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Nonlinear small data scattering for the wave equation in R*™!

By Kunio HibANO

(Received Feb. 28, 1996)

1. Introduction.

In this paper we discuss nonlinear small data scattering problem for the following
wave equation

(1.1) (OQu=F(u), teR,xeR"

Here (1 =0 —4=0~ Y 07, 8,=08/dt, 0;=0/dx; and F(u) = Alu|’"'u with
some A€ R\{0}, p > 1. Although our proof also works for complex-valued solutions,
we consider only real-valued solutions for simplicity throughout this paper.

Let us first review the previous works on small data scattering for (1.1). Although
we shall deal with 4§space dimensional case only, the large number of papers has been
devoted to the study of small data scattering for (1.1) in various spaces of functions and
in general space dimension n > 2. Denote by W' (R") (1< p< o0) the completion
of test functions with respect to the seminorm ||Vo||,. W™ 7 (R") (1/p+1/p' =1)
means the dual space of Wl’p(R”). We simply denote Wl’Z(R”) by H 1(R"). Note
that HI(R”) is identical to {v = v(x)jv € L*/"~2(R"),Vv e L*(R")} when n > 3. Set
E(R"=H l(R") x L2(R"). For more information on the definitions of spaces, norms
and operators, see Section 2. There are two fundamental problems in the nonlinear
scattering theory. One of them is to prove the existence of the wave operators. Pecher
[15] established the space-time mixed norm estimates of free solutions of finite energy
and proved the existence of the wave operators for (1.1) as mappings from a neigh-
borhood of 0 in E(R") into E(R"), assuming p =1 +4/(n—2) and n = 3,4,5. Ginibre
and Velo [2] have eliminated the restriction of # in the result of Pecher and proved the
same result for all » >3 by making better use of the space-time integrability and
estimating fractional derivatives of the nonlinear term in the Besov spaces (see
Proposition 3.3 in [2]). E(R") is called the energy space and it is the largest space of
data for which we may construct the wave operators for (1.1) in the usual sense. Hence
a class of data in the results of Pecher, Ginibre and Velo is the largest, but the allowed
value of p is 1 +4/(n—2) only. For a smaller class of data we can discuss the
scattering theory for a more general perturbation operator. In fact, Strauss [19] proved
that the wave operators can be defined for (1.1) as mappings from a neighborhood of 0
in (H1 N W1’1+1/p) x (L2 N L'*1/7) into (H1 NL*Y x (L2N W_l’pH), assuming p, (n) <
p<144/(n—1), n=2. Here p;(n) = (n+2+vn>+8n)/2(n—1). Later, Mochi-
zuki and Motai [13] reduced the lower bound p,(n) to a smaller value p,(n) (n > 2) by
working in a different space. The lower bound for p in [13], however, does not seem
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optimal because in the case of space dimension n =2 or 3 Pecher [16], Kubota and
Mochizuki [10] and Tsutaya [20] have proved the existence of the wave operators as
mappings from a neighborhood of 0 in weighted C3(R") x C*(R") into weighted
C%(R") x C}(R") for (1.1) with p > py(n) = (n+1++vn2+10n—7)/2(n—1). Here
there holds py(n) < p,(n) for all n > 2. The crucial point of the proofs in [10], [16], [20]
is to establish a pointwise decay estimate for the nonlinear term of the corresponding
integral equation (see, e.g., Lemma 4.1 in [20]). Although such a method as in [10],
[16], [20] does not seem applicable directly to higher dimensional case, Kubo and
Kubota [9] have recently constructed the wave operators in higher and odd space
dimensions (i.e. n=15,7,---) in a similar, but more complicated way for small and
spherically symmetric data in a weighted Banach space, assuming py(5) < p if n = 5 and
po(n)<p<l1+4/(n-3)ifn=7,9,---. Note that in any space dimension py(n) will
be the smallest value for us to construct the wave operators for small and smooth data
in view of the blow up theorems (see [3], [6], [17], [18]). Thus it has been expected to
construct the wave operators for (1.1) with p > p,(n) for small data in a suitable Banach
space when n > 4. Moreover, since we are discussing small data scattering problem, it
is also desirable that the wave operators should be constructed for (1.1) with p > py(n)
as mappings from a neighborhood of 0 in a suitable Banach space into the Banach space
itself. The first aim of this paper is to construct the wave operators for (1.1) with
p > po(4) = 2 as mappings from a neighborhood of 0 in a Hilbert space X' (defined just
below) into X' in the case of four space dimensions. More precisely, let us introduce

£ ={ (i) e LR x L2(RY)

I s = D0 K- YoEfill e + ) IIK - Yo% fill e

laj <2 |a]=3

YIS e+ ST Y ol < oo}-

la|<1 |a|=2

Here and after 0 = 07" --- 0;* for a multi-index a = (ay,---,04) With |o| = 0; +--- + 04

and (x> =4/1+|x]*. It should be noticed that the persistence holds in the
space 2 for free solutions in the sense that (u,0,u) e C(R;ZX) for u(t) = (coswt)fi +
(o~ 'sinwt) f> if (f1,f2) € Z. We shall prove that the wave operators W are defined
for (1.1) with p > 2 as one-one and continuous mappings from a neighborhood of 0 in
2 into 2 (Theorems 1 and 3). The inequality (3.7) plays an important role to show
Range (W) c 2.

Another important problem is to show the asymptotic completeness of the wave
operators. Pecher (for n = 3,4,5), Ginibre and Velo (for all » > 3) have proved the
asymptotic completeness of the wave operators for small data in E(R"), provided that
p=1+4/(n—-2)[2],[15]. On the other hand, the asymptotic completeness of the wave
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operators can not be proved in [9], [10], [13], [16], [19], [20], notwithstanding that their
attentions are confined to the case of small data. Thus, it has been completely an open
problem in any space dimension whether or not we can prove the asymptotic com-
pleteness for small data in a suitable space under the assumption of p > py(n). In this
paper we shall make a first step toward answering this question by showing the
asymptotic completeness of the wave operators for small data in 2. Namely, in the
case of four space dimensions we shall prove that the ordinary Cauchy problem for
(1.1), with data (u(0),0u(0)) = (f,g9) at t=0 in 2, has a unique global solution
u = u(t,x) provided that p > 2 and ||(f,g)||; is small. Note that this is a refinement of
a recent result of Zhou [21] on a class of Cauchy data. Moreover, with the help of
(3.7), (3.10), (3.17)—(3.18) it will be shown that the solution u has the asymptotic states
in . That is, there is a unique pair of functions (f*,g%), (f~,¢97) € & satisfying

”u(t")_ui(t?')“e —0 as t— + o,
(the double sign in the same order) for u*(f) = (coswt) f* + (o' sinwt)g* (Theorem
2). Hence, combining Theorems 1 and 3 with Theorem 2, we conclude that the
scattering operator S can be defined for (1.1) with p > 2 as a one-one and continuous
mapping from a neighborhood of 0 in 2 into X (Theorem 4).

In order to prove our theorems we need to extend a recent result of Zhou. In [21]
he discussed the ordinary Cauchy problem with data given at r=0 and proved
remarkably that in four space dimensions the equation (1.1) has a unique global solution
in a suitable space if p > 2 and sufficiently smooth, small data decay fast at spatial
infinity. However, the decay condition he assumed on data is too strong to develop the
scattering theory according to the standard formulation, such as that in [19]. Thus, one
of our main tasks is to weaken the decay condition significantly and solve the ordinary
Cauchy problem for small data in X' which is a larger class than that in Zhou [21]. We
need to investigate the precise commutation relations between the fundamental solution
and the operators L;, @i, Lo and then make effective use of the inequalities (3.16),
(3.18) and the Sobolev estimate |v||,« < C||Vv||;. to improve a class of data in
[21]. See Propositions 3.2, 4.3 below. Another difference to be stressed between the
result of Zhou and ourselves is in a class of the asymptotic states. Although he makes
no reference to the asymptotic behavior of solutions, it follows immediately from his
proof that the solutions to (1.1) constructed in [21] have the asymptotic states in
H3(R*) x H*(R*). But this is not enough to prove the asymptotic completeness. We
shall prove by using (3.7), (3.10), (3.17)—(3.18) that all the solutions to (1.1), with small
data in 2" at ¢ = 0, have the asymptotic states in 2. See Proposition 4.7 and Remark
4.2.

To solve the equation (1.1) by giving data at 1 = + oo we shall follow the same line
as in Hidano and Tsutaya [4]. We have only to carry out simple, but careful limiting
procedures. Thus, this paper will be mostly devoted to the proof of Theorem 2, which
is an extension of the result of Zhou.
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Finally, we refer to a recent work of Lindblad and Sogge [12]. Making use of the
Strichartz-type inequalities, they have developed the scattering theory for (1.1) with small
data in the homogeneous Sobolev space H'(R") x H y_l(R”) with y=n/2-2/(p - 1).
This value of y is closely related to the homogeneity of the equation (1.1) and naturally
arises from a simple scaling argument. Their interest is in the global existence and
asymptotic behavior of the solutions to (1.1) with low regular data and they have
proved the existence of the wave operators and the asymptotic completeness for small
data in H'(R") x HV_I(R”) with y given above when 1 +4/(n—1)<pif n=2 or 3
and 1+4/(n—1)<p<1+4/(n—3) if n >4 (see Theorem 2.2 in [12]). Of course,
po(n) <1+4/(n—1) for all n > 2, and in our theorems p will be only assumed to be
strictly larger than py(4). While the continuity of the scattering operator can not be
shown in [12] without the case of p=(n+3)/(n— 1) (see [12] on page 423), we shall
prove the continuity of the scattering operator in the Z-topology for any p > py(4).

