A theorem of Hardy-Littlewood for harmonic functions satisfying Hölder's condition

By Toshihiro KISO, Yoshihiro MIZUTA and Tetsu SHIMOMURA

(Received May 31, 1993)

1. Introduction.

Our aim in this paper is to give an extension of a result of Hardy-Little-wood [2, Theorems 40 and 41] for holomorphic functions on the unit disc.

Let B(x, r) denote the open ball centered at x with radius r. We denote by \mathbf{B} the unit ball B(0, 1) of \mathbb{R}^n , and by d(x) the distance of x from the boundary $\partial \mathbf{B}$, that is, d(x)=1-|x|.

An easy modification of the proof of [1, Theorem 5.1] deduces the following results (see also [3, Theorem 15.8]).

THEOREM A. Let u be a harmonic function on **B** and $0 < \alpha \le 1$. Then u satisfies

$$|\nabla u(x)| \leq Md(x)^{\alpha-1}$$
 for any $x \in \mathbf{B}$

if and only if

(1)
$$|u(x)-u(y)| \leq M|x-y|^{\alpha}$$
 for any $x \in \mathbf{B}$ and $y \in \mathbf{B}$,

where ∇ denotes the gradient.

If u satisfies (1), then we say that u satisfies Hölder's condition of exponent α in B.

In this paper let M denote various constants, whose value may change from one occurrence to the next.

THEOREM B. Let u be a harmonic function on B. Then u satisfies

$$|\nabla u(x)| \le Md(x)^{-1}$$
 for any $x \in B$

if and only if $u \in BMO(\mathbf{B})$, that is,

$$\frac{1}{|B|} \int_{B} \left| u(y) - \frac{1}{|B|} \int_{B} u(z) dz \right| dy \le M$$

for any open ball $B=B(x, r)\subseteq B$.

For a nonnegative integer k, denote by $\nabla_k u$ the gradient iterated k times of u, that is,

$$|\nabla_k u(x)| = \Big(\sum_{|\mu|=k} \frac{k!}{\mu!} |D^{\mu} u(x)|^2\Big)^{1/2}.$$

Finally we have the following result, whose proof seems to be derived nowhere in a complete form.

THEOREM C. Let u be a harmonic function on **B** and $0 < \alpha \le 2$. Then u satisfies

$$|\nabla_2 u(x)| \leq Md(x)^{\alpha-2}$$
 for any $x \in B$

if and only if

(2)
$$|u(x+y)+u(x-y)-2u(x)| \le M|y|^{\alpha}$$

whenever $x \in \mathbf{B}$ and y with $x \pm y \in \mathbf{B}$.

If $0 < \alpha < 1$, then (2) is equivalent to (1). We give generalizations of Theorems A, B and C; we thus establish a complete proof of Theorem C. For this purpose, consider a positive nondecreasing function k on $(0, \infty)$ satisfying the doubling condition:

(3)
$$k(2t) \leq Mk(t)$$
 for any $t > 0$.

Define

$$h(r) = rk(1/r)$$

for r>0 and h(0)=0. Note that h also satisfies the doubling condition.

THEOREM 1. Suppose $t^{\beta}k(1/t)$ is nondecreasing on $(0, \infty)$ for some $0 < \beta < 1$. Let u be a harmonic function on **B**. Then u satisfies

$$|\nabla u(x)| \le Mk(d(x)^{-1}) \quad \text{for any } x \in \mathbf{B}$$

if and only if

(5)
$$|u(x)-u(y)| \leq Mh(|x-y|) \quad \text{for any } x \text{ and } y \text{ in } B.$$

Clearly, Theorem 1 gives a generalization of Theorem A.

REMARK. Following Smith and Stegenga [4], we define the quasi-hyperbolic metric with respect to k by

$$K_{k,B}(x, y) = \inf_{r} \int_{r} k(d(z)^{-1}) ds$$
,

where the infimum is taken over all rectifiable arcs γ in B joining x and y with the arc length s. If u satisfies (4), then

$$|u(x)-u(y)| \leq MK_{k,B}(x, y).$$

We shall prove later that $K_{k,B}(x, y) \leq Mh(|x-y|)$ for any $x \in B$ and $y \in B$.

THEOREM 2. Suppose h(t)=tk(1/t) is nondecreasing on $(0, \infty)$. Let u be a harmonic function on **B**. Then u satisfies (4) if and only if

(6)
$$\frac{1}{|B|} \int_{B} |u(y) - u(x)| dy \leq Mh(r)$$

for any open ball $B=B(x, r)\subseteq B$.

