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   1. Introduction. 

   This paper is concerned with the problem of existence of positive entire 
solutions for the 2M th order quasilinear elliptic equation 

(1.1) (-4)Mu = f (x, u, -au, ... , (-Q)M-'u), x RN, 

where M>_ 2, N>_ 2, is the N-dimensional Laplace operator and f C o~(RN x RM), 
0<8<1. An entire solution of (1.1) is defined to be a function u which is of 
class C2M(RN) and satisfies (1.1) at every point of RN. 

   Beginning with Kusano and Swanson [10], several authors have developed 
existence theory of radial entire solutions for higher order elliptic equations of 
the type (1.1) with radial symmetry ; see e. g. the papers [1, 2, 6-10]. A natural 

question then arises : Is it possible to construct non-radial entire solutions of 
the equation (1.1) without radial symmetry? An answer to this question has been 

given by Edelson and Vakilian [3] and Kusano and Swanson [11], who have 
examined the equation (-0)Mu= f (x, u) by employing entirely different methods. 
A principal tool used in the paper [11] is an extension of the supersolution-

subsolution method (super-subsolution method for short) which has proved to be 
very powerful in establishing the existence of entire solutions for second order 
elliptic equations of the form -Du= f (x, u). Such an extension in [11] relies 
on the derivation of a super-subsolution principle holding for second order elliptic 
systems of the form 

(1.2) -au~ = f (x, u1, ••, UM), x E RN, i =1, 2, ..., M. 

   It will be natural to expect that the super-subsolution principle for (1.2) 

given in [11] could be generalized so as to give rise to a new super-subsolution 
method for constructing non-radial entire solution of (1.1), thereby generalizing 
considerably the results of [3] and [11]. The purpose of this paper is to verify 
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the truth of this expectation by showing that the desired generalization can be 

made possible with the aid of a super-subsolution principle for (1.2) recently 

established by Furusho [5]. The statement of our super-subsolution principle 

for (1.1) is given in Section 2. The main existence results for (1.1) are stated 

and proved in Sections 3 and 4 ; Section 3 concerns entire solutions which are 
bounded from above and below by positive constants, while Section 4 deals with 

positive entire solutions which decay to zero as x tends to infinity. Section 5 
examines the equation 

                            M-1 
(1.3) (-~)Mu = pi(x)[(-Q)iu]ri, x E RN, N_> 2, 

                                          i=o 

which is an important special case of (1.1), where the ri are constants and the 

pi(x) are functions of class C (R') with O(0, 1). The existence theorems of 
Sections 3 and 4 are applicable to the case of positive ri but not to the case of 
negative ri. It is shown that the latter case of (1.3) can also be handled in the 
framework of the existence theory of Section 2. 

   2. The supersolution-subsolution principle. 

   The purpose of this section is to develop a general principle, called the 
super-subsolution method, by means of which the existence of non-radial entire 
solutions can be assured for the higher order elliptic equation (1.1). The deriva-
tion of the desired principle is based on the following simple observation: If 
uECio +e(RN) is an entire solution of (1.1), then the vector function (u1, , UM) 
with u1=(-)1-' u, i=1, 2, , M, is of class C; ~B(RN, RM) and satisfies the 
elliptic system 

                            -Du1= u11, i=1 , ... , M-1, 
(2.1)                         -QuM = f (x, u1, ... , UM), x E RN. 

Conversely, if (u1, u2, , uM)E C; ~B(RN, RM) is a solution of (2.1), then the first 
component u=u1 is an entire solution of (1.1). 

   Very recently, Furusho [5, Theorem 3.1] has obtained a general super-

subsolution principle for second order elliptic systems which, when specialized 
to (1.2), implies the following statement. 

    THEOREM 2.0. Let f i(x,1, ••, • M), i=1, 2, ..•, M, be functions of class 
C OC(RN, RM), 0<0<1, and suppose that there exist vector functions (v1i • • • , v,r) 
and (w1, • • • , wM) of class C; ~B(RN, RM) such that w1 <v1 in RN, i=1, •.., M, 

              -v(x) f ,(x , a, •, oM), x E RN, i1 = , ... M, 

for any (Q1, ... , QM)~RM satisfying w,(x)< i v,(x), j ~-i, o =vi(x), and
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               -w(x) --/ f (x, Z1, ... , vu), x e RN, i = 1, ... , M, 

for any (v1, , rM)ERM satisfying w,(x)<r,<_v,(x), jai, zi=wi(x). Then, the 
system (1.2) has an entire solution (u1, , i1M) C;o B(RN, RM) such that wi < u i <_ vi 
in R°~', i=1, • • • , M. 

   Applying this theorem to the system (2.1), we have a super-subsolution 

principle for the equation (1.1) on which most of the development of this paper 
depends. 

