cannot occur.

Let $C\subseteq 2^{3}\subseteq P^{4}$ be the general curve section of $X$ and $\Gamma\subseteq 2^{2}\subseteq P^{3}$ be the general
hyperplane section of $C$. We denote by $h_{C}(i):=h^{0}(\mathcal{O}_{P^{4}}(i))-h^{0}(J_{C,P^{4}}(i))$ the Hilbert
function of $C\subseteq P^{4}$ and by $h_{\Gamma}(i):=h^{0}(\mathcal{O}_{P^{3}}(i))-h^{0}(J_{\Gamma,P^{3}}(i))$ the Hilbert function of
$\Gamma\subseteq P^{3}$ . Clearly $h_{C}(i)<h^{0}(0_{C}(i))$ , for every $i$ .

The case $(18,28)$ . By Riemann-Roch and Serre Duality we have $h^{0}(0_{C}(i))=$

$18i-27$ for $i\geq 4$ ; in particular $h^{0}(\mathcal{O}_{C}(4))=45$ . $C$ cannot be contained in another
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quadric of $P^{4}$ , since otherwise, by Proposition 1.2.1 and Lemma 3.4.2, $d<12$ . $C$

cannot be contained in an integral cubic of $P^{4}$ , otherwise, we would get that the genus
would be maximal with respect to the bound prescribed by Proposition 1.2.5 and, since
$\epsilon=0,$ $C$ would be a complete intersection, forcing $X$ to be one too in view of [18], III.9
Ex. 9.6. For the same reason $C$ cannot be contained in an integral quartic of $P^{4}$ . It
follows that there are no quartic hypersurfaces containing $C$ except for the ones which
are the union of $2^{3}$ with another quadric; in particular $h_{C}(4)=55$ . We get $55=$

$h_{C}(4)\leq h^{0}(\mathcal{O}_{C}(4))=45$ , a contradiction. The case $d=18$ cannot occur.

The case $(24, 55)$ . As in the previous case we deduce that $C$ is contained in a
unique quadric of $P^{4},$ $C$ is not contained in any integral cubic or quartic of $P^{4}$ . This
gives $h_{C}(4)=55$ . As before $h^{0}(0_{C}(5))=66$ . By [17] Lemma 3.1 we have $h_{C}(5)\geq$

$h_{C}(4)+h_{\Gamma}(5)$ and by [17] Lemma 3.4 we also have that $h_{\Gamma}(5)\geq 16$ . It follows that
$55+16\leq h_{C}(5)\leq h^{0}(\mathcal{O}_{C}(5))=66$ , a contradiction. The case $d=24$ cannot occur.

The cases $(30, 91)$ , $(36, 136)$ and $(42, 190)$ . They are treated as the case $d=24$ . In
the first case $h^{0}(0_{C}(7))=120$ and the only hypersurfaces of degree seven of $P^{4}$ which
contain $C$, contain $2^{3}$ , so that $h_{C}(7)=140$ , again a contradiction. In the second case
$h^{0}(0_{C}(8))=153$ and the only hypersurfaces of degree eight of $P^{4}$ which contain $C$,
contain $2^{3}$ , so that $h_{C}(8)=289$ , again a contradiction. In the last case $h^{0}(0_{C}(10))=$

$231$ and the only hypersurfaces of degree nine of $P^{4}$ which contain $C$, contain $2^{3}$ , so that
$h_{C}(9)=385$ . In particular $h_{C}(10)>385$ , by [17] Lemma 3.1, again a contradiction.

$\square$

The proof of the following is independent of Theorem 2.1.1.

PROPOSITION 3.4.4. Let things be as in Lemma 3.4.3. If $d=6$ then $Y\simeq P^{2}$ ; if
$d=8$ then $Y\simeq 2^{2}$ ; if $d=12$ then $Y$ is a minimal $K3$ surface.

