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1. Introduction.

In this paper we establish the existence of global Lipschitz continuous solutions to
the Cauchy problem for the one-dininsional quasilinear wave equation

(1.1) $\partial_{t}^{2}w-\partial_{X}\sigma(\partial_{X}w)+f(w)=0$ ,

for all $(x, t)\in R\cross(O, \infty)$ , with initial conditions

(1.2) $w(x, 0)=w_{0}(x)$ , $\partial_{t}w(x, 0)=w_{1}(x)$ ,

for all $x\in R$ . Here $f$ is a smooth function with $f(O)=0$ and $\sigma$ is a given smooth
function such that $\sigma’(u)\geq\gamma>0(\gamma>0)$ and $u\sigma’’(u)>0$ for $u\neq 0;w_{0}$ and $w_{1}$ are
bounded functions with compact support, $w_{0}$ is also Lipschitz continuous.

This equation models a vibrating string with an elastic extemal positional force and
can also be deduced (at a very formal level) by applying the principle of the “stationary
action” from the Lagrangian density given by

$\mathscr{L}_{1}(w_{t}, w_{X}, w)=\frac{1}{2}\iota d_{t}-\Sigma(w_{X})-F(w)$

where $\Sigma’=\sigma$ and $F’=f$ .
AS an example we can consider the quasilinear Klein-Gordon equation

(1.3) $\partial_{t}^{2}w-\partial_{X}\sigma(\partial_{X}w)+mw=0$ $(m\in R)$

and the quasilinear Sine-Gordon equation

(1.4) $\partial_{t}^{2}w-\partial_{X}\sigma(\partial_{X}w)+\sin w=0$ .

Let us notice that the semilinear versions of the equations (1.3), (1.4) exhibit linear
dispersive waves [Wh], although this behaviour has not yet been analyzed in detail in the
present case.

The Cauchy problem $(1.1)-(1.2)$ will be considered in the following equivalent
formulation. Denote by
(1.5) $u=\partial_{X}w$ , $v=\partial_{t}w$ .

Key words and phrases. Klein-Gordon and Sine-Gordon equations, hyperbolic nonhomogeneous systems,
shock waves, fractional step approximation, compensated compactness.



434 P. MARCATI and R. NATALINI

Then the functions $(u, v, w)$ satisfy the Cauchy problem

$\partial_{t}u-\partial_{X}v=0$ ,
(1.6)

$\partial_{t}v-\partial_{X}\sigma(u)=-f(w)$ ,

(1.7) $\partial_{t}w=v$ ,

for all $(x, t)\in R\cross(O, \infty)$ , with initial conditions

(1.8) $u(x, 0)=u_{0}(x)$ , $v(x, 0)=v_{0}(x)$ , $w(x, 0)=w_{0}(x)$ ,

for all $x\in R$ . Here $u_{0}:=\partial_{X}w_{0}$ and $v_{0}:=w_{1}$ .
Observe that $(1.6)-(1.7)$ is a nonhomogeneous system of conservation laws. The

local existence theorem for this class of problems was first proved in [DH], for initial
data having small total variation and in the class of weak entropy BV solutions, by
using a simple fractional step version of the Glimm’s scheme [G1]. Global solutions
were then obtained under some complete dissipative assumptions on the source term
([DH], Theorem 2) which are not verified in the present case. Other results of
convergence of the fractional step version of the Glimm’s scheme have been obtained in
[YW], for a nonhomogeneous system of isentropic gas dynamics $(\gamma=1)$ .

For $2\cross 2$ strictly hyperbolic systems, with genuinely nonlinear fields, a quite general
theory for $L^{\infty}$ solutions was developed by Di Pema $[DiP]$ . He used the theory of
invariant domains [CCS] to obtain the $L^{\infty}$ bounds of the parabolic approximations and
the method of compensated compactness [Ta] to show the existence of global weak
entropy solutions. Moreover, for (1.6), the existence of solutions in $L^{\infty}$ was also
established under some assumptions on the term $f$ , which could be depending on $u,$ $v$

but not on $w$ , and $\sigma$ having at most one inflection point in the strain hardening case
$[DiP]$ . Again the case $f(w)\not\equiv O$ cannot be directly handled by using this approach.

Here we deal with $(1.6)-(1.7)$ by devising a finite difference approximation of the
solutions, which is a modified (implicit) version of the fractional step Lax-Friedrichs and
Godunov schemes, in the spirit of [DCL], [MN1,2]. In Section 2 we give some
definitions and describe our scheme. The consistency and the convergence of uniformly
bounded approximations are shown in Section 3 and in Section 4, respectively. Finally,
in Section 5, under a sublinear assumption for the function $f$ , we obtain the $L^{\infty}$ bounds
(locally in time) for the approximating solutions and then the existence of global weak
entropy solutions, in particular for the equations (1.1) and (1.2).

2. The approximating solutions.

First we define the notion of weak entropy solutions for the problem $(1.6)-(1.8)$ .
Set $U=(u, v),$ $\mathscr{A}(U)=(-v, -\sigma(u)),$ $\mathscr{B}(w)=(0, -f(w))$ and $U_{0}=(u_{0}, v_{0})$ . The system
(1.6) is now denoted by

(2.1) $\partial_{t}U+\partial_{X}\mathscr{A}(U)=\mathscr{B}(w)$ .
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DEFINITION 2.1. The functions $(U, w)$ are a weak solution to $(1.6)-(1.8)$ if for all
smooth functions $\emptyset\in$ ( $C_{0}^{\infty}$ ($R\cross[0$ , co)) $)$

2 and $\chi\in C_{0}^{\infty}(R\cross[0, \infty))$ one has

$\int\int_{\{t\geq 0\}}\{U\cdot\phi_{t}+\mathscr{A}(U)\cdot\phi_{X}+\mathscr{B}(w)\cdot\phi\}dxdt$

(2.2) $+ \int_{\{t=0\}}U_{0}(x)\cdot\phi(x, 0)dx=0$ ,

(2.3) $\int\int_{\{t\geq 0\}}\{w\chi_{t}+v\chi\}dxdt+\int_{\{t=0\}}w_{0}(x)\chi(x, 0)dx=0$ .