  THEOREM 2.1. If there exists a pair of functions v and w of class C+9(RN) 
such that 

(2.2) (-Q)iw(x) < (-Q)iv(x), x E RN, i =0, 1, , M-1, 

and 

(2.3) (-Q)Mv(x) > f(x, o, d,, ..., c_1) > (-Q)Mw(x), 

for any (is, O, QM-l)ERM with i=0, 1, ..., M-1, 
at every fixed point x ER', then the equation (1.1) has an entire solution u E 
C;o +e(RN) satisfying 

(2.4) (-Q)iw(x) < (-Q)iu(x) (-Q)iv(x), x E RN, i = 0, 1, ... , M-1. 

   The functions v and w in Theorem 2.1 are said to be a supersolution and a 
subsolution of (1.1), respectively. Theorem 2.1 asserts that the existence of a 
supersolution and a subsolution of (1.1) guarantees the existence of an entire 
solution of the equation under consideration. 

   As is easily seen, the statement of Theorem 2.1 becomes much simpler when 
the functian f (x, y r, ,M) in (1.1) is monotone in the variables,, j=1, 2, , M. 

   COROLLARY 2.1. Let f (x,1, • • ,M) be nondecreasing in,, j=1, 2, •., • M. 
If there exists a pair of functions v and w in C°(RN) which satisfy (2.2), 

         (-Q)Mv(x) > f(x, v(x), -Qv(x), ..., (-Q)M-lv(x)), x E RN 
and 

        (-Q)Mw(x) C f (x, w(x), -Qw(x), ... , (_Q)M-'w(x)), x E RN, 

then the equation (1.1) has an entire solution u satisfying (2.4). 

   COROLLARY 2.2. Let f (x, ; i, •.., M) be nonincreasing in ,, j=1, 2, • • • , M. 
If there exists a pair of functions v and w in CO(RN) which satisfy (2.2), 

        (-Q)MV(x) ? f(x, w(x), -Qw(x), .•., (-Q)M-lw(x)), x ERN 
and 

        (--Q)Mw(x) f(x, v(x), -dv(x), ..., (-Q)M-iv(x)), x E RN,
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then the equation (1.1) has an entire solution u satisfying (2.4). 

   Corollary 2.1 was first proved by Kusano and Swanson [11, Theorem 2.1] 

under slightly more restrictive assumptions on f (x, C1i • • • , CM). Corollary 2.2 
seems to be new. An example of equations to which Corollary 2.2 applies is 
the equation (1.3) in which all the functions pi(x) are nonnegative and all the 
exponents ri are nonpositive. 

   COROLLARY 2.3. Let pi~C o~(RN), p0, i=0, 1, , M-1. If there 
exists a pair of functions v and w of class C°(RN) such that 

         0 < (-a)iw(x) < (-a)iv(x), x E RN, i=0, 1, ..., M-1, 

                              M-1 

            (-d)Mv(x) pi(x)[(-4)~w(x)] ri , x RN 
                                               i=0 

and 
                                M-1 

            (-~)Mw(x) C pi(x)[(-Q)1v(x)] ri, x E RN, 
                                                i=o 

then the equation 

                                M-1 

               (-Q)h1u _ pi(x)[(-Q)2u] Ii, x ERN 
                                             i=o 

has an entire solution a satisfying (2.4). 

   A crucial step in applying the above-mentioned principles is the detection or 

construction of supersolutions and subsolutions of the equations under study. In 

what follows super- and subsolutions will always be sought in the form of radial 
functions y(~ x I) with y(t) satisfying ordinary differential equations of the type 

(2.5) (-)My = g(t, y, -ay, ..., (-o)M-1y), t >_ 0, 

where the functions g are chosen to dominate f or to be dominated by f in a 
certain sense, and d is understood to mean its one-dimensional polar form t1-N 
• d/dt(tN-1d/dt) . In solving (2.5) a central role will be played by the integral 

operator ?' defined by 

                        to-N a sN-3 ~rh(r)dr ds , for t > 0, 
                                       o s 

(2.6) (?h)(t) = 1 

                      N-2 sh(s)d s , for t = 0. 

0 

   It is known [4] that P has the properties: 

(2.7) -a(?'h)(t) = h(t) , t >_ 0 and lim ?'h(t) = 0 

for every functions h C(R+), R+=[0, oo), such that s h(s)jds<oo. The first 

0 relation of (2.7) says that -~' is a kind of inverse of the one-dimensional polar
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form of the Laplace operator. Additional important properties of ¶ which will 

be needed in the subsequent sections are summarized in the following lemma. 

   Let us denote by L~(R+), A>0, the set of all real valued measurable func-

tions h on R+ such that 

                   50s2h5ds l()I< ~. 
   LEMMA 2.1. Suppose that N>_2M+1 and let j~ {1, •••, M}. Then, the j-th, 

iterate ?F' of ?P' maps C(R+)nL2,_1(R+) into C2(k) and has the following pro-

perties. 

