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1. Introduction.

Let $I$ be an ideal in a Noetherian local ring $A$ with maximal ideal $\mathfrak{m}$ and
assume that the field $A/\mathfrak{m}$ is infinite. For each integer $n\geqq 1$ , let $l^{(n)}=$

{ $a\in A|sa\in I^{n}$ for some $s\in A\backslash U_{p\in{\rm Min}_{A}A/I}P$ } and call it the n-th symbolic power
of $I$. In this paper we are going to investigate the conditions under which
$I^{(n)}=I^{n}$ for all $n$ . As is well-known, when $I$ is a prime ideal and the local
ring $A_{I}$ is regular, $I^{(n)}=I^{n}$ for all $n\geqq 1$ if and only if the associated graded
ring $G(I)=\oplus_{n\geqq 0}$ $I^{n}/I^{n+1}$ is an integral domain. Recalling this fact, in [Ho]

Hochster gave a certain algorithm to check whether $G(I)$ is an integral domain.
Thereafter his paper has led numerous works and researches on this subject,
cf. [CN], [Hul], [Hu2], [Hu4], [HH1], [HU], [RV], [SV], [T] ; among them
we are especially interested in [HH1], where Huckaba and Huneke gave a
criterion for the equality $I^{(n)}=I^{n}$ for all $n\geqq 1$ in terms of the local analytic
spreads of $I$ in the case where the analytic spread $\lambda(I)$ of $I$ itself is relatively
small. In the present paper we shall inherit the study of Huckaba and Huneke
to develop their argument for the ideals of higher analytic deviation. But
before going into the detail, we would like to fix some basic definitions.

We put $\lambda(I)=\dim A/\mathfrak{m}\otimes_{A}G(I)$ and call it the analytic spread of $I$ (cf. [NR]).

Then we have Burch’s inequalities $ht_{A}I\leqq\lambda(I)\leqq\dim A-\inf_{n\geq 1}$ {depth $A/I^{n}$ } (cf.
[Bu] $)$ . An ideal $J$ of $A$ is said to be a reduction of $I$, if J$I and $I^{n+1}=JI^{n}$

for some $n\geqq 0$ . For each reduction $J$ of $I$ we put $r_{J}(I)=\min\{n\geqq 0|I^{n+1}=JI^{n}\}$

and call it the reduction number of $I$ with respect to $J$ . A reduction $J$ of $I$ is
said to be minimal, if it is minimal among the reductions of $I$ . As is well-
known, this is equivalent to saying that $J$ is generated by $\lambda(I)$ elements $([NR])$ .

If $I^{(n)}=I^{n}$ for all $n\geqq 1$ , we have $Ass_{A}A/I^{n}={\rm Min}_{A}A/I$ for all $n\geqq 1$ , so
that depth $A_{Q}/I^{n}A_{Q}>0$ for any $Q\in V(I)\backslash {\rm Min}_{A}A/I$ ; hence, because $\lambda(I_{Q})\leqq$

$ht_{A}Q-\inf.>0$ depth $A_{Q}/I^{n}A_{Q}$ by Burch’s inequality, we have $\lambda(I_{Q})<ht_{A}Q$ for any
$Q\in V(I)\backslash {\rm Min}_{A}A/I$. In their paper [HH1] Huckaba and Huneke proved that
this condition $\lambda(I_{Q})<ht_{A}Q$ for all $Q\in V(I)\backslash {\rm Min}_{A}A/I$ characterizes the equality
$I^{(n)}=I^{n}(n\geqq 1)$ for a certain class of ideals $I$ having $\lambda(I)-ht_{A}I\leqq 2$ . Following
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[HH1], we define ad(I) $=\lambda(I)-ht_{A}$ $I$ and call it the analytic deviation of $I$ .
With this notation the main result of our paper can be stated as follows, which
is a natural generalization of Huckaba and Huneke’s results to the case of ad(I)

arbitrary.

THEOREM (1.1). Let I be an unmixed ideal in a $d$-dimensional Cohen-
Macaulay local ring $A$ with infinite residue field. Let $s=ht_{A}$ I and assume that
for all $Q\in V(I)$ with $ht_{A}Q<\max\{s+1, \lambda(I)\}$ , the ideal $I_{Q}$ of $A_{Q}$ is generated by
$ht_{A}Q$ elements. Let $\alpha\in Z$ with $\alpha>ad(I)$ and assume that dePth $(A/I^{n})_{Q}\geqq$

$\min\{a-n, ht_{A}Q-s-n\}$ for all $Q\in V(I)$ and 1$n:Sad(I). Then the following
conditions are equivalent.

(1) $I^{(n)}=I^{n}$ for all $n\geqq 1$ .
(2) $\lambda(I_{Q})<\dim A_{Q}$ for any $Q\in V(I)\backslash {\rm Min}_{A}A/I$ with $ht_{A}$ Q;;$\lambda (I).

(3) $\lambda(I_{Q})<\dim A_{Q}$ for any $Q\in V(I)\backslash {\rm Min}_{A}A/I$ .
When this is the case, we have $r_{J}(I)\leqq ad(I)$ for any special reduction $J$ of $I$ (see

(2.1) for the definition of special reductions) and depth $A/I^{n} \geqq\min\{\alpha-ad(I),$ $d-$

$\lambda(I)\}$ for all $n\geqq 1$ .

Our proof of Theorem (1.1) is based on the calculation of depth $(A/J^{m}I^{ad_{(I)}})_{Q}$

for $m\geqq 0$ and $Q\in V(I)$ , where $J=(a_{1}, a_{2}, \cdots, a_{\lambda(I)})$ is a special reduction of $I$.
The notion of special reduction was introduced by Aberbach and Huneke [AH,

Definition 5.1] and there they guaranteed its existence, for example, in the case
where $I_{Q}$ is a complete intersection for all $Q\in V(I)$ with $ht_{A}Q<\lambda(I)([AH$ ,

Section 6]). In [U] Ulrich proved that $I$ has a special reduction if and only if
$I$ satisfies the condition $G_{\lambda(I)}$ in the sense of Artin and Nagata [AN], $i.e.,$ $I_{Q}$

is generated by $ht_{A}Q$ elements for all $Q\in V(I)$ with $ht_{A}Q<\lambda(I)$ , which we
assume in our Theorem (1.1). In Section 2 of our paper we will give a brief
summary on special reductions. In Section 3 we shall compute, modifying the
generators $a_{1},$ $a_{2},$ $\cdots$ , $a_{\lambda(I)}$ of a given special reduction $J$ of $I$, the depth of
$(A/(a_{1}, \cdots , a_{i})^{m}I^{n})_{Q}$ for $Q\in V(I)$ in terms of $m,$ $n$ and $i$ , so that we will have
the information necessary for the proof of Theorem (1.1), that is the case
$i=\lambda(I)$ and $n=ad(I)$ .

When $A$ is a Gorenstein ring and $A/I$ is Cohen-Macaulay, we can improve
Theorem (1.1) and have the following.

THEOREM (1.2). Assume that $A$ is a $d$-dimensional Gorenstein ring with
infinite residue class field and let I be an ideal in $A$ of height $s$ . Assume that
$A/I$ is a Cohen-Macaulay ring and that for all $Q\in V(I)$ with $ht_{A}Q<\max\{s+1$ ,
$\lambda(I)\}$ , $I_{Q}$ is generated by $ht_{A}Q$ elements. Suppose $\alpha\geqq ad(I)$ and assume that
depth$(A/I^{n})_{Q} \geqq\min\{\alpha-n, ht_{A}Q-s-n\}$ for all $Q\in V(I)$ and $1\leqq n\leqq ad(I)$ . Then
the conditions (1), (2) and (3) stated in Theorem (1.1) are equivalent to each other.
And when this is the case, we have $r_{J}(I)\leqq\max\{0, ad(I)-1\}$ for any special
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reduction $J$ of I and depth $A/I^{n} \geqq\min\{\alpha-ad(I)+1, d-\lambda(I)\}$ for all $n\geqq 1$ .
If ad(I) $=2$ , the above theorem covers [HH1, Theorem 3.5].
The method we adopt in this paper is quite useful when we discuss the

Cohen-Macaulay and the Gorenstein property of the associated graded ring

$G(I)=\bigoplus_{n\geqq 0}I^{n}/I^{n+1}$ .