2. Notations and theorems.

Following Klainerman [7], [8], we introduce several partial differential operators as
follows: 0p =0y, L;j =1t0;+ x;0,(j=1,---,n), Qu =xi0p —xx0;(1 <j<k<n), Ly=
t0; + x101 + - - - + xn0,. The operators 0y, ,0pn, L1,--+,Ln, L12,-,2n-1n, and Lg are
denoted by I'o,---, I, in this order, where u = (n* + 3n+2)/2. In order to make use
of the different behavior of the solutions in the neighborhood of the characteristic cone
and away from it, we introduce the norm for 1 <p, ¢ <

(2.1) 1) lne = IoGOr®= 2l g, a5
o r/4 e
_ J (J |v(rC)|qu> Ly
0 \Jsn1
with obvious modifications if p or g is infinite. Here r = |x|, { € S"7!. It is clear that

if p=gq, then L”? norm coincides with the usual L” norm. In [11] Li and Yu first
utilized this type of norm for the existence theory of solutions to nonlinear wave
equations. Let N be a non-negative integer and ¥ be a characteristic function of a set
of R™!. We define the norm

(2.2) Nty ) r npgw:= Z 19 ) ut, e (1<p,g<0)
ld| <N

for any function u(¢,x) for which the above right-hand side is finite for every ¢ € R.
Here o is a multi-index, |o| = oo +---+a, and I'* =T ---I'¥. We also define the
norm

(23) ”Du(ta ’ )”F,N,p,q,?’:: Z ”6ku(t> ’ )HI’,N,p,q,Y’
k=0
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for a vector Du = (0u,01u,---,0,u). If ¥ =1 in (2.2), (2.3), we omit the sub-index
Y. If p=gq, then we omit q. If N =0, then we omit I" and N. Summing up, we
simplify the notations of the norms as follows.

”u(tv ) )“I",N,p,q ifyYy =1,

”u(t’ ) )llF,N,p,q,Y’ = ”u(t’ ’ )||F,N,p,W if p=gq,
u(t, Ypgw i N =0.

According to this rule, |[u(z,-)||, means the usual LP—norm. But exceptionally,
|lu(z,-)||, will mean the energy norm as defined below.

For a non-negative integer s, W*?(R") means the usual Sobolev space on R" with
the norm ||v||y.,. Especially, we put H*(R") = W*2(R"). For any (not necessarily
bounded) interval I and any Banach space X BC(I;X) means the set of bounded,
continuous functions on / with values in X. We denote by & (R") the space of
Schwartz’s rapidly decreasing functions. Let & or % [v] mean the Fourier transform of
ve L (R"):

&) = #16@) = | o) exploix-¢lax (1= V=),

We denote by #~![s] the inverse Fourier transform of ve ¥ (R7). The Fourier
transform of v € #'(R") (tempered distribution) is denoted by # or & [v] and the inverse
Fourier transform of v e &'(R}) by # ‘l[v], likewise. We denote by H _I(R”) the set of
the tempered distributions such that |&]™'9(£) e L2. We set |1v|] = || F T l[lél_lv]l\Lz
Let ||u(z,-)||, mean the energy norm ||u(z,-)||> = {||0wu(t,-)||3. +||Vu(t )I72}/2. For
any slowly increasing function H = H(|{]) in R; we define the operator H((— A)l/ %)
in &' (R") by H(-2)"*v=F"YH(&)H for ve S (R"). Put w=(—4)"* for
simplicity. Especially, o~ !sinwt and coswt are strongly continuous operators with
respect to ¢ in H*(R") for any se R.

Let I be any interval of R. For any ¢, 6 eI and any G e L'(I; L>(R")) we define
the weak integrals [/(o~!sinw(t — 1))G(r)dr, [[(0 'sino(t — 1))9;G(t)dr (j=1,--,n)
in #(R") as

<¢, J;i‘f‘i((uﬁ“_f) G(r)dt> = (2n)™" J: (ﬂ%__f) (), Gz, _))der’

(o[ 8= 6010 ) = -n | (FLL=Digi), 6.1 a

for 9 € #(R"), respectively. Here (-, -);, is the inner product in L?. The integral
f’(cosw(t—r))G(r)dr is defined similarly. Since %(R") is dense in L?(R"), these
tempered distributions [/ (! sinw(t — 7))G(v)dr, [(w'sinw(t —1))9;G(r)dr and
ja (cos w(t — 7)) G(t)dr can be uniquely extended to elements of the dual space of L?(R"),
which are identified with functions in L?(R") by the Riesz representation theorem.
By [ (o !sinw(t—1))G(r)dr, [ (o 'sinw(t—1));G(r)dr and [)(cosw(t—1))G(r)dt
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we denote these functions likewise. As is easily checked, they are actually in C(I; L2(R"))
for every . Ifu, ve L'(I; L*(R")) satisfy

d in 9
5 <), 0> = <o(0), 9> in F'(I)

for all 9 € #(R"), then we denote v by du. In particular, it is verified that

(2.4) 0 Jt(cu_1 sinw(t — 7))G(t)dt = Jt(cos w(t—1))G(r)dt

ag ag

when G e L!(I; L?(R")). Moreover, after the redefinition of G on a set of measure 0 in
time so that G e C(I; L*>(R")), we have

2.5) 5, J‘t sinw(t — 1) G(2)dz sinw(t — o) Glo) + Jt sin a)c(; - 1) 8.G(1)dx

o @ w o

when G e L'(I; H'(R")), 8,G e L'(I; L*(R")).
We put X5 = {(f1, 2)||(/1, f2)|lx <J}. Now we can state our theorems. The first
problem could be termed “Cauchy problem at +o0”.

THEOREM 1. Let n=4 and p > 2. There exists a 6 > 0 depending on A, p with the
Sfollowing properties (I), (II):

(I) For any (f-,g-)€Zs the equation (1.1) has a unique solution u = u(t,x)
satisfying

(2.6) Iu e BC((—0,0]; L*(R*)) for any a with |a| < 2,

(2.7) I ue L™ ((—0,0); L*(R*)) for any a with |a| =2 and k =0, - - - |4,
(28)  llu(t,) —u_(t,)]l, — 0as t — —co,

where u_(t) = (coswt) f_ + (v~ 'sinwt)g_. Moreover, this solution u satisfies
(2.9) 0xI"u € BC((—o0,0]; L>(RY)) for any a with |o)| =2 and k =0, - -- 4,
(2.10) (u, 0,u) € C((—0,0]; %),

(211)  supllu(t,)llr 20 + D sup [ DI u(z, ),
t<0 |a]=2 t<0

< Gl||(f-,9-)ll5 for some constant Cy > 0,

(2.12) |(1(0), 0,u(0))|| s < GI(f=,9-)|5 for some constant C, > 0,
(213)  fu(t,) = u=(t,) 00 = O 777,
(214)  ID{u(t,) —u-(t, ) Hppz = O P72y ast— —co.

(II) (Continuous dependence) Let (fV),g) e Zs (j=1,2). Let u) =ul)(¢,x) be
the two corresponding solutions to (1.1) in (I). When ||(f) —f@ g — g@)|;. — 0, it
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holds that

215)  sup u(t,-) —u®(t, ) po2 + Y sup DI {uV(t,-) —u® (1)}, = 0,
t<0

|a| =2 t<0

216)  @(0,-) —u®(0,-),0uM(0,-) = 2u>(0,- )]z — 0.

REMARK 2.1. The same result as Theorem 1 holds for positive time.
The next result is concerned with the ordinary Cauchy problem. This is an
improvement of recent result of Y. Zhou on a class of Cauchy data.

THEOREM 2. Let n=4 and p > 2. Then there exists an ¢ > 0 depending on A, p
with the following properties:

(I) (Existence and Uniqueness) For any (f,g) € X, the equation (1.1) has a unique
solution u = u(t,x) satisfying

(217) (u(O), atu(o)) = (f’ g)’
(2.18) I'*u e BC(R; L*(R%)) for any o with |a| < 2,
(2.19) kI u € L (R; L*(R*)) for any o with |«| =2 and k =0, - -- , 4.

Moreover, this solution u satisfies

(2.20) 0xI"*u € BC(R; L*(R%)) for any o with |a| =2 and k =0, - - -, 4,
(2.21) (u,0,u) € C(R; 2),
(222) sup lu(t, )l a2+ Y, sup DT u(t, )l

lu]=2 1€

< Gi||(f, 9)||5 for some constant C3 > 0.

(I (Asymptotic behavior) There exists a unique pair of functions (f*,g%), (f~,97)
satisfying

(2.23) (f*,9%) e E(RY),
(2.24) lu(t,-) —u*(e,-)||, — 0 as t — +oo (the double sign in the same order).

Here u*(t) = (coswt)f* + (o~ 'sinwt)gt. These u* satisfy

(2.25) (u(0),0u%(0)) € Z,

(2.26) | (uE(0), 0,u* (0)|| < Call(f,9)|l5 for some constant C4 > 0,
(227) lut,-) = u® (8, )00 = Ol 0727,

(2.28) ID{u(t,-) = u (t, Y rpo = O™y as t - +oo0.

(IIT) (Continuous dependence) Let uY) = uUl(t,x) (j =1,2) be the two solutions to
(1.1) with (u)(0),0u(0)) = (fV),g) e Z,. Let (f D+ g, (D= g} be the
corresponding pairs of functions in (II\. When ||(f() — @ g(1) — 42 )|| s — 0, it holds
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that

(229)  suplu®(t,) = u®(t, )0+ Y sup [DI*{u (1) —u® (2, )}, — 0,

teR 'd|=2 teR

(230)  ((FOF —fO* g0+ —g@h) 5 (f7 = f O g0 — gDz — 0.
The next theorem follows immediately from Theorem 1 and Remark 2.1.

THEOREM 3. The wave operators W, W_
Wi : (u4(0),0u+(0)) — («(0), 6:(0))
can be defined as one-one and continuous mappings from X into Xc,s.

We take 6 small so that (0 < ¢ may hold. Combining Theorem 2 with Theorem
3, we conclude

THEOREM 4. The scattering operator S
S : (u_(0), 0;u_(0)) — (u*(0), 6,u™ (0))
can be defined as a one-one and continuous mapping from Xj into Xc,c,s.

ReMARK 2.2. Theorems 1-4 are valid for the equation (1.1) with the more general
nonlinear function F e C?(R) such that for |u|, |v| <1

|F(u)| < Clul’, |F'(u)| < Clu|’" for some p > 2,

Clu—v|"™? if 2<p<3,
IF"(0) ~ F'(0)] < { v g

C(lul + o))’ lu—v| if p=3
with some constants C > 0 independent of u, v. These assumptions admit the sum of
several nonlinear terms with different powers like F(u) = A;|ul” 'u + AaJu|”'u with

P1, P2 > 2.

3. Preliminary results.

In this section we prepare several lemmas and propositions which will be frequently
used in the proof of our theorems. In what follows different constants will be denoted
by C. Let [-, -] be a commutator and J; be the Kronecher delta. Then we have the
commutation relations as follows.

LemMma 3.1. It holds that

Hm
([}, T) = CionI 'm,

m=0

ﬂ ~
(3.1) Ik, 00l = Y  CremOm

m=0
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for j,k=0,---,u, £=0,---,n with coefficients Cigp, Citm € {—1,0,1}.  In particular,

(3.2) [Lj,0k] = —0u0; forj, k=1,---,n,
(3.3) [ij,ae] = — j[ak +5kg6j forl<j<k<nt=1,---,n,
(3.4) [Lo,ak] = —ak for k — l, . ’n.