Notice that, as a consequence of this definition, since $U$ is locally bounded, then $w$ is a
locally Lipschitz continuous function.

An entropy-entropy flux pair $(\eta, q)$ for (2.1) is a couple of smooth functions of $U$

such that

$Vq=V\eta\cdot V\mathscr{A}^{T}$ ,

where $V$ denotes the gradient respect to $U$ . A classical example of strictly convex
entropy function is the “mechanical energy”:

$\eta^{*}=\frac{1}{2}v^{2}+\int_{0}^{u}\sigma(s)ds$ .

In analogy with [La2] we give the following definition.

DEFINITION 2.2. The functions $U=(u, v)$ and $w$ are a weak entropy solution to the
problem $(1.6)-(1.8)\iota f$ and only $\iota f$

i) $(U, w)$ is a weak solution;
ii) for any convex entropy function $\eta$ one has

(2.4) $\partial_{t}\eta+\partial_{X}q\leq(V\eta)\cdot \mathscr{B}(w)$ in $\mathscr{B}’$ .

We recall also that the characteristic velocities for $(1.6)-(1.7)$ are given by

(2.5) $\lambda_{1}=-\sqrt{\sigma’(u)}$ , $\lambda_{2}=\sqrt{\sigma’(u)}$ , $\lambda_{0}=0$ .

The right (respectively left) eigenvectors $r_{i}$ (respectively $l_{i}$ ) corresponding to eigen-
values $\lambda_{i}(i=1,2)$ , can be taken in the form:

$r_{1}=(1, \sqrt{\sigma’(u)})^{T}$ , $r_{2}=(1, -\sqrt{\sigma’(u)})^{T}$ ;

$l_{1}=(\sqrt{\sigma’(u)}, 1)$ , $l_{2}=(-\sqrt{\sigma’(u)}, 1)$ .

The field associated to the eigenvalue $\lambda_{i}$ is said to be genuinely nonlinear if

$V\lambda_{i}\cdot r_{i}\neq 0$ , $(i=1,2)$ .
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In the present case we have

$V \lambda_{i}\cdot r_{i}=(-1)^{i}\frac{\sigma^{;/}(u)}{2\sqrt{\sigma(u)}}$

and then both the fields are not genuinely nonlinear for $u=0$ .
The Riemann invariants associated to $\lambda_{1}$ and $\lambda_{2}$ are given respectively by

(2.6) $\eta=v-g(u)$ , $\xi=v+g(u)$ ,

where $g(u)= \int_{0}^{u}\sqrt{\sigma’(s)}ds$ .
Then, in the Riemann invariants coordinates the system $(1.6)-(1.7)$ can be written

(formally)

(2.7) $\{$

$\partial_{t}\xi+\lambda_{1}\partial_{x}\xi=-f(w)$ ,
$\partial_{t}\eta+\lambda_{2}\partial_{X}\eta=-f(w)$ ,
$\partial_{t}w=\frac{\xi+\eta}{2}$ .

Let us recall now some backgrounds about admissibility of solutions to the Riemann
problem for the homogeneous system

(2.8) $\{$

$\partial_{t}u-\partial_{X}v=0$ ,
$\partial_{t}v-\partial_{X}\sigma(u)=0$ .

We have that across any discontinuity curve $(c(t), t)$ , a weak solution $(u, v)$ to (2.8)

satisfies the Rankine-Hugoniot condition

$\frac{v_{-}-v_{+}}{u_{+}-u_{-}}=\frac{\sigma(u_{-})-\sigma(u_{+})}{v_{+}-v_{-}}=\dot{c}$ ,

where $(u_{\pm}, v_{\pm})=(u, v)(c(t)\pm O, t)$ and $\dot{c}$ is the speed of the discontinuity. For any
$(u_{0}, v_{0})$ let the shock set through $(u_{0}, v_{0})$ be the set of points $(u, v)$ satisfying the
Rankine-Hugoniot condition

$\frac{v_{0}-v}{u-u_{0}}=\frac{\sigma(u_{0})-\sigma(u)}{v-v_{0}}=\dot{c}(u_{0}, v_{0};u, v)$ .

In [Lil,2], T.P. Liu proposed a pointwise entropy condition which is described as
follows: across every discontinuity the following condition is satisfied.

(2.9) $\dot{c}(u_{-}, v_{-};u_{+}, v_{+})\leq\dot{c}(u_{-}, v_{-};u, v)$ ,

for all $(u, v)$ on the shock set through $(u_{-}, v_{-})$ and $(u_{+}, v_{+})$ . This condition extends the
celebrated Lax shock inequalities (see [La2]) to systems which are not genuinely
nonlinear. Moreover, applying the results in [Lil,2], it is easy to show that the
Riemann problem for system (2.8) has a unique solution in the class of piecewise self-
similar solutions composed by constant states connected by shocks, rarefaction waves
and contact discontinuities for arbitrarily large initial data. The invariant regions for
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this system are of the form
$\{(u, v);|\xi|\leq N, |\eta|\leq N\}$ ,

for any $N\geq 0$ , where $\xi$ and $\eta$ are the Riemann invariants.
Moreover, by using the results in [CL], it is possible to show that these solutions are

also weak entropy solutions in the sense of Definition 2.2 (with $\mathscr{B}\equiv 0$). Let us point
out that condition (2.9) is equivalent to the entropy inequalities (2.4), and then to the
Lax shock inequalities, only in the genuinely nonlinear case, but in general it is strictly
stronger, see again [CL].

Let us describe now our finite difference scheme which combines the Lax-Friedrichs
scheme [Lal] with a suitable version of the fractional step method. A similar con-
struction can be handled by using the Godunov scheme.