   (i) I f h C(R+)n L2,_1(R+) is nonnegative on R+, then 

      11(N, j) min {s, sN-1} h(s)ds.gN ~(t) <_ Ph(t) 

0 

                                    12(N, j) s2'-1h(s)ds, t? 0, 

0 where qN,,(t)=min {1, t2i-N}, 11(N, j)=[(N-2)j(N-4) •.• (N-2j)]-1 and 12(N, j)= 

[2(j-1)! (N-2)(N_ 4) ... (N-2j)]-1• 
   (ii) If h~C(R+)nLn,_1(R+) is nonnegative on R+, then 

      11(N, j) min{s, s`"-1}h(s)ds•g(t) <'3h(t) 
                    o -

                        J2(N, j) o max{s, sN-1} h(s)ds •qN ;(t), t 0, 

where 11(N, j) is as above and J2(N, j) _ [2'(N-2)(N-4) (N-2j)]-1. 

   For the proof of this lemma see Kusano, Naito and Swanson [9]. 

   3. Uniformly positive bounded entire solutions. 

   Our purpose here is to apply the super-subsolution principle mentioned in the 

preceding section to construct positive entire solutions of the equation (1.1) which 
tend to positive constants as x tends to infinity. The structure hypotheses re-

quired for (1.1) are as follows. 
   (F1) f E C OC(RN x R+ X RM-1), 0<0<1, and there is a nonnegative function 

F(t,1, •.., M) in C (R') which is nondecreasing ini, i=1, ..•, M, and satisfies 

If(x, 1, 2, ..., M)I < F(xl, 1, Ie2I, ..., keMI) for (x, 1, 2, ..., RNXR+XRM-1. 

   (F2) (Superlinearity.) For any fixed (t, 1, e2, M) EERM+1, F(t, 2l, Al, 
ABM)/2 is nondecreasing in A>0 and 

                      1 im F(t, AE1, A2, ... , AEM) - 0 .



454 Y. FURUSHo and T. KUSANO

   (F3) (Sublinearity.) 
2.)/2 is nonincreasing

lim

For any fixed (t, e1 
in 2>0 and 

   F(t, A1, A2, ... , 2eM)

... , cM)~ +r+1'

=0.

F(t, Ael, 22, ...   2, ,

2

(F3)}

(3.1)

for 
u(x)

(3.2)

THEOREM 3.1. Let 

 is satisfied. If

some constant c>0, 

of (1.1) such that

{

N>_ 2M+ 1 and

0 

then

lira 

x lira 
ixi *c

suppose

t2M-1F t c ••

there exist

that

c)dt <

infinitely

u(x) = constant > 0,

(-)5 u(x) =0, j=1,

either

many

{(F1),

positiye

2, •••, M-1.

(F2)} or

entire

{(F1),

solutions

   PROOF. The conclusion follows from Theorem 2.1 if infinitely many values 

of k > 0 are found such that, for every such k, there exist a supersolution u k 

and a subsolution Wk of (1.1) satisfying 

(3.3) lira Vk(x) = liin Wk(x) = k. 
                                      Ixtaoo ~x~aoo 

   Since the condition (3.1) implies, via the Lebesgue dominated convergence 
theorem, that 

             lira k-1 t2'-1F(t, 2k, •••, 2k)dt = 0, j=1, , M, 
                      k-~ 0 

where *=0 or oo according as (F2) or (F3) holds, there exists an interval I, 

which is of the form (0, k0) in case (F2) holds and is of the form (k0, oc) in case 

(F3) holds, such that 

        I2(N, M) t2M-1F(t, 2k, ..•, 2k)dt < k, 

0 (3.4) 
          I2(N, j) t2,-1F(t, 2k, ..., 2k)dt <2k, j=1, 2, ... , M-1, 

0 for every kEI, where I2(N, j) is as in (i) of Lemma 2.1. 

   Let C=C2M-2(R+) be the Frechet space with the topology induced by the 

semi-norms 

                          M-1 
               II y II n = E max I (__Q)i y (t) I , n =1, 2, .. . 

                                             i.=O Os_ts_n 

where



                      Higher order elliptic equations 455 ] 

                    -y(t) = -tl-N d tN-1d y (t),                            dt dt 

and consider a closed convex subset Y k, k I, of C defined by 

   Yk={y~C: k<y(t)<_2k, 0(-~)iy(t)<2k, t>_0, i=1, 2, ..., M-1}. 

