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1. Introduction.

Our aim in this paper is to give an extension of a result of Hardy-Little-
wood [2, Theorems 40 and 41] for holomorphic functions on the unit disc.

Let B(x, r) denote the open ball centered at x with radius r. We denote
by B the unit ball B0, 1) of R?, and by d(x) the distance of x from the
boundary 0B, that is, d(x)=1—|x].

An easy modification of the proof of [1, Theorem 5.1] deduces the follow-
ing results (see also [3, Theorem 15.87).

THEOREM A. Let u be a harmonic function on B and 0<a<1l. Then u
satisfies

[Vu(x)] £ Md(x)*™'  for any x&B
if and only if

¢)) lu(x)—u(y)| £ M|x—y|®  for any x&B and y<B,
where N denotes the gradient.

If u satisfies (1), then we say that u satisfies Holder’s condition of exponent
«a in B.

In this paper let M denote various constants, whose value may change
from one occurrence to the next.

THEOREM B. Let u be a harmonic function on B. Then u satisfies
IVu(x)| £ Md(x)™! for any x=B
if and only if u=BMO(B), that is,
i57)
|B|Js

for any open ball B=B(x, r)EB.

1 !
u(y)—l—B—lSBu(z)dzl dy<M
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For a nonnegative integer k2, denote by V,u the gradient iterated & times
of u, that is,

)| = (2, 57 1071

Finally we have the following result, whose proof seems to be derived
nowhere in a complete form.

THEOREM C. Let u be a harmonic function on B and 0<a<2. Then u
satisfies

|Vou(x)| < Md(x)*~*  for any x<B
if and only if

2 u(x+y)+u(x—y)—2u(x)| < Miyl*
whenever x&B and y with x+yeB.

If 0<a<l, then (2) is equivalent to (1). We give generalizations of Theo-
rems A, B and C; we thus establish a complete proof of [Theorem C. For this
purpose, consider a positive nondecreasing function 2 on (0, ) satisfying the
doubling condition :

3 k2t < Mk for any t>0.

Define
hir) =rk(d/7)

for >0 and A(0)=0. Note that h also satisfies the doubling condition.

THEOREM 1. Suppose tPk(1/t) is nondecreasing on (0, ) for some 0<B<1.
Let u be a harmonic function on B. Then u satisfies

4 |Vu(x)| € Mk(d(x)"")  for any x=B

if and only if

5) lu(x)—u(y)| £ Mh(lx—y)) for any x and y in B.
Clearly, gives a generalization of Theorem A.

REMARK. Following Smith and Stegenga [4], we define the quasi-hyperbolic
metric with respect to 2 by

Kia(x, ) = infS k(d(z)Yds ,
rJr

where the infimum is taken over all rectifiable arcs 7 in B joining x and y
with the arc length s. If u satisfies (4), then
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lu(x)—u(y)| < MK, p(x, y).

We shall prove later that K, g(x, y)<Mh(|x—y]|) for any xB and y=B.

THEOREM 2. Suppose h(t)=tk(1/t) is nondecreasing on (0, ). Let u be a
harmonic function on B. Then u satisfies (4) if and only if

© | u)=u() | dy < Mhe)

for any open ball B=B(x, r)SB.

If we take k(t)=t, then (6) implies that u= BMO(B), so that
gives an extension of Theorem B.
Letting %2 be as above, we define

h*(r) =r*k(1/7)
for »>0 and A*(0)=0 for the sake of convenience.

THEOREM 3. Suppose tPr(1/t) is nondecreasing on (0, ) for some 0<B<2.
Let u be a harmonic function on B. Then u satisfies

) |Vou(x)| £ ME(d(x)™Y)  for any x=B
if and only if
® lu(x+y)+u(x—y)—2u(x)| < Mr*(Jy1)
whenever x&B any y with x+y<B.
If we take k(t)=t*"* with 0<a<2, then implies Theorem C.

THEOREM 4. Suppose h*(t)=t>k(1/t) is nondecreasing on (0, ). Let u be a
harmonic function on B. Then u satisfies (7) if and only if

©) l—é—lS)y]u(x—}-y)+u(x—-y)~2u(x)l dy £ Mh*(r)

for any open ball B=B(0, r) with 0<r<d(x).

2. Proof of Theorem 1.

For a proof of [Theorem 1, we prepare some lemmas.
First we start with a mean-value inequality for harmonic functions.

LEMMA 1 (cf. Stein [5, Appendix C.3)). If u is a harmonic function on
B(x, v), then
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Vau(o)l = Mo ju)ldy

for any nonnegative integer k, where M, is a positive constant independent of x
and r.