Note that the precise commutation relations (3.2)—(3.4) are necessary to develop the
scattering theory by using the operators L;, 2y and Ly. See the proof of Proposition
3.1 below. This lemma is easily verified by direct calculations. Thus we omit the proof.
Let x = x(t,x) be the characteristic function of the set {(¢,x)||x| < (1 + [¢[)/2} and put
¢:=1—y. Then we have

LEMMA 3.2. Let I be any (not necessarily bounded) interval. It holds that
(3.5) l[u(t, )y < Cllut, Mws, (ae tel),

0<s<n/p, 1<p<gqg<oo, l/g=1/p—s/n

for all ue L*(I; WP(R")). Moreover, the following inequalities hold for all functions
u = u(t,x) for which the norm appearing on the right-hand side below is finite for every
tel

(3.6) la(t, g, < CA+ 1)ty )l
0<SSn/P; ISqu<(D, 1/q21/p—s/n,
(3.7) <]l =1+ [Y8%u(t, iz < Cllult, )l o .

Here i —|x|>=/1+ (1| - |x))?, &*= 0y’ -+ -0, and all the constants C are inde-
pendent of u, t and I.

ProOOF. The inequality (3.5) is well-known. Taking account of the relation

tL; + Z Xk (xj0k — x10;) — x;Lo

3.8 0 = k=1 i=1,---,n),
(3.8) ) ERE (Jj )

we can prove (3.6) by a simple scaling argument. For the proof see Hidano and
Tsutaya [4] or Zhou [21]. The inequality (3.7) also follows from (3.8) and

0, = (tLo - ikak) /(2 = |x%).
k=1

In fact, since Lj(2 —|x|*)7") = Qul(* - |x)')=0 and Lo[(2 - |x)7"] =
—2(2 — |x]*)™", a simple observation shows that

10%u(z, x)| < C||t] — |x|| ™| 4%u(z, x)| for every «,



262 K. HipaNo

where A%u represents the vector formed by all 4;--- A,u (1 <m < |a|) with Ay, -+, Ap
any of operators L;, £, Lo. This inequality implies

(3.9) (1+ [le] = 1xI) ™ ]8"u(z, x)| < C(l6*u(t, x)| + |4%u(t, x))).
Hence we get (3.7) by integrating the square of (3.9) over R”". Q.E.D.
LemMA 3.3. It holds that

(3.10) 1< - YD) < S [81Q%],

[yl+16]<s

O0<s<n/p, 1<p<g<ow, 1l/g=1/p—s/n

for all functions v = v(x) for which the norm on the right-hand side is finite. Here
Q7 = Qféz . QOn-tn for a multi-index 0 = (013, ,0,—1n). Let I be any (not necessarily

n—1n

bounded) interval. The following inequalities hold for all functions u = u(t,x) defined in
I x R" for which the norm appearing on the right-hand side below is finite for every te I

B ()] < CA+ 1+ 1) TP o] = el T (i
s>n/p, p=1,
(3.12) lu(t, )l < €+ 1) ="V D (e, i,
O0<s<n/p, 1<p<qg<o, 1l/g=1/p—s/n.
Moreover, for all ue L®(I; H'(R"))
(3.13) (e, gz < CA+ 1) 021D e |y ace 1€l
if 2<q<oo. Here all the constants C are independent of u, v, t and I.

Proor. The inequality (3.10) is proved in Section 3 of Hoérmander [5]. The
inequality (3.11) is a Klainerman’s one in [8]. The inequality (3.12) immediately follows
from (3.6) and (3.10) (see Hidano and Tsutaya [4] for the proof). The proof of (3.13)
can be found in Zhou [21]. Q.E.D.

We have the Sobolev inequality on the unit sphere as follows.

LemMma 3.4.

1/2
(3.14) |v(x|<CZ<J 1(2%)(r0)| dc) , s> (n—1)/2,

|8 <s

(.15 ([ wevea) < e ([ wamoopa)”

6l <s

O0<s<(n—-1)/p, 1<p<g<ow, 1l/g=1/p—s/(n—1).
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LemMA 3.5. Let n>3. If {x)ve L*(R"), then there holds veH_l(R”) and
(3.16) lIvll -+ < CII- (vl

Proor. This inequality is well-known and has been used in the study of nonlinear
wave equations. See, e.g., Ginibre and Velo [1] on page 252 or Remark 1.1 in Ozawa
and Tsutsumi [14]. See also (3.22) below, from which (3.16) follows immediately.

Q.E.D.

LEMMA 3.6. Let I be any (not necessarily bounded) interval and let h e L™ (I; L*(R")).
Suppose that the norms appearing on the right-hand side below are finite for a.e. o€ l.
Then it holds that

sinw(t — )

(3.17) h(o,")

2

C

< Cllh(o, M4, + W |A(a,-)

12,4 forall te R

if n>3. Moreover, if n>4 and {x)h e L®(I;L*(R")), then for j=1,---,n

sinw(t — o) [

(3.18) x;ih(a, - )]

2

C

< Clxgh(a, g, + TG 14(, 12,4 for all 1€ R.

Here 1/q=1/n+1/2 and all the positive constants C are independent of t, h, ¢ and I.

Proor. (3.17) is essentially due to Li and Yu [11]. But in [21] Zhou has slightly
changed their original estimate into (3.17). We give the proof of (3.18). Making the
change of variables x = (1 — o)y, £ =#/(¢t — o) and then proceeding as in the proof for
(3.17) due to Li and Yu (see [11] on page 916), we see without any difficulty that

(3.19) sinw(t - o) [xh(a, - )]' = (2n)™? _SE'_‘f_l(iZ_"_);]},(a, )
2 4 2
[lx(a, - )xh(0, )| Larr I10ll Lo
S C,t _ o_ln/2+1 Sup J L (Rx) Lp(Ry) ’t _ O_I—H/q
veS HUHH‘(R")
v#0 - Y
+ C't _ a_ln/2+l
h(o,- 1—=y(o,))(t— o)y
 sup [n @ Mz gl = ¥ )0 = yoll=z al_n}
%% ||U||H1(R;)

= C|t — o/ (M, + Mp),

where 1/p=1/2-1/n, Y(o,y)(=x(o,x)) is a characteristic function of the set
{(a,»)|ly] < (1 +|a])/2|t — o|}. Since llvll, < Cllvllg by (3.5), we obtain, recalling
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1/g=1/2+1/n,
(3.20) M; < Cllx(a, - )x;h(o,-)|l; = CllIxih(a, )l -

On the other hand, taking account of the inequality

| vvaonaa

Ln_l r’v?(r0)dl = —J 7

Sn—1

<2 J r W2(0)dAdC + 2 j Jw 22{o(AQ) | (Vo) (A0)|dAd,
s'l-—-l S’l-—l

r r

we get

(3:21)  I(1 = ¥a,-))(t = 0)yjv(*)l| L2

© 1/2
<Clt—a| sup ( J J n1_4 vz(,lC)/l”‘3d/1d£)
re (it o) \Sm I A

2)t—a|’

° 1/2
+Clt—0o| sup (J J ln_4|v(,l£)||(Vv)(/1§)|A"‘2dld5)
re (L o) IS Ir

= C|t — o|M3 + C|t — o| My.

Note that integration by part gives

| waoieaaolr-taid

0
(an_l JOO u2(/1€),1n—3d,1d()1/2 ( an_l Jw (Vo) ()P dzdc)l/z

0 0

IA

<c([ [ mooiwauo )

’ <Js J ' |(‘7”)(/1C)|21"“d,1d5)1/2,

0

that is,

o0 1/2
(3.22) (J JO IU(AC)H(VU)(AC)I,l"‘zdldC) < Cllo]l -

Ssn-1

Therefore, we obtain in view of the assumption n > 4

It _ O'| (n—4)/2
. My < 1.
(3.23) » c(1 . M) ol
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Moreover, integration by part together with (3.22) gives

(3.24) ('1’ )(M ? (L f: u2(,1c)(/1"-2)’d,1dc)1/2

C(it-k l" )(n —4)/2 (Ln_l J: IU(AC)||(Vv)(’1c)|'1n_2dldc)l/2

(n—4)/2
) Ioll, 1.

Combining (3.21), (3.23) with (3.24), we find

IA

IA

C

|t — o\ —nt1
(3.25) M, < 1+ o] |t — o] ”h(aa')”1,2,¢~

Substituting (3.20) and (3.25) into (3.19), we have completed the proof of (3.18).
Q.E.D.

PROPOSITION 3.1. Let I be any interval. Suppose that a function h = h(t, x) satisfies
(3.26) I'*he LY(I;L*(R")) for |o| < 1.
Set

() = [ =D po,

TLR(0):= Jt(cosa)(t — D)h(r)de

for any o €l. Then for every o€l the following equalities (3.29)—(3.30), (3.32)—(3.36)

hold in C(I;L*(R")). Moreover, the equalities (3.28), (3.31) also hold in the same space
if in addition

(3.27) (- Yh(a,-) e L*(R") foreverycel.

sin (¢ —

(3.28) L1 = 2 (o))

+J'§m_“’g;’_)[(Ljh)(f)]dz G=1,--,m),

(3.29) QL k(1) =Jts—if‘—°"g;’)g,kh(z)dz (1<j<k<n),
(3.30) LoL[A)(t) = & S‘nwg 9 h(o) + Jsm“’c(u;%(r)dr

+ [ 2D (o) olar,
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(3.31) L;0.d,[h)(1) = L;iJo[h](z)

fsinw(t — )

— (cosw( — o)) [xh(a)] - J 8ih()dz

[ (cosati— N[ @lde (=1,

(3.32) Qyedel,[R)(1) = ol (1)

= Jt(cos w(t—1))Qh(t)dr (1 <j<k<n),

ag

t

(3.33)  Lo01,[h)(¢) = LoJ,[h](t) = o(cosw(t — a))h(c) + J (cosw(t — 7))h(t)dT

g

+ Jt(cos o(t — 7)) [(Loh)(z)]dz,

[

sinw(t —

(3.34) LideL,[h)(1) = %) o (x;h(0)) — S Jt(cos o(t — 7))h(t)dr

+Jts_i%—_r)[(aijh)(r)]d‘c Uik =1, ,n),

g

"sinw(t — 1) "sinw(t — 1)

d;h(t)dt — 80 J dch(t)dr

g

(335)  Qudel,[h](f) = 5,4

[

o —_
+J Ma:_i)aegjkh(‘f)d‘[ (I<j<ksnt=1,.n),

ag

sinw(t — o) "sinw(t - 1)

(3.36) LodkL,[H) () = o dch(o) + J dch(z)dr

g

+J'Si_“96§0ﬂ[(akL0h)(r)]dz (k=1,---,n).

g

Proor. All these equalities are verified by direct calculations. See Hidano and
Tsutaya [4]. Note that we have used the precise commutation relations (3.2)—(3.4) to
cancel undesirable terms when proving this proposition. Q.E.D.