It can be shown that the mapping F k defined by 

            ky(t) - k+[?'MF(•, y, -ay, ..., (-Q)M-ly)](t), t >_ 0 

has a fixed point in Yk with the aid of the Schauder-Tychonoff fixed point 
theorem. To do this it suffices to verify that (i) EF k (Y k)CY k ; (ii) k is con-
tinuous in the C-topology ; and (iii) F k(Y k) is relatively compact in C. 

   (i) If yEYk, then from (F1), (3.4) and (i) of Lemma 2.1 it follows that 

         k < EFky(t) < k-F[?I"MF(., 2k, ..., 2k)](t) <2k, t>_ 0, 

and 
       0 <_ (-~)i( ky)(t) = [?[rM-iF(., y, -oy, ..., (-Q)M-1y)](t) 

          <_ [? M-zF(•, 2k, •••, 2k)](t) < 2k, t >_ 0, i=1, 2, •••, M-1. 

This implies that F k (Y k )CY k . 

   (ii) Let {y1} be a sequence of elements of Yk converging to y~Yk in C 
and introduce the abbreviations 

         g(t) = F(t, yv(t), -ayy(t), ... , ()M-1yv(t)), v =1, 2, ... , 

         g(t) = F(t, y(t), -oy(t), ..., (-o)M-1 y(t)) 

Then, {gv(t)} converges to g(t) locally uniformly in R+, and 

           0 gv(t), g(t) <_ F(t, 2k, , 2k), t >_ 0, v =1, 2, . 

In view of (3.1) the Lebesgue dominated convergence theorem implies that the 
sequence {?'g1(t)} converges to P'g(t) locally uniformly in R+. Since 

       0 <_ ?1'gv(t), Sg(t) <-_ [FF(•, 2k, ..., 2k)](t), t ? 0, v =1, 2, ... , 

a similar argument shows that {?'2gv(t)} converges to P 2g(t) locally uniformly 
in R+. Repetition of this procedure leads to the conclusion that, for every 

j=0, 1, ..•, M--1, the sequence {?lT gy(t)} converges to ?P'g(t) uniformly on any 
compact subinterval of R+. Since 

   (`d)ikyv(t)`(-u)iky(t) -/'M igv(t)`M-ig(t), 2 = 0, 1, •, 1W-1, 

it follows that { F k y y} converges to EF k y in the topology of C. This proves the 
continuity of the mapping k. 

   (iii) Define the sets



456 Y. FURUSHO and T. KUSANO 

          (-a)Zfk(Yk)= {(_a)Z ky: y~Yk}, z=0, 1, ..., M-1. 

All of these sets are uniformly bounded in R+, since the relation EFk(Yk)CYk 
implies 0<_[(--a)1Efky](t)<_2k, t>_0, i=0, 1, •••, M-1, for yEYk. These sets are 

locally equicontinuous in R+, since if y~Yk, then for any fixed T>0 

       C(-a)Zky]'(t) I =1(~-zg)'(t)1= 1 `SN-~(M--lg)(s)ds                                                         tN-1 0 

                       < KIT, t E [0, TI, I =0, 1, •••, M-1, 

where '=d/dt and 

        Kz = 2k for i = 0, 1, •••, M-2; KM_l = max F(t, 2k, •••, 2k). 
                                                                                           o<_ts_T 

The relative compactness of EF k (Y k) in C then follows from the Ascoli-Arzela 

theorem. 

   Therefore there exists an element y k Y k such that y k = F k y k. It is easy 

to see that yk is a solution of the differential equation 

(3.5) (-a)My(t) = F(t, y(t), -oy(t), ... , (_o)~-~ y(t)), t > 0, 

and satisfies 

          k <_yk(t)<2k, 0<(-Q)2yk(t)<2k, t>_0, i=1, 2, •••, M-1, 
(3.6) 

          limyk(t)=k, urn (-a)iyk(t)=0, a=1, 2, •••, M-1. 

   Now define the functions vk(x) and wk(x) by 

(3.7) vk(x) = yk(I x I ), wk(x) = 2k-vk(x), x RN. 

Then, vk(x) and wk(x) are of class CO(RN) by the standard elliptic regularity 

and satisfy (3.3) and 

(3.s) 0 < wk(x) < vk(x), (-%)~wk(x) 0 (-4)~vk(x), 

                                   x E RN, i =1, 2, M-1. 

Furthermore, if x RN and if (o, , 1M_1) ARM is any vector such that 

(-~)iwk(x)<Qz<_(-~)ivk(x), i=0, 1, , M--1, then by (3.5) and (Fi) 

      (-~)Mvk(x) - F( I X I, vk(x), -dvk(x), ..., (-Q)M-lvk(x)) 

                  >_ F(I x I,1 o I, I Qi I, ... , 0 M-i I) >_ f (x, 0, 0'i, ... , QM-i) 
and 

     (-4)Mwk(x) = -F( I x I, vk(x), --avk(x), ..., (--a)M-lvk(x)) 

           <-F(I x I , I oo I, I a I, ..., l0-1I) f (x, Qo, 01,
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which implies that vk(x) and Wk(x) are, respectively, a supersolution and a sub-
solution of (1.1). From Theorem 2.1 it follows that (1.1) has an entire solution 
u(x) such that 

    (-~)~ wk(x) (-4)tiu(x) C (-4)zvk(x) x RN, 2=O, 1, ... , M-1. 

