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1. Introduction.

Two spaces X and Y are said to have the same n-type, if the n-stage
Postnikov towers X and Y™ are homotopy equivalent. When two spaces
have the same n-type for all n, we call them SNT-equivalent spaces. SNT-
equivalence has been studied by many topologists, e.g. J.F. Adams, B.1. Gray,
J.R. Harper, C.A. McGibbon, J.M. Mgller, ]. Roitberg, Y. Shitanda and C.
Wilkerson, etc.. Two spaces are said to have the same genus, if the p-locali-
zations are homotopy equivalent for all prime p. C.A. McGibbon and J. M.
Mgller [10] constructed two interesting spaces which are SNT-equivalent and
have the same genus. In this case, spaces are said to have the same clone
type. We set N™(I, [)=M™, [)XM™(J, I) where M™(I, J) is a pull-back of
SmtlLK(Q, 2m+1)—K(Z 4, 2m+1).  C. A. McGibbon showed that the family
of spaces {N', J)|{I, J} partition of all primes} has the same clone type and
classified the homotopy type by using the ordinary cohomology operations.
His method seems not to discriminate between NI, /) and Example A of
[10]. In this paper, we calculate End(2*N™(I, J)) and classify the homotopy
type by using End(—). By using End(—), we can also discriminate between
NI, ]J) and Example A of [10]. In section 2, for 2m>k>0, we show that
fiber spaces E(f) induced by f: K(Z, 2m—k+1)—2%71S*™*! are not homotopy
equivalent to Q*N™({, J) for non-trivial partition {/, J}. In [16, 17], the author
classified the homotopy type of {2*C(f)|f: 2*CP*—S**3} for k=0, 1, 2, ---, oco.
If we take maps {f} in the kernel of local expansion Ph(X*CP=, S¥*%)—
Ph(Z*CP>, TI,(S***)») (cf. [6]), we get uncountably many infinite loop spaces
of the same clone type. In section 3, we calculate Ph(2*M™(I, J), 2*S*) which
is a generalization of the result of [14].

The author would like to thank the referee for useful comment.

1. Endomorphisms of Q*M™(I, J) and Q*N™(, ).

The family of CW-complexes {M™(I, J)} are defined by the following pull-
back diagram for partitions {/, J} of all primes. The spaces were studied by
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W. Meier [11], C.A. McGibbon-J. M. Mgller [10] and J. Roitberg [14].
M1, J) St

= 1 !

K(Z;, 2m+1) ———> K(@Q, 2m+1).

We define N™(I, J) by the product space M™(I, [YxXxM™(J, I). By the
construction, we get (N™(, );=Si""<XK(Z,, 2m+1), (N™(, ]));=S"*1X
K(Z;, 2m+1). N™, J) is the same genus as (S*™*)XK(Z, 2m+1). In this
section, we calculate the monoid of endomorphisms of loop spaces of M™(I, J)
and N™(I, J), and classify the homotopy type of Q*N™(I, ]J). At first, we
remark the following elementary property.

The left pull-back diagram produces the right pull-back diagram where B4
is a (based) function space from A to B with compact-open topology.

X — Y X4 —> Y4
oo oo
7 —> W Z4 —> W4,

LEMMA 1.1. If CW-complex X of finite type is (n—1)-connected, every con-
nected component of Map«(X, K(G, n)) is contractible where G is an abelian group.

PROOF. Every connected component of Map«(X™, K(G, n)) is contractible
for finite skeleton X™, m>n. Since Map«(X, K(G, n)) is the inverse limit of
Map«(X™, K(G, n)), each component is contractible.

LEMMA 1.2. For 2m>k=0, the homotopy group [Q*¥S*m* Q¥S*m*17 jg
ZXT(k, m) where T(k, m) is 0 for k=0, a countable product of finite groups
for k=1 and an inverse limit of finite abelian groups for k>1.