PROPOSITION 3.2. Suppose that (f,g)€X. Put uy(t):= (coswt)f + (o ! sinwt)g.
Then uy satisfies

(3.37) T*ug, I *up e C(R;L*(R*)) forany a with|o| <2 and k=0, --,4,

(3.38) sup [luo(£, ) |02 + Y sup [IDTuo(t, )|, < Cs|(f,9)ll5-
teR Ial:z teR
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Proor. Applying L;, 2y and Lo directly to the formula uy(t) = (coswt)f +
(o~ !sinwt)g, we may find with the help of the Fourier transform that the following
three equalities hold in C(R;L%(R*)):

sin wt sin ot

0 f -

w w

Lijug(t) = — wz(xjf) + (cos wt)(x;g)

sin wt sin wt

=——0f +——[ydf] + (coswr)(xy9) (j=1,---,4),

sin wt

Qjkug(t) = (cos wt)(Qje f) + Qg (1<j<k<4),

4 . 4 .
sin wt sin wt
Louo (1) = Y _(cos o1)(x;0,f) — 3 ——g+ > ——9i(x9)-
j=1 j=1

Then, this proposition can be proved without any difficulty in view of (3.1), (3.16), a
simple equality x;0rg = 0k(x;g9) — djxg and the strong continuity with respect to ¢ variable

of the operators w~!sinwt, coswt in H* for any s € R. Thus, we omit the details of the

proof.

4. Proof of Theorem 2.

Throughout this section we confine ourselves to the case of n=4. For any
(f,g) € £ let us consider the integral equation

(4.1) u(t) = up(t) + h{F(w))(t), teR,xeR*

Here uy(t) = (coswi)f + (w 'sinwt)g, I[F(w))(?) = Jy(w 'sinw(t - 7))F(u(r))dr as
before. We introduce the sets of functions Y5 (6 > 0), Z as follows.

Ys = {u = u(t,x)|ue C(R;L*(R*)) for any a with |«| < 2,

Ol *ue L®(R; L*(R*)) for any a with |¢| =2 and k =0,---,4,
u(0,x) = f(x), 0u(0, x) = g(x),

il

lully = sup fu(t, Y+ 3 ess- sup | DT *u(t, )], sa},
€

|a]=2 teR

2 = {u= st e CORLHRY), lull = suplus, )y < o0 .
teR

Observe that ||u||y is equivalent to sup,.gllu(t, )|l 22 +€ss - sup,eg || Du(t, )| r 5, Note
that Y5 is nonempty if ||(f,g)||s is sufficiently small relatively to 4. Z is a Banach
space with the norm ||u||,. We shall employ a simpler iteration scheme than that in
Zhou [21] to point out that such a modified iteration method as in John [6], which was
used in [21], is not necessary to construct solutions. Not only our scheme simplifies the
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proof of the existence of solutions, but also it is of help to relax the smallness condition
on the data. On the other hand, the method in [21] will take effect when we prove the
continuous dependence results. See Proposition 4.8 below.

LemMMA 4.1. Y5 is a closed subset of Z for any positive 0.

Proor. Let {u,} = Y5 converges to v in Z. Then v(0) =f. We show ve ¥;.
Since ||um||y <9, it follows from the sequentially weak-+ compactness of closed balls in
L™ that there exists a subsequence {u,} and a function w, (resp. wk,) for every multi-
index a with |a| <2 (resp. k=0,---,4 and o with |a| = 2) such that

Uy — w, weak-x in L*(R; L*(R%Y)),
Ol *Upy — Wiy weak-x in L®(R; L2(R*))
with
1Wall Lo (v L2rt)) < lg’,ﬂ_igf||F“um'||Lw(R;L2(R4))’
||Wka||Lw(R;L2(R4)) < lgnlgf ”akraum'”Lw(R;Lz(R“))'
On the other hand, it is easily checked that
Tty — I in 2'(R x RY),
O, *tpy — 0,0  in 2'(R x RY)

because u,s — v in C(R; L*(R*)). Thus, we find that w, = I'*v, wy, = 0 *v. Since
I, 8;I"ve L®(R; L*(R*)) for 1 < |a] < 2, we see with the eventual modifications on a
set of measure 0 in time that I'*ve C(R;L*(R*)) for |«| <2. Moreover, ||v]y <
lim inf o0 ||tm || y < 0.

It remains to show J,v(0,x) = g(x). Note that there holds that

(Butts (1), 9) 2 = (6 9) 2 + Jo(afum, (), 0) 1 dt

for all p € L>(R*). Let ¥ = y(t) be the characteristic function of the interval [0, ] (or
[£,0] if £ <0). Since ype L'(R;L*(R*)), it holds that for any te R

[ (0Pt (1), 9) ot =j (62t (2), 0) o ()
0 R

~ [ @2, pv = [ @), p) 2
R 0

as m' — oo. On the other hand, since {(0:4w,9);.} is uniformly bounded and
equivalently continuous on R for any fixed ¢ € L2(R*), we can apply the Ascoli-Arzela
theorem to the subsequence {(0:;un,9);.} if we restrict the domain of the definition to
any compact interval of R. With the help of the diagonal method, we can extract a
subsequence {(0:;um, ).} Which converges to a continuous function w = w(¢), defined
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on R and depending on ¢, uniformly on every compact interval of R. Let I be any
compact interval of R. Then there holds

J (Octtr (1), @) 2 At — J w(t)dt.
I I

On the other hand, since 0,u,» — 0,v weak-x in L (R, L2(R4)), we see that

J (Buttns (1), @) 2l — J (@0(t), @) adlt
I I

By the uniqueness of the limit we find

J] [w(?) — (0:0(2), 9) 2] dt = 0.

Since I is arbitrary, it follows that w(f) = (0,v(¢),9),. for all e R. Therefore, it holds
that

t
(@000, 0)1: = (0.0 + | (@000, 9)2d
for any te R. Since ¢ is arbitrary in L2(R*), we find
t
ow(t) =g+ J d*v(r)dr in L*(RY)
0

for any ¢ e R. This implies 6,0(0) =g. Thus we have completed the proof of Lemma
4.1. Q.E.D.

PROPOSITION 4.1. Let ty be any fixed finite number. For any (f,g) e H*(R*) x
H'(R*) the equation (1.1) has at most one solution in

0, = {u =u(t,x)|ue ﬁ C/(R; H*7(R%)),
j=0

me=ﬂ@@wmﬂ=ﬂﬂ}

Proor. Without loss of generality we may take #) = 0 because (1.1) is invariant
under the translation in the time variable. Moreover, we have only to prove the
uniqueness for ¢ > 0 because (1.1) is invariant under the change of variable ¢t — —t.

Let u, v be solutions to (1.1) in @. Let I be any interval of (0,00). Since u and v
satisfy the equation (1.1) as an equality in C(R;L*(R*)), we have by the usual energy
inequality

llu(t,-) — v, ). < CJO(IIu(T, Magp-y + 116G, Magpon)” ™ llu(z, ) = olz, - )lad

t p—1
scLGywm»mﬁwwwwuhﬁ ue,) — oz, Yl e
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for all tel. Moreover, in view of u(0,x) = v(0,x) it follows from an elementary
identity u(¢) = u(0) + [; d;u(r)dr that

() —o(t, )]l < J; 10:u(z, - ) = Oc0(z, - ) || d.

Hence we conclude by Gronwall’s inequality that ¥ = v on /. Since I is arbitrary, we
have got the desirable uniqueness result. Q.E.D.

In what follows we simply denote |[(f,g)|s by 4. Since uy satisfies (3.37)-(3.38),
up belongs to Y¢, 4. We shall show through the following propositions that a sequence
{wm} can be defined in Y,¢,4 for small 4 inductively by

(4.2) Um1(2) = ug(2) + To[F (um))(2)-
PROPOSITION 4.2. CP(R*) x CP(RY) is dense in Z.

Proor. Observe that the norm ||(f,g)||s is equivalent to

2
1A s+ D D IxPaiflla+ D lIxPazfll,

la|=1 |Bl=la| | =3
1B1=2

1
Hlglhm + D DY 1585l + D IIxPasgl,.-
|or|=0 |B]=]a|+1 :;}=§

Here we have set x# = x| - -- xf“. Then, by the usual regularizing and cutting, together
with an elementary equality x = (x — y) + y, we can prove this proposition without any
difficulty. Thus we omit the details. Q.E.D.

PROPOSITION 4.3. All (f,g) € 2 satisfy the estimates

(4.3) I< - Y F(N)ll, < €47,
(4.4) I<- Y2 F' (oS Ny N1<- Y2 F (Mgl < CAP (k=1,---,4).

It also holds that

sin wt sin wt
(4.5) sup GF(OIll > sup Pexx, F'(f)or f1|]
teR 2 teR @ 2
sup Sin ! axi F'(f)g]|| < CAP
teR 2

for j, k=1,--- 4

Proor. Note that the following formal calculations can be justified by virtue of
Proposition 4.2. By applying L; (k=1,---,4) to (3.28) with ¢ = 0, there appears the
term (coswt)[xkx;h(0)]. This is the reason why we need to show (4.3). Let us begin
with verifying (4.3). It follows from the inequality |[v||, < C||Vv||, in four space
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dimensions that
- -2
1<+ Y2F(A)Il, < CIAIEIC - A5 < CUAGR (U F 1l + 11K - YVFI)? < Cav.
Next we show (4.4). Applying the Schwarz inequality, we have

I< - Y2F'()orf Nl < CUAIEZIC - DFNalIK - Yoiflla < CA°.