For example, after the modification of a system of generators $a_{1},$ $a_{2},$ $\cdots$ , $a_{\lambda(I)}$

of a given special reduction $J$ stated above, we can prove that $a_{1},$ $a_{2},$ $\cdots$ , $a_{s}$ is
an $A$-regular sequence and $(a_{1}, a_{2}, \cdots, a_{s})A\cap I^{n}=(a_{1}, a_{2}, \cdot. , a_{s})I^{n-1}$ for all $n\geqq 1$ ,

which implies that $a_{1}^{*},$ $a_{2}^{*},$ $\cdots$ , $a_{s}^{*}$ is an $G(I)$-regular sequence ( $a_{i}^{*}$ denotes the
initial form of $a_{i}$ in $G(I))$ . Moreover the results derived from the proof of the
theorems above guarantees that depth $G(I)=d$ if depth $A/I^{n}$ is big enough for
$1\leqq n\leqq ad(I)$ . But we will not refer to it any more in this paper since the
subsequent paper [GNN] is devoted to a precise investigation on this subject.

Throughout this paper let ( $A$ , rn) denote a Noetherian local ring with infinite
residue class field. For an ideal $I$ of $A$ we denote by V(I) the set of prime
ideals in $A$ containing $I$ . Let ${\rm Min}_{A}A/I$ be the set of minimal elements in V(I).

We put $Assh_{A}A/I=\{Q\in{\rm Min}_{A}A/I|\dim A/I=\dim A/Q\}$ . The number of a mini-
mal system of generators for an $A$ -module $M$ shall be denoted by $\mu_{A}(M)$ and
for a prime ideal $Q$ in $A$ , we write $\mu_{Q}(M)=\mu_{A_{Q}}(M_{Q})$ .

2. Special reductions.

Let $(A, m)$ be a Noetherian local ring having infinite residue field and let $I$

be an ideal of $A$ . We put $s=ht_{A}$ $I$ and $l=\lambda(I)$ . In this section we recall the
definition of special reduction of $I$ given by Aberbach and Huneke and prove
its existence in the case where $I$ satisfies the condition $G_{l}$ in the sense of
Artin and Nagata [AN].

DEFINITION (2.1) (cf. [AH, Definition 5.1]). We say that $J$ is a special
reduction of $I$ if $J$ is a minimal reduction of $I$ and if there exists a system of
generators $a_{1},$ $a_{2}$ , , $a_{\iota}$ of $J$ such that $I_{Q}=(a_{1}, a_{2}, \cdots, a_{ht_{A}Q})A_{Q}$ for all $Q\in V(I)$

with $ht_{A}Q<l$ (in the case where $ht_{A}Q=0$, this equality reads that $I_{Q}=(0)$). In
particular, if $s=l$, then any minimal reduction is a special reduction.

Let $K$ be an ideal contained in $I$ and let $Q\in V(I)$ . Then the equality $K_{Q}=I_{Q}$

holds if and only if $K:IgQ$ . Hence a minimal reduction $J$ of $I$ is special if
and only if we can choose a system of generators $a_{1},$ $a_{2},$ $\cdots$ , $a_{l}$ of $J$ so that
$ht_{A}(I+(a_{1}, \cdots , a_{t})A:I)>i$ for all $s\leqq i<l$ . Thus our definition of special reduc-
tion is the same as that in [AH]. The following result is due to Ulrich [U].
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PROPOSITION (2.2). Let $J$ be a reductim of I. Then the following conditions
are equivalent.

(1) There exists a sPecral reduction of I contained in $J$.
(2) $J_{Q}=I_{Q}$ and $\mu_{Q}(I)\leqq ht_{A}Q$ for all $Q\in V(I)$ with $ht_{A}Q<l$ .
PROOF. The implication (1) $\Rightarrow(2)$ is obvious by the definition of special

reduction, so we have to prove the converse. For that it is enough to show
in the case where $J=I$ since a special reduction of $J$ is a special reduction of
$I$ as well if $J_{Q}=I_{Q}$ for all $Q\in V(I)$ with $ht_{A}Q<l$ . In the following as assume
$\mu_{Q}(I)\leqq ht_{A}Q$ for all $Q\in V(I)$ with $ht_{A}Q<l$ and inductively choose elements
$a_{1},$ $a_{2},$ $\cdots,$ $a_{\iota}$ in $I$ so that the conditions ;

(i) $a_{1}^{*},$ $a_{2}^{*},$ $\cdots$ , $a_{i}^{*}$ is a $s.s.0.p$ . for $S$ , where $S=A/\mathfrak{m}\otimes_{A}G(I)=\oplus_{n\geq 0}$ $I^{n}/\mathfrak{m}I^{n}$

and $af$ denotes the image of $a_{j}$ in $I/\mathfrak{m}I=S_{1}$ ,
(ii) $\mu_{Q}(I/(a_{1}, \cdots a_{i}))\leqq\max\{0, ht_{A}Q-i\}$ for any $Q\in V(I)$ with $ht_{A}Q<l$

are satisfied for all $1\leqq i\leqq l$ . Then it is easy to see that $(a_{1}, a_{2}, \cdots, a_{\iota})A$ is a
special reduction of $I$ .

NOW suppose $1\leqq i\leqq l$ and we have already taken the elements $a_{1},$ $a_{2},$ $\cdots$ , $a_{i-1}$

satisfying the required conditions, namely, we assume that $(i)^{}$ $a_{1}^{*},$
$\cdots,$

$a_{i-1}^{*}$ is a
$s.s.0.p$ . for $S$ and (ii)’ $\mu_{p}(I/(a_{1}, \cdots a_{i-1}))\leqq\max\{0, ht_{A}p-i+1\}$ for any $p\in V(I)$

with $ht_{A}p<l$ (notice that if $i=1$ , then (1) insists nothing and (ii)’ is just the
condition (2) $)$ . Let $\mathscr{F}$ be the set of $Q\in V(I)$ such that $i\leqq ht_{A}Q<l$ and
$\mu_{Q}(I/(a_{1}, \cdots , a_{i-1}))=ht_{A}Q-i+1$ .

CLAIM. $\mathscr{F}$ is a finite set.

PROOF OF CLAIM. Let $Q\in \mathscr{F}$ . We put $ht_{A}Q=k$ . Then as $\mu_{Q}(I/(a_{1}, \cdots, a_{i-1}))$

$=k-i+1$ we have $Q\supseteqq\ovalbox{\tt\small REJECT}_{k}$ , where $B_{k}=ann_{A}\wedge^{k-i+1}I/(a_{1}, \cdots, a_{i-1})$ . On the other
hand, if $p\in V(I)$ and if $ht_{A}p<k$ , by the condition (ii)’ we see $\mu_{p}(I/(a_{1}, \cdots, a_{i-1}))$

:$ $\max\{0, ht_{A}p-i+1\}<k-i+1$ and so $p\Xi\cdot\oplus_{k}$ . This means $ht_{A}(I+9_{k})\geqq k$ . Thus
we have $Q\in{\rm Min}_{A}A/(I+B_{k})$ . Hence $\mathscr{F}$ Eli $U_{i\leqq k<l}{\rm Min}_{A}A/(I+9_{k})$ , which implies
that $\mathscr{F}$ is finite as is required.

For $Q\in \mathscr{F}$ , we denote by $V(Q)$ the subspace $((a_{1}, \cdot..’ a_{i-1})A_{Q}+QI_{Q})\cap I+$

$\mathfrak{m}I/\mathfrak{m}I$ of the vector space $S_{1}=I/\mathfrak{m}I$. Notice that $V(Q)\neq S_{1}$ . Actually, if
$V(Q)=S_{1}$ , then $((a_{1}, \cdots, a_{i-1})A_{Q}+QI_{Q})\cap I=I$ by Nakayama’s lemma and so
$(a_{1}, \cdots, a_{i-1})A_{Q}+QI_{Q}=I_{Q}$ , which implies $(a_{1}, \cdots, a_{i-1})A_{Q}=I_{Q}$ . But this cannot
happen since $\mu_{Q}(I/(a_{1}, \cdots , a_{i-1}))=ht_{A}Q-i+1\geqq 1$ as $Q\in \mathscr{F}$ . Let $P\in Assh_{S}S/$

$(a_{1}^{*}, \cdots, a_{i-1}^{*})S$ and put $W(P)=P\cap S_{1}$ . Then $W(P)$ is also a subspace of $S_{1}$ and
$W(P)\neq S_{1}$ . Therefore there exists an element $a_{i}\in I$ whose image in $S_{1}$ is not
included in any $W(P)(P\in Assh_{S}S/(a_{1}^{*}, \cdots, a_{i-1}^{*})S)$ nor $V(Q)(Q\in \mathscr{F})$ , since we
are assuming that $A/\mathfrak{m}$ is infinite. Then obviously $a_{1}^{*}$ , , $a_{i}^{*}$ is a s.s.o.p. for
$S$ . So, in the following we prove that the condition (ii) is satisfied. If $ht_{A}Q<i$ ,
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then $ht_{A}Q$ –i+1:$0 and so we have $\mu_{Q}(I/(a_{1}, \cdots , a_{i-1}))=0$ by the condition (ii)’,

which implies $\mu_{Q}(I/(a_{1}, \cdots , a_{i}))=0=\max\{0, ht_{A}Q-i\}$ . Let us consider the case
where $ht_{A}Q\geqq i$ . If $Q\in \mathscr{F}$ , then $\mu_{Q}(I/(a_{1}, \cdots , a_{i-1}))=ht_{A}Q-i+1$ and $a_{i}^{*}\not\in V(Q)$ ,

which means that $a_{i}$ is a part of a minimal system of generators of
$I_{Q}/(a_{1}, \cdots , a_{i-1})A_{Q}$ . Hence we have $\mu Q(I/(a_{1}, \cdots, a_{i}))=ht_{A}Q-i=\max\{0, ht_{A}Q-i\}$ .
Even if $Q\not\in \mathscr{F}$ we have $\mu_{Q}(I/(a_{1}, \cdots, a_{i}))\leqq ht_{A}Q-i$ since $\mu_{Q}(I/(a_{1}, \cdots, a_{i}))\leqq$

$\mu_{Q}(I/(a_{1}, \cdots , a_{i-1}))<ht_{A}Q-i+1$ . This completes the proof of Proposition (2.2).