Consider a partition of $R\cross(O, \infty)$ into horizontal layers. For any $k\in N$ let

$S_{k}=\{(x, t)|kh\leq t<(k+1)h\}$ ,

whereh is the time mesh-length. Fixk $\geq 0andsetI_{k}=\{i|i+kiseven\}$ . Then define,
for any $i\in I_{k}$ ,

$Q_{i,k}=\{(x, t)\in S_{k}|(i-1)l<x<(i+1)l\}$ ,

where $l$ is the space mesh-length.
Moreover we shall denote by $V^{h}=(U^{h}, w^{h})=(u^{h}, v^{h}, w^{h})$ the approximate solutions

we construct by using this partition.
We shall also require the following condition: for any $T>0$ there exists a positive

constant $C_{T}$ such that

(2.10) $\sup|\lambda_{i}(V^{h})|\leq\frac{l}{2h}\leq C_{T}$ , $i=1,2$ .

Let us start the construction of $V^{h}$ setting for any $i\in I_{-1}$

(2.11) $U^{i,0}= \frac{1}{2I}\int_{(i-1)l}^{(i+1)l}U^{0}(x)dx$ ,

where $U^{0}=(u^{0}, v^{0})$ , and for any $k>0$ and any $i\in I_{k-1}$

(2.12) $U^{i,k}= \frac{1}{2l}\int_{(i-1)l}^{(i+1)l}U^{h}$ ( $x$ , kh–O) $dx$ .

Then, for any $k\geq 0$ and $i\in I_{k}$ , let $\tilde{U}^{h}=(\tilde{u}^{h},\tilde{v}^{h})$ be the solution of the Riemann problem
for the homogeneous system (2.8), for $(x, t)\in Q_{i,k}$ , with the following initial condition at
$t=kh$

(2.13) $\tilde{U}^{h}(x, kh+O)=\{$

$U^{i-1,k}$ , $(i-1)l<x<il$ ,
$U^{i+1,k}$ , $il<X<(i-1)l$ .

Thanks to (2.10) the elementary waves do not interact on $S_{k}$ . At this point we
define the fractional step part of our scheme, which allows us to treat this special class of
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nonhomogeneous terms. Theref re we define on $S_{k}$

(2.14) $w^{h}(x, t)= \int_{-\infty}^{X}\tilde{u}^{h}(y, t)dy$ ,

(2.15) $u^{h}(x, t)=u^{h}(x, t)$ ,

(2.16) $v^{h}(x, t)= \tilde{v}^{h}(x, t)-\int_{u}^{t}f(w^{h}(x,s))ds$ .

3. Convergence of the scheme.

In this section we first establish the compactness properties of our scheme to use the
convergence result of Di Pema $[DiP]$ , which, in our case, can be stated in the following
way.

THEOREM 3.1 (Compactness framework). Let $\{V^{h}\}=\{(U^{h}, w^{h})\}$ be a sequence of
approximate solutions to $(1.6)-(1.7)$ which satisfy the following assumptions:

(H) for any $T>0$ there exists a constant $C_{T}>0$ such that

$|V^{h}(x, t)|\leq C_{T}$

for a. $e$. $(x, t)ER\cross(O, T)$ ;
(H) for any entropy-entropy flux pair $(\eta, q)$ for (1.6) the sequence of distributions

$\Lambda^{h}:=\partial_{t}\eta(U^{h})+\partial_{X}q(U^{h})$

is relatively compact in $H_{1oc}^{-1}(\Omega)$ for any bounded open set $\Omega\subseteq R\cross(O, \infty)$ . Then there is
a converging subsequence $\{V^{h_{v}}\}$ and a locally bounded limit function $V=(U, w)$ such that

i) $U^{h_{v}}arrow U$

in $L_{1oc}^{p}(R\cross(0, \infty))$ for any $p\in[1, \infty)$ , as $h_{v}arrow 0$ ;

ii) $w^{h_{v}}arrow w$

in $L^{\infty}weak-*$ , as $h_{v}arrow 0$ .
Moreover, $\iota f$ the following assumption is also verified
(H3) or any $T>0$ , there is a constant $D_{T}>0$ such that

$\ovalbox{\tt\small REJECT} V_{x,t}w^{h}|<D_{T}$

for a. $e$. $(x, t)\in R\cross(O, T)$ ;
then, by passing to another subsequence, still denoted by $h_{v}$ , we have

$w^{h_{v}}3w$

uniformly on compact subset of $R\cross(O, \infty)$ , as $h_{v}arrow 0$ , and $w$ is a locally Lipschitz
continuous in $R\cross(O, \infty)$ .

The proof of this statement follows closely the Di Pema’s argument and is omitted.
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In Section 5 under an additional sublinear growth assumption on $f$ we show that
our approximation satisfy the assumption $(H_{1})$ . Here we show that $(H_{2})$ holds true in
the general case for the approximation given by the scheme $(2.14)-(2.16)$ .

THEOREM 3.2. Assume that the initial data $u_{0},$ $v_{0},$ $w_{0}$ are bounded measurable
functions with compact support and $u_{0}=\partial_{X}w_{0}$ . Let $\{V^{h}\}=\{(U^{h}, w^{h})\}$ be a locally
uniformly bounded approximating sequence given by the scheme $(2.14)-(2.16)$ .

Then the sequence of measures

$\Lambda^{h}=\partial_{t}\eta(U^{h})+\partial_{X}q(U^{h})$

is a relatively compact subset of $H_{1oc}^{-1}$ , for all pair $(\eta, q)$ .

