
J. Math. Soc. Japan
Vol. 50, No. 2, 1998

On the Cohen-Macaulayness of multi-Rees algebras and
Rees algebras of powers of ideals

By Thomas KORB and Yukio NAKAMURA

(Received Sept. 26, 1995)
(Revised May 20, 1996)

1. Introduction.

Let $(A, \mathfrak{m})$ be a Noetherian local ring and $I$ an ideal in $A$ . For a positive integer $r$,
the r-th multi-Rees algebra of $A$ with respect to $I$ is defined as the $N_{0}^{r}$ -graded ring:

$R_{A}( I_{r})=\bigoplus_{\underline{n}\geq\underline{0}}I^{n_{1}}\cdots I^{n_{r}}$

where 4 stands for an $r$-tuple $(n_{1}, \ldots, n_{r})$ of natural numbers. Very often one identifies
$R_{A}(I_{r})$ with $A$ [It $\iota,$

$It_{2},$
$\ldots,$

$It_{r}$ ] $\subseteq A[t_{1}, t_{2}, \ldots, t_{r}]$ where $t_{1},$ $t_{2},$
$\ldots$ , $t_{r}$ are indeterminates over

$A$ . The notation $I_{r}$ should be considered as the $r$-tuple (I, . . . , $I$). In particular, in case
$r=1$ , the multi-Rees algebra is nothing else but the (ordinary) Rees algebra which we
denote by $R_{\Lambda}(I)$ . For the following, we denote the maximal homogeneous ideal of
$R_{A}(I)$ by $M$ .

The concept of multi-Rees algebras is e.g. connected with mixed multiplicities (cf.

[Te] and [HHRTa] $)$ and joint reductions (cf. [Re]). Verma studied for instance the
Cohen-Macaulayness of multi-Rees algebras of ideals having joint reduction number
zero (see [Ve]). He considered multi-Rees algebras with respect to different ideals
$I_{1},$

$\ldots,$
$I_{r}$ of $A$ , i.e. $A$ -algebras of the form: $A[I_{1}t_{1}, I_{2}t_{2}, \ldots, I_{r}t_{r}]$ , but only in the case

that $\dim A=2$ (plus some additional assumptions). A result on the Cohen-Macau-
layness of multi-Rees algebras of $\mathfrak{m}$-primary ideals in a local ring $A$ of dimension twc
having joint reduction number zero can also be found in [HHRTa]. From a totally
different viewpoint, Goto and Nishida studied the Cohen-Macaulay and Gorenstein
property of $R_{A}(I_{2})$ in their work on Rees algebras defined by a filtration $([GN])$ . A
detailed characterization of the Cohen-Macaulay and Gorenstein property of multi-Rees
algebras was given by Herrmann, Hyry and Ribbe (et al.) in [HHRI], [HHR2] and
[HHRTa]. (Their results do not only deal with properties of $R_{A}(I_{r})$ , but also with
properties of multi-Rees algebras of the form $A[I^{k_{1}}t_{1}, \ldots, I^{k_{r}}t_{r}]$ , where $k_{1},$

$\ldots$ , $k_{r}$ are
positive integers.) Some newer results on the Cohen-Macaulayness of multi-Rees
algebras and its relation with filter-regularity in the corresponding form ring can be
found in [HHK].

One of the most useful results on the Cohen-Macaulay property of multi-
Rees algebras, which we will also frequently use throughout this paper, is (cf. [HHRI,

2.2]):
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THEOREM 1.1 $(Herrmann/Hyry/Ribbe)$ . Let $(A, \mathfrak{m})$ be a local ring of dimension $d$

and I an ideal in $A$ ofpositive height. Then the following conditions are equivalent for a
positive integer $r$ :

(a) $R_{A}(I_{r})$ is a Cohen-Macaulay ring.
(b) $[H_{M}^{i}(R_{A}(I))]_{n}=(0)$ for all $i<d+1$ and $n\not\in\{-\gamma+1, \ldots, -1\}$ .
(c) $[H_{M}^{i}(G_{A}(I))]_{n}=(0)$ for all $i<d$ and $n\not\in\{-r, \ldots, -1\}$ , and $a(G_{\Lambda}(I))<0$ .

Here, we denoted the factor ring $R_{A}(I)/IR_{A}(I)$ by $G_{A}(I)$ . This is the so called form
ring (or: associated graded ring) of $A$ with respect to $I$ . For the i-th graded local
cohomology with respect to $M$ we use, as usual, the notation $H_{M}^{i}(_{-})$ . And following
[GW] we put $a(G_{A}(I)):= \sup\{n\in Z|[H_{M}^{d}(G_{A}(I))]_{n}\neq(0)\}$ and call it the $a$-invariant of
$G_{A}(I)$ .

In the case $r=1$ , the equivalence in the above theorem is nothing else but the
characterization of the Cohen-Macaulayness of the Rees algebra $R_{A}(I)$ as given by
Trung and Ikeda in [TI]. So the theorem shows that multi-Rees algebras behave to
some extend as ordinary Rees algebras with respect to the Cohen-Macaulay property
(since this can be described in terms of properties of the local cohomology modules of
$R_{A}(I)$ resp. $G_{A}(I))$ .

Theorem 1.1 also shows immediately that the Cohen-Macaulayness of $R_{\Lambda}(I_{r})$ implies
the same property for $R_{A}(I_{s})$ and $R_{A}(I^{s})$ for all $s\geq r$ . An important special case of the
first of these two implications is the case $r=1$ , i.e. that if the Rees algebra of an ideal
is Cohen-Macaulay, the same holds for all corresponding multi-Rees algebras. For
the second implication recall that $R_{A}(I^{S})$ coincides with the s-th Veronese subring
$R_{A}(I)^{(s)}$ of $R_{A}(I)$ as graded algebras. Hence we have isomorphisms $[H_{M}^{i}(R_{\Lambda}(I))]_{ns}\cong$

$[H_{M’}^{i}(R_{A}(I^{s}))]_{n}$ for all $n\in Z$ , where $M’$ is the maximal homogeneous ideal of $R_{A}(I^{S})$ .
On the other hand, it is known that the Cohen-Macaulayness of $R_{A}(I^{s})$ for some

$s\geq 2$ does not have to imply that $R_{A}(I_{r})$ is Cohen-Macaulay for some $r\geq 1$ (see

Example 2.6).

In [HRZ, 2.7] one can find the result that for ideals $I$ of positive height the Cohen-
Macaulay property of $R_{\Lambda}(I^{s})$ for some $s\in N$ is equivalent to the Cohen-Macaulayness
of $R_{A}(I)$ if $G_{A}(I)$ is Cohem-Macaulay. Observe that the corresponding statement for
multi-Rees algebras (i.e. replace $R_{A}(I^{S})$ by $R_{A}(I_{S})$ in the above result) is an immediate
consequence of Theorem 1.1.

These observations lead to the following two questions which we will address in this
work:

I. HOW are the Cohen-Macaulay properties of $R_{\Lambda}(I^{s})$ and $R_{A}(I_{r})$ related?
II. In which situations does the Cohen-Macaulayness of one of the above Rees

algebras already imply the Cohen-Macaulayness of $R_{A}(I)$?
TO explain our results, we need one more notation; we put:

$a_{i}:= \sup\{n\in Z|[H_{M}^{i}(G_{A}(I))]_{n}\neq(0)\}$

and call $a_{i}$ the i-th a-invariant (or: $a_{i}$-invariant) of $G_{A}(I)$ . Since $\dim G_{A}(I)=d$ , we
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have by definition that $a_{d}=a(G_{A}(I))$ , where the right side in this equation is the
$a$-invariant which we introduced above.