REMARK (2.3). In the proof of (2.2) we can take $a_{s+1}$ so that, for any
$Q\in{\rm Min}_{A}A/I$ with $I_{Q}\neq(0)$ , it is a part of a minimal system of generators of
$I_{Q}$ . In fact, because ${\rm Min}_{A}A/I$ is finite, we can choose $a_{s+1}$ so that its image
in $S_{1}$ is not in the proper subspace $QI_{Q}\cap I+\mathfrak{m}I/\mathfrak{m}I$ for all $Q\in{\rm Min}_{A}A/I$ with
$I_{Q}\neq(0)$ .

COROLLARY (2.4). Let $J$ be a special reduction of I. Then, for any $Q\in V(I)$ ,
there exists a special reduction of $I_{Q}$ contained in $J_{Q}$ .

PROOF. We put $l’=\lambda(I_{Q})$ and take any $p\in V(I)$ such that $p\subseteqq Q$ and
$ht_{A}p<l’$ . Then as $l’\leqq 1$ we have $J_{p}=I_{p}$ and $\mu_{p}(I)\leqq ht_{A}p$ , which means
$(J_{Q})_{pA_{Q}}=(I_{Q})_{pA_{Q}}$ and $\mu_{pA_{Q}}(I_{Q})\leqq ht_{A_{Q}}pA_{Q}$ . Hence by (2.2) we see that $J_{Q}$ contains
a special reduction of $I_{Q}$ .

COROLLARY (2.5) (cf. [AH, Proposition 6.4]). If $I_{Q}$ is generated by a regu-
lar sequence of length $s$ for any $Q\in V(I)$ such that $ht_{A}Q<l$ , then any minimal
reduction of I is a sPecral reduction.

3. The depth of $(A/J^{m}I^{ad(I)})_{Q}$ for $Q\in V(I)$ .
In thls section let $(A, m)$ be a Cohen-Macaulay local ring and $I$ an ideal in

$A$ having a special reduction $J$. We put $s=ht_{A}I,$ $l=\lambda(I)$ and assume that
$a_{1},$ $a_{2},$ $\cdots$

$a_{\iota}$ is a system of generators of $J$ such that

(3.1) $I_{Q}=(a_{1}, a_{2}, \cdots , a_{ht_{A}Q})A_{Q}$ for all $Q\in V(I)$ with $ht_{A}Q<1$ .

For $1\leqq i\leqq l$ we write $J_{i}=(a_{1}, a_{2}, \cdots, a_{i})A$ . In particular $J_{0}=(0)$ .
We begin with modifying $a_{1},$ $a_{2},$

$\cdots$ , $a_{l}$ so that they enjoy the property in
the following lemma and (3.1) is still satisfied after the modification.

LEMMA (3.2). We may assume that, for any $1\leqq i\leqq l,$ $a_{i}\not\in Q$ if $Q\in(AssA\cup$

$( \bigcup_{m\geqq 1}Ass_{A}A/J_{i-1}^{m}))\backslash V(I)$ .

PROOF. Let $a_{i}’\in J^{2}$ for $i=1,2,$ $\cdots$ , 1. Notice that when we replace $a_{i}$ by
$a_{i}+a_{i}’$ , the elements $a_{1},$ $\cdots,$

$a_{\iota}$ again forms a minimal system of generators of
$J$ and moreover they still enjoy the property of (3.1). Actually, if $Q\in V(I)$ ,

then $J^{2}\subseteqq QI$ and so, in $I_{Q}$ , we have $a_{i}\equiv a_{i}+a_{i}’mod QI_{Q}$ for $i=1,2$ , , $l$ , which
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means $I_{Q}=(a_{1}+a_{1}’, , a_{ht_{A}Q}+a_{ht_{A}Q})A_{Q}$ when $ht_{A}Q<l$ . Therefore we will
inductively choose adequate elements $a_{i}’$ in $J^{2}$ for $1Si\leqq l$ so that after the
replacing the required conditions are satisfied.

NOW suppose $1\leqq i\leqq n$ and assume that we have already modified $a_{1},$ $\cdots$ , $a_{i-1}$

(if $i=1$ , this insists nothing). We put $\mathscr{F}=(AssA\cup(\bigcup_{m\geqq 1}Ass_{A}A/J_{i-1}^{m}))\backslash V(I)$ .
By [Br] we see that $\mathscr{F}$ is finite. If $a_{i}\not\in Q$ for any $Q\in \mathscr{F}$ , we do not change $a_{i}$ .
So let us consider the case where $a_{i}\in Q$ for some $Q\in \mathscr{F}$ . Let $\{Q_{1}, Q_{2}, \cdots , Q_{q}\}$

be the set derived from $\mathscr{F}$ by deleting the smaller elements when there exist
relations of inclusions. We may assume $a_{i}\in Q_{1}\cap\cdots\cap Q_{p}(1Sp\leqq q)$ and $a_{i}\not\in Q_{p+1}$

$\cup$ $\cup Q_{q}$ . Because all of $J^{2},$ $Q_{p+1},$ $\cdots,$
$Q_{q}$ is not contained in any of $Q_{1},$ $\cdots$ $Q_{p}$ ,

there exists $a_{i}’\in J^{2}\cap Q_{p+1}\cap\cdots\cap Q_{q}$ such that $a_{i}’\not\in Q_{1}\cup\cdots\cup Q_{p}$ . Then we easily
see that $a_{i}+a_{i}’\not\in Q_{1}\cup\cdot$ . $\cup Q_{q}$ . Thus replacing $a_{i}$ by $a_{i}+a_{i}’$ we have $a_{i}\not\in Q$ for
any $Q\in \mathscr{F}$ . Repeating this procedure until $i=l$ we get the required assertion.

In the rest of this section we assume that $a_{1},$ $a_{2}$ , , $a_{l}$ is a system of
generators of $J$ having the property of (3.1) and (3.2).

LEMMA (3.3). $a_{1},$ $a_{2},$
$\cdots$ , $a_{s}$ is an $A$-regular sequence.

PROOF. Suppose $1\leqq i\leqq s$ and assume that $a_{1}$ , $\cdot$ . , $a_{i-1}$ is an A-regular
sequence. Let $Q\in Ass_{A}A/J_{i-1}$ . Then we have $ht_{A}Q=i-1<s$ as $A/J_{i-1}$ is
Cohen-Macaulay, and so $Q\not\geqq I$ . Hence $a_{i}\not\in Q$ by (3.2). Therefore $a_{i}$ is a non-
zero-divisor on $A/J_{i-1}$ . Thus we can prove that $a_{1},$ $\cdots$ , $a_{i}$ is an A-regular
sequence for $1\leqq i\leqq s$ by induction on $i$ .

LEMMA (3.4). $((0):a_{i})\cap I=(0)$ for any $1\leqq i\leqq l$ .

PROOF. It is enough to show that $((0) : a_{i})A_{Q}\cap I_{Q}=(0)$ for any $Q\in AssA$ .
If $I\subseteqq Q$ , then $I_{Q}=(0)$ as $ht_{A}Q=0$ (see Definition (2.1)). And if $I\not\leqq Q$ , then
$a_{i}\not\in Q$ by (3.2) and so $((0):a_{i})A_{Q}=(0)$ as $a_{i}$ is a unit in $A_{Q}$ . Thus in any case
we get the required assertion.

Our purpose of this section is to prove the following lemma, which is the
most important result in this paper from the technical point of view.