PROOF. Let $\Omega$ be a bounded open set contained in $R\cross[0, \infty)$ and let $T>0$ be
such that $\Omega\subseteq R\cross(O, T)$ . Let $N$ be an integer which satisfies $(N+1)h\geq T>Nh$ .
For any function $\emptyset\in C_{0}^{\infty}(\Omega)$ we have

(3.1) $\int\int(\eta(U^{h})\phi_{t}+q(U^{h})\phi_{X})dxdt$

$=\langle M^{h}+\Sigma^{h}+R^{h}+L^{h}, \phi\rangle$ ,

where

(3.2) $\langle M^{h}, \phi\rangle=\int[\phi(x, T)\eta(\tilde{U}^{h}(x, T-O))-\phi(x, 0)\eta(\tilde{U}^{h}(x, 0))]dx$ ;

(3.3) $\langle\Sigma^{h}, \phi\rangle=\int_{0}^{T}\sum_{c}\{\dot{c}[\tilde{\eta}]_{c}-[\tilde{q}]_{c}\}\phi(c(t), t)dt$ ;

(3.4) $\langle R^{h}, \phi\rangle=\int\int\{(\eta(U^{h})-\eta(\tilde{U}^{h}))\phi_{t}+(q(U^{h})-q(\tilde{U}^{h}))\phi_{X}\}dxdt$ ;

(3.5) $\langle L^{h}, \phi\rangle=\sum_{k=1}^{N}\sum_{i\in I_{k- 1}}\int_{(i-1)l}^{(i+1)l}(\eta(\tilde{U}^{h}(x, kh-O))-\eta(U^{h}(x, kh+O)))\phi(x, kh)dx$ .

We denote here by $c=c(t)$ any shock curve of the solution $\tilde{U}^{h}$ of the homogeneous
problem (2.11) in $S_{k}(k\geq 0)$ and by $\dot{c}$ the shock speed given by the Rankine-Hugoniot
formula; $[\tilde{\eta}]_{c}$ and $[\tilde{q}]_{c}$ denote the jump along $x=c(t)$ of the functions $\eta(\tilde{U}^{h})$ and $q(\tilde{U}^{h})$

respectively. It will be also convenient to introduce, for any piecewise smooth function
$U=U(x, t)$ , the notations $U_{\pm}^{k}=U(x,kh\pm 0)$ and $[U]_{k}=(U_{-}^{k}-U_{+}^{k})$ .

Also, for simplicity, in this proof we shall omit the index $h$ of the approximate
solutions $U^{h},\tilde{U}^{h}$ .

Then we take a strictly convex entropy function $\eta$ and its associated entropy flux
$q$ . It follows that

(3.6) $\sum_{k\geq 1}\int[\eta(\tilde{U})]_{k}dx+\int_{0}^{T}\sum_{c}\{\dot{c}[\tilde{\eta}]_{c}-[\tilde{q}]_{c}\}dt\leq C$ .

Note that, since the entropy inequality
$\dot{c}[\tilde{\eta}]_{c}-[\tilde{q}]_{c}\geq 0$
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is satisfied along the shock waves, we have

(3.7) $0 \leq\int_{0}^{T}\sum_{c}\{\dot{c}[\tilde{\eta}]_{c}-[\tilde{q}]_{c}\}dt\leq C$ .

On the other hand we have, by the Taylor expansion of the function $\eta$ ,

$\sum_{k\geq 1}\int[\eta(\tilde{U})]_{k}dx=\sum_{k=1}^{N}\sum_{i\in I_{k- 1}}\int_{(i-1)l}^{(i+1)l}(\eta(\overline{U}_{-}^{k})-\eta(\tilde{U}_{+}^{k}))dx$

$= \sum_{k=1}^{N}\sum_{i\in I_{k- 1}}\int_{(i-1)l}^{(i+1)l}V\eta(U_{+}^{k})\cdot(\tilde{U}_{-}^{k}-U_{+}^{k})dx$

(3.8)
$+ \sum_{k=1}^{N}\sum_{i\in I_{k- 1}}\int_{(i-1)l}^{(i+1)l}(\int_{0}^{1}(1-\theta)(\tilde{U}_{-}^{k}-U_{+}^{k})$

$\cross V^{2}\eta(U_{+}^{k}+\theta(\tilde{U}_{-}^{k}-U_{+}^{k}))(\tilde{U}_{-}^{k}-U_{+}^{k})^{T}d\theta)dx$

$=I_{1}+I_{2}$ .

Therefore, form the boundedness of $V^{h}$ , we have

$|I_{1}| \leq\sum_{k=1}^{N}\sum_{i\in I_{k- 1}}|\int_{(i-1)l}^{(i+1)l}\eta_{v}(U_{+}^{k})(\int_{(k-1)h}^{kh}f(w^{h})ds)dx|$

(3.9) $\leq\int_{0}^{T}\int_{-L}^{L}|\eta_{v}||f|dxdt\leq C$ .

Moreover the entropy function $\eta$ is strictly convex, namely there exists a constant $v>0$

such that, for any vector $U\in R^{2}$

$UV^{2}\eta U^{T}\geq v|U|^{2}$ .

Then by (3.6), (3.8), we have the energy inequality

(3.10) $\sum_{k=1}^{N}\sum_{i\in I_{k- 1}}\int_{(i-1)l}^{(i+1)l}|\tilde{U}_{-}^{k}-U_{+}^{k}|^{2}dx\leq\frac{2}{v}|I_{2}|\leq C$ .

Let us consider now the identity (3.1) for a general (not necessarily strictly convex)

entropy function $\eta$ . Set $\phi^{ik}=\phi(il, kh)$ and denote by

$\langle L_{1}^{h}, \phi\rangle=\sum_{k=1}^{N}\sum_{i\in I_{k- 1}}\phi^{ik}\int_{(i-1)l}^{(i+1)l}(\eta(U_{-}^{k})-\eta(\tilde{U}_{+}^{k}))dx$ ,

$\langle L_{2}^{h}, \phi\rangle=\sum_{k=1}^{N}\sum_{i\in I_{k- 1}}\int_{(i-1)l}^{(i+1)l}(\eta(\tilde{U}_{-}^{k})-\eta(U_{-}^{k}))\phi(x,kh)dx$ ,

$\langle L_{3}^{h}, \phi\rangle=\sum_{k=1}^{N}\sum_{i\in I_{k- 1}}\int_{(i-1)l}^{(i+1)l}(\eta(U_{-}^{k})-\eta(\tilde{U}_{+}^{k}))(\phi(x, kh)-\phi^{ik})dx$ .
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Then, for any entropy pair $(\eta, q)$ we derive, from (3.7), (3.8) and (3.10),

$|\langle M^{h},\phi\rangle|\leq C||\phi||_{C_{0}(\Omega)}$ ,

$|\langle\Sigma^{h},\phi\rangle|\leq C||\phi||_{C_{0}(\Omega)}$ ,

$|\langle L_{1}^{h}, \phi\rangle|\leq C||\phi||_{C_{0}(\Omega)}$ .