PrOOF. For k=0, the statement is clear. The set Ph(2*S?m*! Q*%S2m+1)
of phantom maps is 0 by Theorem B of [23]. [Q%S*™*! Q¥S?™*1] is the
inverse limit of [2*S?™*! Q*(S*™*1)®7 of finitely generated abelian groups
which contains Z as the free part. Since the free generator is evaluated by
the degree of Q*S?m*1 Q:S?m*1 at 2m—k-+1-dimension, we get the result.
By the splitting 3} 2S?™*1=\/%, S?™/*1 we get the result for k=1.

Hereafter, we assume 2m>k=0. Hence 2*M™(K, L) is simply connected.
Set MAP(k, m; I) the connected component of Map4(2*S3m+!, Q*S2™*1) which
contains the constant map. Since [Q%Si™+!1 Q:Sim+1] is Z,x T(k, m, I) where
T(k, m; I) is the inverse limit of the I-torsion subgroups, Map(Q2#S3™*!, Q*S3+1)
is homotopy equivalent to MAP(k, m; )X Z ;X T(k, m; I). We define a monoid
structure on [Q%S3m+! QF Sim*1] given by the composition of maps which is
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denoted by Mon(k, m; I).

LEMMA 1.3. A mapping space Map«(LQ*M™, J), 2*S¥*Y) is weakly homo-
topy equivalent to MAP(k, m; KNI)XT(k, m; KNI) or MAP(k, m; K)XZgX
T(k, m; K) according to KNJ+@ or KNJ=@ respectively.

PrROOF. We get the next pull-back diagram by applying the mapping space
functor Map«(2*M™, J), —)

Map*(Qka(I’ ])) ‘kazl'{m+1) —> Map*(Qka(I’ ]), ‘QkSZK"rL‘\A?

l l

Map«(Q*M™(1, ]), Q*S¥KF) —> Map«(2*M™(, ), 2*K(Q, 2m+1)).

Maps(2*M™(1, ]), 2*S¥*") is weakly homotopy equivalent to a point or homo-
topy equivalent to the discrete set Q of rational numbers according to KNJ#@
or KNJ=¢ respectively by Theorem D of [23]. Since Map«(2*M™(, J),
2FK(Q, 2m+1)) is homotopy equivalent to Q, we get the result by the property
of the pull-back.

LEMMA 1.4. Let {I, J} and {K, L} be partitions of all primes. Then the
homotopy set [Q*M™, ), Q¥*M™(K, L)] is T(k, m; KNI) or ZXT(k, m; K)
according to KNJ#@, or KNJ=@ respectively. In particular, it holds
[REM™, ]), QEM™(], I)]=0 for J+@. Each component of Maps(2*M™1, ]),
Q*M™K, L)) is weakly homotopy equivalent to MAP(k, m; KNI).

PrRoOF. Consider the next pull-back diagram

Map«(Q2*M™1, J), Q*M™K, L)) —>  Map«(2*M™(, ]), 2*S%*")

l l

Map«(Q*M™(1, J), Q*K(Z1, 2m+1)) —> Map«(Q*M™(l, ]), 2*K(Q, 2m+1)).

Map*(Qka<I7 j)’ ‘QkK<ZLJ 2m+1)> and Map*(Qka<I) .])7 QkK(Q: 2m+1)) are
homotopy equivalent to Z; and @ respectively. By using the fact and
1.3, we get the result.

LEMMA 1.5. The homotopy set [Q*N™, ), Q*M™(K, L)] is ZxT(k, m;
K), T(k, m; K) and Z+Z according to I2K+@® or J2K+@®, KNI+ @ and
KNJ+@, or K=@ respectively.

PrOOF. The homotopy set [L*N™(, J), Q*M™(K, L)] is equal to the free
homotopy set [Q*N™(I, ]), Q¥M™(K, L)]tree by the simplicity of Q*M™(K, L).
[QEN™(I, ), @*M™K, L)ltree is equal to [Q*M™(J, I), Map(Q*M™, ]),
QEM™K, L))]tree

Consider the following fibration where as[Q*M™, J), Q*M™K, L)]:
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Mapx(Q*M™, J), 2*M™K, L); a) —>
Map(Q*M™, J), 2*M™(K, L); a) —> Q*M™K, L).