Define
i) = S:k(l/s)ds

for >0 and A(0)=0. Note that & satisfies the doubling condition on (0, c) and
(10) By = k(l/r)S:ds — rk(1/7).

LEMMA 2. If u is a continuously differentiable function on B satisfying (4),
then

(11) lu(x+y)—u(x)| < Mh(ly])
whenever x<B and y is of the form rx, 0O<r<d(x)/|x]|.

PROOF. Since d(x+ty)=d(x)—t]y|={1—1t)|y|, we have by (4),

lu(x+y)—ux)l = S:ld%u(xﬂy)‘dt
= | 1w+ |y ldr
< MiyI| a1yt
= MIy1| kQ/A=D)]1)dt

Tyl
< MS0 k(1/s)ds
= Mh(y]).
Hence is proved.

COROLLARY. Suppose A1) < co. If w is a continuously differentiable function
on B satisfying (4), then u is bounded on B.

In fact, we have by
lu()| £ [u(x/2)|+MhA(1x]/2)
< sup |ul+M~A1/2)

B(0,1/2)

for xeB, so that u is bounded on B.
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LEMMA 3. If u is a continuously differentiable function on B satisfying (4),

then (11) holds for x&B any y with x+yEB.

PrOOF. Case 1: |y|=1/4. This case follows readily from Corollary to
Lemma 2.

Case 2: |x|=1/2 and |y|<1/4. Applying the mean value theorem, we
find ¢,, 0<¢,<1, such that

lu(x+y)—u(x)] < |y |Vulx+tp)].

Since |Vu| is bounded on B(0, 3/4), we obtain [11).

Case 3: |x|=1/2 and |y|<L1/4. This is the most difficult case. To con-
quer the present case, take x*=(|x|—|yDx/1x| and y*=(|x|—]yDy/|x]|.
We write

lu(x+y)—u(x)| < lulx+y)—u(x*+y5) |+ | u(x*+ y*)—u(x*) [+ | u(x*)—u(x)|
= A+B+C.
Since |x*—x|=]y|, we apply to prove
C < MA(|y)).
Noting that |(x+y)—(x*+yH) = (x+y[|y]/Ix1=2|y|, we have by
again N N
A<SMr2IyD) = Mhr(y1).
Applying the mean value theorem, we find ¢, such that 0<¢,<1 and
B < | y*|[Vu(x*+t,3%)| < M| y*|k(d(x*+1,y%)7").
Note that for 0<t<1,
(12) d(x*+ty*) = [(x+iy)—(xF+1y%)]
= |x+tyllyl/|x|
=z (Ixl—=1yDIyl/]x]
= |yl/2.

Since |y*|<|y|, we finally establish
B < M|ylk@/1y]) < MA(1y]),
with the aid of [10). Thus the proof is complete.
LEMMA 4. If u is a harmonic function on B satisfying (5), then
(13) |Vu(x)| £ Md(x)"'h(d(x))  for any xEB.

ProOOF. For fixed x=B, consider the function v:
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v(z) = uz)—u(x),

which is harmonic in B. Applying Lemma 1, we have for »r=d(x),

Vu(x)| = [Vo(x)| < Mr-n-lgmnlv(z)ldz

< Mr’”"h(r)g dz

B(x, 1)

< Mr=th(r).
Therefore (13) follows.

By Lemmas 3 and 4, Theorem 1 is proved if we note that

hr) = S:k(l/s)ds
= S:{sﬂk(l/s)} s-Bds

< rPR/r) S:s’ﬂds

= 1-p)'rkd/r)
= (1—=p8)"'h(r).

3. Proof of Theorem 2.

PROOF OF THEOREM 2. First we show the only if part. Since d(x+ty)=
d(x)—t|y|, we have

1
Ty

= Mglylk(d(x:;—)dt‘

u(r+9)—u0)] £ Miy1{ #(

0 -

Hence we have

M Iyt
IB(xl, Ml Sm,r,’“@"“(x)‘dz = 7B, r)|SB<o,”{So k(d(xl)—t)dt}dy

<20, =)o aade
e raoteGLy)e

s TLr-or( L)

AN
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< Mrk(l/r)S:dt

r

= Mh(r),
so that (6) holds.
Next we show the if part. For fixed x&B, consider the function v:

w(2) = ulz)—u(x).
Since v is harmonic in B=B(x, ) with r=d(x), by and (6), we have
Vu(x)| = Vo) < Mr=| o) dz
< Mrh(r)
= ME(d(x)™).

Hence (4) follows, and the proof is complete.