Our main result with respect to question $I$ can now be stated as:

THEOREM 1.2. Let $(A, \mathfrak{m})$ be a Noetherian local ring of dimension $d$ and I an ideal in
$A$ of positive height. Let $M$ be the maximal homogeneous ideal of $R_{A}(I)$ and suppose
that depth $G_{A}(I)_{M}\geq d-1$ . Then the following conditions are equivalent:

(a) $R_{A}(I^{S})$ is a Cohen-Macaulay ring for some $s>0$ .
(b) $R_{A}(I_{r})$ is a Cohen-Macaulay ring for some $r>0$ .

In general, we can not expect a generalization of Theorem 1.2 to the case that
depth $G_{A}(I)_{M}\leq d-2$ . In fact, Example 2.6 will tell us that there exists an m-primary
ideal in a 2-dimensional local domain such that $R_{A}(I^{s})$ is Cohen-Macaulay for all $s\geq 2$ ,
but $R_{A}(I_{r})$ is not Cohen-Macaulay for all $r\geq 1$ . However, even if depth $G_{A}(I)_{M}\leq$

$d-2$ , we can have the following Proposition 1.3. Indeed, Theorem 1.2 immediately
follows from Proposition 1.3, because the condition (ii) in Proposition 1.3 always holds
if depth $G_{A}(I)_{M}\geq d-1$ .

PROPOSITION 1.3. Let $A$ and I be as in Theorem 1.2 and put $g:=depthG_{A}(I)_{M}$ .
Suppose that one of the following conditions holds:

(i) $a_{g+2i}<0$ for all $i\geq 0$ with $2i<d-g$ ,
(ii) $a_{g+2i+1}<0$ for all $i\geq 0$ with $2i+1<d-g$ .
Then the following statements are equivalent:
(a) $R_{\Lambda}(I^{s})$ is a Cohen-Macaulay ring for some $s>0$ .
(b) $R_{A}(I_{r})$ is a Cohen-Macaulay ring for some $r>0$ .

TO investigate question II, we concentrate on the case that $A$ is a Cohen-Macaulay
local ring of dimension at most three. Our main results are as follows:

THEOREM 1.4. Let $A$ be a Cohen-Macaulay local ring of dimension 2 and I an ideal
of positive height. Then the following conditions are equivalent:

(a) $R_{A}(I_{r})$ is a Cohen-Macaulay ring for some $r>0$ .
(b) $R_{A}(I)$ is a Cohen-Macaulay ring.

THEOREM 1.5. Let I be an ideal in a Cohen-Macaulay local ring $A$ of dimension
3. Suppose that I is either an integrally closed $\mathfrak{m}$-primary ideal, or $A/I$ is $a$ 1-
dimensional Cohen-Macaulay ring. Then the following conditions are equivalent:

(a) $R_{A}(I_{r})$ is a Cohen-Macaulay ring for some $r>0$ .
(b) $R_{A}(I)$ is a Cohen-Macaulay ring.

Theorem 1.4 is an expansion of [HHRTa, 2.4], where the same was proven for
$\mathfrak{m}$-primary ideals. Theorem 1.5 was also motivated by [HHRTa] where it was shown
that the Cohen-Macaulayness of a multi-Rees algebra of the maximal ideal $\mathfrak{m}$ of a
3-dimensional Cohen-Macaulay local ring implies the same property for $R_{\Lambda}(\mathfrak{m})$ .

In the appendix of [HHR2], Trung gave an ideal $I$ in a non-Cohen-Macaulay
Buchsbaum local domain $A$ of dimension 3 such that $R_{A}(I)$ is not Cohen-Macaulay,
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but $R_{A}(I_{2})$ is a Cohen-Macaulay (even: Gorenstein) ring. (See also Example 2.14.) So
we can not expect that the implication in question II holds in general. But motivated
by the above mentioned results, one might ask the following (cp. also Remark 2.13):

Let $A$ be a Cohen-Macaulay local ring and $I$ an ideal of positive height.
Suppose $R_{A}(I_{r})$ is a Cohen-Macaulay ring for some $r\geq 2$ . Does it then follow
(maybe under some assumptions) that already $R_{A}(I)$ is Cohen-Macaulay?
Up to now, it is not clear how to answer this question. If the implication in the

question does not hold in general, it would be very interesting for us to see counter-
examples. By the result in Theorem 1.2 it would be enough to find an ideal $I$ of
positive height in a Cohen-Macaulay local ring such that depth $G_{A}(I)_{M}=d-1,$ $R_{A}(I)$ is
not Cohen-Macaulay, but $R_{A}(I^{s})$ is Cohen-Macaulay for some $s\geq 2$ .

Maybe the most important special case which is still open with respect to the above
question is that of $\mathfrak{m}$-primary ideals in a Cohen-Macaulay local ring $A$ of dimension
three which are not integrally closed. Assume that $I$ is such an ideal and that the above
question has a negative answer for $I$ . Then one can show, using results on filter-
regularity in $G_{\Lambda}(I)$ from [HHK] and our Lemma 3.1, that the following must
hold: $a_{0}=a_{1}=-\infty,$ $a_{2}=-2$ and $a(G)=-1$ . In this case, the reduction exponent of
$I$ is 2.

From a different point of view, Remark 2.8 is also related to the above question,
and the authors believe that investigations in this direction might be fruitful, too.

We close this section with a view of this paper. We will prove Proposition 1.3
and state some related results in Section 2. E.g., as already mentioned, it follows
from Theorem 1.1 that $R_{A}(I^{s})$ is Cohen-Macaulay for all $s\geq r$ once $R_{A}(I_{r})$ is so. There-
fore one might reformulate question I in a stronger way, i.e.: Does the Cohen-
Macaulayness of $R_{A}(I^{s})$ imply the same property for $R_{A}(I_{s})$? (cf. Some answers to this
question will be given in Theorem 2.12. Section 3 is devoted to the proofs of Theorem
1.4 and Theorem 1.5 and some additional results.

Throughout this paper, $(A, \mathfrak{m})$ is a Noetherian local ring of dimension $d$ and $I$ is an
ideal in $A$ . For short, we put $R:=R_{A}(I)$ and $G:=G_{A}(I)$ and denote the maximal
homogeneous ideal of $R$ by $M$ . Very often, we will identify $R$ with $A[It]$ , where $t$ is an
indeterminate over A. $H_{\mathfrak{m}}^{i}$ (-) (resp. $H_{M}^{i}$ (-)) stands for the i-th local cohomology
functor with respect to $\mathfrak{m}$ (resp. $M$) in the category of $A$ -modules (resp. graded R-
modules). For information on graded local cohomology we refer to [HIO, Chap. VII].