PROOF. Let $d=6$ . By Lemma 3.4.1 $-K_{Y}$ is ample and $K_{Y}^{2}=9$ ; by the classi-
fication of Del Pezzo surfaces we conclude that $Y\simeq P^{2}$ . Let $d=8$ . The proof of
Proposition 3.5.1 gives $Y\simeq 2^{2}$ . Let $d=12$ . By Lemma 3.4.1 $K_{Y}$ is numerically
trivial, so that $Y$ is a minimal model. (18) prescribes $\chi(\mathcal{O}_{Y})=2$ , so that, by the
Enriques-Kodaira classification, $Y$ is a $K3$ surface. $\square$

3.4.1. The case of Type $O$).

The purpose of this section is twofold. First we give an example of a scroll of
Type O), making the list of Theorem 3.1.2 effective. Then we collect information about
the arbitrary variety of this type.

Let $X$ be of Type O), $\beta_{i,j}:=h^{i}(J_{X,9^{5}}(j))$ and $\sigma_{i}:=h^{i}(J_{X,9^{5}}(-1)\otimes \mathscr{L})$ . The
sheaves $\Psi_{i}$ are defined in [1].

THEOREM 3.4.5. Let $\mathscr{L}^{7}arrow\emptyset\Psi_{3}\oplus O_{9^{5}}^{3}$ be a general morphism. Then, $\emptyset$ is injective,
$X:=D_{27}(\emptyset)$ is a variety of Type O) and we have a resolution of the form

$0arrow \mathscr{L}^{7}arrow\emptyset\Psi_{3}\oplus \mathcal{O}_{9^{5}}^{3}arrow J_{X,9^{5}}(3)arrow 0$ .

We will prove this theorem after Proposition 3.4.8. First we determine some
properties of the arbitrary variety of Type O).
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PROPOSITION 3.4.6. Let $X\subseteq 2^{5}$ be of Type O).
Then:

$g=10;K_{X}L^{2}=-6;K^{2}L=-6;K_{X}^{3}=12;c_{2}(X)L=24,$ $c_{1}(\ovalbox{\tt\small REJECT})^{2}=18,$ $c_{2}(\ovalbox{\tt\small REJECT})=6$ .

The cohomology of $\mathcal{O}_{X}(l)$ :

$h^{1}(\mathcal{O}_{X}(t))=0,$ $\forall t\in Z$ ;

$h^{2}(\mathcal{O}_{X}(t))=0,$ $\forall t\in Z$ except for $h^{2}(\mathcal{O}_{X})=1$ ;

$h^{2}(\mathcal{O}(t))=0,$ $\forall t\geq-1$ .

The following is the Beilinson-Kapranov $E_{1}^{p,q}$ table for the sheaf $J_{X,9^{5}}(3)$ ; see [1] Theorem
5.6. A letter a on the left of a vector bundle $B$ means $B$ direct sum with itself a times.

$0$ $0$ $0$ $0$ $0$ $0$

$7\mathscr{L}$ $0$ $0$ $0$ $0$ $0$

$0$ $0$ $\Psi_{3}$ $0$ $0$ $0$

$0$ $0$ $0$ $0$ $0$ $0$

$0$ $0$ $0$ $0$
$\beta_{1,2}\Psi_{1}$ $\beta_{1,3}\mathcal{O}_{X}$

$0$ $0$ $0$ $0$
$\beta_{0,2}\Psi_{1}$ $\beta_{0,3}\mathcal{O}_{X}$ ,

where $\beta_{0,2}-\beta_{1,2}=0,$ $\beta_{0,3}-\beta_{1,3}=3$ .
Either $\beta_{2,0}=1$ and $\beta_{0,3}=7$ or $\beta_{2,0}=0$ and $0\leq\beta_{1,3}\leq 21$ .
If $\beta_{2,0}=1$ then $J_{X,9^{5}}(3)$ can be expressed as the cohomology of a monad of the form

(see [24] for the definition of monads):

$0arrow 7\mathscr{L}^{m_{1}}arrow\Psi_{3}\oplus\Psi_{1}\oplus \mathcal{O}_{9^{5}}(1)arrow 4\mathcal{O}_{9^{5}}n_{1}arrow 0$ (20)