Quite similarly it follows that ||{ - Y2F'(f)g]|, < CA°.
Finally we verify (4.5). Applying (3.18) with ¢ = 0, we obtain

sin wt

(4.6)

s (el < A gl + UL 50l
Applying the Holder inequality, we get

(4.7) I1£17"glls/5 < 1/ W, llgllz < CILA N5 Nl

Moreover, by virtue of (3.15) we see that

" 1/4
@8) 17 gl < 1007 (qulf“(r()dé) (jI

1/4
(er)4g4(rC)dC) rdr
1

1/2
< C|fII5 L (Z j _I(Q"f)z(rC)dC)

<11

1/2
X (ZJ (Q”(xjg))z(ré)dc) rdr
18| <171=1

< CIAE ANl + 1< SVAIDUIC - gl + 1< - Y2 Vglly)-

Combining (4.6)—(4.8), we find that one of the estimates in (4.5) is true. The others can
be proved in quite the same way. Q.E.D.

REMARK 4.1. We can prove (4.5) in a different way. That is, (4.5) also follows
from the combination of the Hardy-Littlewood—Sobolev inequality and the Sobolev
inequality ||v||, < C||Vv||,. See Lemma 4.2 in Ginibre and Velo [1]. See also Remark
4.2 below.

PROPOSITION 4.4. Let u be any function in Y>c,4, where Cs is the same constant as
in (3.38). Then, it holds that

(4.9) | F (u(z, - ))”1",2,2 < C(2CsA)*(1 + IT|)*3(p—1)/2,
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(4.10) sinw(t — 1)

I*Fu(,-))|| < C(2CsA)? (1 + |2]) "' 27272 (o] < 2)

teR

for ae t€R, and

(4.11)  I'*I|F(u)] € C(R;L*(R*)) for any o with |a| < 2,

(4.12) & I*I[F(u)) € C(R; L*(R*)) for any a with || =2 and k =0, ---,4,
(4.13)  |[I[F(u)]|ly < CeA? + C7(2CsA)?  for some positive constants Cg, Cy.

PrOOF. We start the proof with showing (4.9). By chain rule and the Schwarz
inequality together with (3.12) we get

(4.14) IF (e, Dlipa2 < Cllue, 5o lu(z 4
< C(1 + o)) 2=V2(2C54)°.

To show the corresponding estimate for ||F(u(z,-))||r,, we utilize some devices which
have been already employed implicitly in Zhou [21]. Note that the estimate

(4.15) (2, oo,y < CCU+ )™t ipspe 5> /P02 1

holds for the same reason as (3.6) holds. Then, combining (4.15) with (3.5), we have
the estimate

(4.16) lu(t, Mo, < CA+ 1N S Iru(t, Y with2<v <4

le] <2

for ae. te R. Then

(4.17) > IF (u(x, )T uz, - )T Pu(s, )l
fal,18l=1

<CY (e, G I "u(z, )i,
la|=1

© 1/2
+C) (J J ju(z, 1) P2 (ru) (s, rC)dC’3d’) |
|af=1 I¢1=1

(1+]z))/2
The first term on the right-hand side of (4.17) is estimated from above by
(4.18) C(1 + |z])" 242/ 2Cs4)? forae.teR

with the help of (3.6) and (4.16). On the other hand, the second term can be estimated
from above by virtue of (3.14) and the Holder inequality as follows.
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® 2(p-2) 1/2
4.19 C , e oy
( ) |;=1 (I(1+‘1!)/2 (|S¢l|1=pl |u(T rC)I) JM[:]( u) (T rC) Cr r)
p—2
=¢ Q%) (z, rE)de
|a§|;1 I:J(lel)ﬂ (lglzsz Jm:]( u)*(z, 1) )

2 1/2
X (Z J (Q°r*u)*(z, rC)dC) rsdr}
1Bj<11¢l=1

< Cllu(t, 52524 < CU+ o) > 2(2C54)" forae TR

We have employed (3.13) at the last inequality. It is easily checked that
3(p—1)/2<2+4(p—2)/v for all p>2if 2<v<8/3. Thus, combining (4.17) with
(4.18)—(4.19), we obtain

(4.20) Y IF"(ulz, - )T u(z,- ) Pu(z, - )l
la, |Bl=1

< C(1 + |7)2P"D2(2C54)?  for ae. T€R.

Moreover, by employing (3.14), the Schwarz inequality and (3.13), we have

(4.21) > IF (e, ) u(z, )|l

|o=2

< C|lu(x, - )Hfo—,;Hu(T’ MNir22

© 2(p-1)
Iu)? 3
ﬂ%Umw&ﬂ“ﬂo L@(wm@mm>

< C(1+ |2 D2Cs4)” + Cllu(r, )2 4012, 7 2.42.4

1/2

< C(1+ |7))3P"D2(2C54)” for ae. TeR.

At the last inequality we have used the fact that 4(p — 1)/v > 3(p—1)/2 for all p > 2 if
2<v<8/3. Combining (4.14) with (4.20)-(4.21) yields (4.9).

We next prove (4.10) by sharpening the corresponding estimate in Zhou [21].
Employing the Holder inequality first and then (3.6), we have

(4.22) IE )43y < Cllute, NS (el

< C(1 + |7)™#"2Cs4).
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Applying the Schwarz inequality to the integration on the unit sphere first, then (3.15),
finally the Schwarz inequality to the integration over (0,00), we obtain

(4.23)  [1F@ Dlrze

1/4

00 1/4
C 4(/7'1)d re 4 d 3d
< I (Jm:l lu(z, r{)] C) (MZSI szl( u) (z7,rl) () dr

1/2
<C > (|u? 2 Q%) (z,r0)dC
JO |0|<1u|C|=l

1/2
< (Q0r*u)(zr,10)de | ridr
lof, 6 <1 7 ¢1=1

1/2
sc[ X [] et u
<170 JKI=1
At the last inequality we have used the Holder inequality. Hence, if 2 < p <3, it
follows from (3.12)
(424) IFu(, Nlir 1,24 < €A+ [2) 22C51)".
On the other hand, if p > 3, then we obtain

(4.25)  F@(zDllri2e

1/2
SC<ZJ J '“(”’C)lz""z’(ﬂeu)z(nré)r3dCdr> ez, )l
o<1 I{l=1

< Cllue, )15y (T, )l alle(z )l 22
< C(1+ 1)) 2=222Cs4).

Combining (3.17) with (4.22)—(4.25) leads us to (4.10) for |¢| < 1. To prove (4.10) for
|x| =2 we proceed as follows. By chain rule we have

426) >

ja]=2

sin w(t — 1)

<CZ|IIu(T, W (1, g3, + ClluCe, gy Ml

|ol=1

+CA 1) Y llue )T 3 )]

Jet|=1

+C(1+ ) Z |[lua(z, )17 ru(c ”12¢
|o)=2
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By the Holder inequality we have for || =1
2 -2
(427)  [lule, P20 (1) |y, < 150 8T R 51212
< C(1 + )" (2C54)”.
Moreover, it easily follows that
(4.28) (e, 51y 85 )22 < CA+ [2]) ™7 (2Cs)°.

We next estimate the third and fourth terms on the right-hand side of (4.26). For
o) =1 we get by (3.14), (3.15) and (3.13)

(4.29) [lu(z, )P *u)(z, ) iz

-2 1/2
sup|ur r0)| ) (Lq*l(rau)ﬂr,rc)dg“) rdr

1+IT| /2 \l{I=1

)
(r-2)/2
( (Q%)*(z, rC)d()
1+|f|)/2 6] <2 ICI 1

Qﬂra 2 r d r3dr
’ (01251 J|C|=1( u)(z,r0) C)

< Cllu(e, )70 p06 < CA+ 1) *722(2C5 1)
for a.e. 7e R. Finally, by (3.14), (3.13) we obtain for |a| =2

(4.30) [IZIC20 ] eI CAD T

1/2

p—1
SJ (Sup Iu(r,rC)l) (J (F“u)z(r,rC)dc) rdr
(1+{e)/2 \ J1=1 It=1

< Cllu(z, - )“r 2,2(p—1),2 ¢”u(7’ : )“F,Z,Z
< C(1 + 1) 3P=9/2(2CsA)? forae. TeR.

Therefore, combining (3.17) with (4.29)-(4.30) leads us to (4.10) for |«| = 2.

There remains to show (4.11)-(4.13). (4.11)-(4.12) follow from Propositions 3.1,
4.3 and (4.9). In view of Propositions 3.1, 4.3 and (4.9)-(4.10) we see that (4.13)
certainly holds. Thus we have completed the proof of Proposition 4.4. Q.E.D.

Let 4 be small so that CeA” + C7(2Cs4)” < CsA may hold. Then we see that a
sequence {un,} can be defined in Y,¢,4 inductively by (4.2).

PROPOSITION 4.5. The sequence {un,} < Yac,4 defined just above satisfies

(4.31) lttmar = tmllz < Colllttmlly + Netm11ly)* ™ Nt — tm-1 ]l 2

for all m=1,2,---. Here Cg is a positive constant independent of m.
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PrOOF. For simplicity we put u,, ;= tmi1 — Um, Uy,:= Uy — tm_1. It follows from
(3.6) that

(4.32)  |IF(m(z,-)) = F (tm-1(7:-))llasa
< Cllltm (s Mlagpry g + Netm=1(8s lagpory )7 Ntz )l

< C(L+ )™ (i (2, )l 22 + N1 (2 M 7,2.0)” ™ Nt (5, )

Moreover,

(4.33)  ||F(um(t,")) = F(tmo1(z, )l 126

IA

) 1/2
CJ (JICI—I (e (7, P+ [t (2, 7)) 2~V (x, ’C)dC) Adr

(1+[z))/2

IA

p—1

o

c| (sup (2, 7E)] 4+ SUP 1 (, rc>|)
(1+2))/2 \ [¢I=1 1Z|=1

1/2
X (J u,':,z(r, rC)dC) ridr
1¢1=1

< C(|lum(z, - )HF,Z,Z(p—l),Z,¢ + [|thm-1 (7, - )”I",Z,Z(p—l),2,¢)p—l||u;:1(T’ Il
< C(1+ 1) 22 (uplly + Jtmi[l)? 150z, )ll, for ace. T e R.
Combining (3.17) with (4.32)-(4.33), we have proved (4.31). Q.E.D.