From (3.6) it is obvious that u(x) has the desired property (3.2). This com-
pletes the proof. 

   4. Decaying positive entire solutions. 

   This section is devoted to the construction of positive decaying entire solu-
tions of (1.1) by means of the super-subsolution method. The following hy-
pothesis is needed for this purpose. 

   (F4) f C OC(RN X RM), 0 E (0, 1) ; f is nonnegative and satisfies 

                                                                                           . ~,1) (4.1) cool x I,~) f (x,~, ... ,M) F( I x I ,~, ••, 

                                for (x, ~1, ... ,M) RN X RM, 

where cpE C o~(R+) and F~ C o~(RM+1) are nonnegative functions such that So(t,1) 
is nondecreasing in 1 and F(t,1, •, • • M) is nondecreasing in,, j=1, ..•, M. 
In addition F satisfies (F3) and cp satisfies 

(4.2) lim co(t, A 1) _                                                  A- +o 2 

for any t in some subinterval of R+ and for any 1>O. 

   THEOREM 4.1. Let N>_ 2M-F1 and (F4) hold. I f F satisfies (3.1) for some 
c>0, then there exists an entire solution u(x) of (1.1) such that 

                 (-a)~u(x) > 0, x E RN, 
(4.3)                      l

im (-d)iu(x) = 0, i=0, •••, M-1. 
                          ix 

   PROOF. Choose a positive constant k > 1 so large that 

(4.4) I2(N, j) max {s, 231} F(s, k, ..•, k)d s <_ k, j =1, ... , M, 

0 (4.5) I1(N, j) min {s, sN-1}Bo(s, k-1gN,M(s))ds ? k-1, j =1, ..., M, 

0 where 11(N, j), I2(N, j) and qN, M(t) are as in Lemma 2.1. Such a choice of k is 

indeed possible, since (4.4) follows from (3.1), (F3) and the Lebesgue convergence 

theorem, and (4.5) follows from (4.2) and Fatou's lemma. 

   Let C = C2M-2(R+) be as in the proof of Theorem 3.1 and consider the mapping
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             ~z(t) = [?'MF(•, z, -az, ..., (-a)M-1z)](t), t > 0, 

on the set 

      Z1= {z E C : k-1gN,M-i(t) (-a)iz(t) <_ k, t >_ 0, i=0, 1, ..•, M-1} 

which is a closed convex subset of C. If zEZ1, then as in the proof of Theorem 
3.1 one sees by (4.4) that 

               0 <_ (-a)i(Cz)(t) _< k, t >_ 0, i=0, 1, ... , M-1, 

and obtains, by using (F4), (ii) of Lemma 2.1 and (4.5), 

     (-a)1(Qz)(t) ~ [ f'M-ip(,, k-IgN,M)](t) 

                >_ I1(N, M-2) min {s, SN-1}w(s, k-1g N,M(s))ds'gN,M-i(t)                                                TO 

                    >_ k-1gN,M-i(t), t >- 0, i = 0, 1, ..., M-1. 

This shows that 7(Z1)CZ1. The continuity of Q and the relative compactness 
of ~(Z1) can also be proved without difficulty, and so has a fixed element~z0 
in Z1: z0=Qz0. 

   Let us define the functions v(x) and w(x) by 

         v(x) = z0(I x I ), w(x) = [~' Mco(', k igN,M)](I x I ), x E RN, 

and check that these are a supersolution and a subsolution of (1.1) generating 
the desired decaying entire solution. From (F4) and the fact that z0 Z1~ it 
follows that 

           (-a)zv(x) = [ M-1F(', z0, ... (_a)M-1zo)J(I x I ) 

                           Z)] (I x l) ['M-i~(. k -1qN, M)](I x I ) 

                      = (-a)iw(x), x R", i=0, 1, •••, M-1 

which implies that 

(4.6) lim (-a)iv(x) = lim (-a)iw(x) = 0, i=0, 1, •••, M-1. 
                  IxI-. IxI-.co 

Furthermore, if x~RN and (-a)zw(x)<_Qi<<(-a)iv(x), i=0, 1, •••, M-1, then 

         (-a)Mv(x) = F(I x , v(x), -av(x), ..., (_a)M-1v(x)) 

                          F(I x I, O, o1, ... , QM-1) f (x, o, c1, ... , U yf-1) 

and 

           (-a)Mw(x) = co(I x I , k-1qN, M(i x l )) < cP( x I , w(x)) 

                            cp(I x I , Q0) < f (x, Qo, c1, ... , UM-1) 

Consequently, by Theorem 2.1, the equation (1.1) possesses an entire solution



                      Higher order elliptic equations 459 

u(x) such that (-a)i w(x) _<(-u(x) <_ (-v(x) in RN, i=0, 1, ••• , M-1. The 

solution u(x) clearly enjoys the property (4.3), and the proof is complete. 