If $\beta_{2,0}=0$ then $J_{X,\ovalbox{\tt\small REJECT}^{5}}(3)$ can be expressed as the cohomology of a monad of the form:
$0arrow 7\mathscr{L}^{m_{2}}arrow\Psi_{3}\oplus 3\mathcal{O}_{9^{5}}\oplus\beta_{1,3}\mathcal{O}_{9^{5}}arrow\beta_{1,3}\mathcal{O}_{9^{5}}n_{2}arrow 0$ . (21)

PROOF. The first list of invariants can be read off from Lemma 3.4 when $d=12$ .
AS to $h^{2}(\mathcal{O}_{X}(t))$ we argue as follows. Via the projection formula and Leray

Spectral Sequence, $h^{2}(0_{X}(t))=0,$ $\forall t<0$ and for the same reason $h^{2}(0_{X})=1$ . Since
$K_{Y}$ is trivial, Leray Spectral Sequence and Le Potier’s Vanishing Theorem [27] give
$h^{i}(\mathcal{O}_{X}(1))=h(\mathcal{O}_{Y}(d))=h(\mathcal{O}_{Y}(K_{Y}\otimes d))=0,$ $\forall i\geq 2$ . By Serre Duality and the fact
that $L_{|S}(K_{S}-mL_{|S})=6-12m$ we see that $h^{2}(\mathcal{O}_{S}(m))=0,$ $\forall m\geq 1$ ; we conclude for $h^{2}$

by an easy induction using the sequence $s$

$0arrow \mathcal{O}_{X}(m-1)arrow \mathcal{O}_{X}(m)arrow \mathcal{O}_{S}(m)arrow 0$ . (22)

The vanishings of the $h^{3}’ s$ are obvious consequences of Serre Duality.
$h^{1}(0_{X}(t))=0,$ $\forall t<0$ by Kodaira vanishing. For $t=0$ the vanishing follows from

$h^{1}(O_{Y})=0$ . Since $X\subseteq P^{6}$ is linearly normal by a result of Fujita’s (cf. [23], \S 4) and
$\chi(0_{X}(1))=7$ by Riemann-Roch, we have $h^{1}(\mathcal{O}_{X}(1))=0$ . To prove the remaining
vanishing $s$ for $h^{1}(\mathcal{O}_{X}(t))$ we argue by induction using the long cohomology sequences
associated with the sequences (22), the analogue one $s$ obtained by replacing $X$ and $S$ by
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$S$ and $C$ (a general curve section of $S$ ) and observing that the linear systems $|O_{C}(t)|$ are
non-special for $t\geq 2$ .

The Beilinson-Kapranov table is obtained as follows. The vanishing$s\beta_{i,j}=0$ for
$i=1,2,3,4,5$ and $j=-1,0,1,2,3$ , except for $\beta_{3,0}=h^{0}(\mathcal{O}_{X})=1$ , are obtained by taking
the cohomology of the exact sequence $s$

$0arrow J_{X,9^{5}}(l)arrow \mathcal{O}_{\ovalbox{\tt\small REJECT}^{5}}(l)arrow \mathcal{O}_{X}(l)arrow 0$ (23)

and by plugging the above values for the cohomology of $O_{X}(t)$ . For the $s$ame reason
$\beta_{i,j}=0$ for $i=0,1,2,$ $j=-1,0$ . $\beta_{0,1}$ is zero because $X$ cannot be degenerate (see the
proof of Lemma 3.4.2). $\beta_{1,1}=0$ since $X\subseteq P^{6}$ is linearly normal. The relations on the
remaining $\beta’ s$ come from the shape of the Hilbert polynomial

$\chi(J_{X,9^{5}}(t))=\frac{1}{60}t^{5}+t^{4}-t^{3}\underline{5}+\frac{19}{24}t^{2}+\frac{59}{60}t-1$ ,

which vanishes for $t=-1,1,2$ , and has value three for $t=3$ .
Because of how this spectral sequence works ( $E_{\infty}=E_{6}$ and $E_{\infty}^{p,q}\simeq\{0\}$ for $p+q\neq 0$),

we see that $\sigma_{i}=0$ , for $i=0,1,2$ .
$\sigma_{5}=0$ by observing the cohomology of (23) tensored with Y. We use the same

sequences, together with Riemann-Roch for $\mathscr{L}$ and for $\mathscr{L}_{|X}$ to get