Let us take A still smaller so that

1

2

may hold. Then it follows from Lemma 4.1 and (4.31) that {u,,} = Y2¢,4 is a Cauchy
sequence in Z and there exists a unique function u € Y,¢,4 such that u,, —» uin Z. For
this u the integral [j(w™'sinw(s — 7))F(u(t))dr is in L*(R*) for any finite ¢ because
F(u(7)) is a bounded function with values in L2(R*). Let I be any interval. Then, as
is easily seen, there holds

(4.34) CsA? + C7(2CsA)” < CsA and  Cy(4CsA)*~! <

JIWF(um(r))dr — JIMF("(T))Q’T in C(I; L*(R*))
0o @ o @

as m — oo because u,, — u in Z. Hence u satisfies the integral equation

'sinw(t — 1)

(4.35) u(t) = up(t) + J F(u(t))dr

0
as an equality in C(I;L*(R*)). In fact, (4.35) holds in C(R;L?(R*)) because I is
arbitrary.

Next let us investigate the strong continuity with respect to ¢ for the derivatives of
u. Because u belongs to Y¢,4 and satisfies (4.35), we see from (4.11)—(4.12) that I"*u,
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oxI"*u € BC(R; L*(R*)) for |x| <2 and k =0,---,4. It follows from (3.7), (2.18), (2.20)
and an elementary inequality {(x) < (|#| — |x|> + {z) that (u(?),0.u(f)) e 2 for any
te R. Taking account of the equivalence of the norms (see the proof of Proposition
4.2), we may derive the continuity of (u,d,u) with respect to ¢ in X' by using (4.35) itself
and carrying out rather long, but very elementary computations. Clearly, u satisfies the
differential equation (1.1) as an equality in ﬂ}:o C/(R; H'7(R*)). Thus, letting ¢ be the
supremum of A satisfying (4.34) and setting C3:= 2Cs, we have proved the part (I) of
Theorem 2.
In the rest of this section we prove (II), (III) of Theorem 2.

PROPOSITION 4.6. There exists at most one pair of functions (f+,g%) (resp. (f~,97))
satisfying (2.23)—(2.24) as t — +oo (resp. —0).

Proor. The proof is standard. Thus we omit it. Q.E.D.
Define
(4.36) ut(t):= u(t) +J wF(u(r))dr,
t
_ t osinw(t—1)
(4.37) u” (2):=u(r) —J —w———F(u(r))dr

for the solution u obtained just above. Since u satisfies (4.9)—(4.10), u*(z) are well-
defined in H3(R*) for every te R. u* actually belong to ﬂjs:OCj(R; H3*J(R*%) and
solve the linear equation [(Ju=0. Because u*(0) e H'(R*), we see from the Sobolev
imbedding theorem that u* (0) € L*(R*) and thus (u*(0), d,u* (0)) € E(R*). Moreover,
in view of (4.9), u™ (resp. u~) satisfies (2.24) as t — +oo (resp. —oo).

It remains to prove that u% defined by (4.36)—(4.37) have the properties (2.25)—
(2.28).

PROPOSITION 4.7. For any o with |a| <2 the equality
t : _
(4.38) rw () =ru@+ S Caﬂj SO0 = D) 1 P p()) (1)) de
fi<la e @
holds in C(R;L*(R*). Moreover, for any a with |a| =2 and k=0, ---,4 the equality

(439) AT (1)=&l u(t)+ S Ciopy JiooSi—nc—l—)%——T—)[(a){FﬁF(u))(r)]dt

|Bi<2
[y[=1

+ Z Crap Jt cosw(t — 7)[(T"PF(u))(7)]de
BI<2 —®

also holds in C(R; L*(R*)). Here Ciup (resp. Cropy) is a not necessarily positive constant
depending only on k, o and B (resp. k, a, f and ).
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Proor. It is impossible to prove this proposition by direct calculations. Hence we
are forced to employ the following simple, but careful limiting procedures as in Hidano
and Tsutaya [4]. For any ¢ € R we put

| 3PS _
sin (¢ t)F

(4.40) u= (1) = u(t) — J (u(2))dr.

ag

Obviously, u; e ﬂ;zOBCf (R; H*7(R*). Moreover, it follows from Proposition 3.1
that

sin w(t —

(441)  Lus (1) = Lu() - D 1 F (o)) - LILF@)) (=1,-,4)

(4.42) Qi (1) = Quu(t) — L[QuFw))(1) (1<j<k<4),

sinw(t — o)

(4.43) Lou, (t) = Lou(t) — o F(u(o)) — 2I,[F(u)](t) — I{LoF (u)](2).

Observe that (3.10) implies that x;F(u(c)) € L>(R*) for any o € R. Hence all of the
terms on the right-hand sides of (4.41)-(4.43) are in C(R;L?*(R*)) for any ce R. It
follows from Lemma 3.6, (4.22)-(4.25) that

sinw(t — o) b F ()], osina)(t —0) F

© . (u(a)) — 0 in C(R; L*(R*)) as ¢ — —oo.

Hence, it holds that

Lijug (1) — Liu(t) — Lo [LiF (u)](2),

Qi (1) — Qjeu(t) — oo [ F ()] (2),

Loug (1) — Lou(t) — 20_co[F (w))(2) — I_oo[LoF ()] (2)
in C(R;L*(R*) as 0 — —c0. Here we have set

I_[h)(2):= [w (o™ sin(t — 7))h(7)d7.

On the other hand, since u; —u~ in C(R;L*(R*)) as o — —oo, it follows
immediately that Lju, — Liu~, Quu; — Quu~, Lou; — Lou™ in @’(Rl”) as ¢ — —oo.
Thus we conclude that the equalities

(4.44) Liu (1) = Liu(t) — Lo [LiF(w)](2) (j=1,---,4),
(4.45) Quu () = Quu(t) — I [QuF(W)(f) (1<j<k<4),

(4.46) Lou™ (1) = Lou(t) — 2L [F()](£) — oo [LoF (u)](2)
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hold in C(R; L%(R*)). Thus, we find that (4.38) is true for |a| = 1. To check (4.38) for
|a| =2 we proceed as follows. Put for any o€ R,

(Ljt™)g(2):= Lyu(?) — L{L;F (4)](2),
(Qiu™),(8) := Liau(t) — L [QucF (w)](2),
(Lot™)g(£):= Lou(t) — 21,[F (u)](2) — Lo [LoF (u)](2)-

Then, observing x;I"*F(u(a)) € L>(R*) (Ja| = 1) by (3.10), we may prove by repeating
quite the same argument as above that (4.38) certainly holds for |a| = 2.

We turn to the proof of (4.39). The proof of (4.39) is quite the same as that of
(4.38) except that it is necessary to show

I< - STF(uo,))ll, » 0 as o — —w
for |a| < 1. This is easily derived from (3.6) and (3.10). In fact,

> KK - Y (u(o, - )l

jel <1

< DO (e, Gl I AT u(e, )l

la] <1

< C(||< . >1/4(p—1)“(07')||4(_pl_1),x+ < >1/4(p_1)u(07')||Z(-pl—1),¢>||"(0',')”r,z,z

< C(1+ o) V2 (o, )IIf. 5.5
We omit the details of the proof of (4.39). Q.E.D.

REMARK 4.2. The crucial step to prove this proposition was deriving

ﬂ“’%’—")-[xﬁ(u(a))] 0 in C(R;LXR*) as o — —oo.
Note that it no longer follows from the combination of the Hardy-Littlewood-Sobolev
inequality and the Sobolev inequality |v||, < C||Vv|l,. If p>13/6, it would follow
immediately from the combination of the Hardy-Littlewood-Sobolev inequality and
(3.6), (3.10). These facts imply what an important role (3.18) plays.

Now we are ready to show that u~ defined in (4.37) have the properties (2.25)—
(2.28). It follows immediately from (4.9)—(4.10) and Proposition 4.7 that (2.27)-(2.28)
are true. Since |ju||y < C34, we also find from (4.9)—(4.10) and Proposition 4.7 that

(4.47) lu ||y < CA+ CA* < CA.

Since I'*u~ and 0l *u~ are continuous with values in L2(R*) for |¢| <2 and
k=0,---,4, both (I'*4")(0) and (/%4 )(0) make sense in L2(R*). Then, applying
(3.7) to u~, we find from (4.47) that u~ has the properties (2.25)—(2.26). In quite the
same argument it can be checked that u™ also satisfies (2.25)—(2.28). Thus we have
completed the proof of (II) of Theorem 2.



280 K. Hipano

To complete the proof of Theorem 2 there remains to check (III). We need the
following proposition part of which has been essentially proved in Zhou [21]. But
harder calculations and more delicate estimates are necessary to complete the proof.

PROPOSITION 4.8. Let v be any positive number with 2 <v < 4. Let ul), (f, g()),
(fNx,g0)2)y  (j=1,2) be functions described in (III) of Theorem 2. Set
uE(f):= (coswt) fNE + (w0 'sinwt)gVE. Then they satisfy the following estimates.

(4.48) le®(,-) = u®@ (@, )12 < CISY =@, 90 — @)y

+C f A+ 2y WD (2, ) — @ (2, )|y 4,
I

449) () —u® (1, )lp g2+ D IDT (1) = uP(8, )},
la]=2

-2
(CIfD —fP,gO — g+ CllFO — N7

p—2
+c[sup 1,y - u<2><t,-)||r,1,2]
teR

+C | (14 fl) 0 [uu“)w,» U, Y2
I

|+ S IDr ) - ue o |de r2<p <3
|oe|=2

IA

ClI(fM = £, —g?)|;

+C (14l [num(r,-) 4D, s
I

+ S IDrO(e, ) = u(e, | de i >3

\ or|=2

Jor all te R, where I =[0,1] if t >0 or [t,0] if t<0. Moreover

p—2
(4.50) ||u“>i—u‘”iuysC[supuu“’(t,-)—u<2>(t,-)||r,1,2} +Cllu —u@|y.
teR

All the constants C appearing (4.48)—(4.50) depend only on ¢, A, v and p.

Proor. To begin with, we must show that the differential equation (1.1) is
equivalent to the integral equation (4.1). Set u(r) = (coswt)fV) + (™! sinwr)g¥.
Then u/) satisfies

(4.51) ud(t) = ul (1) + Jt %T—)F(um(r))dr
0
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as an equality at least in () 13:0 C*(R; H**(R*)). This can be easily verified. In fact,
put

‘s
t —
sin o( T)F

(1) = u(()j)(t) + Jo (uY)(1))dr

for ut).  Since O(u") — #¥)) = 0 and (4 (0), 3, (0)) = (@)(0), 2,2)(0)), it holds by
the usual energy equality that |jul)(z,-) — #)(z,.)||, = 0 for all te R. Thus, for every
teR, u)(f) —aY(r) is independent of a.e. x € R*. Since L2(R*) has no nontrivial
constant function, we find that u\)(¢) = a)(f) in L*(R*) for all te R. Hence, (4.51)
certainly holds.