At first, we prove the case £#>0. Note that the based homotopy set is equal
to the free homotopy set. We have a homotopy equivalence Map(2*M™(1, J),
Q*M™K, L))~Mapx(2*M™, ), 2*M™K, L))XQ2*M™K, L). If K&I and K
+=@, [RQ*M™(], I), 2*M™(K, L)] is equal to 0 by Lemma 1.4, and [2*M™(], I),
Map«(Q*M™, ), Q*M™K, L); a)] is equal to [2*M™(J, I), Map«(£2*S3**,
QESEP: 0)]=[K(Zk, 2m-+1), Maps(2+S%+1, 2%S%+1:0)]=0 by Theorem D of
A. Zabrodsky. We get the first part. It is similar for the case J2K#@. If
KNI+@ and KNJ+@®, Map«(2*M™, J), 2*M™(K, L)) and Map«(2*M™(J, I),
Q*M™(K, L)) are weakly homotopy equivalent to MAP(k, m; KNI)XT(k, m;
KNI) and MAP(k, m; KN]J)x T(k, m; KN J) respectively. Since [2*M™(/, I),
Map(Q*M™(I, J), 2*M ™K, L))] is equal to T(k, m; KNI), we get the second
part by Since 2*M™(K, L) is K(Z, 2m—k+1) for K=@, we get
the result. In the case for k=0, I2K+# @, we get the result by [M™(/, I),
M™K, L)]=0 and [2*M™(], I), Map«(2*M™(1, J), Q*M™K, L): a)]=0. The
other cases are similarly proved.

THEOREM 1.6. Let {I, J} be partition of all primes.

(1) For the case I+ @ and J+@, the monoid End(2*N™(, ]J)) of endo-
morphisms of Q*N™, J) given by the composition of maps is isomorphic to
Mon(k, m ; I)-++Mon(k, m; J) which is equal to (Z+T(k, m; I)+(Z+T(k, m; J))
=Z+4+Z+T(k, m) as sets

(2) For the case I=@ or J=@, the monoid End(Q*N™(I, ])) is isomorphic
to the set of the triangle matrices which is equal to Z+Z+Mon(k, m)=Z+Z+
Z+T(k, m) as sets:

a € [KCm—k+1), K@m—k+1)] = Z,
(g z) b e[S K@m—k+1)] = Z,
d e [QFS2m*1 QrS ] = Z+T(k, m).

The composition law is given by the following equation:
a b\se f\ _(ae af+bg
(O d)(O g)_(O dg )
Proor. If I#@ and J#@, we have End(Q*N™(, ])=[L*N™, ]),

QEM™I, NIX[2*N™U, ]), 2*M™(J, )]1=Z+T(k, m; )+Z+T(k, m; J) by
Lemma 1.5 A map from Q*N™, J) to *M™(1, J) is obtained by

[a]Proj: QEN™(, J) — 2*M™, J) — Q*M™1, ])
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where [a]: Q*M™, ])—2*M™(I, J) is a map of degree a at 2m— k-+1-dimen-
sion. Hence we get the result. Since we have Q!*N™(I, [)=R*:S?™m*1x
K(Z, 2m—Fk-+1) for I=@ or J=@, we can easily see the result (cf. [18]).

REMARK. For £=0,1, a map Q¢S Q#S*m*1 of degree =+1 at
(2m— k+1)-dimension induces a homotopy equivalence. Hence we get the next
result. For £=0, 1 and I+ @ and J+ @, the group Aut(Q*N™(1, J)) is isomor-
phic to the direct sum (Z/2+T(k, m: ) +(Z/2+T(k, m; J)). For k=0, 1 and
I=@ or J=¢@, it is isomorphic to the subset of the upper triangle matrices
which satisfies a==+1, d=+1+d'eZ+T(k, m).