$\chi(\mathscr{L}(t))=\frac{1}{15}t(t+1)(t+2)(t+3)(t+4)$ ,

and

$\chi(\mathscr{L}_{|X}(t))=8t^{3}-6t^{2}+7$ ;

it follows that $-\sigma_{3}+\sigma_{4}=\chi(J_{X,9^{5}}\otimes \mathscr{L}(-1))=7$ .
We now prove that $\sigma_{3}=0$ . There is at most one nontrivial differential from $\sigma_{3}\mathscr{L}$ ,

namely the one that hits $E_{4}^{-2,0}$ . On the other hand $E_{4}^{-2,0}=E_{2}^{-2,0}=Kerd_{1}^{-2,0}$ . It is
enough to show that the last group is trivial. We consider two cases. The former
is when $\beta_{0,2}=0$ ; in this case $\sigma_{3}$ is clearly zero. The latter is when $\beta_{0,2}\neq 0$ . Then
$\beta_{0,2}=1$ otherwise $X$ would have $d\leq 8$ , the degree of the intersection on $2^{5}$ of two
hypersurfaces of degree four. $\beta_{0,3}=7$ otherwise $X$ would be a complete intersection on
$P^{6}$ of type (2, 2, 3), a contradiction. By Kapranov’s explicit resolution of the diagonal
on $2^{n}\cross 2^{n}$ , see [1], we infer that $d_{1}^{-2,0}$ coincides with the injection $(\Psi_{1}\simeq)\Omega^{1}(1)_{P^{6}|9^{5}}arrow$

$\mathcal{O}_{9^{5}}^{7}$ obtained by restricting the Euler sequence of $P^{6}$ to $2^{5}$ . It follows that $\sigma_{3}=0$ and
therefore $\sigma_{4}=7$ .

If $\beta_{2,0}\neq 0$ , we have seen above that $\beta_{2,0}=1,$ $\beta_{3,0}=7$ and that $d_{1}^{-2,0}$ coincides with
the injection $(\Psi_{1}\simeq)\Omega^{1}(1)_{P^{6}|9^{5}}arrow 0_{9^{5}}^{7}$ whose cokemel is $\mathcal{O}_{9^{5}}(1)$ . The statement
associated with (20) follows from [1].

Similarly, we see that the statement associated with (21) holds when $\beta_{2,0}=0$ . Since
the morphism $n_{2}$ is trivial on $(3+\beta_{1,3})\mathcal{O}_{9^{5}}$ , the restriction $v:=n_{2|\Psi_{3}}$ is surjective.
Recall that the rank of $\Psi_{3}$ is 26. If $\beta_{1,3}>21$ , then the kemel of the map $v$ would
be a locally free sheaf of rank $r<5$ with the fifth Chem class $c_{5}=c_{5}(\Psi_{3})\neq 0$ , a
contradiction. $\square$
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The following is essentially due to Peskine and Szpiro; see [23], \S 1.

LEMMA 3.4.7. Let $X$ be a codimension two nonsingular subvariety of a nonsingular
variety $Z$ of dimension $n\leq 5$ and $L_{i},$ $i=1,2$ , two line bundles on $Z$ such that the sheaves
$J_{X,Z}(L_{i})$ are globally generated on Z. Let $s_{i}\in H^{0}(J_{X,Z}(L_{i}))$ be the choice of two
general sections and $V_{i}$ the two effective divisors associated with the $s_{i}$ . Then $V_{1}\cap V_{2}=$

$X\cup Y$, as schemes, where $Y$ is nonsingular.

We now give a family of examples of degree $d=12$ scrolls on $2^{5}$ .

PROPOSITION 3.4.8. Let $\rho$ : $\mathscr{C}^{\vee}arrow \mathcal{O}_{9^{5}}(2)^{3}$ be a generic morphism. Then $X:=D_{1}(\rho)$

is a variety of Type O) such that $J_{X,9^{5}}(3)$ is generated by global sections; $X$ is linked to a
variety $X’$ of Type F) via the complete intersection of two general elements of $|J_{X,9^{5}}(3)|$ .
Conversely, if $X\subseteq 2^{5}$ is of Type O) and $J_{X,9^{5}}(3)$ is generated by global sections, then
$X=D_{1}(\rho)$ for some $\rho$ as above and $X$ is linked as above to a variety of Type F).