The contribution of the term $L_{2}^{h}$ includes the effects of the extemal force $f$

$| \langle L_{2}^{h}, \phi\rangle|=|\sum_{k=1}^{N}\sum_{i\in I_{k- 1}}\int_{(i-1)l}^{(i+1)l}(\eta(\tilde{U}_{-}^{k})-\eta(U_{-}^{k}))\phi(x, kh)dx|$

$\leq||\phi||_{C_{0}(\Omega)}\sum_{k=1}^{N}\sum_{i\in I_{k- 1}}\int_{(i-1)l}^{(i+1)l}|(\int_{0}^{1}\eta_{v}(U_{-}^{k}+\theta(\tilde{U}_{-}^{k}-U_{-}^{k}))d\theta)$

$\cross(\int_{(k-1)h}^{kh}f(w^{h})ds)|dx\leq C||\phi||_{C_{0}(\Omega)}$ .

Hence

$||(M^{h}+\Sigma^{h}+L_{1}^{h}+L_{2}^{h})||_{\ovalbox{\tt\small REJECT}}\leq C$ ,

where $\mathscr{M}=C_{0}^{*}$ is the space of bounded measures on $\Omega$ .
Therefore, as noticed by Di Pema $[DiP]$ ,

$M^{h}+\Sigma^{h}+L_{1}^{h}+L_{2}^{h}$

is in a compact subset of $W^{-1,ql}(\Omega)$ , for $1<q_{1}<2$ , as a consequence of the Murat’s
lemma [Mu]. Next we have, for $1/2<\alpha<1$ ,

$| \langle L_{3}^{h}, \phi\rangle|\leq\sum_{k=1}^{N}\sum_{i\in I_{k- 1}}\int_{(i-1)l}^{(i+1)l}|\eta(U_{-}^{k})-\eta(\tilde{U}_{+}^{k})||\phi(x, kh)-\phi^{ik}|dx$

$\leq h^{\alpha}||\phi||_{C_{0}^{\alpha}}\sum_{k}(\sum_{i}\int_{(i-1)l}^{(i+1)l}|\eta(U_{-}^{k})-\eta(\overline{U}_{+}^{k})|^{2}dx)^{1/2}$

$\leq Ch^{\alpha-1/2}||V\eta||_{L^{\infty}}||\phi||_{C_{0}^{\alpha}}(\sum_{k=1}^{N}\sum_{i\in I_{k- 1}}\int_{(i-1)l}^{(i+1)l}|U_{-}^{k}-\tilde{U}_{+}^{k}|^{2}dx)^{1/2}$

$\leq Ch^{\alpha-1/2}||\phi||_{C_{0}^{\alpha}}$ .

Then, by using the Sobolev embedding theorem

$||\phi||_{C_{0}^{\alpha}}\leq C||\phi||_{W_{0}^{1,q}}$

for all $q>2/(1-\alpha)$ .
The previous inequality leads to

$||L_{3}^{h}||_{W^{-1,q_{2}}}\leq Ch^{\alpha-1/2}$

for all $1<q_{2}<2/(1+\alpha)$ .
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Then
$M^{h}+\Sigma^{h}+L^{h}$

lies in a compact subset of $W^{-1,q0}(\Omega)$ , where $1<q_{0}= \min(q_{1}, q_{2})<2/(1+\alpha)$ .
Furthermore, from the boundedness assumptions on the approximating scheme, we

have that
$M^{h}+\Sigma^{h}+L^{h}=\Lambda^{h}-R^{h}$

is bounded in $W^{-1,r}(\Omega)(r>1)$ . Therefore, again from the Murat’s lemma, it follows
that

$M^{h}+L^{h}+\Sigma^{h}$

lies in a compact subset of $1^{-1}\propto(\Omega).Moreover$ , since

$| \langle R^{h}, \phi\rangle|\leq\sum_{k}\int\int_{S_{k}}|\int_{u}^{(k+1)h}f(w^{h})ds|(|V\eta||\phi_{t}|+|Vq||\phi_{X}|)dxdt$

$\leq Ch||\phi||_{H_{0}^{1}(\Omega)}$ ,

it follows that $R^{h}$ is in a compact subset of $H_{1oc}^{-1}(\Omega)$ . Then the conclusion follows. $\square$

4. Consistency of the scheme.

TO prove the consistency of our scheme we need the next elementary but crucial
result which combines an original argument due to Makino and Takeno [MT, Propo-
sition 3] and our energy estimate (3.10).

LEMMA 4.1. Under the assumptions of Theorem 3.1, there exists a positive constant
$C$ such that

$\sum_{k=1}^{N}\sum_{i\in I_{k- 1}}\int_{(i-1)l}^{(i+1)l}\int_{(k-1)h}^{kh}|\tilde{U}^{h}(x, kh+O)-\tilde{U}^{h}(x, t)|^{2}dxdt\leq Ch$ .

PROOF. From Proposition 3 in [MT], we have that there exists a constant $C>0$

such that, for all $k\geq 0$ and for $t\in((k-1)h, kh)$ ,

$\int_{(i-1)l}^{(i+1)l}|\tilde{U}^{h}(x, t)-\tilde{U}^{h}(x, kh-O)|^{2}dx$

$\leq C\int_{(i-1)l}^{(i+1)l}|\tilde{U}^{h}(x,kh-O)-\frac{1}{2l}\int_{(i-1)l}^{(i+1)l}\tilde{U}^{h}(y, u-O)dy|^{2}dx$ .

