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Introduction.

Let X, W) be a one-dimensional diffusion process starting at 0 and with
generator

L v (v d
@ Lw = 9 ¢ dx(e dx)’

where {W(x), x&R} is a random environment. The process X(f, W) can be
constructed from a one-dimensional Brownian motion through a change of scale
and time. It is assumed that the Brownian motion (used for the construction
of X(¢, W)) and the random environment {W(x)} are independent. Formally,
X(t, W) is a solution of the stochastic differential equation

d X(t) = Brownian differential— %W’(X(t))dt.

We are interested in the asymptotic properties of X(¢, W) as t—oo. A result
for this type of random environment problem goes back to Sinai [12]. When
{W(x), xR} is a Brownian environment, Brox introduced the diffusion
process X(¢, W) as a continuous model of Sinai’s random walk ([12]) in a Ber-
noulli environment and obtained the following result of Sinai-type : (log #)-2X(t, +)
—b(t, -) tends to 0 in probability as {—oo where b(f, W) is a suitable function
depending only on ¢t and the environment W=W(-); moreover, the distribution
of (log t)-2X(z, -) tends to a limit which is the same as the limit distribution in
Sinai’s case. Kesten and Golosov [5] obtained the explicit form of the
limit distribution (see also [1I5] for some extension). Results of Sinai-type for
a wider class of random environments were then obtained by Letchikov
(for non-simple random walks) and Kawazu, Tamura and Tanaka [7], (for
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diffusion processes in asymptotically self-similar random environment). A more
refined result (localization) was obtained by Golosov [4] in the case of Sinai’s
reflecting random walk. The result is roughly stated as follows: for large
n the position of the random walk at time = is localized in a finite neighbor-
hood of a suitable point b, depending only on »n and the environment. The
result of this type (localization) was then obtained by Tanaka for a diffu-
sion process X(¢, W) in Brownian environment. The result asserts the existence
of the limit distribution of X(e?, -)—bi(-) as A—oo where b;(W) is a suitable
function of 2 and the environment W alone.

The purpose of this paper is to study the localization of diffusion processes
for a considerably wider class of random environments. The random environ-
ment {W(x), xR} we consider is described as follows: When W(x) is ob-
served at integers x, it is a random walk; more precisely, W(x) is a constant
on each interval (n, n+1), nZ, and W*={W(n), n=0} and W-={W(—=n), n=0}
are independent random walks in R. The essential assumption is the existence
of common scaling (without centering) of 2®* and 8- which ensures the con-
vergence in law of the scaled random walks to strictly stable processes. Our
main result is stated in § 1. Although we do not discuss here the localization
problem in the case of random walks, it will be possible to treat the problem
starting from the present model and using optional sampling.

Roughly speaking the outline of our argument is similar to that of [16];
however, it is to be noted that there are several points which we had to study
anew. For example, in order to know about the probability law of a valley
which is essential in our argument, we must study certain time reversals of
random walks, conditioned random walks and their relationship (see §2). The
result of this part has also its own interest. To grasp the outline of our
method the reader is recommended to proceed to the first subsection of §4
after only glancing through §2 and § 3.

In §1 we state the problem and the result. §2 is devoted to the study of
certain random walk problems as explained above. In §3 we define a valley
of an environment with reference to and [9] and give some information
about the probability law of a valley using the result of §2. In §4 we first
give an outline of the proof of the main theorem and then prepare some lemmas
concerning diffusion processes in a (suitably scaled) environment. We complete
the proof of our main theorem in §5.

§1. Statement of the result.

Let 9 be the space of step functions W: R—R with the following prc-
perties :
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i. W vanishes identically in the open interval (—1, 1).

ii. W is constant in each open interval (n, n+1), n=Z.

iii. W is right continuous on [0, <) and left continuous on (—co, 0].
Throughout the paper we are given a probability measure @ on 9 satisfying
the following assumption (A).

Assumption (A). (i) Let Y ,=Wn)—W(n—1), n=1,and Y ,=W(Hn)—W(n+1),
n<—1. Then {Y,, n=1, @} and {Y,, n<—1, Q} are families of i.i.d. random
variables and the families are independent each other.