4. Proof of Theorem 3.

For a proof of [Theorem 3, we need some lemmas.
Define

Ry = 'se/s)ds
for >0 and 7(0)=0. Note that h satisfies the doubling condition on (0, =) and
Ry 2 k)| sds =2k,
LEMMA 5. Let u be a continuously twice differentiable function on B satisfy-
ing (7). If x€B and y=rx with 0<r<d(x)/|x|, then
(14) |u(x+ )+ ulx—y)—2u(x)| < Mh(lyl).

ProoF. By the mean value theorem we have
1
(15) lu(x+y)+tulx—y)—2u(x)| < ly\Zso(l—t)leu(x+ty)+Vzu(x—ty)Idt.
Since d(x+ty)=d(x)Ft|y|=|y|—t|y|, we have by (7),

iyl
|u(r+ )+ ux——2u®| = M{ " (171 =9k 31—5)ds
= Mh(|y1).
COROLLARY. Suppose h(l)<oco. If u is a continuously twice differentiable
function on B satisfying (7), then u is bounded on B.

In fact, we obtain from [14),
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lu(x)| < 2\u@x/4)|+|u(x/2)| +Mh(|x|/4)
<3 sup |ul+Mh(1/4),

B(0,8/4)

which shows that u is bounded on B.

LEMMA 6. If u is a continuously twice differentiable function on B satisfy-
ing (7), then (14) holds for x€B and y with x+yeB.

PROOF. Case 1: |y|=1/4. This case follows readily from the bounded-
ness of u, which was shown in Corollary to Lemma 5.
Case 2: |x|<1/2 and |y|£1/4. This case follows from (15) and the fact
that |V,u| is bounded on B(0, 3/4).
Case 3: [x[=1/2 and [y[<1/4. Take x*=({x|—|y))x/[x], x**=(x[—2|y])
x/xl, y*=>xl—1yDy/Ix| and y**=(|x|—=2]y])y/lx|. Write
lu(x+y)+tulx—y)—2u(x)| = 2 u(x)+ulx**)—2u(x*)|
+lu(x+y)Fu(x**+ y**) —2u(x*+y%)|
+lu(x—y)tu(x**—y**)—2u(x*—y*)|
+2|u(x*+ y*) +u(x*—y*) —2u(x*)]
L o) u (= 28) —2u(x7%)|
=2A+B+C+2D+E.
Let w=x—x*=x*—x**_ Then, obviously, |w|=|y|. yields
A= lu(x*+w)+u(x*—w)—2u(x*)| < MA(1yl]).

Next let w,=(x+y)—(x*+y*)=(x*+y*)—(x**+y*¥) and w,=(x—y)—(x*—y*)
=(x*— y*¥)—(x**—y*¥), Then, as above, we have

B < M}_l(lwxl)
C < Mh(lw,!).

and

Since |w,|<2|y| and |w,|<2|y],
B < Mh(ly)), C < Mh(]yl).

Noting that d(x*xty"=|xxty|—[x*xty*[=(x|=1yDIy|/Ix|=]y]/2 for
0<t<1, we have by (15) and (7),

D = M y* || (1=t {k(d(w+139 )+ k(d(r 13970} di
= My|*k@/15])
< MA(31).
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Similarly
E < Mh(|y]),

and hence the proof is complete.

LEMMA 7. If u is a harmonic function on B satisfying (8) for x&B and y
with x+y&B, then

[Vou(x)| < Md(x)"2h*(d(x)) whenever x<B.
PROOF. For fixed x&B, we put
v(y) = u(x+y)+u(x—y)—2u(x)

and »=d(x). Since the function v is harmonic in B(0, »), applying [Lemma J],
we have

V()] =217 < M| o)1 dy

B(o. 1)

< Mr'"‘zh*(r)g dy
B0, 7)
< Mrih*(r).
Therefore, the required conclusion follows.

Now [Theorem 3 is proved by Lemmas 6 and 7 if one notes that
- 4 1
— Bp(—\\41-8
hr) = So{t k( t >}t dt

< rBR(L/7) S:t‘"ﬁdt

= @—p)rk(1/)
= Q=P h().

5. Proof of Theorem 4.

PROOF OF THEOREM 4. First we show the only if part. Since d(x+ty)=
d(x)—t|y|, we have by (15),

lu(x+ )+ u(x—y)—2u(x)| < MU’”S:(l_”k(E(—ac')—iETy'T)dt

< M sl k(5—)ds

Hence we have for B=B(0, r) with 0<r<d(x),
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\—é—lSBlu<x+y>+u<x—y>—2u<x>1dy < %SB{SL“<|y|—s>k(m§—_—s)ds}dy
<2 -or oo
R
A;S (r——s)zk )ds
]‘—” Zk(l/r)g
= Mh*(r).

Hence, in view of [Lemma 7|, the proof is complete.
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