Then

$\int_{(i-1)l}^{(i+1)l}|\tilde{u}^{h\sim}(x, t)-d_{+}^{k}|^{2}dx$

$\leq 2\int_{(i-1)l}^{(i+1)l}(|\tilde{u}^{h}(x, t)-\parallel_{-}^{\sim}|^{2}+|\tilde{u}_{+}^{hk}-\tilde{u}_{-}^{hk}|^{2})dx$

$\leq C\int_{(i-1)l}^{(i+1)l}|\tilde{U}_{+}^{hk}-\tilde{U}_{-}^{hk}|^{2}dx$ .
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So the conclusion for $\tilde{u}^{h}$ follows by the energy inequality (3.10). In the same way it is
easy to seen that

$\int_{(i-1)l}^{(i+1)l}|\tilde{v}^{h\sim}(x, t)-\mu_{+}|^{2}dx$

$\leq C_{1}\int_{(i-1)l}^{(i+1)l}|\tilde{U}_{+}^{hk}-\tilde{U}_{-}^{hk}|^{2}dx$

$+C_{2} \int_{(i-1)l}^{(i+1)l}(\frac{1}{2l}\int_{(i-1)l}^{(i+1)l}\int_{(k-1)h}^{hk}f(w^{h})dsdy)^{2}dx$ .

Therefore the conclusion follows from (3.10) and the boundedness of $w^{h}$ . $\square$

THEOREM 4.2. Assume that the sequence given by the scheme $(2.14)-(2.16)$ verifies
the hypothesis $(H_{1}),$ $(H_{2})$ of Theorem 3.1. Then (H3) is also verified and the limit
functions $(U, w)$ are a weak entropy solution to the Cauchy problem $(1.6)-(1.7)-(1.8)$ .

PROOF. Consistency with initial data follows easily by arguing as in [DCL]. Then,
take any smooth function $\emptyset\in C_{0}^{\infty}(R\cross(O, \infty))$ . We have

$\int\int(u^{h}\phi_{t}-v^{h}\phi_{X})dxdt=\int\int(\tilde{u}^{h}\phi_{t}-\tilde{v}^{h}\phi_{X})dxdt$

$+ \sum_{k=1}^{N}\int\int_{S_{k- 1}}(\int_{(k-1)h}^{t}f(w^{h})ds)\phi_{X}dxdt=A_{1}^{h}+A_{2}^{h}$ .

From the assumption $(H_{1})$ there exists a constant $C_{T}\geq 0$ such that

$\sup_{X}\sup_{1\leq k\leq N}|\int_{(k-1)h}^{kh}f(w^{h})ds|\leq C_{T}h$ ,

and then
$|A_{2}^{h}|\leq Ch$ .

On the other hand, thanks to the energy estimate (3.9), we have

$|A_{1}^{h}|=| \sum_{k=1}^{N}\int\phi(x,kh)(\tilde{u}^{h}(x,kh+O)-\tilde{u}^{h}$ ( $x$ , kh–O) $)$ $dx|$

$\leq|\sum_{k=1}^{N}\sum_{i}\int_{(i-1)l}^{(i+1)l}(\phi(x, kh)-\phi^{ik})(\tilde{u}^{h}(x, kh+O)-\tilde{u}^{h}$ ( $x$,kh–O) $)$ $dx|$

$+| \sum_{k=1}^{N}\sum_{i}\phi^{ik}\int_{(i-1)l}^{(i+1)l}[\tilde{u}^{h}(x, kh-O)-\frac{1}{2l}\int_{(i-1)l}^{(i+1)l}\tilde{u}^{h}(y, h-O)dy]dx|$

$\leq C\sqrt{l}||\phi||_{C_{0}^{1}}\{$

$\sum_{i,k,|il|\leq L}\int_{(i-1)l}^{(i+1)l}|\tilde{u}^{h}(x, kh-0)-\tilde{u}^{h}(x, kh+0)|^{2}dx\}^{1/2}$

$\leq C\sqrt{h}$ .
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Consider now the second equation in (1.6). For any smooth function $\emptyset\in$

$C_{0}^{\infty}(R\cross(O, \infty))$ we have

$\int\int(v^{h}\phi_{t}-\sigma(u^{h})\phi_{\chi}-f(w^{h})\phi)dxdt$

$= \int\int(\tilde{v}^{h}\phi_{t}-\sigma(\tilde{u}^{h})\phi_{X}-f(w^{h})\phi)dxdt$

$+ \sum_{k=1}^{N}\int\int_{S_{k- 1}}(\int_{(k-1)h}^{t}f(w^{h})ds)\phi_{t}dxdt$

$= \sum_{k=1}^{N}\int\phi(x,kh)(\tilde{v}^{h}(x, kh-O)-\tilde{v}^{h}(x, kh+O))dx$

$- \int\int f(w^{h})\phi$ dx $dt+\sum_{k=1}^{N}\int\int_{S_{k- 1}}(\int_{(k-1)h}^{t}f(w^{h})ds)\phi_{t}dxdt$

$=B_{1}^{h}+B_{2}^{h}$ .

Again from the assumption $(H_{1})$ we have

$|B_{2}^{h}|\leq Ch$ .

Furthermore we have

$|B_{1}^{h}|=| \sum_{k=1}^{N}\int\phi(x, kh)(\tilde{v}^{h}(x, kh-O)-\tilde{v}^{h}(x, kh+O))dx$

$- \int\int f(w^{h})\phi dxdt|$

$\leq|\sum_{k=1}^{N}\sum_{i\in I_{k- 1}}\int_{(i-1)l}^{(i+1)l}(\phi(x, kh)-\phi^{jk_{\vee}})(\tilde{v}^{h}(x, kh+O)-\tilde{v}^{h}(x, kh-\hat{\cup}))dx|$

$+| \sum_{k=1}^{N}\sum_{i\in I_{-1}}\phi^{ik}\int_{(i-1)l}^{(i+1)l}[\tilde{v}^{h}(x, kh-0)-\frac{1}{2l}\int_{(i-1)l}^{(i+1)l}\tilde{v}^{h}(y, kh-0)dy$

$+ \frac{1}{2l}\int_{(i-1)l}^{(i+1)l}\int_{(k-1)h}^{kh}f(w^{h})dydt]dx-\int\int f(w^{h})\phi dxdt|$

$\leq c\sqrt{h}+|\sum_{k,i}\int_{(i-1)l}^{(i+1)l}\int_{(k-1)h}^{kh}f(w^{h})(\phi^{ik}-\phi(x, t))dxdt|\leq c\sqrt{h}$ .