(ii) The distribution of Y, (resp. Y .;) belongs to the domain of attraction
with centering constant 0 of some strictly stable distribution g, (resp. p-) of
index a, 0<a <2, whose density is positive in the whole of R. Moreover, the
normalizing constants for W(n)=>p,Y, and W(—n)=32,Y _, (which ensure
the convergence in law to g, and p., respectively) can be chosen to be the
same.

It is to be noted that g, and p_ have the same index a. For Wew let
X(t, W) be a one-dimensional diffusion process with generator .y of (1) start-
ing at 0. Following It6 and McKean we construct X(¢, W) from a one-
dimensional Brownian motion B(¢) through a change of scale and time (see the
beginning of §4). The probability measure governing this Brownian motion is
denoted by P. An element W of 9 is called an environment. We assume that
the Brownian motion B(f) and the environment W are independent. Thus the
product probability measure #=PXQ determines the full law of X(¢, -).

In general, given a random variable Y taking values in [0, o] such that
Prob. {Y >0} >0 we define the renewal function R(x), x=0, corresponding to YV
by

R(x) = 1+ 3 Prob.{Y 1+ - +¥, =z},

where Y, k=1, are independent copies of Y. Note that R(x)<c. We denote
by R(x—), x>0, the left limit of R(-) at x and put R(0—)=1.
For W% we put

"= min{n=1: W(n)=0},
- =max{n<—1: Wn)=0},
tt=min{n=1: W(n)<0},
- =max{n<—1: W(n)<0},

and denote by R*(x), R-(x), R*(x) and R-(x) the renewal functions correspond-
ing to the random variables W(4*), W(3-), —W(z*) and —W(z") (the basic pro-
bability here is @), respectively. We also denote by P*(x, dy), P*(x, dy),
P-(x,dy) and P-(x, dy) the distributions of x+W(), x—W(), x+W(—1) and
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x—W(—1) under @, respectively. We now define for x=0
pH(x, dy) = R*(x—)"P*(x, dy)R*(y—)(0,e(3),
p(x, dy) = R-(x=)"P(x, d9)R-(y—)co,=x(3),
g*(x, dy) = R*(x)P*(x, dy)R*(3)1eo (),
g°(x, dy) = R"(x)"P(x, dy)R"(3)keo, ().

Then, as we shall see in §2, these are Markov transition functions on [0, ).
In general a Markov chain with (one-step) transition function p(x, dy) will
be called a p-chain in this paper.
Let 9w* (resp. W~) be the space of step functions W: R—[0, «) with the
following two properties:
1°. W@)=20.
2°. W is constant on each interval [n, n+1) (resp. (n, n+1]), n=Z.
We introduce the probability measures @* and @~ on W* and 9¥-, respectively,
determined by the following conditions:
(1°) {W(n), n=0, @'} is a g*-chain, {W(—n), n=0, @*} is a p*-chain and
these two chains are independent.
2°) {W(n), n=0, @} is a p--chain, {W(—n), n=0, @} is a ¢g--chain and
these two chains are independent.
Then we can prove that eV LR, dx) a.s. with respect to @* and @~ (see
[Proposition 2.2 and Corollary 2.2). Next, for each We®* or e~ with e Ve
L (R) we introduce a probability measure Py on O, the space of real valued
continuous functions defined in [0, o), as follows: Py is the probability law of
the one-dimensional diffusion process with generator (1) and with initial distri-
bution

Sw(dx) = e'W‘“dx/S Wy

e
R
Note that {&(1), =0, f’w} is a stationary process, where &(t) denotes the value

of &(= D) at time t. We now define probability measure § on R and P on
by

s=s|  @awmmw+a-n|, _aw@mm,

P

i

of @ @mby+a-v|  G@wby,

where p is a constant strictly between 0 and 1 which is defined by [5.11)
Finally, for Wew let b;(W) be defined by in §3. b;(W) is a function
of the environment W alone and does not depend upon the Brownian motion
used for the construction of X, W). Our main theorem is now stated as
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follows.

MAIN THEOREM. The process {X(e*+t, -)—bi(-), =0, P} converges as i—
to the stationary procéss {@@®), t=0, i’} in the sense of weak convergence of the
corresponding probability measures on Q and hence, in particular, the distribution
of X(e*, -)—bi(-) converges to ¥ as A—>. Moreover, the weak convergence can
be strengthened to the convergence with respect to the total variation norm if the
probability measures under consideration are restricted to the sub-o-field 3,=
a{a(): 0=t<h}, h being any positive constant.