LEMMA (3.5). Let $N$ be an integer such that $0\leqq N\leqq ad(I)$ . Assume that, for
a fixed integer $\alpha\geqq N,$ $depth(A/I^{n})_{Q}\geqq\min\{\alpha-n, ht_{A}Q-s-n\}$ if $Q\in V(I)$ and
1S $n\leqq N.$ Then we have

(3.6) depth $(A/J_{i}^{m}I^{n})_{Q}\geqq m’\ln\{\alpha-n, ht_{A}Q-s-n\}$ ,

where $Q\in V(I),$ $m\geqq 0,0\leqq n N$ and $0\leqq i\leqq n+s$ .

PROOF. We prove Lemma (3.5) by “triple” lnduction on $m,$ $n$ and $i$ . We
begin with induction on $m$ . But if $m=0$ , the required inequality (3.6) is just
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the hypothesis since $J_{i^{0}}I^{n}=I^{n}$ for all $i$ and $n$ . So we fix $m\geqq 0$ and assuming
that (3.6) holds for this $m$ we will prove

(3.7) depth$(A/J_{t^{m+1}}I^{n})_{Q} \geqq\min\{\alpha-n, ht_{A}Q-s-n\}$

for any $Q\in V(I),$ $0\leqq n\leqq N$ and $0\leqq i\leqq n+s$ by induction on $n$ . For that, in the
case where $n=0$ , it is enough to compute depth $(A/J_{i^{m+1}})_{Q}$ for any $Q\in V(I)$ and
$0\leqq i\leqq s$ . However if $0\leqq i\leqq s$ , $A/J_{i^{m+1}}$ is a $d-i$ dimensional Cohen-Macaulay
ring since $a_{1}$ , $\cdot$ . , $a_{i}$ is an $A$-regular sequence by (3.3), and so we get, for any
$Q\in V(I),$ $depth(A/J_{l^{m+1}})_{Q}=ht_{A}Q-i\geqq\min\{\alpha, ht_{A}Q-s\}$ , which is the inequality
derived from (3.7) substituting $n=0$ . Now we fix OS $n<N$ and assuming that
(3.7) holds for this $n$ we will prove

(3.8) depth$(A/J_{t^{m+1}}I^{n+1})_{Q} \geqq\min\{\alpha-n-1, ht_{A}Q-s-n-1\}$

for any $Q\in V(I)$ and $0\leqq i\leqq n+s+1$ by induction on $i$ . But again this is
obvious if $i=0$ as $J_{0^{m+1}}I^{n+1}=(0)$ and as depth $A_{Q}--ht_{A}Q$ . Therefore in the
following we consider depth $(A/J_{i+1}^{m+1}I^{n+1})_{Q}$ assuming the inequality (3.8) for a
fixed integer O$i$<n+s+1$ .

Here we need the following

CLAIM 1. $(J_{t^{m+1}} : a_{i+1})\cap J_{i+1}^{m}I^{n+1}=J_{t^{m+1}}I^{n}$ .

Suppose this is true. Then we can determine the Kernel of the natural
surjection $\varphi:A/J_{i^{m+1}}I^{n+1}arrow A/J_{i+1}^{m+1}I^{n+1}$ as follows: First notice $J_{i+1}^{m+1}=$

$J_{i}^{m+1}+a_{i+1}J_{i+1}^{m}$ and so

$Ker\varphi\cong a_{i+1}J_{i+1}^{m}I^{n+1}/J_{i}^{m+1}I^{n+1}\cap a_{i+1}J_{i+1}^{m}I^{n+1}$

$=a_{i+1}J_{i+1}^{m}I^{n+1}/a_{i+1}J_{t^{m+1}}I^{n}$

since

$J_{t^{m+1}}I^{n+1}\cap a_{i+1}J_{i+1}^{m}I^{n+1}\subseteqq ai+1$ (($Ji^{m+1}$ : a $i+1)\cap J_{i+1}^{rn}I^{n+1}$ ) $=ai+1J_{i^{m+1}}I^{n}$

by Claim 1. Next let $x\in J_{i+\iota^{m}}I^{n+1}$ be an element in the kernel of the surjection
$a_{i+1}$

$J_{t+1}^{m}I^{n+1}arrow a_{i+1}J_{i+1}^{m}I^{n+1}/a_{i+1}J_{i^{m+1}}I^{n}$ .

Then there exists $y\in J_{i}^{m+1}I^{n}$ such that $a_{i+1}x=a_{i+1}y$ . This means $x=y$ since
$x-y\in((O):a_{i+1})\cap J_{i+1}^{m}I^{n+1}\subseteqq((0):a_{i+1})\cap I=(0)$ by (3.4), and so $x\in J_{\ell^{m+1}}I^{n}$ .
Hence we have an isomorphism $Ker\varphi\cong J_{i+1}^{m}I^{n+1}/J_{i^{m+1}}I^{n}$ . Thus we get an
exact sequence

$\varphi$

(3.9) $0arrow J_{i+1}^{m}I^{n+1}/J_{i^{m+1}}I^{n}arrow A/J_{\iota^{m+1}}I^{n+1}arrow A/J_{t+1}^{m+1}I^{n+1}arrow 0$ ,

which plays a key role in our proof together with the natural exact sequence
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(3.10) $0arrow J_{t+1}^{m}I^{n+1}/J_{t^{m+1}}I^{n}arrow A/J_{i^{m+1}}I^{n}arrow A/J_{\ell+1^{m}}I^{n+1}arrow 0$ .
Let us recall our hypothesis of induction on $m$ and $n$ respectively insisting

depth$(A/J_{i+1}^{m}I^{n+1})_{Q} \geqq\min\{\alpha-n-1, ht_{A}Q-s-n-1\}$

and
depth $(A/J_{i^{m+1}}I^{n})_{Q} \geqq\min\{\alpha-n, ht_{A}Q-s-n\}$ .

Then applying Depth Lemma (cf. [HH, Remark 1]) to the exact sequence
derived from (3.10) by localization at $Q$ , we get

$depth_{A_{Q}}(J_{i+1}^{m}I^{n+1}/J_{t^{m+1}}I^{n})_{Q}\geqq\min\{\alpha-n, ht_{A}Q-s-n\}$ .

This fact and the hypothesis of induction on $i$ that

depth $(A/J_{i^{m+1}}I^{n+1})_{Q} \geqq\min\{\alpha-n-1, ht_{A}Q-s-n-1\}$

imply the required inequality

depth$(A/J_{i+1}^{m+1}I^{n+1})_{Q} \geqq\min\{\alpha-n-1, ht_{A}Q-s-n-1\}$

by Depth Lemma applied to the exact sequence derived from (3.9) localizing at
$Q$ . In order to prove Claim 1 we need some preparations. In the following
arguments $m,$ $n$ and $i$ denotes the integers fixed above.

CLAIM 2. Let $0\leqq j\leqq n+s$ . Then

$(J_{J^{m+1}} : a_{J+1})\cap J_{j+1}^{m}I^{j-s+1}=J_{J^{m+1}}I^{j-s}$ .

PROOF OF CLAIM 2. If $j<s$ , then as $a_{j+1}$ is a non-zero-divisor over $A/J_{j^{m+1}}$

(cf. Proof of Corollary (3.3)) and as $I^{j-s}=I^{j-s+1}=A$ we have

$(J_{1^{m+1}} : a_{J+1})\cap J_{J+1}^{m}I^{j-s+1}=J_{J^{m+1}}\cap J_{J+1}^{m}$

$=J_{J^{m+1}}$

$=J_{J^{m+1}}I^{j-s}$ .

So let us consider the case where $J\geqq s$ . We take any $Q\in Ass_{A}A/J_{J^{m+1}}I^{j-s}$ . It
is enough to show $((J_{j})_{Q}^{m+1}:_{A_{Q}}a_{j+1})\cap(J_{j+1})_{Q}^{m}I_{Q}^{j-s+1}=(J_{j})_{Q}^{m+1}I_{Q}^{j-s}$ since $(J_{j^{m+1}} : a_{j+1})$

$\cap J_{j+1}^{m}I^{j-s+1}\supseteqq J_{J^{m+1}}I^{j-s}$ . If $I\not\leqq Q$ , then $Q\in Ass_{A}A/J_{J^{m+1}}$ and so $a_{j+1}\not\in Q$ by
(3.2), which means that $a_{j+1}$ is a unit in $A_{Q}$ . Hence we have

$((J_{j})_{Q}^{m+1}:_{A_{Q}}a_{j+1})\cap(J_{j+1})_{Q}^{m}I_{Q}^{j-s+1}=(J_{j})_{Q}^{m+1}\cap(J_{j+1})_{Q}^{m}$

$=(J_{j})_{Q}^{m+1}$

$=(J_{j})^{m+1}I7Q^{-s}$ .