PROOF. For facts about Cayley bundles, see Fact 1.4.2. $\mathscr{C}(2)^{3}$ is generated by
global sections and Fact 1.1.7 implies that $X:=D_{1}(\rho)$ is a codimension two nonsingular
subvariety of $2^{5}$ and that we have the following exact sequence

$0arrow \mathscr{C}^{\vee}(-2)arrow \mathcal{O}_{9^{5}}^{3}\rhoarrow J_{X,9^{5}}(3)arrow 0$ . (24)

We compute the total Chem class of $J_{X,9^{5}}(3)$ via (24): $1+3h+6h^{2}+9h^{3}+9h^{4}$ .
We compare it with Lemma 1.1.2:

$\gamma_{1}=3,$ $\gamma_{2}=6=\frac{1}{2}d,$ $\gamma_{3}=\frac{1}{2}(K_{X}+2L)L^{2}=9,$ $\gamma_{4}=\frac{1}{2}(K_{X}+2L)^{2}L=9,$ $\gamma_{5}=\frac{1}{2}(K_{X}+2L)^{3}=0$ ,

where $L$ denotes $O_{P^{6}}(1)_{|X}$ . It follow $s$ that $X$ has degree $d=12$ . By [6] Proposition
7.2.2, $K_{X}+2L$ is generated by global sections since (X, $L$) cannot be isomorphic to
either $(P^{3}, \mathcal{O}_{P^{3}}(1)),$ $(2^{3}, \mathcal{O}_{9^{3}}(1))$ or to a scroll over a curve since they all have degree
$d=4$ by Proposition 3.3.1. The fact that $\gamma_{5}=0$ implies that $K_{X}+2L$ cannot be big
and the fact that $\gamma_{4}\neq 0$ implies that the Kodaira dimension $\kappa(K_{X}+2L)=2$ , so that, by
[6] Theorem 7.3.2, (X, $L$) is an adjunction theoretic scroll over a surface and, by [6]
Proposition 14.1.3, it is actually a scroll in our sense. By Lemma 3.4.4, $X$ is a degree
$d=12$ scroll over a $K3$ surface. The linking part is proved using Lemma 3.4.7 to
produce an $X’$ of degree $d’=6$ and by observing that the mapping cone construction
yields a resolution for $J_{X’,\ell^{5}}(3)$ which coincides with the one of a variety of Type F).

The converse is proved in a similar way. $\square$

PROOF OF THEOREM 3.4.5. For the varieties constructed in Proposition 3.4.8 we
have, by (24), that $\beta_{2,0}=0$ and $\beta_{0,3}=3$ . By looking at the display of the monad (21)
with these invariants we get the desired resolution for the ideal sheaves of these varieties.
It also follows that, for the generic morphism $\emptyset,$ $\emptyset$ is injective and $X:=D_{27}(\emptyset)$ is of
Type O) as in the proof of Proposition 3.4.8. $\square$

3.5. -folds which are scrolls on $2^{6}$ .
PROPOSITION 3.5.1. There are no fourfolds scrolls over surfaces on $2^{6}$ .
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PROOF. By contradiction, assume that $X^{4}$ is such a scroll. Cutting (2) with a fiber
$F\simeq P^{2}$ , we get $d=8$ . We take a general hyperplane section and obtain a scroll, $X$, on
$2^{5}$ so that the previous analysis applies. In fact, if a special fiber, $F$, were isomorphic
to $P^{2}$ , then $F_{|F}\simeq \mathcal{O}_{P^{2}}(-1)$ so that we would have a contraction morphism $\eta$ : $Xarrow X’$

and the structural morphi$smp:Xarrow Y$ would factor through $\eta$ violating the upper
semicontinuity of the dimension of the fibers.