It is sufficient to prove (4.48)—(4.49) for ¢ > 0 because in the other case they can be
shown in quite the same way. Noting (3.28)—(3.30) and applying (3.17)—(3.18) to
(4.51), we have

(4'52) ”u(l)(t") - u(Z)(t")“I’,l,Z
< s (t,-) = u$ (8, )2

+ CIIF(f ) = F(fO)yj3 + CIF(FD) = F(f ),
+0wamaf»*Fw@@»mmwuw

+cﬁu+werwmaf»—meuf»mmu¢m
for all t> 0. It follows from (3.6), (4.16) that
453)  IF(z, ) = Fu® (1, )54/,
< C(1uV (5, Mlagpoiy g + 18P (@ llagpory ) O, -) = u@ (2, )l
+ (1M (2, Mooy + 142 (1, oo )2
x [u® (7, ) a e (@) = 4P ()]
< CL+ )7 Dy + 1@y ) e (z,-) = u@ (e, )l
Note that we have the estimate

(4.54) et o < CA+[e)™ DS Ir (e, [ with2 < v <4

|| <2

for the same reason as (4.16) holds. Then we obtain by employing (3.14), (3.15) and
(4.54)
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4.55)  IF@W(z,)) = F@® (@, )l
< C(lu®(z, )l + 16® (z,)ll)?
x ([ (@, g0 + 18P (@ )4V (2, -) = 4P (@, )2
+ (1M, o + 142 (@ ) loo) 2 14® (5, ) 22
x [lu® (e, ) = u® (e, )1 2
< C(1+ 172Dy + 1@ ) uO () = 4 () 2
It is easy to show
4.56)  F(fD) = F(f) )y IF(fD) = F(f @)y 5
< CUIFD, g5 + 1@, g7 D =@, g0 = g 5.

Combining (4.52)—(4.56) yields (4.48).
Next we show (4.49). It is enough to prove (4.49) in the case of 2 < p < 3 because
in the other case it is proved with much ease. Note that

|F//(u(1)) _ F//(u(Z))| < Clu(l) _ u(2)|p—2

because |#)| is small. Taking account of Proposition 3.1 and employing (3.17)-(3.18),
we have

@57 uV) = u® (),
< (6, ) =@ (&, W pp + CIC - PIFSD) = FED]I
+ CIE(fO) = F(f®)lgs + CIF (D) = F(fD)1
+ CIF (fOWFY — F(f@)ywr ), ,
+ CIC- PO D — F' (WO, ,
+ CIF' (fD)g™ — F'(£®)g@],.5
+CIC S IF(FM)gM = F/(fPg@)), ,

+ CJO 1F @M (z,-)) = F®(z,))lI 0,413,497

t
+C[ 1+ 07O @) = FU® (e, )l a0
0
It follows that

(4.58) IF@M (2, ) = F@®(z,)llr 24,

-2
< ClluM (@) F1.8/5-p 180 (7,-) = uP (2, )14,

+ Cllu® (o U (2 )1+ 18P (@)1 a,)
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x lu®(z,-) = u® (2, )2
+ C(110 (@ Mooy + 18P (@ lao )18 (@)l 720
x lu®(z,-) =D (z,-)a,

Since 2 < p < 3, we have by (3.6)

(4.59) lu®(z, - Nr1,8/(5-p)y < C(1L+ )" 2z, )N r,2,2-

Thus, employing (3.6) and (4.16), we find that the right-hand side of (4.58) can be
estimated from above by

p—2
(4.60)  C(1+0)" )} sup @ (,-) =P (@, )12
€

+ C(+ )y + @) T e (@) = 4P (@)l

Moreover, making use of the Sobolev inequality on the sphere S and (3.13), we have

4.61)  |FW(z,)) - FuP(c,- Dr21,2,6
< C”“(I)(T, : )”%,l,4/(4—p),12/(5~p),¢”u(l)(r') )= u® (7, ')“?‘,-l%Z
+ C([|V(z, oo + 18Pz, )0)" 2

X (““(l)(f’ : )”1",2,2 + ||u(2)(7’ y )“r,z,z)“u(l)(fv )= u(z)(T’ : )||r,2,2

p—2
< C(1+7)72@ 272,13 sup e (2,-) = u@(,-) |1 2
€

+ C(L+ 1) 2Oy + 4Py O () = uP ()2

Repeating essentially the same argument as in (3.38), (4.53)—(4.56), we easily find that
all of the terms except for the second and the last two on the right-hand side of (4.57)
are estimated from above by C|(f1) —f® g) —g®@)|,. Since |F(u)— F(v)| <
C(lu| + |v])?u — v| < C(Ju| + |v])*|u — v|*~2 for any 2 < p < 3, the second term on the
right-hand side of (4.57) are estimated as

1< HEGD) = U < CUFD =PUE2AC S Dl + 1< > P)?

D) 2
< Cllf® - f@)o2 (Z(Ilf(j)llz + < - >Vf<f>||2>) :
Jj=1

Finally, we must carry out the following estimate to complete the proof of (4.49). In
view of Proposition 3.1 we have
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(4.62) D IprHu(, ) —u®(, )il

|a|=2

< S Drew (1) —ud (1, )il + CI< - IF(FD) = F(F@)]II,

. laj=2

+ C|[< - Y F (O — F'(rDywr@,
+ C|I<C- YF(FD)g® — F'(£@)g D)1,

¢ [ IO ) - P Dl

It is not difficult to estimate all of the terms except for the last one on the right-hand
side of (4.62) from above by C||(f) —f®@,g1) —g®@)| .. Thus we have only to
estimate the last term. Note that the combination of (3.12) and (3.5) produces the
estimate

(4.63) 4V (2, My < €A+ S I*uO (2, )| 1.

la| <1

Then, we get by (3.12), (4.54) and (4.63)
(4.64) |FD(z,-)) = Fu®(z,- )22
< CluM (2, )7 1,8/0-p 16D (7, -) = 6@ (2, )14
+ C([uM(x, )l + 18P (7, )l0)* 2
(A R L P Tt G | PO | L A T CA P

+ C([14 (@, oo + 18P (2, Yloo) 160 (2, 2 2l (2, ) = P (2, )l

@, 60, -) = 4D (e, 2
p—2
< C(1+ 9|2 [sup () = u® iy 2]
teR ”

+ C(1+7) 22O 4 1u® ) )P W (7, ) — P2, ) o

+CA+ )20 (uDy 4 @)

x [Ilu(”(r, ) = u®(t, M pan+ DD (e, ) — u®(z,- )1||2] :
la}=2

Combining (4.57), (4.60)—(4.62) and (4.64) leads us to (4.49) for 2 < p < 3.
It remains to show (4.50). We have only to prove (4.50) for u(1)- ~ because it
can be proved similarly for u(V*+ — 4@+ Recall that u)~ has been determmed by

(4.65) u=(0) = u (1) - Lo [F@)(0) (i =1,2).
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Then, employing Proposition 4.7 and repeating the same calculations as we have done
to obtain (4.48)-(4.49), we can get (4.50) without any difficulty. We omit the details.
Thus, the proof of Proposition 4.8 has been completed. Q.E.D.

Now we are ready to show (III) of Theorem 2. Applying Gronwall’s inequality to

(4.48), we have
(4.66) sup luD(,-) = w2 (6, p12 < CUSD = F P, g0 - g5
€

We apply Gronwall’s inequality again together with (4.66) to (4.49) and obtain
4.67)  supluV(t,-) = u®(t, ippz+ Y sup DI (e, ) = u® (e, )]l
teR = |°‘|=2 teR

< C(/N —fP,g0 — gz + O - Y7

+ Cl(fM =@, g0 — g5
The remaining part (2.30) follows from (3.7), (4.50) and (4.67).

This implies (2.29).
Thus, we have completed the proof of Theorem 2.

5. Proof of Theorem 1.
= as follows.

et

Let us introduce Banach spaces X,

X = {u = u(t,x)|I"u e C((—o0,0]; L*(R*)) for any a with |a| < 2,
Ol *u e L ((—00,0); L*(R*)) for any o with |oj =2 and k =0, - - -, 4,

lraz+ 3 ess-sup |DF*u(t, ), < oo},

l|ully = sup [|u(z,-)
t<0 <0

Jo|=2

= = {u=utt 0w e C((—a0, 05 L2(R), s = sup e, ) < o .

We put Xs:={u=u(t,x)|lueX,|ully <o} for any positive . As in the proof of
Lemma 4.1, we can easily show the following lemma.

X5 is a closed subset of E for any positive 0.
In X the equation (1.1) has at most one solution satisfying (2.8).
Then u satisfies

LemMma 5.1.

ProPoOsITION 5.1.
Proor. Let u, v (u, ve X) be solutions to (1.1) satisfying (2.8).

t : _
(5.1) u(t) = u_(t) + J SN =) poy2))de
o ®
as an equality at least in ﬂ;zocj((——oo,O];H:*“j(R“)). So does v. This is easily

checked. In fact, put
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a(t):= u_ (1) + L; Sm“’c(o;f)F(u(z))dr

for u. Note that # satisfies ||u(z,-) —u_(t,-)||, =0 (t— —o0). Since [O(u— u)
=0, there holds |lu(¢,-)—u(t,-)|, = ||u(g,-) —u(o,-)||, for all t,6d <0. Because
Hu(O',')—fl(O’,')”eS Hu(a,-)—u_(a,-)||e+[iu_(a,-)—ﬁ(a,-)”e—>0 as g— —%0,
llu(z,-) —a(t,-)||, = 0 for all 1 < 0. Hence, for every # <0, u(t) — (¢) is independent of
a.e. xe R*. Since L?(R*) has no nontrivial constant function, u(¢) = i(¢) in L*(R*) for
every t < 0. Thus, (5.1) certainly holds.

Repeating essentially the same argument as in (4.32)—(4.33), we get

Jut, ) = wt, )l < Co(1+ 1)l + o)) sup ez, ) = w0z, )l

Put Ty:= sup{t]t < 0, Co(1 + ) P~ 22(Jlully + [lv]lx)*' <1/2}. Then we see that
u=v on (—o0,Ty]. To show u=v on the whole half line (—o0,0] we proceed as
follows. Set 77 =27T,. Note that u=v, d,u= 0,v at t = T,. The standard energy
inequality gives us

(5:2) lu(t,-) = v(t, )l < JT 1F(u(t,-)) — F(o(z, ) ,d7

scmwx+MMV”wan»—wn»mm

for all ¢+ with T} <7< 0. Moreover, an elementary identity u(z) = u(T) + f}l O-u(t)dt
yields

!
(53 ult) = vl )< | ou(e) - dale, e for Ty <1 <0.
T,
Combining (5.2) with (5.3), we conclude by Gronwall’s inequality that u(r) = v(¢) in

L*(R*) for T) <1 <0. Thus we have got the desirable uniqueness result.  Q.E.D.