In the case where $I\subseteqq Q$ , by the hypothesis of induction on $n$ (notice $0\leqq j-s\leqq n$ )

we get
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$0=depth(A/J_{J^{m+1}}I^{j-s})_{Q}$ lli $\min\{\alpha-j+s, ht_{A}Q-j\}$ ,

which implies $ht_{A}Q-J\leqq 0$ as $\alpha-j+s\geqq\alpha-(n+s)+s=\alpha-n\geqq N-n>0$ . Then as
$ht_{A}Q\leqq j\leqq n+s<ad(I)+s=l$ we see $(J_{j})_{Q}=(J_{j+1})_{Q}=I_{Q}$ by (3.1) and so we have

$((J_{j})_{Q}^{m+1}:_{\Lambda_{Q}}a_{j+1})\cap(J_{j+1})_{Q}^{m}I_{Q}^{j-s+1}=(I_{Q}^{\pi\iota+1}:_{A_{Q}}a_{j+1})\cap I_{Q}^{m+j-s+1}$

$=I_{Q}^{m+j-s+1}$

$=(J_{j})_{Q}^{m+1}I_{Q}^{j-s}$ ,

which completes the proof of Claim 2.

CLAIM 3. Let $Q\in V(I)$ such that $ht_{A}Q\leqq n+s$ and let $j\leqq n+s$ . Then, for
any $q\geqq j-s$ , we have

$((J_{j})_{Q}^{m+1}:_{A_{Q}}a_{j+1})\cap(J_{j+1})_{Q}^{m}I_{Q}^{q+1}=(J_{j})_{Q}^{m+1}I$ \S .

PROOF OF CLAIM 3. We take any $Q\in V(I)$ such that $ht_{A}Q\leqq n+s$ and fix
it. We will prove the equality above by descending induction on $j$ . Let
$j=n+s$ . Then $(J_{j})_{Q}=(J_{j+1})_{Q}=I_{Q}$ . Hence, for any $q\geqq_{J}-s=n\geqq 0$ , we have

$((J_{f})_{Q}^{m+1}:_{A_{Q}}a_{j+1})\cap(J_{j+1})_{Q}^{m}I_{Q}^{q+1}=(I_{Q}^{m+1}:_{A_{Q}}a_{j+1})\cap I_{Q}^{m+q+1}$

$=I_{Q}^{m+q+1}$

$=(J_{j})_{Q}^{m+1}I_{Q}^{q}$ .

NOW we suppose $J<n+s$ and assume $((J_{j+1})_{Q}^{m+1}:_{A_{Q}}a_{f+2})\cap(J_{j+2})_{Q}^{m}I_{Q^{+1}}^{Q}=(J_{j+1})_{Q}^{m+1}I_{Q}^{q}$

for any $q\geqq j+1-s$ . We will show the required equality for $q\geqq j-s$ by induc-
tion on $q$ . But in Claim 2 we have already seen that it holds if $q=_{J}-s$ . So
$wesupposeq\geqq_{J}-s+1andassume((J_{j})_{Q}^{m+1}:_{A_{Q}}a_{j+1})\cap(J_{j+I})_{Q}^{m}I_{Q}^{q}=(J_{j})_{Q}^{m+1}I_{Q}^{q-1}$ . Then
we have

$((J_{j})_{Q}^{m+1}:_{A_{Q}}a_{j+1})\cap(J_{j+1})_{Q}^{m}I@^{+1}$

$=((J_{j})_{Q}^{m+1}:_{A_{Q}}a_{j+1})\cap(J_{j+1})_{Q}^{m}I_{Q}^{q}\cap(J_{j+1})_{Q}^{m}I@^{+1}$

by the inductive hypothesis on $q$

$=(J_{j})_{Q}^{m+1}I@^{-1}\cap(J_{j+1})\partial^{\iota}I\S^{+1}$

$\subseteqq(J_{j})_{Q}^{m+1}\cap(J_{j+1})_{Q}^{m+1}\cap(J_{j+2})_{Q}^{m}I\S^{+1}$

$\subseteqq(J_{j})_{Q}^{m+1}\cap((J_{j+1})_{Q}^{m+1}:_{A_{Q}}a_{j+2})\cap(J_{j+2})_{Q}^{m}I\S^{+1}$

by the inductive hypothesis on $J$

$=(J_{j})_{Q}^{m+1}\cap(J_{j+1})_{Q}^{m+1}I_{Q}^{q}$

$=(J_{j})y^{+1} \cap((J_{j})\int^{\iota+1}+a_{j+1}(J_{j+1})\int^{\iota})I\S$

$=(J_{j})_{Q}^{m+1}I@+a_{J+1}(((J_{j})_{Q}^{m+1}:_{A_{Q}}a_{j+1})\cap(J_{j+1})_{Q}^{m}I_{Q}^{q})$
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by the inductive hypothesis on $q$

$=(J_{j})_{Q}^{m+1}I_{Q}^{q}+a_{j+1}(J_{j})_{Q}^{m+1}I_{Q}^{q-1}$

$=(J_{j})_{Q}^{m+1}I_{Q}^{q}$ .
Hence we get the required equality and the proof of Claim 3 is completed.

PROOF OF CLAIM 1. Let us take any $Q\in Ass_{A}A/J_{i}^{m+1}I^{n}$ . It is enough to
show $((J_{i})_{Q}^{m+1}:_{A_{Q}}a_{i+1})\cap(J_{i+1})_{Q}^{m}I_{Q}^{n+1}=(J_{i})_{Q}^{m+1}I_{Q}^{n}$ since the inclusion $(J_{i}^{m+1} : a_{i+1})\cap$

$J_{i+\iota^{m}}I^{n+1}\supseteqq J_{t}^{m+1}I^{n}$ is obvious. If $I\not\leqq Q$ , then $Q\in Ass_{A}A/J_{i}^{m+1}$ and so $a_{i+1}\not\in Q$

by (3.2), which means $a_{i+1}$ is a unit in $A_{Q}$ . Hence we have

$((J_{i})_{Q}^{m+1}:_{A_{Q}}a_{i+1})\cap(J_{i+1})_{Q}^{m}I_{Q}^{n+1}=(J_{i})_{Q}^{m+1}\cap(J_{\ell+1})_{Q}^{m}$

$=(J_{i})_{Q}^{m+1}$

$=(J_{i})_{Q}^{m+1}I_{Q}^{n}$ .

In the case where $I\subseteqq Q$ , by the hypothesis of induction on $n$ we see

$0= depth(A/J_{\iota^{m+1}}I^{n})_{Q}\geqq\min\{\alpha-n, ht_{A}Q-s-n\}$ .

This implies $ht_{A}$ Q–s–n;$O as $\alpha-n\geqq N-n>0$ , and so $ht_{A}Q\leqq n+s$ . Then we
have already seen in Claim 3 the required equality. Thus we have seen Claim
1 and Proof of Lemma (3.5) is completed.

Let $N=ad(I)$ and $\alpha=ad(I)+1$ . Then substituting $m=1,$ $n=ad(I)$ and $i=l$

in (3.6) we have
depth$(A/JI^{ad(I)})_{Q} \geqq\min\{1, ht_{A}Q-l\}$

for any $Q\in V(I)$ , and so $ht_{A}Q\leqq l$ if $Q\in Ass_{A}A/JI^{ad(I)}$ , from which we can
prove $r_{J}(I)\leqq ad(I)$ under a suitable condition (see Section 4). Thus if we get
certain information on $A/JI^{N}$ for an integer $N$, then this $N$ may bound $r_{J}(I)$ ,

so we would like to make it as small as possible. For example, if $A$ is
Gorenstein and if $A/I$ is Cohen-Macaulay, we can get to know about $A/JI^{ad_{(I)- 1}}$

as is described in the rest of this section. For that we assume that $a_{s+1}$ is a
part of a minimal system of generators for $I_{Q}$ for all $Q\in{\rm Min}_{A}A/I$ with $I_{Q}\neq(0)$

(cf. Remark (2.3)). We aim to prove the following

LEMMA (3.11). Let $A$ be Gorenstein and $A/I$ Cohen-Macaulay. Let $N$ be
an integer such that $0\leqq N\leqq ad(I)$ . Assume that, for a fixed integer $\alpha\geqq N$ ,

depth$(A/I^{n})_{Q} \geqq\min\{\alpha-n, ht_{A}Q-s-n\}$ if $Q\in V(I)$ and $1\leqq n\leqq N$ . Then we have

(3.12) depth $(A/J_{t^{m}}I^{i-s-1})_{Q} \geqq\min\{\alpha-i+s+1, ht_{A}Q-i\}$ ,

where $m\geqq 0,$ $s+1\leqq i\leqq s+N$ and $Q\in V(I)$ .
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Of course it is enough to consider only the case where $N>0$ , so we
assume it in the rest of this section.