We solve the linear system contained in the proof of Lemma 3.4 for $d=8$ and we
get that the solutions depend on one additional parameter $t$ :

{ $L^{3};L^{2}e_{1}$ ; $L^{2}y_{1}$ ; Le21; Le $1y_{1}$ ; $Ly_{1}^{2}$ ; $Le_{2};Ly_{2}$ }

$= \{8;36-\frac{9}{2}t;24-3t;36-\frac{9}{2}t;24-3t;16-2t;28-\frac{9}{2}t;t\}$ .
(25)

We observe that $K_{Y}^{2}=(4/9)e_{1}^{2}$ and that $K_{Y}\cdot e_{1}=-(2/3)e_{1}^{2}$ . Since $e_{1}$ is ample, the
Hodge Index Theorem implies that $3K_{Y}\sim_{n}-2e_{1}$ . It follows that $Y$ has to be a Del
Pezzo surface. On such a $Y$, numerical and rational equivalence coincide and $3K_{Y}$ is
not divisible by 2 unless $Y$ is a smooth $2^{2}$ . In this case $t=b_{2}=4$ . In particular
$\deg e=10$ and $g=4$ . By [21] this case cannot occur if $\dim X\geq 4$ . This contradicts
the existence of scrolls over surfaces in $2^{6}$ of dimension four. $\square$

PROPOSITION 3.5.2. The only scroll over a threefold on $2^{6}$ is $P^{1}\cross P^{3}$ embedded with
the Segre embedding.

PROOF. The proof runs along the line $s$ of Lemma 3.4.1. Using (14) we compute
the Chem classes of $X$:

$x_{1}=2L-e_{1}+y_{1}$ ;

$x_{2}=2Ly_{1}-e_{1}y_{1}+y_{2}$ ;

$x_{3}=2Ly_{2}-e_{1}y_{2}+y_{3}$ ;

$x_{4}=2Ly_{3}$ .

After having plugged these relations in (2), (3) and (4) we get, respectively:

$( \frac{1}{2}d-8)L^{2}+L(4y_{1}-2e_{1})-e_{1}^{2}+e_{1}y_{1}-y_{1}^{2}+y_{2}=0$ , (26)

$8L^{3}+L^{2}(4e_{1}-8y_{1})+L(-2e_{1}y_{1}+4y_{1}^{2}-4y_{2})$

(27)
$+e_{1}^{3}-e_{1}^{2}y_{1}+e_{1}y_{1}^{2}-e_{1}y_{2}-y_{1}^{3}+2y_{1}y_{2}-y_{3}=0$ ,

$6L^{4}-8L^{3}y_{1}+L^{2}(4e_{1}^{2}-4e_{1}y_{1}+8y_{1}^{2}-8y_{2})$

(28)
$+L(-2e_{1}^{3}+2e_{1}y_{1}^{2}-2e_{1}y_{2}-4y_{1}^{3}+8y_{1}y_{2}-4y_{3})=0$ .

We cut the tautological relation and (26) with the following classes: $L^{2}$ , Le1, $Ly_{1},$ $e_{1}^{2},$ $y_{1}^{2}$ ,
$e_{1}y_{1},$ $e_{2}$ and $y_{2}$ ; we cut (27) with $L,$ $e_{1}$ and $y_{1}$ . Considering also (28) we get a total of
twenty linear equations in the seventeen variables: $L^{4},$ $L^{3}e_{1},$ $L^{3}y_{1},$ $L^{2}e_{1}^{2},$ $L^{2}e_{1}y_{1},$ $L^{2}e_{2}$ ,
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$L^{2}y_{1}^{2},$ $L^{2}y_{2},$ $Le_{1}^{3},$ $Le_{1}^{2}y_{1}$ , Le 1 $e_{2}$ , Le 1 $y_{1}^{2}$ , Le 1 $y_{2},$ $Le_{2}y_{1},$ $Ly_{1}^{3},$ $Ly_{1}y_{2}$ and $Ly_{3}$ . We leave out,
on purpose, the condition $L^{4}=d$ . We leave to the reader to check that the resulting
linear system has a nontrivial solution only for $d=4$ . If $d=4$ we use Theorem 2.1.1
to conclude. $\square$
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