Take now any convex entropy function $\eta$ and let $q$ be the correspondent entropy-
flux. For any nonnegative function $\emptyset\in C_{0}^{\infty}(R\cross(0, \infty))$ we have
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$I^{h}= \int\int(\eta(U^{h})\phi_{t}+q(U^{h})\phi_{X}-\eta_{v}(U^{h})f(w^{h})\phi)dxdt$

$= \int\int(\eta(\tilde{U}^{h})\phi_{t}+q(\tilde{U}^{h})\phi_{X}-\eta_{v}(\tilde{U}^{h})f(w^{h})\phi)dxdt$

$+ \sum_{k=1}^{N}\int\int_{S_{k- 1}}\{[\eta(U^{h})-\eta(\tilde{U}^{h})]\phi_{t}+[q(U^{h})-q(\tilde{U}^{h})]\phi_{X}$

$-[\eta_{v}(U^{h})-\eta_{v}(\tilde{U}^{h})]f(w^{h})\phi\}dxdt$

$=C_{1}+C_{2}^{h}$ .

Since the functions $\eta,$ $q,$ $\eta_{v}$ are smooth there exists a constant $C$ such that

(4.1) $|C_{2}^{h}|\leq Ch$ .

Consider now the term $C_{1}^{h}$ . We have

$C_{1}^{h}= \sum_{k=1}^{N}\int\phi(x,kh)(\eta(\tilde{U}_{-}^{hk})-\eta(\tilde{U}_{+}^{hk}))dx$

$- \int\int\eta_{v}(\tilde{U}^{h})f(w^{h})\phi dxdt$

$= \sum_{k,i}\int_{(i-1)l}^{(i+1)l}(\phi(x, kh)-\phi^{ik})(\eta(\tilde{U}_{-}^{hk})-\eta(\tilde{U}_{+}^{hk}))dx$

$+ \sum_{k,i}\phi^{ik}\int_{(i-1)l}^{(i+1)l}[\eta(\tilde{U}_{-}^{hk})-\eta(\tilde{U}_{+}^{hk})]dx$

$- \int\int\eta_{v}(\tilde{U}^{h})f(w^{h})\phi dxdt$

$= \sum_{k,i}\int_{(i-1)l}^{(i+1)l}(\phi(x,kh)-\phi^{ik})(\eta(\tilde{U}_{-}^{hk})-\eta(\tilde{U}_{+}^{hk}))dx$

$+ \sum_{k,i}\emptyset^{i\dot{\kappa}}J_{(i-1)l}^{\eta_{u}(\tilde{U}_{+}^{hk})}r^{(i+1)l}[\tilde{u}^{h}(x, kh-O)-\frac{1}{2l}\int_{(i-1)l}^{(i+1)l}\tilde{u}^{h}$ ($y$ , kh–O) $dy]dx$

$+ \sum_{k,i}\phi^{ik}\int_{(i-1)l}^{(i+1)l}\eta_{v}(\tilde{U}_{+}^{hk})[\tilde{v}^{h}(x, kh-O)-\frac{1}{2l}\int_{(i-1)l}^{(i+1)l}\tilde{v}^{h}$ ($y$ , kh–O) $dy$

$+ \frac{1}{2l}\int_{(i-1)l}^{(i+1)l}\int_{(k-1)h}^{kh}f(w^{h})dydt]dx$

$+ \sum_{k,i}\phi^{ik}\int_{(i-1)l}^{(i+1)l}Q_{\eta}(\tilde{U}_{-}^{hk},\tilde{U}_{+}^{hk})dx$

$- \int\int\eta_{v}(\tilde{U}^{h})f(w^{h})\phi dxdt$

$=C_{11}^{h}+C_{12}^{h}+C_{13}^{h}+C_{14}^{h}+C_{15}^{h}$ .

Here, for any $a,$
$b\in R^{2}$ , we set
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$Q_{\eta}(a, b)= \int_{0}^{1}(1-\theta)(a-b)V^{2}\eta(b+\theta(a-b))(a-b)^{T}d\theta$ .

So, from the convexity of $\eta$ we have that

(4.2) $C_{14}^{h}\geq 0$ .

AS previously it is easy to see that

(4.3) $|C_{11}^{h}|\leq C\sqrt{h}$ ;

(4.4) $C_{12}^{h}=0$ ;

$|C_{13}^{h}+C_{15}^{h}|=| \sum_{k=1}^{N}\sum_{i\in I_{k- 1}}\int_{(i-1)l}^{(i+1)l}\int_{(k-1)h}^{kh}f(w^{h})(\eta_{v}(\tilde{U}_{+}^{hk})\phi^{ik}-\eta_{v}(\tilde{U}^{h})\phi)dxdt|$

$\leq|\sum_{k=1}^{N}\sum_{i\in I_{k- 1}}\int_{(i-1)l}^{(i+1)l}\int_{(k-1)h}^{kh}f(w^{h})\eta_{v}(\tilde{U}_{+}^{hk})(\phi^{ik}-\phi)dxdt|$

$+| \sum_{k=1}^{N}\sum_{i\in I_{k- 1}}\int_{(i-1)l}^{(i+1)l}\int_{(k-1)h}^{kh}f(w^{h})\phi(\eta_{v}(\tilde{U}_{+}^{hk})-\eta_{v}(\tilde{U}^{h}))dxdt|$

$=D_{1}^{h}+D_{2}^{h}$ .

It is easily seen that

(4.5) $|D_{1}^{h}|\leq Ch$ .

Furthermore by using the Lemma 4.1 we have immediately that

(4.6) $|D_{2}^{h}| \leq C\sum_{k=1}^{N}\sum_{i\in I_{k- 1}}(\int_{(i-1)h}^{(i+1)l}\int_{(k-1)h}^{kh}|\phi||\tilde{U}^{h}(x,kh+O)-\tilde{U}^{h}(x, t)|^{2}dxdt)^{1/2}$

$\leq C\sqrt{h}$ .