LEMMA (3.13). Let $A$ be a Gorenstein ring and $A/I$ a Cohen-Macaulay ring.
We put $K=J_{s}$ . Then, for any $m\geqq 0$ , the following assertions hold.

(1) $A/K^{m+1}$ : I is a $d-s$ dimensional Cohen-Macaulay ring.
(2) $K^{m+1}:a_{S+1}=K^{m+1}:I$ .

PROOF. (1) If $s=0$ , then $K=(0)$ and so by [PS, Proposition 1.3] this
assertion is true. Hence we have to prove in the case where $s>0$ . Let us
consider the exact sequence

$0arrow K^{m}/K^{m}(K : I)arrow A/K^{m}(K:I)arrow A/K^{m}arrow 0$ .

Because $a_{1},$ $\cdots$ $a_{s}$ is an $A$-regular sequence by (3.3), $depth_{A}A/K^{m}=d-s$ and
moreover $K^{m}/K^{m+1}$ is $A/K$-free, from which we see that $K^{m}/K^{m}(K:I)$ is
$A/(K:I)$-free as $K^{m}/K^{m}(K:I)\cong K^{m}/K^{m+1}\otimes_{A}A/K:I$, and so $depth_{A}K^{m}/K^{m}$

$(K:I)=d-s$ since $A/K:$ $I$ is a $d-s$ dimensional Cohen-Macaulay ring by [PS,

Proposition 1.3]. Therefore by the exact sequence above we get depth $A/K^{m}$

$(K:I)=d-s$ , which means $A/K^{m}(K:I)$ is a $d-s$ dimensional Cohen-Macaulay
ring since $\dim A/K^{m}(K:I)\leqq\dim A/K^{m+1}=d-s$ . In the following we prove
$K^{m+1}$ : $I=K^{m}(K:I)$ . We take any $Q\in Ass_{\Lambda}A/K^{m}(K:I)=Assh_{A}A/K^{m}(K:I)$ .
It is enough to show $K_{Q}^{m+1}:_{A_{Q}}I_{Q}=K_{Q}^{m}(K_{Q}:_{A_{Q}}I_{Q})$ since the inclusion $K^{m+1}$ :
$I\supseteqq K^{m}(K:I)$ is obvious. If $I\not\leqq Q$ , then we have

$K_{Q}^{m+1}:_{A_{Q}}I_{Q}=K_{Q}^{m+1}:_{A_{Q}}A_{Q}$

$=K_{Q}^{m+1}$

$=K_{Q}^{m}(K_{Q}:_{A_{Q}}A_{Q})$

$=K_{Q}^{m}(K_{Q} : I_{Q})$ .

In the case where $I\subseteqq Q$ , we see $I_{Q}=K_{Q}$ as $ht_{A}Q=s$ , and so

$K_{Q}^{m+1}:_{A_{Q}}I_{Q}=K_{Q}^{m+1}:_{A_{Q}}K_{Q}$

$=K_{Q}^{m}$ (as $s>0$)

$=K_{Q}^{m}(K_{Q}:_{A_{Q}}K_{Q})$

$=K_{Q}^{m}(K_{Q}:_{A_{Q}}I_{Q})$ .
Thus we get the assertion (1).

(2) The inclusion $K^{m+1}$ : $a_{s+1}\supseteqq K^{m+1}$ : $I$ is obvious, so take any $Q\in$

$Ass_{A}A/K^{m+1}$ :I and will show $K_{Q}^{m+1}:_{\Lambda_{Q}}a_{s+1}=K_{Q}^{m+1}:_{\Lambda_{Q}}I_{Q}$ . If $I\not\leqq Q$ , then
$Q\in Ass_{A}A/K^{m+1}$ and so $a_{S+1}\not\in Q$ by (3.2), which means $a_{s\cdot 1}$ is a unit in $A_{Q}$ .
Hence we have
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$K_{Q}^{m+1}$ : $A_{Q}a_{S+1}=K_{Q}^{m+1}$ : $A_{Q}A_{Q}=K_{Q}^{m+1}$ : $A_{Q}$ Iq .

If $I\subseteqq Q$ , then $I_{Q}=K_{Q}$ since $ht_{A}Q=s$ by (1). Moreover if $I_{Q}\neq(0)$ (in the case
where $I_{Q}=(0)$ , the required equality is trivial), by our assumption $a_{s+1}$ is a
part of a minimal system of generators of $K_{Q}$ which forms an $A_{Q}$-regular
sequence. Therefore

$K_{Q}^{m+1}:_{A_{Q}}a_{s+1}=K_{Q}^{m}$

$=K_{Q}^{m+1}:_{\Lambda_{Q}}K_{Q}$

$=K_{Q}^{m+1}:_{A_{Q}}I_{Q}$

and this completes the proof.

PROOF OF LEMMA (3.11). We prove by double induction on $m$ and $i$ . We
begin with induction on $m$ . But if $m=0$ , the required inequality (3.12) easily
follows from the hypothesis as $J_{i^{0}}I^{i-s-1}=I^{i-s-1}$ for all $i$ . So we fix $m\geqq 0$ and
assuming that (3.12) holds for this $m$ we will prove

(3.14) depth $(A/J_{t^{m+1}}I^{\ell-s-1})_{Q} \geqq\min\{\alpha-i+s+1, ht_{A}Q-i\}$

for any $s+1\leqq i\leqq s+N$ and $Q\in V(I)$ by induction on $i$ . Let us begin with
the case where $i=s+1$ . We put $K=J_{s}$ and consider the natural surjection
$\varphi$ : $A/K^{m+1}arrow A/J_{S+1}^{m+1}$ . Then, as $J_{S+^{\iota^{m+1}}}=K^{m+1}+a_{S+1}J_{S+1}^{m}$ ,

$Ker\varphi\cong a_{S+1}J_{S+1}^{m}/K^{m+1}\cap a_{S+1}J_{S+1}^{m}$

$=a_{s+1}J_{s+1}^{m}/a_{s+1}(K^{m+1} : I)$

since $K^{m+1}\cap a_{S+1}J_{S+1}^{m}\subseteqq a_{S+1}(K^{m+1} : a_{S+1})=a_{S+1}(K^{m+1} : I)=a_{S+1}K^{m}(K:I)\subseteqq K^{m+1}\cap$

$a_{S+1}J_{S+1}^{m}$ by (3.13). Let $x\in J_{S+1}^{m}$ be an element in the kernel of the surjection
$a_{s+1}$

$J_{S+1}^{m}arrow a_{S+1}J_{S+1}^{m}/a_{s+1}(K^{m+1} : I)$ .

Then there exists $y\in K^{7n+1}$ : $I$ such that $a_{S+1}x=a_{S+1}y$ . This means $x-y\in(O)$ :
$a_{S+1}$ , so $(x-y)I\in((O):a_{S+1})\cap I=(0)$ by (3.4). Hence $x-y\in(O):I\subseteqq K^{m+1}$ : $I$ and
so $x\in K^{m+1}$ : $I$ . Thus $Ker\varphi\cong J_{S+1}^{m}/K^{m+1}$ : $I$ and we have the exact sequences

(3.15) $0arrow J_{S+1}^{m}/K^{m+1}$ : $Iarrow A/K^{m+1}arrow A/J_{S+1}^{m+1}\varphiarrow 0$

and

(3.16) $0arrow J_{s+1}^{m}/K^{m+1}$ : $Iarrow A/K^{m+1}$ : $Iarrow A/J_{S+1}^{m}arrow 0$ .

Let $Q\in V(I)$ . By the hypothesis of induction on $m$ , we see depth $(A/J_{S+1}^{m})_{Q}\geqq$

$\min\{\alpha, ht_{A}Q-s-1\}$ , and by Lemma (3.13) we bave dePth$(A/K^{m+1} : I)_{Q}=ht_{A}Q-s$ .
Hence applying Depth Lemma to the exact sequence derived from (3.16) by
localization at $Q$ we get $depth_{A_{Q}}(J_{S+1}^{m}/K^{m+1} : I)_{Q}\geqq\min\{\alpha+1, ht_{A}Q-s\}$ . Then
again by Depth Lemma applied to (3.15) after localization at $Q$ we see
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depth $(A/J_{S+1}^{m+1})_{Q} \geqq\min\{\alpha, ht_{A}Q-s-1\}$

since depth$(A/K^{m+1})_{Q}=ht_{A}Q-s$ . Thus we bave seen that (3.14) holds for
$i=s+1$ . So, in the following we fix $s+1\leqq i<s+N$ and assuming that (3.14)

holds for this $i$ , we will compute depth $(A/J_{i+1}^{m+1}I^{i-s})_{Q}$ .