2. Proof of Proposition 1.3.

Let $(S_{0}, \mathfrak{n})$ be a Noetherian local ring and $S$ a standard graded algebra over $S_{0}$ , that
is a Noetherian graded algebra of the form $S=S_{0}[S_{1}]$ . Let $N$ be the maximal
homogeneous ideal of $S$ and $\mathfrak{a}$ a homogeneous ideal in $S$ . We say that $S$ is a
generalized Cohen-Macaulay ring with respect to $\mathfrak{a}$ (for short: genCM w.r. $t$ . $\mathfrak{a}$), if
$\mathfrak{a}^{n}H_{N}^{i}(S)=(0)$ for all $n>>0$ and all $i<\dim S$ . In particular, the fact that $S$ is genCM
w.r. $t$ . $S_{+}(S_{+}:=\oplus_{n>0}S_{n})$ is equivalent to $[H_{N}^{i}(S)]_{n}=(0)$ for all $n<<0$ and $i<\dim S$ by
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[TI, 2.2]. Although the next lemma is known, we give a short proof for the reader’s
convemence:

LEMMA 2.1. Suppose that $S_{0}$ is a homomorphic image of a Gorenstein local ring and
$S_{N}$ is equidimensional. Then the following conditions are equivalent:

(a) $S$ is a genCM ring $w.r.t$. $S_{+}$ .
(b) Proj $(S)$ is a Cohen-Macaulay scheme.

PROOF. Since $S$ is generated by elements of degree 1, saying that Proj $(S)$ is a
Cohen-Macaulay scheme is equivalent to saying that $S_{Q}$ is a Cohen-Macaulay ring for
all $Q\in Proj(S)$ (cf. e.g. [HIO, \S 12]). On the other hand, $S_{N}$ is equidimensional and
catenary, hence we have $\dim S_{N}/Q+d\cdot m(N)_{Q}=\dim S_{N}$ for all $Q\in Spec(S_{N})$ . This
implies, in particular, $\dim S/Q+\dim S_{Q}=\dim S$ for all $Q\in Proj(S)$ . Thus the stated
equivalence of the lemma immediately follows from [HIO, (43.3)]. $\square$

We fix the following notation for the $a$-invariants and $e$-invariants, which we will
use frequently throughout this paper:

DEFINITION 2.2. Let $E$ be a finitely generated graded $S$-module. Then we define
for all $i\in Z$ the i-th $a$-invariant (resp. $e$-invariant) of $E$ with respect to $N$ as:

$a_{N}^{i}(E):= \sup\{n\in Z|[H_{N}^{i}(E)]_{n}\neq(0)\}$

$e_{N}^{i}(E):= \inf\{n\in Z|[H_{N}^{i}(E)]_{n}\neq(0)\}$

According to our definitions earlier in this paper, we use the shorter notations:
$a_{i}:=a_{M}^{i}(G),$ $e_{i}:=e_{M}^{i}(G)$ and $a(G):=a_{M}^{d}(G)$ . (If there is confusion possible, we will
use the longer notation $a_{i}(G)$ instead of $a_{i}.$ )

It is well known that we always have in our setting: $a_{N}^{i}(E)\neq\infty$ . If $H_{N}^{i}(E)=(0)$ ,
we have by definition: $a_{N}^{i}(E)=-\infty$ and $e_{N}^{i}(E)=\infty$ . If $S$ is genCM w.r. $t$ . $S_{+}$ , both
$a_{N}^{i}(S)$ and $e_{N}^{i}(S)$ are finite for $i<\dim S$ (unless $H_{N}^{i}(S)=(0)$ ) by the above charac-
terization of the generalized Cohen-Macaulay property.

Let $\hat{S}_{0}$ be the $\mathfrak{n}$-adic completion. Then it holds that $H_{N}^{i}(S)\otimes_{S_{0}}\hat{S}_{0}\cong H_{\hat{N}}^{i}(\hat{S})$ , where
$\hat{S}=S\otimes_{S)}\hat{S}_{0}$ and $\hat{N}=N\otimes_{S_{0}}\hat{S}_{0}$ . Thus saying that $S$ is genCM w.r. $t$ . $S_{+}$ is equivalent
to saying that $\hat{S}$ is genCM w.r. $t.\hat{S}_{+}$ . For a finitely generated graded $S$-module $E$ ,
we denote the depth of $E_{N}$ over the local ring $S_{N}$ by depthE.

For the rest of this section, we assume that the ideal $I\subseteq A$ has positive height. In
particular, we know in this case that $\dim R=d+1$ .

We will frequently make use of the following two short exact sequences which were
introduced by Huneke in [Hu]. Here, $R_{+}$ denotes the irrelevant ideal of $R$ .

$0arrow R_{+}arrow Rarrow Aarrow 0$ $(S1)$

$0arrow R_{+}(1)arrow Rarrow Garrow 0$ $(S2)$

LEMMA 2.3. Suppose that $R_{A}(I^{s})$ is Cohen-Macaulay for some $s>0$ . Then the

foll wing holds:
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(a) $a(G)<0$ .
(b) $[H_{M}^{i}(R)]_{0}=(0)$ for all $i\in Z$ .

PROOF. Since $R_{A}(I^{s})$ is Cohen-Macaulay, we get from [TI, 1.1]: $a(G_{A}(I^{s}))<0$ .
Knowing this, the following formula from [HRZ] (which holds in our setting by
[HZ, 4.2] $)$ shows (a):

$a(G_{A}(I^{s}))=[ \frac{a(G)}{s}]$ (Here, $[\cdot]$ denotes the integral part.)

Let $M’:=M\cap R_{A}(I^{s})$ , which is the maximal homogeneous ideal of $R_{\Lambda}(I^{s})$ . Since
$R_{A}(I^{s})\cong R^{(s)}$ , we then have:

$[H_{M’}^{i}(R_{A}(I^{s}))]_{n}\cong[H_{M}^{i}(R)^{(s)}]_{n}=[H_{M}^{i}(R)]_{n\cdot s}$

(cf. [GW, (3.1.1)]. Thus $[H_{M}^{i}(R)]_{n\cdot s}=(0)$ for all $i\leq d$ and $n\in Z$ since $R_{A}(I^{s})$ is Cohen-
Macaulay. The remaining case $i=d+1$ follows from the fact, that we always have:
$a_{M}^{i}(R)=-1$ (cf. e.g. [GN, Part I (6.3)]). $\square$

LEMMA 2.4. Suppose that $R_{A}(I^{s})$ is Cohen-Macaulay for some $s>0$ . Then we have
for $i\in Z$ :

(a) If $a_{i-1}<0$ , then $[H_{M}^{i}(R)]_{n}=(0)$ for all $n\geq 0$ .
(b) If $a_{i-1}<0$ and if $a_{i}\geq 0$ , then $a_{i}<a_{i+1}$ .

PROOF. Observe first, that we always get from sequence $(S1)$ : $[H_{M}^{i}(R_{+})]_{n}\cong$

$[H_{M}^{i}(R)]_{n}$ for $n\neq 0$ . Now, since $a_{i-1}<0$ , we get from sequence $(S2)$ for $n\geq 0$ :

$0arrow[H_{M}^{i}(R)]_{n+1}arrow[H_{M}^{i}(R)]_{n}$

from which we see, that $[H_{M}^{i}(R)]_{n}=(0)$ for $n\geq 0$ . (Otherwise we would get by the
above injective map that $[H_{M}^{i}(R)]_{0}\neq(0)$ , which is a contradiction to Lemma 2.3
$(b).)$ Hence assertion (a) follows.