Then, by summing up $(4.1)-(4.6)$ , we have

$I^{h}\geq-c\sqrt{h}$

and in the limit we obtain the entropy inequality (2.4).

Finally let us show that the limit function $w$ verifies the equation (1.7). From the
scheme $(2.14)-(2.16)$ we have

$\partial_{t}w^{h}=\int_{-\infty}^{X}\partial_{t}u^{h}=\int_{-\infty}^{X}\partial_{X}\tilde{v}^{h}=\tilde{v}^{h}$

in the weak sense. So the consistency is ensured if we show that

$(\tilde{v}^{h}-v^{h})arrow 0$

for almost every $(x, t)\in R\cross(O, \infty)$ .



Global weak entropy solutions 447

In fact we have, for any $\emptyset\in C_{0}^{\infty}(R\cross(0, \infty))$

$| \int\int|\tilde{v}^{h}-v^{h}|\phi$ dx $dt|=|\sum_{k=1}^{N}\int\int_{S_{k}}|\int_{(k-1)h}^{t}f(w^{h})d\tau|\emptyset$ dx $dt|\leq Ch$ .

The function $w$ is obviously Lipschitz continuous since, for almost every $(x, t)\in$

$Rx(0, \infty)$

$\partial_{X}w=u$

and
$\partial_{t}w=v$ .

Moreover, from the second equation in (1.6) we have

$\partial_{t}^{2}w-\partial_{X}\sigma(\partial_{X}w)+f(w)=0$

in the weak sense. The proof is complete. $\square$

5. $L^{\infty}$ estimates.

In this section we establish the $L^{\infty}$ bounds we need on the approximate solutions
given by the scheme $(2.14)-(2.16)$ . Let us make the following natural assumption,
easily verified for the problems (1.3) and (1.4): $(H_{4})$ there exists a constant $L>0$ such
that

$|f’(w)|\leq L$ for all $w\in R$ .

Under this assumption we can state our main result.

THEOREM 5.1. Assume that the initial data $u_{0},$ $v_{0},$ $w_{0}$ are bounded measurable
functions with compact support and $u_{0}=\partial_{X}w_{0}$ . Under the assumption $(H_{4})$ there exists a
global weak entropy solution to the Cauchy problem $(1.6)-(1.7)-(1.8)$ .

The result follows immediately from the Theorems 3.1, 3.2, 4.2 and the following
$L^{\infty}$ bounds on the approximate solutions.

THEOREM 5.2. Under the assumptions of the Theorem 5.1, for any $T>0$ there exist
some constants $M_{T},$ $N_{T}>0$ and $h_{T}>0$ such that

(5.1) $|u^{h}|\leq M_{T}$ , $|v^{h}|\leq N_{T}$ , $|w^{h}|\leq N_{T}$ ,

for a. $e$. $(x, t)\in R\cross(O, T)$ and any $h\in(O, h_{T})$ .

PROOF. Since $u_{0},$ $v_{0}$ and $w_{0}$ are function with a compact support, $u^{h},$ $v^{h}$ will also be
with a compact support and, from the structure of the scheme, also $w^{h}$ will be with a
compact support.

Consider the discrete Riemann invariant $(\xi^{h}, \eta^{h})$ , respectively $(\tilde{\xi}^{h},\tilde{\eta}^{h})$ , given by (2.6)

applied to $(u^{h}, v^{h})$ , respectively $(\tilde{u}^{h},\tilde{v}^{h})$ . Theorefore, from $(2.14)-(2.16)$ , we obtain, for



448 P. MARCATI and R. NATALINI

all $(x, t)\in S_{k}$

(5.2) $\{$

$\xi^{h}(x, t)=^{\xi^{h}(X,t)-}\int_{u}^{t}f(w^{h}(x,s))ds$ ,

$\eta^{h}(x, t)=\tilde{\eta}^{h}(x, t)-\int_{u}^{t}f(w^{h}(x, s))ds$ .

Notice that, from (2.8) and (2.14), we have for all $(x, t)\in S_{k}$ ,

$w^{h}(x, t)=w^{h}(x, kh+0)+ \int_{u}^{t}\tilde{v}^{h}(x,s)ds$ .

Also, from $(H_{4})$ , since $f(O)-O$

(5.3) $|f(w)|\leq Lw$ for any $w\in R$ .

Denoting by

$M^{k}= \max(\sup_{X}|\xi^{h}(x, kh+O)|,$ $\sup_{X}|\eta^{h}(x,kh+0)|)$

$= \max(\sup_{s_{k}}|\tilde{\xi}^{h}(x, t)|,$ $\sup_{S_{k}}|\tilde{\eta}^{h}(x, t)|)$ ,

$N^{k}= \sup_{X}|w^{h}(x, kh+O)|$ ,

we have, for $(x, t)\in S_{k}$ ,

where $g(u)= \int_{0}\sqrt{\sigma’(s)}ds$, and

$|\tilde{v}^{h}|\leq M^{k}$ ,

$|g(\tilde{u}^{h})|\leq M^{k}$ ,

$|w^{h}|\leq N^{k}+hM^{k}$ .

Therefore, from (5.1) and (5.2), it follows, for $(x, t)\in S_{k}$ ,

$|\xi^{h}|\leq M^{k}+Lh(N^{k}+hM^{k})$

and
$|\eta^{h}|\leq M^{k}+Lh(N+hM^{k})$ .

Hence
$M^{k+1}\leq(1+Lh^{2})M^{k}+LhN^{k}$

and
$N^{k+1}\leq hM^{k}+N^{k}$ .

Then, by induction, the following inequality holds

$M^{k}+N^{k}\leq(M^{0}+N^{0})(1+(L+1)h)^{k}$

$\leq(M^{0}+N^{0})e^{(L+1)T}$ .
The proof is complete. $\square$
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