Set A =||(f-,9-)|ls. Since u_ has the properties (3.37)—(3.38), u_ belongs to X¢, 4.
We shall show through the following proposition that a sequence {u,,} can be defined in
Xyc,4 for small 4 by

(5.4) U1 () = U (2) + Lo [F (1) ](2)-
In what follows we simply denote I_y[h](?) by I[h](z).

PROPOSITION 5.2. Let u be any function in X>c,4, where Cs is the same constant as
in (3.38). Then it holds that

(5.5) | F(u(, - ))“r,z,z < C2CsA)*(1 + ’T,)—3(p—1)/z’

(5.6) MU= piptute, )| = C@REAP 1+ () 0D () <2)

<0 2
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for ae. t©<0, and
(5.7) II[F(u)] € C((—o0,0]; L>(R*)) for any o with |a| < 2,
(5.8) Ok I*I[F(u)] € C((—0,0]; L*(R*)) for any a with |a| =2 and k =0, - - - 4,
(5.9) |IFW]lly < Ci10(2CsA)?  for some positive constant Cig.
ProOF. Repeating the same calculations as in the proof of Proposition 4.4 and

employing the limiting procedure in the proof of Proposition 4.7, we can prove this
proposition without any difficulty. Thus we omit the details. Q.E.D.

Let 4 be small so that C10(2Cs4)? < CsA may hold. Then we see that a sequence
{um} can be defined in X,¢,4 inductively by (5.4).

PROPOSITION 5.3. The sequence {um} < Xac,4 defined just above satisfies

(5.10) [tms1 = tml|z < Cra(llttmllxx + Ntm-111 )" Nt = thm-1 5
for all m=1,2,---. Here Cy is a positive constant independent of m.

ProOF. We have only to repeat essentially the same argument as in (4.32)-
(4.33). Thus we omit the details. Q.E.D.

Let us take A still smaller so that
1
(5.11) C10(2CsA)? < CsA and  C);(4CsA)" " < 5

may hold. Then it follows from Lemma 5.1 and (5.10) that {u,,} = X>¢.4 is a Cauchy
sequence in = and there exists a unique function u € X,¢,4 such that u,, - u in Z. For
this u the integral ['_(w™'sinw(t — t))F(u(z))dz is in L?>(R*) for any ¢ < 0 because of
(5.6). As is easily seen, I[F(u,,)] — I[F(u)] in C((—,0); L>(R*)) as m — co. Hence u
satisfies the integral equation

(5.12) u(t) =u_(1) + J_oo iig-w—c(:—_—rlF(u(‘l:))dr

as an equality at least in C((—o0,0]; L2(R%)).

Next let us investigate the strong continuity with respect to ¢ for the derivatives of
u. Since ue X and u satisfies (5.12), we find from (5.7)-(5.9) that I'*u, 0,I"*u are
bounded and continuous on (—oo,0] with values in L2(R*) for |a| <2 and k =0,---,4.
(3.7), (2.6), (2.9) and (2.11) imply that (u(0),0u(0))eX and ||(u(0),du(0))|, <
Gll(f-,9-)|l5. Since u satisfies

u(t) = up(t) + J;ﬂw—g_—r)F(u(r))dr, t<0,xeR*
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for uy(t) = (cos wt)u(0) + (! sinwr)d,u(0) (see (4.51) and the subsequent discussion
there), the continuity of (u, d,u) with respect to ¢ in X' follows (see the end of the proof
of (I) of Theorem 2). Therefore, u satisfies the differential equation (1.1) as an equality
in (,_oC’((—o0,0]; H'7(R*)).

It remains to show (2.13)—(2.14). Since u satisfies (5.12), we can prove (2.13)—(2.14)
without any difficulty by employing the limiting argument as in the proof of Proposition
4.7 and using the estimates (5.5)—(5.6). Thus, letting 6 be the supremum of A satisfying
(5.11) and putting C;:=2Cs, we have completed the proof of (I) of Theorem 1.

Next we prove (II). Let (f,g0))eXxs; (j=1,2) and let u) be the two
corresponding solutions to (1.1) satisfying (2.6)—(2.8). Set ul)(¢) = (coswt)fV) +
(o~ 'sinwt)g¥). Then, as we have shown in the proof of Proposition 5.1, u{) satisfies

(5.13) u (1) = u(s) + Jt @E’—S—_-’—)F(u(ﬂ (2))dr

as an equality at least in ﬂ;=0Cf((—oo,O];H 3-/(R*)). Employing the limiting pro-
cedure in the proof of Proposition 4.7 and repeating the same calculations as in the
proof of Proposition 4.8, we obtain

(5:14)  JuO(t,-) w1, )l p

< (/Y = 1D,40 — g2 5

t
+ C125P_IJ (L4 1) 2w e, ) = u®(z, )l 07,
-0

(5:15) [u0(t,-) = u® (e, Ml p0+ Y IDT*w0 () —u@ ()]l
o] =2

( p=2
CI(fD - £, g1 — @) 5 + C5 [sup uM(t,-) = u® ()l
t<0 ’

t

+Ci30”! j (1 ey 7170720 [num(r, ) =@ )2,
—00

+ Z DM (z,-) — uP(x, )]||2} dr if 2<p<3,

< Joe|=2

ClI(SD =D, g1 — gD)| 5

IA

t
vt [ (et [llum(r, ) =)l
—00

+ 3 IDr e (a,) e, o d it p =3
Jo|=2
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forall £ <0. Set Ty:=sup{r < 0|C26”' ['_(1+[z])7' 2" <1/2}. Then we have
from (5.14)

(5.16) sup [[u(t,) = u? (1, )10 < N = £2,980 — D).

t<T)

Note that there holds
(5.17) u(1) = (cosw(t — T1))u(T) + (0~ sinw(t — T1))d,ul) (1))
+JI iln—w(———)—F(u D (z))dr.
T w
Repeating the same calculations as we have done in obtaining (4.48), we get
(5.18) @ (,-) =@, ),
< C(IT| +0* ) (Il (T1, ) = u®(T3, )l
+ <> a1y, ) = Va® (T, ]l
+ <> (T, ) = (T, ]I

t
I e

T

for T; <t<0.

Applying Gronwall’s inequality, (3.7) and (5.16), together with an elementary inequality
Gy < 1+ (T = )+ /1+ T2, to (5.18), we get

(5.19) sup [lu(1,-) —u® (1, )llp10 < CIFD = 2,40 — )] -

T <t<0

for a constant C depending only on d, 4, v, p and T;. Combining (5.16) with (5.19), we
get

(5.20) sup JuD(t,-) = u@(t, NI p12 < CIY = £D,g0) — g@) 5.
<

Next we set Ty:=sup{t < 0|Cp30”~' [*_(1+|7))7"*2/"dr < 1/2}. Then it follows
from (5.15) and (5.20) that

(5:21)  sup e, -) = u® (6, Yp 22+ D sup |DI*uM (e, ) = u® (1, )]l

t<T, |(Z| 2!<T2

< C|(fO - £@, g0 — g®)|; + ClI(f D - D, — g@))j572.

Repeating the same calculations as we have done in obtaining (4.49), we get from (5.17)
with 7 replaced by T3
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(522) ”u(l)(t’ ’ ) - u(2)(t, : )”I“,Z,Z + z ”Dru[u(l)(t’ ’ ) - u(z)(tv : )]”2

|oe|=2

< C(T} +|T| +6"71)

x 1@ (T2, ) = u®(T3,-), 00 (Ts, ) — 0 P(Ta, )l

p—2
+ Cs? {sup ||u(1)(t, ) —u®(,- )“r,l,z]

t<0

+cor! Jt (14 gy
T

X l:””m(fa')—u(z)(T,')”r,z,z‘*' Z ”DFx (T )~u( (r,)]ll2 | d=
la|=2

for T, <t <0. Applying Gronwall’s inequality and (5.20) together with (3.7) and

(5.21) to (5.22), we obtain

(5.23) sup [lu(t,-) —=u@ (1, )ron+ D sup DI wO(,-) —u® (2, )]l

T, <t<0 Ia' T2<l<0

< OO = f2,g0 — gDz + CIFD - 2,9 — g5

Combining (5.21) with (5.23), we have shown (2.15) of Theorem 1 in the case of
2<p<3. In the case of p>3 it can be proved more easily. (2.16) follows
immediately from (2.15) and (3.7). Therefore the proof of (II) of Theorem 1 has been
completed.

6. Proof of Theorems 3 and 4.

We have only to prove that S is one-one. Let (fV) gW)eX; (j=1,2). Set
u9)(t):= (coswt) fU) + (0~ 'sinwt)g?). Let ul) be the solution, which is determined in
(I) of Theorem 1, to the integral equation

t : _
(6.1) u(t) = ub (z)+J SO0 =) pye))dr in (~o0,0] x R
Let v/} be the solution, which is determined in Theorem 2, to the integral equation
(6.2) v(1) = (cos wt)u(0) + (™! sin wt)d,u'(0)
t o _
+J SmO( =) py))de in R x R
0 (63}
Set
(6.3) o0 =00 + [T RO @
t

Note that u()(t ( ) =0)(¢) for t <0 by Proposition 4.1. We assume that (v()*(0),
d,0W+(0)) = (v@+(0), 6,v®*(0)). Repeating the same calculations as we have done in
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obtaining (5.10) and noting v(V+ = v@+ we get from (6.3)
o0
64 ) = o®(, ), < cj L+ )7 o0 () — oDz, ) pdr
!

for £ > 0. Thus, we find that there exists T3 > 0 such that v (s) = v@(7) in H3(R*),
aw (1) = 0@ (¢) in H2(R*) for all t > T3. Next we solve the equation (1.1) by giving
data (v)(T3),6,0()(T3)) at t=Ts. Then it follows from the uniqueness of the
solutions (Proposition 4.1) that v (¢) = v® () in H3*(R*) for any 7 € R. Recalling that
u(t) = v (¢) for t <0, we see that uV)(¢) = u®(¢) for t < 0. Thus we may conclude
from (6.1) that ()(0),8,uV(0)) = (u?(0), a,u )(0)). This implies that S is one-one.
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