So we get, by applying local cohomology functors to $(S2)$ , for $n\geq 0$ :

$0arrow[H_{M}^{i}(G)]_{n}arrow[H_{M}^{i+1}(R)]_{n+1}arrow[H_{M}^{i+1}(R)]_{n}arrow[H_{M}^{i+1}(G)]_{n}$

from which we see immediately:

(1) $[H_{M}^{i+1}(R)]_{a_{i}+1}\neq(0)$

In order to show assertion (b), we assume that $a_{i}\geq a_{i+1}$ , i.e. $[H_{M}^{i+1}(G)]_{n}=(0)$ for
$n\geq a_{i}+1$ . Then we get the following isomorphisms from the above sequence:
$[H_{M}^{i+1}(R)]_{n+l}\cong[H_{M}^{i+1}(R)]_{n}$ for $n\geq a_{i}+1$ , which together with (1) imply: $[H_{M}^{i+1}(R)]_{n}\neq$

(0) for all $n\geq a_{i}+1$ . But this is a contradiction and therefore we must have:
$a_{i}<a_{i+1}$ . $\square$

PROPOSITION 2.5. The following two conditions are equivalent:
(a) $R_{\Lambda}(I^{s})$ is a Cohen-Macaulay ring for some $s>0$ .
(b) $R$ is a genCM ring $w.r.t$. $R_{+}$ and $[H_{M}^{i}(R)]_{0}=(0)$ for all $i\in Z$ .
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PROOF. $(b)\Rightarrow(a)$ : Take an integer $s$ such that $s> \max\{|a_{M}^{i}(R)|, |e_{M}^{i}(R)|\}$ for
all $i<\dim R$ with $H_{M}^{i}(R)\neq(0)$ . This is possible by [TI, 2.2] (see our remarks
after Definition 2.2). Using the isomorphism $[H_{M}^{i},(R_{A}(I^{s}))]_{n}\cong[H_{M}^{i}(R)]_{n\cdot s}$ , where
$M’=M\cap R_{A}(I^{s})$ , implies now that $R_{A}(I^{s})$ is a Cohen-Macaulay ring as claimed.
$(a)\Rightarrow(b)$ : We may assume that $A$ is complete. (See the part below Definition
2.2.) Suppose that $R_{\Lambda}(I^{s})$ is Cohen-Macaulay. Then by [HIO, (18.23)], $A$ is equi-
dimensional, and hence it follows from [HIO, (18.23)] again that $R_{M}$ is equidimen-
sional. On the other hand, Proj $(R)$ is a Cohen-Macaulay scheme since Proj $(R)\cong$

$Proj(R_{\Lambda}(I^{s}))$ . Hence by Lemma 2.1, $R$ is genCM w.r. $t$ . $R_{+}$ . The rest of the proof now
follows from Lemma 2.3 (b). $\square$

PROOF OF PROPOSITION 1.3. The implication from (b) to (a) holds without any
assumptions by Theorem 1.1. Therefore we just have to show the other direction.
From Lemma 2.3 (a) we get $a(G)<0$ . Together with this, one of the two assumptions
of the theorem is sufficient to see by Lemma 2.4 (b) that all i-th $a$-invariants of $G$ are
negative (or -co). Observe, that $a_{0},$

$\ldots,$ $a_{g-1}=-\infty$ by the characterization of depth
via local cohomology. We want to apply Theorem 1.1 to see that $R_{A}(I_{r})$ is Cohen-
Macaulay for some $r>0$ . In order to do this, it just remains to show that:
$[H_{M}^{i}(G)]_{n}=(0)$ for all $n<<0$ and all $i<d$ . But this we can see from the Cohen-
Macaulayness of $R_{A}(I^{S})$ as follows: From Proposition 2.5 we get that $R$ is genCM
w.r. $t$ . $R_{+}$ . By [TI, 2.2] this implies: $[H_{M}^{i}(R)]_{n}=(0)$ for all $n<<0$ and all $i<$

$d+1$ . Using sequence $(S2)$ , we see that we then also have: $[H_{M}^{i}(G)]_{n}=(0)$ for all
$n<<0$ and all $i<d$ . This was to show. $\square$

REMARK. Some of the auxiliary results which we used to prove Proposition 1.3 are
stated in [HZ, 4.7 (ii)]. But the result there (though stated for arbitrary ideals) and its
proof (which refers to [Hol]) only hold for the $\mathfrak{m}$-primary case (in the preprint-version of
that paper). Therefore we did not refer to [HZ, 4.7 (ii)], but gave new proofs for
everything we needed to show Proposition 1.3. This was communicated to the authors
of [HZ] by the first author of the present work.

The following example shows that it is not possible to improve Theorem 1.2 (i.e. the
statement of the theorem does not have to hold if depth $G<d-1$ ).

EXAMPLE 2.6. Let $B=k[[X, Y, Z]]$ be the formal power series ring over a field
$k$ . Let $A=B/(XY-Z^{2})B$ and $I=(X^{2}, Y^{2}, XZ, YZ)A$ . Then $R_{A}(I^{s})$ is a Cohen-
Macaulay ring for all $s\geq 2$ , but $R_{A}(I_{r})$ is not Cohen-Macaulay for any $r\geq 1$ .

PROOF. Let $L=(X^{2}, Y^{2}, XZ, YZ, Z^{2})A$ and $J=(X^{2}, Y^{2})A$ . Then we can check
that $L^{2}=JL,$ $I\neq L$ and $Z^{2}I\subseteq I^{2}$ . Hence $R_{A}(L)$ is a Cohen-Macaulay ring of
dimension 3 (cf [VV, 3.1]). Note that $L^{2}=IL$ . Let $n\geq 2$ . Then

$L^{n}=LI^{n-1}=I^{n}+Z^{2}I^{n-1}=I^{n}$ .



458 T. KORB and Y. NAKAMURA

Consider the following exact sequence:

$0arrow Rarrow R_{A}(L)arrow Carrow 0$ ,

where $R=R_{A}(I)$ and $C=\oplus_{n\geq 0}L^{n+1}/I^{n+1}$ . We observe that $C$ is concentrated in
degree 1 and has dimension $0$ as an $R$-module. Therefore we get from the above
sequence:

$H_{M}^{i}(R)\cong\{$

(0) $i=0$

$[H_{M}^{i}(R)]_{1}\cong L/I$ $i=1$

(0) $i=2$

Hence by Theorem 1.1 and the isomorphism $[H_{M’}^{i}(R_{A}(I^{s}))]_{n}\cong[H_{M}^{i}(R)]_{n\cdot s}$ , we obtain the
statement of the example. $\square$

Another example where all $R_{A}(I^{s})$ are Cohen-Macaulay for $s\geq 2$ , but no corre-
sponding multi-Rees algebra is Cohen-Macaulay, was constructed by Schenzel and can
e.g. be found in [HRS]. And in [Hol, 3.6], Hoa also gives an example which is similar
to the one above, though his ring is not a hypersurface. (Hoa does not consider multi-
Rees algebras. But he gives an explicit description of the local cohomology of the
corresponding form ring which can be used in Theorem 1.1 to see that his example
belongs to the class of examples described here.)

Next, we will describe the situation that $\dim A=1$ .

REMARK 2.7. Suppose that $\dim A=1$ and $I$ is $\mathfrak{m}$-primary. Then the Cohen-
Macaulayness of $R_{A}(I^{s})$ for some $s>0$ implies by [HIO, (45.4)] that $A$ is Cohen-
Macaulay and $I^{s}$ is principal. But then $I$ must be principal, too (by [Sa, Prop. 1]).