§2. Certain Markov chains attached to random walks.

In this section we introduce several Markov chains attached to a random

walk. The results obtained here will be used for proving our main theorem in
§3 and §5.

Throughout this section we are given a random walk &={S,, n=0} where
Se =10, Se=Xi+ - +X, (n=21),

X., k=1, being independent identically distributed random variables. We often
write S(n) instead of S,. The following will be used:

Sﬁzx"l'sn, XER’
P(x, dy)= P{x+X,=dy}, P(x,dy)= P{x—X,=dy}.

We shall also consider the dual random walk &={S,, =0} where S,=—3S,.

2.1. Time reversals of random walks. Let

2.1) = min{nz1: S,<0}

and assume that

(A.1) T < a.s.

We consider the time reversal

(2.2) 0, S;-1—S:, St-2—S, -+, S$i—S., —So),

which is regarded as a random variable taking values in the path space
{w=w(©), w(l), -+, wl)): w0)=0, 0<w)=min{w(k): 1=k <l}, 120},

We then take independent copies w., k=1, of the random variable and

write wr=(w(0), wi(1), -+, we(:)), k=1. One of the Markov chains we con-
sider is defined by
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wy(n) for 0n<l,,

(2~3> U,= -1 k=1 k-1 3
> wj<z]-)+wk(n— > z]-) for S i,<n< 31, (k=2).
j=1 Jj=1 j=1 j=1

Let

1 for x=0,

§(x) = {
E{OS%LT 10, 2>(Sn)} for x>0,

and define p(x, dy) by
(2.4) p(x, dy) = E(x)" P(x, d )&M), (D).

The following theorem is proved in Tanaka (see also Lemma 6 of Golosov
[4D.

THEOREM 2.1. Under the assumption (A.1) p(x, dy) is a Markov transition
function on [0, o) and the process {U,, n=0} defined by (2.3) is a Markov chain
on [0, o) with transition function p(x, dy), namely, a p-chain.

We are now going to give another expression of &(x). Put
(2.5) 6 = min{n=1: S,=0}

and let R(x) be the renewal function corresponding to the random variable S(4).
The convention S.=S(c0)=cc is used throughout our argument. Thus S(3) is

A

understood to be oo when d=co.
PROPOSITION 2.1. Under the assumption (A.l),
E(x)= R(x—),  for x=0.

PrROOF. It is known that (for example, see Feller [3: XVIII. 3] or Chung
[2: 8.4]) for 0=r<1

2.6) 1—E{r"-e 5@} = exp (— 3 = Be 145 Sm)=0}),
@.7) E{ 3 rme’ %50} = exp (3] 5- B{e’ 45 ; S(m)z0}).
0snLT n=1 N

We therefore have

2.8) E{ 3 rre’"15m) = (1 E{r?.e?" 5@}, 0<r<1.

0sn<s

Let F.(dx) and G.(dx) be the measures on [0, o) defined by
F.(A)= E{r%-14(S(8))},
G.(A)= E{ L r*La(S(n)},

0sn<Lt



Localization of diffusion processes 521

respectively, for any Borel subset A of [0, ). Then [2.8) means that the
Fourier transform of the measure G,(dx) equals the Fourier transform of the
measure X n-oF%* where F7* is the n-fold convolution of F, and F% is the -
distribution at 0. Thus we have

[0, )= SF(0, %), x>0, 0=r<L.
Now letting # 11 in the above we obtain &x)=R(x—). O

COROLLARY 2.1.
p(x, dy) = B(x—)"Px, dy)R(y )l (y),

%

0.
Next we consider the random time
2.9) ¢ = min{n>1:5,<0}.

We exclude the trivial case where X;=0, a.s.. Then << a.s. if and only if
(A.1) is satisfied. So under (A.l) time reversal can also be defined in terms of
o; in fact, we can define a process {U,, n=0} exactly in the same way as we
defined {U,, n=1} but with the replacement of z by ¢. The Markovian pro-
perty of {U,, n=0} can be proved by a method similar to that in [17]; how-
ever, here we give another proof based on Theorem 2 and [Corollary 2.1. Put

(2.10) 2= min{n=1:S5,>0},

and let R(x) be the renewal function corresponding to S(¢). We then define
p(x, dy) by

(2.11) plx, dy) = R(x)"P(x, dy)R(9)1io () -

THEOREM 2.2. Under the assumption (A.1) p(x, dy) is a Markov transition
function on [0, ) and the process {Un., n=0} is a p-chain.