THEOREM 1.7. Let {I, J} and {K, L} be partitions of all primes. 2*N™, J)
and Q*N™K, L) are homotopy equivalent if and only if partitions {I, J} and
{K, L} are equal.

Proor. Q*N™(I, J) and £2*N™(K, L) are not homotopy equivalent by
if 7 and J are not empty and K or L is empty. If I, J, K and
L are not empty, and {/, J} and {K, L} are different partitions, since a map
from Q*N™(I, J) to Q*M™(K, L) or Q*M™(L, K) is homotopic to the map of
degree 0 by Q¥N™, J) and Q*N™(K, L) are not homotopy equiv-
alent.

THEOREM 1.8. Let {I, J} be any partitions of all primes. KQL*N™(, J) is
the same clone as Q*(S*™** X K(Z, 2m—+1)).

ProoFr. It is clear that £*N™(I, J) has the same genus as £%(S*™*'X
K(Z, 2m+1)). Set X=Q*S*"*'xK(Z, 2m+1)). To show that Q*N™(, J) has
the same n-type for all n as X, we use a theorem of A. Zabrodsky (cf.
[10]). The proof is the same as [10], [7]. We have the exact sequence:

d
e(XM™) —> (Z/tZ)*/+1 i GX™)y—0

which is defined as follows. &,(—) denotes a monoid of self maps which are
local equivalence at prime divisors of ¢. (Z/tZ)* is the group of units of rings
of integers modulo . G(X™) denotes the set of spaces of the same genus as
X™. A map d is given by the determinant of H*(f; Z)/Tor for f: X™ —
X™ . Since d is onto-map by an elementary observation, we have G(X™)=x.
Hence Q#(S*™*'X K(Z, 2m+1)) and N™(I, J) have the same n-type for all n.
We get the result.

2. Various spaces of the same n-type for all n.

In this section, we study spaces in SNT(K(Z, 2m—k+1)x2*%S*™*)), Let
E(f) be a fiber space over K(Z, 2m) with a fiber 25?™*! induced by f: K(Z, 2m)
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—S2m+l - Clearly 2% 'E(f) is SNT-equivalent to 2*N™(I, J).

THEOREM 2.1. Q% E(f) is not homotopy equivalent to Q*N™(I, J) for any
f:K(Z, 2m)y— S*™*! and any non-trivial partition {I, J}.

PROOF. Let @:Q*N™, ])—>Q*'E(f) be a homotopy equivalence. We
observe the homomorphism of (2m— k+1)-dimension homotopy group @zm_z41(®D).
Since Zom_r(R¥N™I, J)) is isomorphic to the direct sum mopm_p (2*M™, J))
and o (QFM™(J, I)), and mom_r (2% *E(f)) is canonically isomorphic to
the direct sum of 7y, 1(K(Z, 2m—E-+1)) and maypm_p. 1 (2%S*™"Y), we set

Tom-k+1(D) = (z 2)

where a: Top_p (R*M™U, J))— Tom_es(K(Z, 2m—£k+1)), b: Tom-r+1(REM™U, ]))
= Tym_k11(FS*™), ¢ om0 (QEM™(J, 1) = Tom_ s (K(Z, 2m—k+1)), d : Tam_p 41
(QEM™], 1)) = Tom_ 141 (QFS>™*).

Here the determinant of m,,_:.:(®) is +1. We calculate the completion at
I. Since E(f)7 is the product space K(Z7, 2m—k+1)X(L2%S*™*1)7, the (2, 2)-
component Of yn,_z. (D7) is equal to d7=d®Z7;=0 by Theorem C, D of [23].
Hence we get d=0. Similarly we get b=0. This contradicts the assumption.

Let E’(g) be a fiber space over K(Z,3) with a fiber S*® induced by
g:K(Z, 3)—->HP>. We can get the next theorem by the similar method.