This yields that the following conditions are equivalent:
(a) $R_{\Lambda}(I^{s})$ is a Cohen-Macaulay ring for some $s>0$ .
(b) $R_{\Lambda}(I_{r})$ is a Cohen-Macaulay ring for some $r>0$ .
(c) $R$ is a Cohen-Macaulay ring.
(b) $G$ is a Cohen-Macaulay ring and $a(G)<0$ .

(See also Corollary 3.2.)

All of Remark 2.7 above also follows from Theorem 1.2 together with Theorem 1.1
and [TI, 1.1], observing that $G$ is Cohen-Macaulay and that the reduction exponent of $I$

is zero in this case.
In the next section we will prove other results on how the Cohen-Macaulay

properties of $R_{A}(I_{r})$ and $R_{A}(I)$ are related. But we want to mention here one more
known result (due to Ooishi) for the cases that $\dim A=2$ or 3, though it needs a
Gorenstein property in its assumptions:

REMARK 2.8. Let $I$ be an $\mathfrak{m}$-primary ideal in a Cohen-Macaulay local ring $A$ of
dimension 2 or 3. Suppose that $R_{A}(I^{s})$ is a Gorenstein ring for some $s>0$ . Then $R$ is
Cohen-Macaulay.
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This follows from [Oo, 4.3], using the fact that $s\leq d-1$ ( $cp$. [HRZ, 4.1] or [Oo, 4.1]).
Our next target in this section is to find relations between the smallest numbers $s$

and $r$ such that $R_{A}(I^{S})$ and $R_{A}(I_{r})$ can be Cohen-Macaulay. Recall that we always
have: $s\leq r$ . In Theorem 2.12 we will sum up some conditions which guarantee the
equality $s=r$ under the assumption that depth $G\geq d-1$ . But first, we need some
Lemmata. In the proofs of the following statements, we will frequently make use of the
fact that:

$[H_{M}^{i}(R_{+})]_{n}\cong[H_{M}^{i}(R)]_{n}$ for $n\neq 0$ ,

which follows from sequence $(S1)$ , without mentioning it explicitly.

LEMMA 2.9. Suppose that $R_{A}(I^{s})$ is Cohen-Macaulay for some $s>0$ . Then we have
the inequality: depth $R\geq depthG+1$ .

PROOF. Let $i\leq depthG$ . From the sequences $(S1)$ and $(S2)$ we get the following
injective maps for all $n\leq-2$ :

$0arrow[H_{M}^{i}(R)]_{n+l}arrow[H_{M}^{i}(R)]_{n}$

Hence: $[H_{M}^{i}(R)]_{n}=(0)$ for all $n\leq-1$ since the Cohen-Macaulayness of $R_{A}(I^{s})$ implies
$[H_{M}^{i}(R)]_{m\cdot S}=(0)$ for all $m\in Z$ as we have already seen in the proof of Lemma
2.3. But since $a_{i-1}=-\infty$ , we now get by Lemma 2.4 (a): $H_{M}^{i}(R)=(0)$ . $\square$

LEMMA 2.10. Suppose that $R_{A}(I^{s})$ is Cohen-Macaulay for some $s>0$ . Assume
moreover that depth $A=depthG=:g$ . Then the following holds:

If $a_{g}\leq-2$ , then $[H_{M}^{g+1}(R)]_{n}\neq(0)$ for all $a_{g}+1\leq n\leq-1$ .

In particular, we have: $s\geq-a_{g}$ .

PROOF. Observe first that depth $R\geq g+1$ by Lemma 2.9. Therefore we get from
the long exact sequence of local cohomology coming from sequence $(S1)$ :

(2) $[H_{M}^{g+1}(R_{+})]_{0}\neq(0)$ .

NOW, the injective maps:

$0arrow[H_{M}^{g+1}(R_{+})]_{n+1}arrow[H_{M}^{g+1}(R)]_{n}$ $(n\geq a_{g}+1)$ ,

which we get from sequence $(S2)$ imply together with (2) the statement of the
lemma. $\square$

LEMMA 2.11. Suppose that $R_{A}(I^{S})$ is Cohen-Macaulay for some $s>0$ . Then we
have: depth $A\geq depthG$ .

PROOF. Put $f:=depthA$ . Then we get from sequence $(S1)$ together with Lemma
2.3 (b) that:

(3) $[H_{M}^{f+1}(R_{+})]_{0}\neq(0)$ .
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Assume now: $depthG>depthA$ . Then we have $Mf(G)=(0)$ and get so from
sequence $(S2)$ the following maps:

(4) $0arrow[H_{M}^{f+1}(R_{+})]_{n+1}arrow[H_{M}^{f+1}(R)]_{n}$

If (3) holds, we can use the maps (4) to see that $[H_{M}^{f+1}(R)]_{n}\neq(0)$ for all $n<<0$ . But
this is a contradiction to Proposition 2.5 which says that the i-th local cohomology of $R$

is concentrated in finitely many degrees for $i\leq d$ . $\square$

THEOREM 2.12. Suppose that depth $G\geq d-1$ and that one of the following con-
ditions holds:

(i) $a(G)\leq e_{d-1}$ .
(ii) $a(G)\leq a_{d-1}$ and $[H_{M}^{d-1}(G)]_{n}\neq(0)$ for all $e_{d-1}\leq n\leq a_{d-l}$ .

(iii) $A$ is not Cohen-Macaulay and $[H_{M}^{d-1}(G)]_{n}\neq(0)$ for all $e_{d-1}\leq n\leq a_{d-1}$ .
(iv) $e_{d-1}\geq-2$ .
(v) $e_{d-1}\leq-3$ and $[H_{M}^{d-1}(G)]_{n}\neq(0)$ for all $e_{d-1}\leq n\leq-3$ .

Then, for any $s\in N$ , the following statements are equivalent:
(a) $R_{A}(I^{S})$ is a Cohen-Macaulay ring.
(b) $R_{A}(I_{S})$ is a Cohen-Macaulay ring.

Observe that the assertion of the above theorem holds trivially without any
additional assumptions if depth $G=d$ (i.e. $G$ is Cohen-Macaulay), since in this case $R$ is
Cohen-Macaulay by Lemma 2.3 (a) and [TI, 1.1].

PROOF. We only have to show the implication from (a) to (b) and may assume that
depth $G=d-1$ (cp. the above remark). From Theorem 1.2 we know that some multi-
Rees algebra is Cohen-Macaulay. By Theorem 1.1 we then get that $a_{d-1}$ and $a(G)$ are
negative (hence so is $e_{d-1}$ ) and that $R_{A}(I_{r})$ is Cohen-Macaulay for all $r\geq-e_{d-1}$ , but for
no $r<-e_{d-1}$ . Moreover, we get from Theorem 1.1 that:

$[H_{M}^{d}(R)]_{n}=(0)$ for $n\not\in\{e_{d-1}+1, \ldots, -1\}$ .

This implies that $R_{A}(I^{r})$ is also Cohen-Macaulay for all $r\geq-e_{d-1}$ (see the arguments
given after Theorem 1.1). In order to prove the theorem, we have to show that $R_{A}(I^{r})$

is not Cohen-Macaulay for any $r<-e_{d-1}$ . From sequence $(S2)$ and Lemma 2.9 we get
the following sequences:

$0arrow[H_{M}^{d-1}(G)]_{n}arrow\varphi_{n}[H_{M}^{d}(R_{+})]_{n+1}arrow\psi_{n}[H_{M}^{d}(R)]_{n}arrow[H_{M}^{d}(G)]_{n}$ .