ProoF. Taking it for granted that p(x, dy) is a Markov transition function
(the proof is omitted), we prove that {U,, n=0} is a p-chain. For each >0
we consider the random walk SP=X{®+ .- + X=8S,—ne, where X¥=X,—¢
and put

¥ =min{n=1: SE<0} = min{n=1: S,<ne}.

We can define {Uf”, n=0} in terms of S and 7¢® exactly in the same way
as we defined {U,, n=0}. Since v 7o as ¢} 0, we can easily see that for
any bounded continuous functions f,, -+, f, on [0, o)

212)  Lm E{f{UP)fUL) - faUi)} = E{f\U0f U)oU)}

According to [Theorem 2.1 and [Corollary 2.1, {U{, n=0} is a Markov chain on
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[0, o) and its transition function is given by

pO(x, dy) = RO(x—)"P(x, dy)RO(y—)leo,=(3),

where P®(x, dy)=P{x—X{®c=dy}=P(x+e¢, dy) and R®(x) is the renewal
function corresponding to S¢(g¢), ¢ being defined by

6 = min{n=1: S=0} = min{n=1: S,=ne}.
Note that S (§¢?)=co when §°=co. We are now going to prove that
(2.13) R (x—)—> R(x) as e|0 for each x=0.

For this purpose take independent copies Y%, k=1, of S*() and write
RBox—) =1+ ZRO(x—),  RP(x—)= PY(+ - +7P<x).

It is easy to see that there exist x, and §<=(0, 1) such that
R©(x0—) = P{S®(6®)< x,} < 0

for all sufficiently small ¢>0. Now let x>0 be given and put v=[x/x,]+1.
Then

~ ~ X ~ ~
Bp(x—) = oRe(S-) = vR(xo) S vRO—r <007,
Since B (x—) is decreasing in n,

(2.14) Re(x—) < co” for all sufficiently small ¢>0,
where ¢=y/6 and 0<p=0"*<1. On the other hand, since

{&“’if‘ as ¢l0,
P{S®(5®) = S(¢#)—t¢, t<co} — P{#<0} as¢l0,

R©(x—) tends to R,(x) as ¢ |0 for each n=1 and x>0 where R.(x)=P{V,+
+I7n§x}, V., k=1, being independent copies of S(#). This fact combined
with (2.14) implies [2.13),

Finally, for a function f on [0, co) we denote by f° the function defined
on the whole of R by f°x)=f(x) for x>0 and f°%x)=0 for x=<0. Since
(UL, n=0} is a p-chain, for any continuous functions f;, -+, f» on [0, oo)
with compact supports we have
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E{fyU®)fLUL) -+ f U}
={ o0, dxdfx)| PO, dxofie
(0,00) )

<0, (0, )

PO, drn) fu(x RO (=)

= E{f{(—S)f)(—5) -+ fr(—SPIRS(—S$)}

= E{f3(—S1+&)fY(—Ss42¢) -+ foU(—Sn+me)RS(—S n+me)}
where R®(x)=R®(x—) for x>0 and R®(x)=0 for x<0. Making use of [2.13)
together with the monotone property and the right continuity of renewal func-

tions, we can prove that f?‘.“(x—i—me) converges to R(x) as ¢ | 0 for each x=0.
Therefore we have

(2.15) (—=Si4e)fH—Ss+2¢) -+ fo(—Sm+me)RE(—S n+me)
{ FH=S)fE(—Ss) - fE(—=S)R(—S,), if —S.=0,
0 R if —S,<0,

as ¢ |0, where f#(x)=/fr(x) for x=0 and f#(x)=0 for x<0. Since the support
of f9, is compact, the convergence of (2.15) is bounded. We thus have

leifrol E{f\(U)fo(U?) - fulUR)}
= E{f4(—S)f4(—S2) - fi(—Sm)R(—Sn)}.
This combined with (2.12) implies

E{f{U)fUs) - fulUn)}
= the right hand side of (2.15)

={ 50 amnaf | Bln, du e

o, [0, )

. Sco,waﬁ(x"‘"l’ dxm)f m(Xm),

as was to be proved. [

2.2. Conditioned random walks. For 2>0 and x=0 we define %;(x) and
7a(x) for 0<x<2 by

(2.16) 7(x) = the probability that the random walk S% hits [4, o)
before it hits (—oo, 0),

(2.17) 71(x) = the probability that the random walk S% hits [4, o)
before it hits (—co, 0].