   No information is available from Theorem 4.1 about precise order of decay 

of the entire solution obtained therein. One can indicate a condition (stronger 

than (3.1)) which allows (1.1) to have a decaying entire solution with specific 

order of decay at infinity as the following theorem shows. 

   THEOREM 4.2. Let N>_ 2M+ 1 and (F4) hold. I f 

(4.7) 0t1F(t, qN, M(t), qN, M-1(t), ... , qN, l(t))dt < , 

then there exists an entire solution u(x) of (1.1) such that 

(4.8) k 71qN, M-i(I x I) C(-4)iu(x) < kigN, M-i(I x ), x E RN 

for some positive constants k4, i=0, 1, , M-1. 

   PROOF. Take a positive constant k>1 large enough so that 

(4.9) I1(N, j) o min {s, s -1}cp(s, k-1gN,M(s))ds >- k-l, j=1, ..., M, 

(4.10) J2(N, j) 0max {s, sN-1} F(s, kqN, M(s), ..., kqN, l(s))ds k, J=1, ... , M, 

where J2(N, j) is as in (ii) of Lemma 2.1, and define the set 

    Z2 = {z E C : k-1gN,M-i(t) (-o)zz(t) kqN, M-i(t), t >_ 0, a = 0, ..., M-1}. 

Then, it can be shown, with the use of the results of Lemma 2.1, that the same 
mapping as in the proof of Theorem 4.1 maps Z2 continuously into a relatively 

compact subset of Z2. Therefore there exists a fixed element zo E Z2 of Q. 
Now it is not difficult to verify that the functions v(x)=zo(I x I) and w(x)= 

[?P'Cp(•, k-1qN, M)](I x) become, respectively, a supersolution and a subsolution 
of (1.1). Thus Theorem 2.1 ensures the existence of an entire solution u(x) of 

(1.1) satisfying (-d)iw(x) <_ (-~)iu(x) <_ (-L1)iv(x) in RN, i = 0, 1, ••• , M-1. 
Because of (4.7) the second statement of Lemma 2.1 shows that, for each i E 

{0, 1, M-1}, the functions (-4)iv(x) and (-4)i w(x) behave like positive 
constant multiples of gN, M_i(I x I) as I x I -- oo, and hence the solution u(x) has 
the required property (4.8). This completes the proof. 

   5. Special equations. 

   An example of equations to which the results of §~ 3-4 apply is the following : 

                          M-1 

(5.1) (--~)Mu = pi(x)[(-a)iu]ri, x E RN, N>_ 2, 
                                         i=o
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where each pi C (RN), d (0, 1), and each ri is either zero or the ratio of 

positive odd integers, i=0, • ••, M-1. This equation is a special case of (1.1) 
with 

                                           r1-1 
           f (x, 1, .. • , :~1) = p2(x)1, x E RN, ( 1, ... K) RM 

                                             i=o 

The condition (F1) is satisfied with the choice 

                                           Bi-i 

           F(t, 1, ... , .1f) __._ p*(t) i( , t E R+, ( 1, ... , M) E R 
i=0 

where p*(t)=max, x,=r I pi(x) I , i=0, 1, • • • , M-1. The condition (F2) or (F3) holds 

according to whether ri>l, i=0, 1, • , M-1, or 0_<ri<l, i=0, 1, •••, M-1. If 

0<-ri<1, pi(x)>_0 in RN, i=0, 1, •••, M-1, and p0(0)>0, then the condition (F4) 

holds with the above F and cp(t, e1)= po,~(t)i°, where p0(t)= min, x,-cpo(x)• 

   The results that follow from Theorems 3.1, 4.1 and 4.2 applied to (5.1) are 

listed below. 

   THEOREM 5.1. Let N>_2M-F1. 

    (i) If either r>1, i=0, 1, •••, NI-1 or 0<ri<1, i=0, 1, •••, M--1, and 

(5.2) t21i-1 p*(t)dt < oo, ti =0, 1, ..., M-1, 

0 then there exist infinitely many positive entire solutions u(x) of (5.1) such that 

                   lim u(x)=constant>0, 
(5.3) I x I-•oo 

                       lira (-a)zu(x) = 0, i=i, ..., M-1. 
                                           Ix l-.oo 

   (ii) If 0<ri<l, pi(x)>_0, xERN, i=0, 1, ..., M-1, po(0)>0, and (5.2) is 
satisfied, then there exists an entire solution u(x) of (5.1) such that 

                   (--a)4u(x) > 0, x RN , 
(5.4) 

                      lim (-4)iu(x) = 0, i=0, 1, •••, M-l. 