If we take k(t)=t, then (6) implies that $u \in BMO(B)$, so that Theorem 2 gives an extension of Theorem B.

Letting k be as above, we define

$$h^*(r) = r^2 k(1/r)$$

for r>0 and h*(0)=0 for the sake of convenience.

THEOREM 3. Suppose $t^{\beta}k(1/t)$ is nondecreasing on $(0, \infty)$ for some $0 < \beta < 2$. Let u be a harmonic function on **B**. Then u satisfies

(7)
$$|\nabla_2 u(x)| \leq Mk(d(x)^{-1}) for any x \in \mathbf{B}$$

if and only if

(8)
$$|u(x+y)+u(x-y)-2u(x)| \le Mh^*(|y|)$$

whenever $x \in \mathbf{B}$ any y with $x \pm y \in \mathbf{B}$.

If we take $k(t)=t^{2-\alpha}$ with $0<\alpha\leq 2$, then Theorem 3 implies Theorem C.

THEOREM 4. Suppose $h^*(t)=t^2k(1/t)$ is nondecreasing on $(0, \infty)$. Let u be a harmonic function on **B**. Then u satisfies (7) if and only if

(9)
$$\frac{1}{|B|} \int_{B} |u(x+y) + u(x-y) - 2u(x)| \, dy \le Mh^*(r)$$

for any open ball B=B(0, r) with 0 < r < d(x).

2. Proof of Theorem 1.

For a proof of Theorem 1, we prepare some lemmas.

First we start with a mean-value inequality for harmonic functions.

LEMMA 1 (cf. Stein [5, Appendix C.3]). If u is a harmonic function on B(x, r), then

$$|\nabla_k u(x)| \le M_k r^{-n-k} \int_{B(x,r)} |u(y)| \, dy$$

for any nonnegative integer k, where M_k is a positive constant independent of x and r.

Define

$$\tilde{h}(r) = \int_0^r k(1/s) ds$$

for r>0 and $\tilde{h}(0)=0$. Note that \tilde{h} satisfies the doubling condition on $(0, \infty)$ and

(10)
$$\tilde{h}(r) \geq k(1/r) \int_0^r ds = rk(1/r).$$

Lemma 2. If u is a continuously differentiable function on \boldsymbol{B} satisfying (4), then

$$(11) |u(x+y)-u(x)| \le M\tilde{h}(|y|)$$

whenever $x \in \mathbf{B}$ and y is of the form rx, 0 < r < d(x)/|x|.

PROOF. Since $d(x+ty) = d(x)-t|y| \ge (1-t)|y|$, we have by (4),

$$|u(x+y)-u(x)| \leq \int_0^1 \left| \frac{d}{dt} u(x+ty) \right| dt$$

$$\leq \int_0^1 |(\nabla u)(x+ty)| |y| dt$$

$$\leq M|y| \int_0^1 k(d(x+ty)^{-1}) dt$$

$$\leq M|y| \int_0^1 k(1/(1-t)|y|) dt$$

$$\leq M \int_0^{1/y} k(1/s) ds$$

$$= M \tilde{h}(|y|).$$

Hence Lemma 2 is proved.

COROLLARY. Suppose $\tilde{h}(1) < \infty$. If u is a continuously differentiable function on **B** satisfying (4), then u is bounded on **B**.

In fact, we have by (11)

$$|u(x)| \le |u(x/2)| + M\tilde{h}(|x|/2)$$

 $\le \sup_{B(0.1/2)} |u| + M\tilde{h}(1/2)$

for $x \in B$, so that u is bounded on B.

LEMMA 3. If u is a continuously differentiable function on \mathbf{B} satisfying (4), then (11) holds for $x \in \mathbf{B}$ any y with $x + y \in \mathbf{B}$.

PROOF. Case 1: $|y| \ge 1/4$. This case follows readily from Corollary to Lemma 2.

Case 2: $|x| \le 1/2$ and $|y| \le 1/4$. Applying the mean value theorem, we find t_0 , $0 < t_0 < 1$, such that

$$|u(x+y)-u(x)| \leq |y| |\nabla u(x+t_0y)|.$$

Since $|\nabla u|$ is bounded on B(0, 3/4), we obtain (11).