We also put 7:(x)=7:(x)=1 for x=4. By “S% hits A” we understand that S
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hits A at some n=1. We can define Markov transition functions ¢;(x, dv) and
gi(x, dy) on [0, =) by

N2(x)7 P(x, dy)Ni(y)lio,«(y)  for 0=x<2,
(2.18) qi(x, dy) = {

0:(dy) for x=2,

72(x) ' P(x, dy)72(3)1c0, () for 0<x<4,
(2.19) gi(x, dy)=

51(dy) for JCZZ,

where 0, denotes the probability measure concentrated at x. Note that each
point of [4, =) is a trap for ¢;-chain as well as for §;-chain.

The main purpose of this subsection is to define g-chain and g-chain (con-
ditioned random walks) by showing the existence of the limit ¢;(x, dy) and
Ji(x, dy) as A—co. For this purpose we need the assumption

(A.2) <o as,
where # is defined by [2.10).

We denote by R(x) (resp. R(x)) the renewal function corresponding to —S.
(resp. —S,), where 7 (resp. ¢) is defined by (resp. [2.9). We also put

6= min{n=1: S,=4}.

Then we have the following theorem.

THEOREM 2.3. Under the assumption (A.2) we have for each x=0
(1) ni(x) ~ R(x)P{6:<t},  A—oo,
(ii) 71(x) ~ R(x—)P{3,<0}, A—>c0,

PrOOF. We give the proof of (ii). Define a random variable Y (1) by

—Ss if 6<5,,
Y(A) = {
o0 if 0'>31 s
and then take a sequence of random variables Y, £=1, in such a way that
(a) the distribution of Y, equals that of Y (1—x),
(b) for n=1, the conditional distribution of ¥ ,,, under the
condition that {Y,, 1<%k<n} is given equals the
distribution of Y(A—x~+y) where y=Y,+ --- +Y,.
Then

(2.20) 72(x) = P{leoo}+n§1 PY it Y, <x, Y pp=oo}.

Next, let Y}, k=1, be independent copies of ¥(1—x), let Y/, k=1, be inde-
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pendent copies of Y (1) and assume that {Y;, k=1} and {Y{, k=1} are also
independent. Then, using the fact that Y(A)=Y (4’) for A<A’, we can easily
prove that

P{Yi=co} < P{Y ,=c0} = P{Y|=c0},
P{Y{_*_ cen +Y;1,<x, Y;{+1:OO}‘ g P{Yl+ s +Yn<x, Yn+1___'00}
Therefore, yields

P{Y'{:oo}[l—l—ni P{Yi+ - +Y5<x}]

< 7a(x) £ P ;:OO}[1+”:§P{Y'{+ Y<K,
that is,
(2.21) P{3:<0}R;_:(x—) £ 74(x) £ P{8:1-:<0}R:(x—),

where R;(x) is the renewal function corresponding to Y (). On the other hand,

P{3;<0} = E{7(S(81-2)); 81-2<0} = 7204—x)P{3,-.<0a},

that is,
71— x)P{6,-,<0} < P{6:<0} < P{6;:-.<0}.

Since 7:(A—x) coincides with the probability that S, hits [x, o) before it hits
(—o0, —(A—x)], 71(A—x) tends to p=P{S, hits [x, c0)} as A—co, but p=1 by
(A.2). Therefore, P{6¢;..<o}~P{5;:<e¢} as A—co. Moreover, it is easy to
see that R;(x—) tends to R(x—) as 2—oo. Thus implies the assertion
(ii) of the theorem. The assertion (i) can be proved similarly. [

REMARK 2.1. From the above proof we see that the convergence of
na(x)/P{é:<t} to R(x) is uniform on each bounded x-interval. A similar
statement also holds for 7 .(x).