   (iii) Let ri and pi be as in (ii). If 

                                 00 

(5.5) 0t1V-l-r2 ~1+2p                             i, (t)dt < o, 1=0, 1, .., M-1, 

1 then there exists an entire solution u(x) of (5.1) such that 

(5.6) k i 1qN, M-i(I x I) (-)1 u(x) kigw, M-i(x) , x RN 

for some positive constants ki, i=0, 1, •.•, M--l. 

    Let us now consider the singular equation
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                          M-1 
(5.7) (-4)Mu = po(x)[(-~)0u]-I1, x RN, N>_ 2, 

                                        1=0 

where p1 C o~(RN) is nonnegative and each Yl is a nonnegative constant, i= 
0, 1, ••, • M-1. It is clear that none of the theorems of §§ 3-4 is applicable to 
this equation. It will be shown that the existence of bounded positive entire 
solutions can be established for (5.7) on the basis of Corollary 2.2 or 2.3. 

   THEOREM 5.2. Let N>_2M+1 and suppose that 0<_YOYi<l, i=0, 1, •, M-1, 
and p0(0)>O. If 

(5.8) t2M-1po(t)dt < , 

0 (5.9) t2M-1+r1(N-2M+22, p*(t)dt < , a =1, ..,, M-1, 

0 then the equation (5.7) has infinitely many positive entire solutions u(x) satisfying 

(5.3). 

   PROOF. Put zo(t)=[FM po*](t) for t>_0, where po*(t)= min, tpo(x). Since 

Opo*(t)>_0 for t>_0, by (i) of Lemma 2.1 there are positive constants ai such 

that 

(5.10) (-a)0zo(t) ? aigN, ~r-1(t) , t >_ 0, i = 0, 1, ... , M-1, 

Put 

  co = sup [?P'Mpo](t) and ci = sup [P'Mp* {(-Q)iz0} 11](t), i =1, ..., M-1 
         t>0 t>0 

take a positive constant k small enough so that 

(5.11) k1+r0 < (1+c0)-r0 

               kl+r0 < (M+1)-r0 
(5.12)                    kl -roric~o < (M+1)-ro, i =0, 1, ... , M_1 

and define 

                    z(t) = k(1H-zo(t)), t>0.                                 0. 

The choice of such k is possible by the condition 0<Yori<l. It is easy to check 

that 

(5.13) (-4)Mz(t) = k p0 (t) , t > 0, 

X5.14) lim z(t) = k 

and 

             z(t) > k (1+aogN , M(t)) , t ? 0, (5
.15) 

                (--a)1z(t) >__ k a1qN, M_1(t) , t ? 0, i -1, .•., M-1.
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   Consider the function 

                                  if-1 

             y(t) = k+ [Mp*{(_Q)iz}-ri](t), t>_ 0. 
                                          i=0 

In view of (5.8), (5.9), (5.15) and Lemma 2.1 y (t) is well-defined and satisfies 

                                M-1 

(5.16) (-a)My(t) _ fi*(t)[(-~)iz]-ri(t), t > 0, 
                                                i=o 

(5.17) limy (t) = k 

and 
                                                            df-1 

(5.18) k < y(t) < k+ cik-ri, t0.                                                  >_ 
i=0 

Now define v(x) and w(x) by v(x)=y( xl) and w(x)=z(lxI), respectively. Then 

(5.11) and the relation sup1>0 z(t)<_ k(1+co) lead to the inequalities 

 [?lPf-i(poz-r0)](t) ? k-ro(1+co)-ro(?Pf-ipo)(t) 

                  k(?.tir-ipo)(t) > k(?P' p0 )(t), t>_ 0, i =0, 1, ..., M-1 

which gives 

(5.19) (-~)iw(x) (-a)iv(x), x RN, i =0, 1, ..., M-1. 

Furthermore (5.16) implies 

                                 N-1 

             ( ~)Mv(x) -*(I x I)[(-~)2w(x)] ri 
                                                  i=0 

                                  M-1 

                            pi(x)[(-~)zw(x)]-ri , x E RN . 
                                                  i=0 

On the other hand, v(x) satisfies v(x)-r0>_ k, x ERN. In fact, in case r°=0 this 

is obvious since k<_1, and in case r°>0, this follows from (5.12) and (5.18) as 
the computation below shows: 

       v(x)-r0 = y(x )-ro > (k+c1kr1)r°                                                                     ll
--

i=0 

     >_ (iVl+l)-1k-llro+ M~;1(M+1)-1k-liro -r° ̀ (k-1I10)-1o = k. 
                                                         i=0 

From this it follows that 

        (_Q)~1w(x) = kpo( x I) < p0( x )(X)10                                         < ~o(x)v(x)-ro 

                             M-1 

                      Yt(x)[(-v(x)] ri , x RN. 
                                        i=0 

The above observation shows that the functions v(x) and w(x) are, respectively, 

a supersolution and a subsolution of (5.7) in the sense of Corollary 2.3, and so
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there exists a positive entire solution u(x) of (5.7) lying between v(x) and w(x). 