Case 3: $|x| \ge 1/2$ and $|y| \le 1/4$. This is the most difficult case. To conquer the present case, take $x^* = (|x| - |y|)x/|x|$ and $y^* = (|x| - |y|)y/|x|$. We write

$$|u(x+y)-u(x)| \le |u(x+y)-u(x^*+y^*)| + |u(x^*+y^*)-u(x^*)| + |u(x^*)-u(x)|$$

$$= A+B+C.$$

Since $|x^*-x|=|y|$, we apply Lemma 2 to prove

$$C \leq M\tilde{h}(|y|)$$
.

Noting that $|(x+y)-(x^*+y^*)| \le |x+y| |y|/|x| \le 2|y|$, we have by Lemma 2 again $A \le M\tilde{h}(2|y|) \le M\tilde{h}(|y|).$

Applying the mean value theorem, we find t_0 such that $0 < t_0 < 1$ and

$$B \leq |y^*| |\nabla u(x^* + t_0 y^*)| \leq M |y^*| k(d(x^* + t_0 y^*)^{-1}).$$

Note that for 0 < t < 1,

(12)
$$d(x^*+ty^*) \ge |(x+ty)-(x^*+ty^*)|$$

$$= |x+ty||y|/|x|$$

$$\ge (|x|-|y|)|y|/|x|$$

$$\ge |y|/2.$$

Since $|y^*| \le |y|$, we finally establish

$$B \leq M|y|k(2/|y|) \leq M\tilde{h}(|y|),$$

with the aid of (10). Thus the proof is complete.

LEMMA 4. If u is a harmonic function on B satisfying (5), then

(13)
$$|\nabla u(x)| \leq Md(x)^{-1}h(d(x)) \quad \text{for any } x \in \mathbf{B}.$$

PROOF. For fixed $x \in \mathbf{B}$, consider the function v:

$$v(z) \equiv u(z) - u(x)$$
,

which is harmonic in **B**. Applying Lemma 1, we have for r=d(x),

$$|\nabla u(x)| = |\nabla v(x)| \le Mr^{-n-1} \int_{B(x,r)} |v(z)| dz$$

$$\le Mr^{-n-1} h(r) \int_{B(x,r)} dz$$

$$\le Mr^{-1} h(r).$$

Therefore (13) follows.

By Lemmas 3 and 4, Theorem 1 is proved if we note that

$$\begin{split} \tilde{h}(r) &= \int_0^r k(1/s) ds \\ &= \int_0^r \{ s^{\beta} k(1/s) \} s^{-\beta} ds \\ &\leq r^{\beta} k(1/r) \int_0^r s^{-\beta} ds \\ &= (1-\beta)^{-1} r k(1/r) \\ &= (1-\beta)^{-1} h(r) \, . \end{split}$$

3. Proof of Theorem 2.

PROOF OF THEOREM 2. First we show the only if part. Since $d(x+ty) \ge d(x)-t|y|$, we have

$$|u(x+y)-u(x)| \leq M|y| \int_0^1 k\left(\frac{1}{d(x)-t|y|}\right) dt$$
$$\leq M \int_0^{|y|} k\left(\frac{1}{d(x)-t}\right) dt.$$

Hence we have

$$\frac{1}{|B(x,r)|} \int_{B(x,r)} |u(z) - u(x)| dz \leq \frac{M}{|B(0,r)|} \int_{B(0,r)} \left\{ \int_{0}^{|y|} k \left(\frac{1}{d(x) - t}\right) dt \right\} dy$$

$$\leq \frac{M}{r^{n}} \int_{0}^{r} \int_{\Sigma_{n-1}} \left\{ \int_{0}^{\rho} k \left(\frac{1}{d(x) - t}\right) dt \right\} \rho^{n-1} d\sigma d\rho$$

$$\leq \frac{M}{r^{n}} \int_{0}^{r} \left\{ \int_{t}^{r} \rho^{n-1} d\rho \right\} k \left(\frac{1}{r - t}\right) dt$$

$$\leq \frac{M}{r} \int_{0}^{r} (r - t) k \left(\frac{1}{r - t}\right) dt$$

$$\leq \frac{M}{r} r k(1/r) \int_0^r dt$$
$$= Mh(r) ,$$

so that (6) holds.

Next we show the if part. For fixed $x \in B$, consider the function v:

$$v(z) \equiv u(z) - u(x)$$
.

Since v is harmonic in B=B(x, r) with r=d(x), by Lemma 1 and (6), we have

$$|\nabla u(x)| = |\nabla v(x)| \le Mr^{-n-1} \int_{\mathcal{B}} |v(z)| \, dz$$
$$\le Mr^{-1}h(r)$$
$$= Mk(d(x)^{-1}).$$

Hence (4) follows, and the proof is complete.