We now introduce g¢-chain and g-chain. Put for x=0
(2.22) q(x, dy) = R(x)"'P(x, dy)R(y)lo, (),
(2.23) g(x, dy) = R(x—)"P(x, d3)R(y—)Lco, ().

As we shall see soon, these are Markov transition functions on [0, ). Theo-
rem 2.3 now means that

gim g:-chain = g-chain,

}Zim Gi-chain = g-chain.
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In this sense, ¢g-chain and §-chain may be regarded as “conditioned random
walks”. They are also denoted by ¢(&)-chain and §(&)-chain to stress the basic
random walk &.

In the preceding subsection we introduced p-chain and p-chain. When we
want to stress the underlying random walk &, they are denoted by p(&)-chain
and p(&)-chain, respectively. Thus we can also consider p(&)-chain and 5(&)-
chain. Then by [2.11) and [Corollary 2.1] the transition functions of these chains

are given by and respectively. Therefore we obtain the following
theorem.

THEOREM 2.4. Under the assumption (A.2)
{ 5(&)-chain = ¢(&)-chain,
p(&)-chain = §(&)-chain.

2.3. Convergence of > exp(—U,). In this subsection we introduce the
following condition :

(A.3) liml En] P{S, =0} =k, for some constant x,<(0, 1).

n-co N k=1

We also introduce the condition:

(A.4) The distribution of X, is either a symmetric distribution not
concentrated at {0} or (if it is not symmetric) belongs to the
domain of attraction with centering constant 0 of a strictly
stable distribution whose density is positive on the whole of R.

It is easy to see that (A.4) implies (A.3).

LEMMA 2.1. Assume (A.3) and let & be a constant such that k,<k<l. Then
P{r>n} < const. n*?, n=1,
where const. does not depend on n.

PrROOF. We use the Baxter-Spitzer formula (e.g. see [14])
(2.2 SPeonst=en (BT Ps.20),  Isi<L
Applying Lemma 1 of Rogozin it is easily seen that (A.3) implies
(2.25) exp{g = {snzO}}Na—s) oL( ) as st1,

where L(x) is a slowly varying function at infinity. Thus applying the Tau-
berian Theorem (e.g. see [3: p. 4471), implies
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Pl{t>n} ~

TGe) n*-1L(n) as n—oo,
This implies the assertion of the lemma. [J

REMARK 2.2. (A.3) implies (A.1) and (A.2). In fact, if we suppose P{r=co}
>0, then lim,..S,=c a.s. and consequently

—1 2 lc-oo, O)(Sk) —>0 a.s.
n k=1
contradicting (A.3).

PROPOSITION 2.2. Under the assumption (A.3) we have

iexp(—Un)<oo a.s. and éexp(—-fjn)<oo a.s..

PrROOF. To prove the convergence of the first series put H,=w:{{;) where
wr(ly) is in (2.3). Then we have

2.26)  Fexp (—Un) =3 exp[—(Hi+ - +Hi-)[{e 5O o feorts)

< Sl exp[—(Hit - +Hi)]
with the convention that H;+ --- +H,_;=0 for k=1. On the other hand,
P{l, exp[—(H,+ - +Hp-)]>k"?}
= P{l,>k 2 exp[H+ - +H, {1}
< const. E{k~?*"D exp [(k—1)(H,+ -+ +Hi-1)]} (since 1=7)
< const. k20*1,

where k,<k<l, 8=E{exp[(k—1)H;]} <1 and < means the equality in distri-
bution. Note that we used to derive the above inequality. There-
fore, by the Borel-Cantelli lemma we have

Pll,exp [—(H+ - +Hp )]s k2 for all sufficiently large k}=1,

and consequently 3%.,exp (—U,)<co.a.s.. To prove the convergence of the
second series it is enough to note that P{oc>n}<P{r>n} and to do similarly. [

By [Theorem 2.4 combined with [Proposition 2.2 we obtain -

COROLLARY 2.2. Let {V,, n=0} and {V., n=0} be a g-chain and -chain,
respectively. Then under the assumption (A.3) we have

%ﬁexp(—Vn)<oo a.s. and i}oexp(—vn)<oo a.s..
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A similar result for a ¢;-chain will be need in the section 5. Now we use
the following lemma.