THEOREM 2.2. E’(g) is not homotopy equivalent to N'(I, J) for any
g: K(Z, 3)—HP> and any non-trivial partition {I, J}.

Since SF"*! can be delooped for a set P={prime p| m|(p—1)} by the result
of D. Sullivan [19], E(f)» can be delooped for some map f. Let E’(g)r be a
fiber space over K(Zp, 2m-+1) with a fiber S¥**! induced by g: K(Zp, 2m+1)—
BSF**', We get the analogous result.

THEOREM 2.3. E’(g)p s not homotopy equivalent to N™(I, [)p for any
g: K(Zp, 2m+1)— BS¥**! and non-trivial partition {I, J}.

McGibbon and Mgller defined an interesting space by using the
construction of C. Wilkerson [21]. Define a space Xz by the following pull-
back diagram where B: X,— X, :

Xpg — X~

@.1) l l

XQ""’)?U—‘*X-O
B
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They calculated Aut(Xp)=Z2/2Z for X=K(Z, 3)XS?, and proved that it is the
same clone as K(Z, 3)xS® Clearly the same results hold for K(Z, 2m-+1)Xx
S?m+1 Up to date, we have three types of spaces in SNT(K(Z, 3)x S?%), that is,
the spaces {E'(g)|g: K(Z, 3)—>HP>}, {(K(Z, 3)xS%s} and (NI, ))|{I, J} par-
tition of all primes}. By the first type and the third type are
different. By the second type and the third type are different.
This is easily generalized to SNT(K(Z, 2m+1)xS?™*Y) and SNT(K(Z, 2m)X
Q8™+ As in [10], we define B={Bp|p prime} €I1 GL(Q%, 2)SGL(Q™, 2) as
follows :
Bp:<1 O) c.=1€ 277, ¢c;=—1& Z7,
¢, 1 c, =02, (p>3).

By the similar calculation, we get Aut(K(Z, 2m)x8S*™*V)g)=Z/2Z X T, m).
By [Theorem 1.6land its remark, we have Aut(QN™(, J)=Z/2Z X Z/2Z X T(1, m)
for any non-trivial partition {/, J}. Hence we get the next theorem.

THEOREM 2.4. The space Q¥(K(Z, 2m+1) X S*™*!) 5 is not homotopy equivalent
to {Q*N™I, )| {1, J} non-trivial partition} for k=0, 1 and B defined above.

REMARK 1. The author does not know whether a map f: Q*#S?m*+!— Q#S2m+!

of degree +1 at (2m—k-+1)-dimension induces a homotopy equivalence for 2>1.
If it is true, holds for Q*(K(Z, 2m+1)xS*™*1)p for k>1.

REMARK 2. Since the local expansion map ex: Z—1 Z(, induces the exact
sequence :

0 — Hom(Q, [1Z»,/Z) — Ext(Q, Z) — Ext(Q, T1 Z () —> 0

the local expansion map Ph(CP>, S*)—Ph(CP=, T1(5%») has a non-trivial
kernel which contains uncountably many clone maps (cf. [6], [7]). By Theorem
3.2 of [16], we get uncountably many loop spaces of the same clone type as
YRS/ CP~). By considering stable version [17], we get uncountably
many infinite loop spaces of the same clone type as Q(S*V > CP>).

3. Set Ph(Q*M™(, J), 2"S") of phantom maps.

J. Roitberg calculated the set of phantom maps Ph(2*M™(, J), 'S for
some cases (cf. [14, 15]). In this section, we calculate it completely. Hereafter
we assume {I, J} is an non-trivial partition.