4. Proof of Theorem 3.

For a proof of Theorem 3, we need some lemmas. Define

$$\bar{h}(r) = \int_0^r s \, k(1/s) \, ds$$

for r>0 and $\bar{h}(0)=0$. Note that \bar{h} satisfies the doubling condition on $(0,\infty)$ and

$$\bar{h}(r) \geq k(1/r) \int_0^r s \, ds = 2^{-1} r^2 k(1/r)$$
.

LEMMA 5. Let u be a continuously twice differentiable function on **B** satisfying (7). If $x \in \mathbf{B}$ and y = rx with 0 < r < d(x)/|x|, then

(14)
$$|u(x+y)+u(x-y)-2u(x)| \leq M\bar{h}(|y|).$$

PROOF. By the mean value theorem we have

$$(15) |u(x+y)+u(x-y)-2u(x)| \leq |y|^2 \int_0^1 (1-t) |\nabla_2 u(x+ty)+\nabla_2 u(x-ty)| dt.$$

Since $d(x\pm ty)=d(x)\mp t|y|\ge |y|-t|y|$, we have by (7),

$$|u(x+y)+u(x-y)-2u(x)| \le M \int_0^{|y|} (|y|-s)k((|y|-s)^{-1}) ds$$

$$= M\bar{h}(|y|).$$

COROLLARY. Suppose $\bar{h}(1) < \infty$. If u is a continuously twice differentiable function on **B** satisfying (7), then u is bounded on **B**.

In fact, we obtain from (14),

$$|u(x)| \le 2|u(3x/4)| + |u(x/2)| + M\bar{h}(|x|/4)$$

$$\le 3 \sup_{B(0.3/4)} |u| + M\bar{h}(1/4),$$

which shows that u is bounded on B.

LEMMA 6. If u is a continuously twice differentiable function on \mathbf{B} satisfying (7), then (14) holds for $x \in \mathbf{B}$ and y with $x + y \in \mathbf{B}$.

PROOF. Case 1: $|y| \ge 1/4$. This case follows readily from the boundedness of u, which was shown in Corollary to Lemma 5.

Case 2: $|x| \le 1/2$ and $|y| \le 1/4$. This case follows from (15) and the fact that $|\nabla_2 u|$ is bounded on B(0, 3/4).

Case 3: $|x| \ge 1/2$ and $|y| \le 1/4$. Take $x^* = (|x| - |y|)x/|x|$, $x^{**} = (|x| - 2|y|) \cdot x/|x|$, $y^* = (|x| - |y|)y/|x|$ and $y^{**} = (|x| - 2|y|)y/|x|$. Write

$$\begin{split} |u(x+y) + u(x-y) - 2u(x)| & \leq 2|u(x) + u(x^{**}) - 2u(x^{*})| \\ & + |u(x+y) + u(x^{**} + y^{**}) - 2u(x^{*} + y^{*})| \\ & + |u(x-y) + u(x^{**} - y^{**}) - 2u(x^{*} - y^{*})| \\ & + 2|u(x^{*} + y^{*}) + u(x^{*} - y^{*}) - 2u(x^{*})| \\ & + |u(x^{**} + y^{**}) + u(x^{**} - y^{**}) - 2u(x^{**})| \\ & = 2A + B + C + 2D + E \;. \end{split}$$

Let $w=x-x^*=x^*-x^*$. Then, obviously, |w|=|y|. Lemma 5 yields

$$A = |u(x^*+w) + u(x^*-w) - 2u(x^*)| \le M\bar{h}(|y|).$$

Next let $w_1 = (x+y) - (x^*+y^*) = (x^*+y^*) - (x^{**}+y^{**})$ and $w_2 = (x-y) - (x^*-y^*) = (x^*-y^*) - (x^{**}-y^{**})$. Then, as above, we have

 $B \leq M\bar{h}(|w_1|)$

and

$$C \leq M\bar{h}(|w_2|).$$

Since $|w_1| \leq 2|y|$ and $|w_2| \leq 2|y|$,

$$B \leq M\bar{h}(|y|), \qquad C \leq M\bar{h}(|y|).$$

Noting that $d(x*\pm ty*) \ge |x\pm ty| - |x*\pm ty*| \ge (|x|-|y|)|y|/|x| \ge |y|/2$ for 0 < t < 1, we have by (15) and (7),

$$D \leq M |y^*|^2 \int_0^1 (1-t) \{k(d(x^*+ty^*)^{-1}) + k(d(x^*-ty^*)^{-1})\} dt$$

$$\leq M |y|^2 k(2/|y|)$$

$$\leq M \bar{h}(|y|).$$

Similarly

$$E \leq M\bar{h}(|y|),$$

and hence the proof is complete.