This finishes the proof of the theorem. 

   Our final theorem concerns the existence of decaying positive entire solu-

tions of (5.7). 

   THEOREM 5.3. Let N>_2M+1 and suppose that 0<rori<1, i=0, 1, •••, M-1, 

and p0(0)>0. 

  (i) If 

(5.20) t2M-1+ri(N-2M+2i> p*(t)dt < , i = 0, 1, .. , M--1, 

0 then the equation (5.7) has an entire solution u(x) satisfying (5.4). 

  (ii) I f 

(5.21) tN-+ri(N-211+2i)p*(t)dt < , i =0, 1, ... , M-1, 

0 then the equation (5.7) has an entire solution u(x) satisfying (5.6). 

   PROOF. (i) Let z0 be as in the proof of Theorem 5.2 and put 

            ci = sup [ 1 Mp* {(-Q)2zo} -rif (t) , i = 0, 1, ... , M--1. 
                      to 

Choose a constant k > 0 so that 

                                < o ra (5.22) k 'To 

(5.23) k1-roricZo _< M-ro, i = 0, 1, ... , M_1 

and put 
                                    M-1 

         z(t) = kz0(t), y(t) " CfM p*{(-!1)iz}-ri~(t), t? 0. 
                                                   i=0 

   Then the functions v(x)=y( x 1) and w(x)=z(I x I) satisfy 

                M-1 

 (-QiJv(x) = [?JfM-j pI1 {(-~)iz} ri](I x ) 
                        i=o 

           ['M 'pOz ro](I x l) >_ (kc0) ro(?FM-Jpo)(i x l ) 

              k-l- rocoro(_Q)iw(x) > (-4);w(x) >0, x RN, j=0, ... , M-1 

where (5.22) and the fact that supXERNw(x)=kc0 have been used. 

   Furthermore, from the definition of v(x) and w(x) one obtains 

                                 M-1 

             (-Q)Mv(x) - p*(I xI)C(-a)2w(x)~-ri 

                                M-1 

                          pi(x)[(-~)zw(x)] ri, x E RN, 
                                                  i=0
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and one sees with the use of (5.22) and (5.23) that 

                ( a~1 [M p* {(-a)~z} Ti]( I x) -ro  v(x)-r0 = y( x ()-ro = 
                                      i=o 

       =1 k-ri[M p {(-~)izo} -rid( I x) -r0 ? ~('ckri)1°> i--(k-1Iro)-ro = k 
                   i=o i=o 

so that 

            (-~)Mw(x) = kpo*(x) poi( x I                                            )Z'(x)-ro 

                               M-1 

                         p(x)[(-a)°v(x))-ri , x E RN . 
                                               i=o 

The conclusion then follows from Corollary 2.3. 

   (ii) Let y and z be as in (i ). Then, as was shown in (i ), (5.7) has a 

positive entire solution u(x) satisfying (-~)iz(! x I )__<<(--a)iu(x)<(-a)iy( x l ), 
xERN, i=0, 1, •••, M-1• Since p0*ELN_1(R+), and 

             (-a)iz(t) = k [?I'M-i p0,~](t) , t > 0, i = 0, 1, ... , M-1, 

from (ii) of Lemma 2.1 it follows that 

(5.24) ailgN,h1-i(t) ~ (-Q)2z(t) C aigN,31-i(t), t 0, 

for some constants a>1, i=0, 1, • • • , M-1. Combining (5.20) with (5.24) gives 

               tN-1 p*(t)[(-4)2z(t)~-ridt <, i = 0, 1, .. • , M-1, 

a and (ii) of Lemma 2.1 then implies that 

(5.25) / i 1qN, M-i(t) (-a)iy(t) /3igN, M-i(t), t? 0 

for some constants /3j>1, 1=0, 1, • • • , M-1. From (5.24) and (5.25) it follows 
that the solution u(x) satisfies (5.6)• This completes the proof. 

  REMARK. The condition 0'j<1, 1=0, 1, , M-1, in Theorems 5.2 and 

5.3 seems to be stronger than necessary. It is our conjecture that the Theorems 
5.2 and 5.3 hold without this condition, that is, for any nonnegative values of 

    i=0, 1, •••, M-1. 
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