We may exclude the case $e_{d-1}=-1$ since this corresponds by Theorem 1.1 to the trivial
case that $R$ is Cohen-Macaulay. Suppose now that $e_{d-1}=-2$ . Then the injective map
$\varphi_{-2}$ implies that $[H_{M}^{d}(R)]_{-1}\neq(0)$ . This shows the assertion of the theorem under
assumption (iv).

TO prove the theorem under any of the other assumptions, we may assume from
now on that $e_{d-1}\leq-3$ . To see that $R_{A}(I^{r})$ is not Cohen-Macaulay for any $r<-e_{d-1}$ ,
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it is enough to show that the following holds:

(5) $[H_{M}^{d}(R)]_{n}\neq(0)$ for each $n=e_{d-1}+1,$ $\ldots$
$,$

$-2$ .

Assume now that condition (v) holds. Then (5) follows simply from the injectivity of
$\varphi_{n}$ . If condition (i) holds, we first have to observe that $[H_{M}^{d}(R)]_{e_{d-1}+1}\neq(0)$ , which
follows from the injectivity of $\varphi_{e_{d- 1}}$ . Now the surjectivity of $\psi_{n}$ for $e_{d-1}<n$ implies
(5). From Lemma 3.1 we will see that condition (ii) is just a special case of condition
(iii), which remains to be proven. If $a_{d-1}\geq-3$ , we can again simply make use of the
injectivity of $\varphi_{n}$ to see that (5) holds. For $a_{d-1}<-3$ we only obtain with this
argumentation that: $[H_{M}^{d}(R)]_{n}\neq(0)$ for each $n=e_{d-l}+1,$

$\ldots,$
$a_{d-1}+1$ . But what is

missing for (5) to hold follows from Lemma 2.10 since depth$A=d-1$ by Lemma
2.11. $\square$

REMARK 2.13. If anyone of the Rees algebras in Theorem 2.12 is Cohen-Macaulay
for some $s>0$ , we can choose $s:=-e_{d-1}$ to obtain that $R_{A}(I^{s})$ and $R_{A}(I_{s})$ are Cohen-
Macaulay and that this $s$ is the smallest integer with this property, because depth $G$

$\geq d-1$ and $[H_{M}^{d-1}(G)]_{n}=(0)$ for all $n<e_{d-1}$ .
The following example shows that the condition $a(G)\leq e_{d-1}$ of the above theorem

e.g. holds for form rings of parameter ideals in Buchsbaum local rings. And Lemma
3.1 of the next section in particular tells us that the conditions $a(G)\leq e_{d-1}$ or
$a(G)\leq a_{d-1}$ of Theorem 2.12 always imply (under the assumption depth $G\geq d-1$ ) that
$(A, \mathfrak{m})$ is not Cohen-Macaulay.

Furthermore, the following example will show that we cannot expect $R$ to be
Cohen-Macaulay if we already know that $R_{A}(I^{S})$ or even $R_{A}(I_{r})$ is Cohen-Macaulay.
In particular, in Theorem 1.2 the multi-Rees algebra cannot be replaced by the Rees
algebra in general. This also illustrates Theorem 2.12.

EXAMPLE 2.14. Let $A$ be a Buchsbaum local ring with $\dim A=d>0$ and
depth$A=d-1$ . (E.g. [SV, Thm. 3] and [Gol, 1.2] guarantee the existence of such a
ring $A$ ).

NOW let $I$ be a parameter ideal of $A$ . Then we get from [Go2]:

$[H_{M}^{i}(G)]_{n}=\{$

$H_{\mathfrak{m}}^{i}(A)$ for $n=-i$
for all $0\leq i<d$

(0) for $n\neq-i$

and $a(G)\leq-d$ .

(This description of the local cohomology of $G$ does not depend on the condition
depth $A=d-1.$ ) So we have $a_{0},$

$\ldots,$ $a_{d-2}=-\infty,$ $a_{d-l}=e_{d-1}=1-d$ and $a(G)<0$ .
If we choose $d\geq 3$ , then $R$ is not Cohen-Macaulay by [TI, 1.1] but $R_{A}(I_{d-1})$ is Cohen-
Macaulay by Theorem 1.1.

The smallest integer $r$ such that $R_{A}(I_{r})$ is Cohen-Macaulay is equal to $d-1$ (also by
Theorem 1.1). Furthermore, we get that $R_{A}(I^{s})$ is Cohen-Macaulay for all $s\geq d-1$
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and Theorem 2.12 tells us that $s:=d-1$ is the smallest number such that $R_{A}(I^{S})$ is
Cohen-Macaulay.

We close this section with an observation which is related to question II of the
introduction. Question II could also be formulated as: When does it follow that the
Cohen-Macaulayness of $R_{A}(I_{r+1})$ implies the same property for $R_{A}(I_{r})$ ? The next
proposition, though easy to prove, is an interesting observation in this direc-
tion. (Necessary and sufficient conditions for the implication in the above question can
be found in [HHK].)

PROPOSITION 2.15. Suppose that $R_{A}(I^{s})$ is Cohen-Macaulay for some $s>0$ . If
$R_{A}(I_{sm+1})$ is Cohen-Macaulay for some $m>0$ , then $R_{A}(I_{sm})$ is also Cohen-Macaulay.

PROOF. Since $R_{A}(I_{sm+1})$ is Cohen-Macaulay, we get from Theorem 1.1 (b) that
$e_{M}^{i}(R)\geq-sm$ for all $i\leq d$ . But from the proof of Lemma 2.3 we know:

$[H_{M}^{i}(R)]_{s\cdot n}=(0)$ for all $n\in Z$ and $i\leq d$ ,

which in particular holds for $n=m$ . Both together imply: $e_{M}^{i}(R)\geq-sm+1$ for all
$i\leq d$ . Again by Theorem 1.1 (b) this shows that $R_{A}(I_{sm})$ is Cohen-Macaulay. $\square$

3. Proof of Theorem 1.4 and 1.5.

Throughout this section, we will assume that $A$ is a Cohen-Macaulay local ring with
infinite residue field $A/\mathfrak{m}$ . In order to prove Theorem 1.4 and 1.5, one can achieve this
situation by passing from $A$ to the ring $A[X]_{\mathfrak{m}A[X]}$ where $X$ is an indeterminate over
$A$ . Let $J$ be a minimal reduction of $I$ , that is a subideal of $I$ generated by $l(I)$ -many
elements and satisfying $I^{n+1}=JI^{n}$ for some $n>0$ (cf. [NR]). Here, $l(I)$ denotes the
analytic spread of $I$ , that is: $l(I):=\dim G\otimes_{A}A/m$ . In particular, $l(I)=0$ implies that
$I$ is nilpotent. It is well known that: $ht_{A}(I)\leq l(I)\leq\dim A$ . Let $r_{J}(I)$ stand for the
reduction exponent of $I$ with respect to $J$ , that is: $r_{J}(I):= \min\{n>0|I^{n+1}=JI^{n}\}$ .