CLAIM. $(J_{i^{m+1}} : a_{i+1})\cap J_{i+1}^{m}I^{\ell-s}=J_{i}^{m+1}I^{i-s- 1}$ .

PROOF OF CLAIM. The inclusion $(J_{i^{m+1}} : a_{i+1})\cap J_{i+1}^{m}I^{i-s}\supseteqq J_{t^{m+1}}I^{\iota-s-1}$ is
obvious, so we take any $Q\in Ass_{A}A/J_{i^{m+1}}I^{i-s-1}$ and will prove $((J_{i})_{Q}^{m+1}:_{A_{Q}}a_{i+1})$

$\cap(J_{i+1})_{Q}^{m+1}I_{Q}^{i-s-1}=(J_{i})_{Q}^{m+1}I_{Q}^{i-s-1}$ . If $I_{\frac{\not\subset}{arrow}}Q$ , then $Q\in Ass_{A}A/J_{t^{m+1}}$ and so $a_{i+1}\not\in Q$ ,

which implies the required equality as we have seen many times in this paper.
Suppose $I\subseteqq Q$ . Then by the hypothesis of induction on $i$ , we see

$0= depth(A/J_{t^{m+1}}I^{i-\epsilon-1})_{Q}\geqq\min\{\alpha-i+s+1, ht_{A}Q-i\}$ ,

which means $ht_{A}Q\leqq i$ as $\alpha-i+s+1\geqq N-i+s+1=((s+N)-i)+1>0$ and so $I_{Q}=$

$(J_{i})_{Q}=(J_{i+1})_{Q}$ . Hence we have

( $(J_{i})_{Q}^{m+1}$ : a $i+1$ ) $\cap(J_{\iota+1})_{Q}^{m}I_{Q}^{i-\epsilon}=$ ( $I_{Q}^{m+1}$ : a $\{+1$ ) $\cap I_{Q}^{m+i-s}$

$=I_{Q}^{m+i-s}$ (as $i-s\geqq 1$ )

$=(J_{i})_{Q}^{m+1}I_{Q}^{i-s-1}$ .
Thus we have proved Claim.

By Claim, similarly as (3.9), we get an exact sequence

(3.17) $0arrow J_{i+1}^{m}I^{i-s}/J_{\iota^{m+1}}I^{i-s-1}arrow A/J_{t^{m+1}}I^{i-s}arrow A/J_{i+1}^{m+1}I^{i-s}arrow 0$

since

$J_{i+1}^{m+1}I^{i-s}/J_{i^{m+1}}I^{i-s}\cong ai+1J_{i+1}^{m}I^{i-s}/J_{\ell^{m+1}}I^{i-s}\cap a_{i+1}J_{i+1}^{m}I^{i-s}$

$=a_{i+1}J_{i+1}^{m}I^{i-s}/a_{i+1}((J_{i^{m+1}} : a_{i+1})\cap J_{i+1}^{m}I^{i-s})$

$\cong J_{i+1}^{m}I^{\ell-s}/J_{t^{m+1}}I^{i-s-1}$ .

Together with (3.17) we consider the natural exact sequence

(3.18) $0arrow J_{i+1}^{m}I^{i-s}/J_{i^{m+1}}I^{i-s-1}arrow A/J_{i^{m+1}}I^{i-s-1}arrow A/J_{\ell+1}^{m}I^{i-s}arrow 0$ .

Let us recall the inductive hypothesis on $m$ and $i$ respectively insisting, for any
$Q\in V(I)$ ,

depth$(A/J_{i+1}^{m}I^{i-s})_{Q} \geqq\min\{\alpha-i+s, ht_{A}Q-i-1\}$

and
depth$(A/J_{t^{m+1}}I^{i-s-1})_{Q} \geqq\min\{\alpha-i+s+1, ht_{A}Q-i\}$ .

These inequality imply

$depth_{A_{Q}}(J_{i+1}^{m}I^{i-s}/J_{t^{m+1}}I^{t-s-1})_{Q}\geqq\min\{\alpha-i+s+1, ht_{A}Q-i\}$
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by Depth Lemma applied to (3.18). Then again applying Depth Lemma to (3.17)

we get
depth$(A/J_{i+1}^{m+1}I^{i-s})_{Q} \geqq\min\{\alpha-i+s, ht_{A}Q-i-1\}$

since, by Lemma (3.5),

depth$(A/J_{i}^{m+1}I^{i-s})_{Q}1 \min\{\alpha-i+s, ht_{A}Q-i\}$ ,

and we have completed the proof of Lemma (3.11).

4. Proof of Theorem (1.1) and Theorem (1.2).

In this section we prove the Theorems (1.1) and (1.2). However these proofs
are quite similar. So we precisely describe only the proof of Theorem (1.1) and
Proof of Theorem (1.2) shall be given briefly, being indicated the different points.
Throughout this section we put $s=ht_{A}$ $I$ and $l=\lambda(I)$ .

PROOF OF THEOREM (1.1). AS is stated in Introduction, (1) implies (3) by
Burch’s inequality and the implication (3) $\Rightarrow(2)$ is obvious. So we assume the
condition (2) and prove (1) together with the last assertions by induction on
ad(I). If ad(I) $=0$ , then $I$ must be a complete intersection (cf. [CN, Theorem]).

Actually, in this case a minimal reduction $J$ of $I$ is a complete intersection.
Then, for any $Q\in Ass_{A}A/J$ , we have $Q\in V(I)$ and $ht_{A}Q=s$ , which implies
$\mu_{Q}(I)=s$ by the assumption, and so $I_{Q}=J_{Q}$ since a complete intersection ideal
has no proper reduction. Thus we see $I=J$ , whence $r_{J}(I)=0$ and $I$ is a
complete intersection. This means, for all $n\geqq 1,$ $I^{(n)}=I^{n}$ as $A/I^{n}$ is Cohen-
Macaulay. Now suppose ad(I) $>0$ and assume that Theorem (1.1) is true for
ideals with smaller analytic deviation than $I$. By (2.2) there exists a special
reduction $J$ of $I$ and we can choose a minimal system of generators of $J$ so
that (3.1) and (3.2) are satisfied. Let $Q\in Ass_{A}A/JI^{ad(I)}$ . Then by Lemma (3.5)

we have
$0= depth(A/JI^{ad(I)})_{Q}\geqq\min\{\alpha-ad(I), ht_{A}Q-l\}$ ,

which means $ht_{A}Q\leqq l$ as $\alpha>ad(I)$ . Suppose $Q\not\in{\rm Min}_{A}A/I$. Then $\lambda(I_{Q})<\dim A_{Q}$

$=ht_{A}Q$ by the condition (2). Hence $ad(I_{Q})=\lambda(I_{Q})-ht_{A_{Q}}I_{Q}<ht_{A}Q-ht_{A_{Q}}I_{Q}\leqq l-s$

$=ad(I)$ . Thus we get $ad(I_{Q})<ad(I)$ , which holds even if $Q\in{\rm Min}_{A}A/I$ . We
would like to aPply the inductive hypothesis to $I_{Q}$ . So, we have to verify that
$I_{Q}$ satisfies the assumptions of Theorem (1.1). In fact, of course, $\alpha>ad(I_{Q})$ and
if $pA_{Q}\in V(I_{Q})(p\in SpecA)$ , then, for all $1\leqq n\leqq ad(I_{Q})$ , we have depth $(A_{Q}/I_{Q}^{n})_{pA_{Q}}$

$= depth(A/I^{n})_{p}\geqq\min\{\alpha-n, ht_{A}P-s-n\}=\min\{\alpha-n, ht_{A_{Q}}pA_{Q}-ht_{A_{Q}}I_{Q}-n\}$ (here

we used the assumption that $I$ is unmixed, which guarantee $s=ht_{A_{Q}}I_{Q}$ in our
situation). Moreover it is quite easy to see that $I_{Q}$ has the property $G_{\lambda(I_{Q})}$ in
the sence of Artin and Nagata and it satisfies the condition (2). Therefore by
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the inductive hypothesis, for any special reduction $J’$ of $I_{Q}$ , we have $r_{J’}(I_{Q})\leqq$

$ad(I_{Q})$ , i.e., $I_{Q}^{ad_{(I_{Q)}+1}}=J’I_{Q}^{ad_{(I_{Q^{)}}}}$ . Recall that by Corollary (2.4) there exists a
special reduction of $I_{Q}$ contained in $J_{Q}$ . Hence we have $I_{Q}^{ad(I_{Q)}+1}=J_{Q}I_{Q}^{ad(I_{Q)}}$ ,
and so $I_{Q}^{ad_{(I)+1}}=J_{Q}I_{Q}^{ad(I)}$ . This implies $I^{ad(I)+1}=JI^{ad(I)}$ since we took $Q\in$

$Ass_{A}A/JI^{ad(I)}$ arbitrary. Thus we see $r_{J}(I)\leqq ad(I)$ . Moreover we have

(4.1) depth$(A/I^{n})_{Q} \geqq\min\{\alpha-ad(I), ht_{A}Q-l\}$

for all $n\geqq 1$ . In fact, if n$ad(I), it is trivial by the assumption, and if $n>ad(I)$ ,
we get the inequality above by Lemma (3.5) since $I^{n}=J^{n-ad_{(I)}}I^{ad(I)}$ . Let n211
and $Q\in Ass_{A}A/I^{n}$ . By (4.1) we have $ht_{A}Q\leqq l$ . Then again by the inductive
hypothesis we see $(I_{Q})^{(n)}=I_{Q}^{n}$ , and so $(I^{(n)})_{Q}=I_{Q}^{n}$ since $(I_{Q})^{(n)}=(I^{(n)})_{Q}$ by the
definition of symbolic powers. Therefore $I^{(n)}=I^{n}$ . We get the last assertion
of this theorem from (4.1) substituting $Q=\mathfrak{m}$ and the proof is completed.