THEOREM 3.1. Ph(Q*M™, ), 2"S**Y) is Z;/Z=73/Z,+PBZ/p> (pI)
or 0 according to 2m—k-+1=2t—h or otherwise respectively. Ph(Q*M™(I, ]),
QS 4s 23/ Z=Z3/Z+DZ/p” (p<1) or O according to 2m—k+1=2t—h—1,
4t—h—2 or otherwise respectively.
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PrOOF. For the case of odd sphere, we have the following equalities:
[QM™(U, ), (@15%+)]
= [2*M™I, ), (Q¥'S* 7 IX[Q*M™, ]), (21S*4)7]
= [Q*S™™, (@M SU X [Q*K(Z,, 2m+1), (11871
= [QF5™m, (QM15H7]
by Theorem B of [23].
The homotopy fiber (£22S%**1)p of the Sullivan completion ¢”: (£27S**!)—

(2rS**1~ is K(Z"/Z, 2t—h) by Section 3 of [18].
By using the fiber sequence:

e ~
(3‘2) ‘Qh+l(S2l+1)’\ s (Qh52t+1>p _p_> QrQet+ _e_> Qh(Smﬂ)A

we get Ph(QFM™(1, J), 2*S* ) =[Q*M™", ), ("S**)p]/Im*=(Z"/Z)/
(Z7/2)=Z5/Z=7Z35/Z;,+PZ/p> (psl) if 2m—Fk-+1=2t—h, and 0 otherwise.
Here Im &*=Z27/Z is proved as follows, if 2m—k+1=2t—h. There exist always
canonical maps :

(3.3) SZTIH—I NG ‘Qszm+2 — > ‘QZSZm+3 — > Q382m+4 - > ‘Q4S2m+5.

By the theorem of F.R. Cohen, J.C. Moore and J. A. Neisendorfer [3], [4], [12],
there exists rational equivalences for p-localized spaces:

_ s Q4<Szm+5)(p) — QZ(SZm+3>(p) s (Szm“)(p)

(3.4)
> Q5(52m+5)(p) —— Q3(82m+3)(p) —— ‘Q(Szmﬂ)(p)

and the composition (S2™*!)¢,)— 2%S?™**) ) —(S*™* 1),y is a map of degree p.
Since the former map is a map of degree 1, the latter map is a map of degree
p. Consider the following diagram for even k.

(@S ), (QUHISHY5] —> [(@*S*™ ), K(Z5, 21— )]

l l

(SR g, (QPISHY5] — (S W)y, K(Z5, 20— )],

Since the left vertical map is onto by the theorem of F.R. Cohen, J.C. Moore
and J.A. Neisendorfer, the upper horizontal map is onto. Since & can be
factored as (Q"*'S**)7—K(Z7, 2t—h)—K(Z~/Z, 2t—h), we get Im&=Z7/Z.
By using the decomposition of I.M. James, it is similarly proved for odd k.
For the case of even sphere, we have a fibration by Section 3 of [18]:

K(Z"/Z, 4t—h—2) —> (2"S*p —> K(Z"/Z, 2t—h—1).
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For A >0, we have (2"S*),=K(Q, 2t—h)X K(Q, 4t—h—1), (2*S*)5=K(Q", 2t—h)
XK(Q", 4t—h—1)and (2"S*)o=K(Z"/Z, 2t—h—1)XK(Z"/Z, 4t—h—2). By the
similar argument, we get the latter result for the case h>0. For the general
case, it is sufficient to prove the case 2m—k+1=2t—h—1, 4—h—2. By the
similar argument, the group [2*M™(, J), (2**'S*)™] is mapped to Z7 in
[RQEM™I, ]), (2"S*)p]=Z"/Z. Note that we use the theorem of F.R. Cohen,
J.C. Moore and J.A. Neisendorfer, and the factorization (27?152~ —(2"*1S*),
_,(‘QhSZt)p'

REMARK. The theorem of A. Borel and H. Hopf induces that the orders of
k-invariants of Postnikov tower of H-space are finite. If this theorem holds for
the case of uncountable basis, (2"S*)o=K(Z"/Z, 2t—h—1)XK(Z"/Z, 4t—h—2)
holds for h=0.
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