LEMMA 2.2. Under the assumption (A.4), we have
(2.27) lin}*S;Jp 72(0)192/2(0) < oo .

PROOF. First we note that lim inf; .. 7:(4/2)>0. In fact, under the condi-
tion (A.4) we have

{ 9i(4/2) = 1/2 if X, is symmetrically distributed,
gim 7:(4/2) = const.>0 otherwise,
because the process {47'St,caye1, 120} converges in law to a stable process as

A—co where ¢(4) is a suitable regularly varying function at infinity with index
a, 0<a=<2. Next using the strong Markov property we have

72(0) = P{6; <t} = E{ni(51/2); 622<7}
= 9(A/2)P{61,,<7) = 7:(A/2)92,(0),

and consequently the left hand side of is bounded by {lim inf;... 92(2/2)}!
<oo, [

Let {Vi(n), n=0} be a g;-chain with V;(0)=0. Note that any point in
[A4, =) is a trap for this chain, We put ¢,(0)=0 and for k=1, 2, ---

gx(k)= min{n>c(k—1): V;(n)é}gfle(m)},
Hi(k) = max{V(n): o2(k—1)<n=0c:(k)},
Ny =

{ max{k=1: H;(1), -+, Hi(k)<A/2} if H,(1)<4/2,

if H;(1)=A4/2.
In the following proposition {V,, n=0} is a g¢-chain with V,=0.

ProPOSITION 2.3. If (A.4) is satisfied, then

(N D oo .
g_‘l, exp{—V,n)} — gexp{——Vn} in law as A—oo,

Proor. For k=1, 2, --- we put
k
Z (k) = TI Yeo, 2s(H2(5)) > exp [—Va(n)],
j=1 0 aC(k-1)<nSd (k)

Z(k)= 25 exp [—V,],

ag(k-1)<nso(k)

where ¢(0)=0 and ¢(k)=min{n>a(k—1): V,< infns, Vn}, k=1. Then
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72N 2D o - .
anjf exp [~Vim]= ZZi(k), Zexp[-V.]= 2 Z(k).

Therefore, to prove the proposition it is enough to show that

(2.28) for each % the joint distribution of Z;(1), ---, Z (k)
converges to that of Z(1), ---, Z(k) as A—oo;

(2.29) there exist 4,>0 and 6<(0, 1) such that for any >4,
(i) P{Z;(k)>FE?} < const. k0%,
(i) P{Z(k)>k™%} < const. k2%,

To show (2.29) (ii). we note that {V,, n=0} is equivalent in law to the p-chain
{U.,, n=0} (Theorem 2.4). Then, recalling the proof of [Proposition 2.2, we see
that Z(k) is identical in law to

(2.30) exp [—(Hi+ - +Hy-)]{exp [— @ (1)]+ -+ +exp [— ()]}

which is a term similar to those appearing in (2.26) (note that H;=w(,)).
Therefore as in the proof of [Proposition 2.2 we see that (2.29) (ii) holds. To
proceed to the proof of (2.28) and (i) of (2.29), first we note that

(2.31) 72(0)7192,2(0) < ¢ for all sufficiently large 2

with some positive constant ¢ (Lemma 2.2). Now for any Borel subset A of
(0, )* consider the event I'={(Z 1), ---, Z (k)= A}. Since ag;(k)=k, I'=

w-:LI’'N{o(k)=n}]. Moreover, from the fact that Z;(£)>0 on I’ we can see
that H;(k)<2/2 on I' and hence V ;(7)<2/2 (for all 1<7<n) on I'N{e(k)=n}.
Therefore, each event I'N\{o:(k)=n} can be expressed as

{(VaD), -, Vam)e Aan(o, 2/2)*, Vi(n) < 1inn>anz(m)}

with a sustable Borel subset A, of [0, )*. Note that A, can be chosen to
be independent of 2. By the definition of ¢;-chain we have

(2.32) P{(V ), -, Vam)HE A0, 2/2)", Vi(m)< 7inn>anz(m)}

720 P(0, dx)P(x1, dxo) -+ P(Xn-1, dXa)na(xs)

SAnn[O. A1)

s {{ P dyt| PG s | POw dy)

Ty

+S<1n»x)P(x’“ dyn)g A)P(yl, dyZ)sz.w)P(yz’ dys)+ }

(zp,

gAnm[o. A/2)n

72(0)*P(0, dx)P(x1, dx2) -+ P(xn-y, dx0)N2-2,(0).
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Denote by I; , the last integral of the above and let
L= PO, dx)P(x,, dxs) - Plxms, dxy).