PROOF OF THEOREM (1.2). Similarly as Theorem (1.1) the content of this
theorem is the implication (2) $\Rightarrow(1)$ and the last assertions. Assume the condi-
tion (2). We prove by induction on ad(I). If ad(I) $=0$ , then $I$ is a complete
intersection, and so we easily get the required assertions. Suppose ad(I) $>0$

and Theorem (1.2) is true for ideals with analytic deviation less than ad(I).

By (2.2) there exists a special reduction $J$ of $I$ . Let $Q\in Ass_{A}A/JI^{ad(I)-1}$ . Then
by Lemma (3.11) we see $ht_{A}Q\leqq l$ , whence $\lambda(I_{Q})<\dim A_{Q}$ unless $Q\in{\rm Min}_{A}A/I$

by the condition (2). Thus $ad(I_{Q})<ad(I)$ . Hence by the inductive hypothesis
we have $r_{J’}(I_{Q})\leqq ad(I_{Q})-1$ for any special reduction $J’$ of $I_{Q}$ . This means
$Ia^{d_{(I)}}=J_{Q}Iae^{d_{(}I)-1}$ . Therefore we get $I^{ad(I)}=JI^{ad(I)-1}$ , i.e., $r_{J}(I)\leqq ad(I)-1$ .
Then by Lemma (3.11) we see

(4.2) depth $(A/I^{n})_{Q} \geqq\min\{\alpha-ad(I)+1, ht_{A}Q-1\}$

for all $n\geqq 1$ and $Q\in V(I)$ . Let $n\geqq 1$ and $Q\in Ass_{A}A/I^{n}$ . By (4.2) we have
$ht_{A}Q\leqq l$ . Then again by the inductive bypothesis the equality $(I^{(n)})_{Q}=(I_{Q})^{(n)}=I_{Q}^{n}$

holds. Therefore $I^{(n)}=I^{n}$ . We get the last assertion of this theorem from (4.2)

in the case where $Q=\mathfrak{m}$ and the proof is completed.

EXAMPLE (4.3). We consider an example given by Vasconcelos [V, (3.3)

Examples]. Let $B=k[\{X_{ij}\}_{1\leqq i\leqq 3.1\leqq j\leqq 4}]_{(tX_{ij}\})}$ ( $k$ is an infinite field) and let $K$ be
the ideal in $B$ generated by the maximal minors of the generic matrix $X=$

$(X_{ij})_{1\leqq i\subseteq 3.1\leqq j\leqq 4}$ . We denote by $f_{i}$ the determinant of the matrix derived from
$X$ deleting ith column. By [Hu3, Proposition 1.1] $f_{l},$ $f_{2},$ $f_{3},$ $f_{4}$ is a d-sequence.
Hence $\lambda(K)=4$ and so $ad(K)=2$ . As is well known, if $p\in V(K)$ and $ht_{A}p\leqq 6$ ,

we have $\mu_{p}(K)=2$ . Therefore by [HH1, Theorem 3.5] and [HH2, Theorem
3.1] we see that the associated graded ring $G(K)=\oplus_{n\geqq 0}K^{n}/K^{n+1}$ is a Cohen-
Macaulay integral domain, and so it must be Gorenstein by [Ho, Proposition].
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Let $A=B[T_{1}, T_{2}, T_{3}, T_{4}]$ ( $T_{i}’ s$ are new indeterminate) and let $\varphi:Aarrow G(K)$ be
$t$he homomorphism of $B$-algebras such that $\varphi(T_{t})=f_{i}^{*}$ for $1\leqq i\leqq 4$ , where $f_{i}^{*}$

denotes the initial form of $f_{i}$ in $G(K)$ . Let $I$ be the kernel of $\varphi$ . Then $ht_{A}I$

$=4$ and $A/I$ is Gorenstein. Because $f_{1},$ $f_{2},$ $f_{3},$ $f_{4}$ is a $d$-sequence, the Rees
algebra $R(K)=\oplus_{n\geq 1}K^{n}$ is isomorphic to the symmetric algebra $S(K)$ by [Hu5,

Theorem 3.1], and so we have $I=(f_{1}, f_{2}, f_{3}, f_{4}, g_{1}, g_{2}, g_{3})A$ , where $g_{i}=$

$\sum_{i=1}^{4}X_{ij}T_{j}$ for $1\leqq i\leqq 3$ . As is noted in [V, (3.3) Example], $I$ is generated by
a $d$ -sequence, which means $\lambda(I_{M})=7$ , where $M$ is the graded maximal ideal of
$A$ . So, $ad(I_{M})=3$ . Let $Q\in V(I)$ such that $ht_{A}Q\leqq 6$ . We put $p=Q\cap B$ . Of
course $ht_{A}p\leqq 6$ . Then, as is mentioned above, $\mu_{p}(K)=2$ and so we may assume
$K_{p}=(f_{3}, f_{4})A_{p}$ . Thus we get the following commutative diagram

$0$

$\downarrow$

$\psi$

$0arrow \mathscr{I}arrow B_{p}[T_{3}, T_{4}]arrow G(K_{p})arrow 0$

$\downarrow$ $||$

$0arrow I_{p}arrow$ $A_{p}$
$\underline{\varphi}G(K_{p})arrow 0$

$\downarrow$

$(T_{1}, T_{2})A_{p}$

$\downarrow$

$0$

where $\psi(T_{i})=f_{i}^{*}$ for $i=3,4$ and $\mathscr{I}=Ker\psi$ . Because $f_{3},$ $f_{4}$ is a regular sequence
on $B_{p}$ , we have $\mathscr{I}=(f_{3}, f_{4})B_{p}[T_{3}, T_{4}]$ . Consequently $I_{p}$ is generated by 4
elements, and so $\mu Q(I)=4$ . Moreover $A/I^{2}$ is Cohen-Macaulay by [V, (3.3)

Example]. Thus $I_{M}\subseteqq A_{M}$ satisfies the standard assumptions of Theorem (1.2)

in the case where $\alpha=13$ . Hence we have $I^{(n)}=I^{n}$ for all $n\geqq 1$ if $\lambda(I_{Q})\leqq 6$ for
any $Q\in V(I)$ such that $ht_{A}Q=7$ . Let $Q$ be such a prime ideal. Again we put
$p=Q\cap B$ . Because $ht_{A}p\leqq 7$ , we may assume $x_{11}\not\in p$ . Then, considering the
entries of $X$ in $B_{p}$ , we get a matrix of the form

$(\begin{array}{llll}1 0 0 00 X_{22}’ X_{23}’ X_{24}’0 X_{32}’ X_{33} X_{34}’\end{array})$

by elementary transformation, which means $K_{p}=(f_{2}, f_{3}, f_{4})B_{p}$ and we get the
following commutative diagram
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$0$

$\downarrow^{1}$

$\rho$

$0arrow\sigma rarrow B_{p}[T_{2}, T_{3}, T_{4}]arrow G(K_{p})arrow 0$

$\downarrow$ $||$

$\varphi$

$0arrow I_{p}arrow$ $A_{p}$ $arrow G(K_{p})arrow 0$

$\downarrow$

$T_{1}A_{p}$

$\downarrow$

$0$

where $\rho(T_{i})=f_{i}^{*}$ for $i=3,4$ and $\mathscr{F}=Ker\rho$ . Notice that

$g;=(f_{2}, f_{3}, f_{4}, h_{2}, h_{3})B_{p}[T_{2}, T_{3}, T_{4}]$ ,

where $h_{i}=\Sigma_{j=2}^{4}X_{ij}’T_{j}$ for $j=2,3$ . Therefore $I_{p}$ is generated by 6 elements,

and so we get $\mu_{Q}(I)=6$ as is required.
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