The next lemma is taken from [Ko] and provides us with a generalization of a result
of Marley (cf. [Ma, 2.1]), who proved the same for $\mathfrak{m}$-primary ideals with a different
method. The authors were informed by E. Hyry that the lemma is also shown in a
preprint of Hoa (see Theorem 5.2 in [Ho2]). The lemma will play a key role in the
sequel.

LEMMA 3.1. Let $A$ be Cohen-Macaulay and $l(I)>0$ . If $g:=depthG<d$ , then:
$a_{g}<a_{g+1}$ .

If ht(I) $>0$ , the lemma also holds under the weaker assumption: depth $A>$

depth $G$ (cp. [Ko]). We also note that for $i<g$ we have by the description of depth via
local cohomology: $a_{i}=-\infty$ .

PROOF. Choose an integer $n>a_{g+1}$ . Then we get from sequence $(S1)$ the
inclusion $0arrow[H_{M}^{g+1}(R_{+})]_{n}arrow[H_{M}^{g+1}(R)]_{n}$ and from sequence $(S2)$ the $su\dot{\eta}ective$
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map $[H_{M}^{g+1}(R_{+})]_{n+1}arrow[H_{M}^{g+1}(R)]_{n}arrow 0$ . Hence we have: $[H_{M}^{g+1}(R_{+})]_{n}=(0)$ for all
$n>a_{g+1}$ by the Artinian property of $H_{M}^{g+1}(R_{+})$ . By [HM, 3.10] we know:
depth $R=$ depth $G+1$ , since depth $A>depth$ G. (The proof of this in [HM] needs
$\dim R=d+1$ which is guaranteed by our assumption $l(I)>0$ since $A$ is equi-
dimensional.) So we get from sequence $(S2):0arrow[H_{M}^{g}(G)]_{n-1}arrow[H_{M}^{g+1}(R_{+})]_{n}$ for all
$n\in Z$ . Together with the above, this yields: $[H_{M}^{g}(G)]_{n-1}=(0)$ for all $n>a_{g+1}$ . This
implies the statement of the lemma. $\square$

AS a first application of the lemma, we obtain the following corollary which adds
one more point to the equivalences of Remark 2.7 (under the assumption that $A$ is
Cohen-Macaulay):

COROLLARY 3.2. Let $A$ be $a$ 1-dimensional Cohen-Macaulay ring and I an m-
primary ideal. If $a(G)<0$ , then $R$ is a Cohen-Macaulay ring and I is a principal ideal.

PROOF. From Lemma 3.1, the first assertion follows since we have in general:
$a_{0}\geq 0$ unless $G$ is Cohen-Macaulay. That $I$ is principal follows from [HIO,
(45.4) $]$ . $\square$

We need one more lemma in the case that $\dim A=1$ .
LEMMA 3.3. Let I be an ideal in 1-dimensional Cohen-Macaulay local ring $A$ such

that $A/I$ is $a$ 1-dimensional Cohen-Macaulay ring. If $a(G)\leq 1$ , then $G$ is Cohen-
Macaulay.

PROOF. We first assume: $l(I)=1$ . Look at the long exact sequence of local
cohomology coming from $0arrow G_{+}arrow Garrow A/Iarrow 0$ . Then we get an isomorphism
$H_{M}^{0}(G_{+})\cong H_{M}^{0}(G)$ since depth $A/I>0$ . Now $a(G)\leq 1$ , hence $a_{0}(G)\leq 0$ by Lemma
3.1, while $H_{M}^{0}(G_{+})$ is concentrated in positive degrees. Thus $H_{M}^{0}(G)=(0)$ and hence $G$

is Cohen-Macaulay.
Next we consider the case that $l(I)=0$ . Then $I$ is nilpotent. Put $r:=$

$\max\{n\in Z|I^{n}\neq(0)\}$ . Then it follows by [GH, 2.2] that $[H_{M}^{i}(G)]_{r}\cong H_{\mathfrak{m}}^{i}(I^{r})$ , while
$H_{\mathfrak{m}}^{0}(I^{r})=(0)$ and $a(G)\leq 1$ . Hence $r\leq 1$ , i.e. $G\cong A/I\otimes I$ . Let $x$ be a system of
parameters of $A$ . Then $x$ is $A/I$-regular and $I$-regular (Note that $A/I$ and $I$ are Cohen-
Macaulay $A$ -modules of dimension 1.) Thus $x$ is $G$-regular, which implies that $G$ is
Cohen-Macaulay. Hence the lemma follows. $\square$

PROPOSITION 3.4. Let $A$ be Cohen-Macaulay of $\dim A\geq 2$ . Suppose that $ht_{A}(I)\geq$

$d-1$ . Assume moreover that depth $G\geq d-1$ and $a(G)\leq 1-d$ . Then $G$ is Cohen-
Macaulay.

PROOF. Because $A/\mathfrak{m}$ is infinite, we can choose a superficial element $a\in I$ (see e.g.
[Na, \S 22] $)$ and by denoting the image of $at$ in $G$ by $z$, we have $[0:cz]_{n}=(0)$ for
$n>>0$ . NOW look at the following two sequences:

(6) $0arrow(0:_{G}z)(-1)arrow G(-1)arrow zGarrow 0$

(7) $0arrow zGarrow Garrow G/zGarrow 0$
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Since depth $G>0$ , we have:

(8) $H_{M}^{0}(0:_{G}z)=H_{M}^{0}(zG)=(0)$

by the above sequences.
We will first show the case $d=2$ and depth $G\geq 1$ . We know by Lemma 3.1 that

$a_{1}<a(G)\leq-1$ . On the other hand, we have by [GH, 2.2]:

(9) $H_{M}^{i}(0:_{G}z)= \bigoplus_{n\geq 0}H_{\mathfrak{m}}^{i}([0:_{G}z]_{n})$ for all $i$ .

Combining both, we see from $0arrow H_{M}^{1}(0:cz)arrow H_{M}^{1}(G)$ (which follows from sequence
(6) and (8) $)$ , that $H_{M}^{1}(0:_{G}z)=(0)$ . But from (9), we also get $H_{M}^{2}(0:_{G}z)=(0)$ since
$[0:cz]_{n}\subseteq I^{n}/I^{n+1}\subseteq A/I^{n+1}$ and $\dim A/I^{n+1}\leq 1$ . Hence $z$ is a non-zero divisor on
$G$ . From the sequence:

$0arrow G(-1)arrow Gzarrow G/zGarrow 0$

we get:

$0arrow H_{M}^{0}(G/zG)arrow H_{M}^{1}(G)(-1)$

We have already seen that $a_{1}\leq-2$ . Therefore, we can deduce from the above
injective map: $H_{M}^{0}(G/zG)=(0)$ . But this means depth $G/zG\geq 1$ and therefore:
depth $G=2$ . This was to show.