LEMMA 7. If u is a harmonic function on **B** satisfying (8) for $x \in \mathbf{B}$ and y with $x \pm y \in \mathbf{B}$, then

$$|\nabla_2 u(x)| \leq Md(x)^{-2}h^*(d(x))$$
 whenever $x \in \mathbf{B}$.

PROOF. For fixed $x \in B$, we put

$$v(y) \equiv u(x+y) + u(x-y) - 2u(x)$$

and r=d(x). Since the function v is harmonic in B(0, r), applying Lemma 1, we have

$$|\nabla_2 u(x)| = 2^{-1} |\nabla_2 v(0)| \le Mr^{-n-2} \int_{B(0,r)} |v(y)| \, dy$$

$$\le Mr^{-n-2} h^*(r) \int_{B(0,r)} dy$$

$$\le Mr^{-2} h^*(r).$$

Therefore, the required conclusion follows.

Now Theorem 3 is proved by Lemmas 6 and 7 if one notes that

$$\begin{split} \bar{h}(r) &= \int_0^r \left\{ t^\beta k \left(\frac{1}{t} \right) \right\} t^{1-\beta} dt \\ &\leq r^\beta k (1/r) \int_0^r t^{1-\beta} dt \\ &= (2-\beta)^{-1} r^2 k (1/r) \\ &= (2-\beta)^{-1} h^*(r) \,. \end{split}$$

5. Proof of Theorem 4.

PROOF OF THEOREM 4. First we show the only if part. Since $d(x\pm ty) \ge d(x)-t|y|$, we have by (15),

$$\begin{split} |\, u(x+y) + u(x-y) - 2u(x) \,| \, & \leq M |\, y \,|^{\, 2} \! \int_{0}^{1} (1-t) k \! \left(\frac{1}{d(x) - t \,|\, y \,|} \right) \! dt \\ & \leq M \! \int_{0}^{1\, y \, 1} (\,|\, y \,|\, - s) k \! \left(\frac{1}{d(x) - s} \right) \! ds \; . \end{split}$$

Hence we have for B=B(0, r) with 0 < r < d(x),

$$\frac{1}{|B|} \int_{B} |u(x+y) + u(x-y) - 2u(x)| \, dy \leq \frac{M}{|B|} \int_{B} \left\{ \int_{0}^{|y|} (|y| - s) k \left(\frac{1}{d(x) - s} \right) ds \right\} dy$$

$$\leq \frac{M}{r^{n}} \int_{0}^{r} \left\{ \int_{0}^{\rho} (\rho - s) k \left(\frac{1}{r - s} \right) ds \right\} \rho^{n-1} d\rho$$

$$= \frac{M}{r^{n}} \int_{0}^{r} \left\{ \int_{s}^{r} (\rho - s) \rho^{n-1} d\rho \right\} k \left(\frac{1}{r - s} \right) ds$$

$$\leq \frac{M}{r} \int_{0}^{r} (r - s)^{2} k \left(\frac{1}{r - s} \right) ds$$

$$\leq \frac{M}{r} r^{2} k (1/r) \int_{0}^{r} ds$$

$$= Mh^{*}(r).$$

Hence, in view of Lemma 7, the proof is complete.

References

- $\lceil 1 \rceil$ P.L. Duren, Theory of H^p spaces, Academic Press, New York, 1970.
- [2] G.H. Hardy and J.E. Littlewood, Some properties of fractional integrals, II, Math. Z., 34 (1932), 403-439.
- [3] S.G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Exposition. Math., 3 (1983), 193-260.
- [4] W. Smith and D. A. Stegenga, Exponential integrability of the quasi-hyperbolic metric in Hölder domains, Ann. Acad. Sci. Fenn. Ser. A I Math., 16 (1991), 341-360.
- [5] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970.

Toshihiro KISO

Department of Mathematics Faculty of Science Hiroshima University Higashi-Hiroshima 724 Japan

Yoshihiro MIZUTA

Department of Mathematics Faculty of Integrated Arts and Sciences Hiroshima University Higashi-Hiroshima 724 Japan

Tetsu Shimomura

Department of Mathematics Faculty of Integrated Arts and Sciences Hiroshima University Higashi-Hiroshima 724 Japan