NOW suppose $d\geq 3$ . Using (9) and $\dim_{\Lambda}([0:_{G}z]_{n})\leq\dim A/I^{n+1}\leq 1$ we see:
$H_{M}^{i}(0:_{G}z)=(0)$ for $i\geq 2$ . But since depth $zG\geq 1$ by (8) and depth $G\geq 2$ we get from
sequence (6): depth$(0:cz)\geq 2$ . Hence $0:_{G^{Z}}=(0)$ , i.e. $z$ is a non-zero divisor on
$G$ . Furthermore, $a(G/zG)=a(G)+1$ , which follows from the sequence:

$H_{M}^{d-1}(G)arrow H_{M}^{d-l}(G/zG)arrow H_{M}^{d}(G)(1)$

and the fact that: $a_{d-1}<a(G)$ (cp. Lemma 3.1). We now see, that we can reduce to the
case $d=2$ . $\square$

PROOF OF THEOREM 1.4. $(b)\Rightarrow(a)$ follows from Theorem 1.1.
$(a)\Rightarrow(b)$ : By Theorem 1.1 we have: $depthG>0$ (since always $a_{0}\geq 0$) and
$a(G)<0$ . Hence the assertion immediately follows from Proposition 3.4. $\square$

LEMMA 3.5. Suppose that $ht_{\Lambda}(I)>0$ . Then there exists an element $a\in I$ such that
the image $z$ of $at\in R$ in $G$ fulfills the following two conditions:

(a) $[(0):cz]_{n}=(0)$ for all $n>>0$ .
(b) $z/1$ is part of a system of parameters of $G_{p}=G_{A_{\mathfrak{p}}}(I_{p})$ for all $\mathfrak{p}\in{\rm Min}_{A}(A/I)$ .

for
$p_{R\infty F}each\mathfrak{p}\in{\rm Min}_{\Lambda}(A/I)Then\mathscr{L}^{+}:=\mathscr{F}\cup(\bigcup_{p\in{\rm Min}(A/I)}^{J^{G)|Q\bigotimes_{a}A_{p}\in Assh_{G_{p}}(G_{p})\}}}\mathscr{G}_{p}p_{ut\mathscr{F}:=A.ss(G)\backslash V(G)and\mathscr{G}_{p}:=\{Q\in Spec}i_{S}finiteset.Since$

$\dim G_{p}>0$ and $\dim(G_{0})_{p}=0$ for all $p\in{\rm Min}_{A}(A/I),$ $G_{1}$ cannot be contained in any
$Q\in \mathscr{G}_{p}$ . And obviously, $G_{1}\not\cong Q$ for all $Q\in \mathscr{F}$ . Since $A/\mathfrak{m}$ is infinite, we can thus



Cohen-Macaulayness of multi-Rees algebras 465

choose $a\in I$ such that $z \in G_{1}\backslash \bigcup_{Q\in\ovalbox{\tt\small REJECT}}Q$ , where $z$ denotes the image of $at\in R$ in $G$ .
Then $z$ satisfies (b) of the lemma. (a) also holds since $z$ avoids by its choice all prime
ideals in $\mathscr{F}$ and is therefore a superficial element in $G$ (cp. e.g. [Na, (22.1)] or [Tr]). $\square$

PROOF OF THEOREM 1.5. It is enough to show the implication $(a)\Rightarrow(b)$ . Suppose
that $R_{A}(I_{r})$ is Cohen-Macaulay. By [TI, 1.1] and the fact that $a(G)<0$ which follows
from Theorem 1.1, it is enough to see the Cohen-Macaulayness of $G$ .

We will consider first the case of an integrally closed $\mathfrak{m}$-primary ideal $I$ in $A$ . Let $J$

be a minimal reduction of $I$ . By [Tr, 3.2] we have:

$r_{J}(I) \leq\max\{a_{i}(G)+i|0\leq i\leq 3\}$ ,

while Theorem 1.1 (and the above) tells us $a_{i}(G)<0$ for $i\leq 3$ . Thus we have $I^{3}=JI^{2}$ ,
and it follows that $I^{n+1}\cap J=JI^{n}$ for all $n\geq 2$ . On the other hand, by [It, 1.1], we
have $\overline{J^{2}}$ (’ $J=\overline{J}J$ since $J$ is generated by an $A$-regular sequence. Here $\overline{J}$ denotes the
integral closure of $J$ . Since $I=\overline{J}$ and $I^{2}\subseteq\overline{J^{2}}$, we get $I^{2}\cap J=JI$ . Hence by [VV,
2.7], $G$ is a Cohen-Macaulay ring.

NOW we take an ideal $I$ so that $A/I$ is a 1-dimensional Cohen-Macaulay
ring. Choose $a\in I$ such that the image $z$ of $at$ in $G$ is an element as in Lemma
3.5. Let $Q\in Ass_{G}((0):_{G}z)$ . Then $Q$ is a homogeneous ideal and $G_{+}\subseteq Q$ . Let
$\mathfrak{p}=Q\cap A$ . Then $I\subseteq p\subseteq m$ .

If $\mathfrak{p}\neq \mathfrak{m}$ , then $p\in{\rm Min}_{A}(A/I)$ and $A_{p}$ is a 2-dimensional Cohen-Macaulay
ring. Hence we get that $G_{A_{\mathfrak{p}}}(I_{p})$ is a Cohen-Macaulay ring by Theorem 1.4. (Note

that $R_{A}(I_{r})\otimes_{A}A_{p}$ is Cohen-Macaulay.) Hence $z/1$ is $G_{A_{\mathfrak{p}}}(I_{p})$ -regular by Lemma 3.5
and therefore: $((0):_{G}z)_{p}=(0)$ . But this is a contradiction.

So we have $\mathfrak{p}=\mathfrak{m}$ , i.e. $Supp_{G}((0):_{G}z)\subseteq\{MG\}$ . But we know from Theorem 1.1
that depth $G>0$ . So we get that $z$ is G-regular.

Let $B=A/aA$ . Then we have an isomorphism $G/zG\cong G_{B}(IB)$ by [VV, 2.1].
Furthermore, again by Theorem 1.1, $a_{i}(G)<0$ for all $i\leq 3$ . Thus we get
$a_{i}(G_{B}(IB))\leq 0$ for $i\leq 2$ . Hence it follows from Lemma 3.1 that depth $G_{B}(IB)>$

$0$ . We choose an element $b\in I$ once more in such a way that the image $w$ of $bt$ in
$G_{B}(IB)$ is an element as in Lemma 3.5. Let $Q\in Ass_{G_{B}(IB)}((0):c_{B}(IB)w)$ and
$\mathfrak{p}=Q\cap B$ . Then $\mathfrak{p}=mB$ . In fact, if $\mathfrak{p}\neq \mathfrak{m}B$, then $G_{B_{p}}(IB_{p})$ is Cohen-Macaulay
(Note the isomorphism $G/zG\cong G_{B}(IB)$ ). Thus $w$ is $G_{B_{\mathfrak{p}}}(IB_{p})$ -regular, which contra-
dicts the choice of $Q$ . Therefore we get $p=mB$ and $Q=mG_{B}(IB)+G_{B}(IB)_{+}$ . Hence
$w$ is a $G_{B}(IB)$ -regular element because depth $G_{B}(IB)>0$ .

Let $C=A/(a, b)A$ . Then $C$ is a 1-dimensional Cohen-Macaulay ring, ht$c(IC)=0$ ,
$a_{i}(G_{C}(IC))\leq 1$ and $C/IC(=A/I)$ is Cohen-Macaulay. Hence, by Lemma 3.3, $G_{C}(IC)$

is Cohen-Macaulay. Now, since $z$ and $w$ form a $G$-regular sequence and
$G/(z, w)G\cong G_{C}(IC)$ , we get that $G$ is a Cohen-Macaulay ring. Hence, by [TI, 1.1], $R$

is Cohen-Macaulay as claimed. $\square$
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