Then by (2.31), I; , is dominated by c-I, for all sufficiently large A, say for
A>2, (independent of #x), and I;, converges to I, as A—co, because
72(0)*7;-, (0)—1 for each fixed x,=0, similarly to or end of proof
of Therefore

lim P((Z(D), -, Za(k)EA} = lim S 1a.= Sl

-0 —00 n=k n==k

But as in (2.32) we can see that 3%_, I, equals P{(Z(1), ---, Z(k))= A} and
hence (2.28) holds. Finally, taking A=(0, o)X --- X(0, o0)X (k2% c0) we obtain

P{Z(k)>k™? < c-P{Z(k)>k%} < const. k2%, A>4,,
so that, (i) of (2.29) holds. O

§3. Some properties of the random environment (9%, Q).

Let @ be a probability measure on 9 satisfying the assumption (A) in §1.
We introduce another probability space (W, Q) as follows. W is the space of
functions W: R—R with the following three properties.

(i) W(©0)=0.

(ii) W is right continuous and has left limits on [0, o).

(iii) W is left continuous and has right limits on (—oo, 0].

Q is the probability measure on W determined by the following (i) and (ii):

(i) {W@), t=0, Q} is the strictly stable process such that the distribution of

W(1) is p, and {W(—t), t=0, Q} is the strictly stable process such that
the distribution of W(—1) is p- (for the meaning of u. see (ii) of
Assumption (A)). '

(i) {(W@), t=0, @} and {W(—1i), t=0, Q} are independent.

The assumption (A) implies the existence of a regularly varying function ¢(4)
at infinity with exponent a such that the distributions of A'W(¢p(2)) and
27'W(—¢(2)) under @ converge to p, and p. as A—oco, respectively (e.g. see
Feller [3: XVII. 5]). Therefore by a theorem of Skorohod the process
{27'W(e(A)x), xR, Q} converges in law to {W(x), x€R, @} as 2—. Fixing
such a regularly varying function ¢(1), 2>0, we define a scaling map 9(2),
A>0, from W into itself by

3.1 (D, W)(x) = 2"W(p(A)x), xeR.

For WeW and xR we say that W is oscillating at x if the following
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(3.2a) and (3.2b) hold.

(3.2a) ( suP)W >W(x+) and inf )W <W(x+), for any &>0.
X, xr+e T, L+E

(

(3.2b) ( §up) W > W(x—) and ( inf)W < W(x—), for any ¢>0.

Here sup,W and inf,W stand for sup,e;W(y) and inf,e,W(y), respectively, for
a subset ICR. W is said to take a local maximum (resp. local minimum) at x
if supcz—c, 2o W=W*(x) (resp. inf ;¢ ..o W=Wy(x)) for some £>0 where W*(x)
=W(x+)VW(x—) and Wi(x)=W(x+)AW(x—).
Let W# be the set of elements W (= W) satisfying the following conditions
1) sup{W(x): x=0}=sup{W(x): x<0}=o00.
ii) If W is discontinuous at x= R, then W is oscillating at x.
iii) For any open set GCR, #{x=G: W(x)=supcsW}=<1 and #{x=G: W(x)
=infsW} <1,
iv) W does not take a local minimum at 0.

REMARK 3.1. By ii) we see that W< W# can take local maxima or local
minima only at continuity points of W.

LEMMA 3.1. Q{W#} =1.

PrOOF. Since (3.2a) holds @-a.s. when x is replaced by an arbitrary (non-
negative) stopping time with respect to the process {W(#), t=0, Q} and since
points of discontinuity of {W(t), t=0} can be sorted out by a sequence of such
stopping times, we see that (3.2a) holds for any discontinuity points x=0 of
W Q@-a.s. Considering the process {W({t—T—)—W(—T—), 0<t<T, Q} instead
of {W(), t=0, @} where T >0 is arbitrary but fixed, we see that (3.2a) holds
for any discontinuity point x<0 of W Q-a.s.. Since (3.2b) can be discussed
similarly, we see that Q-almost all W have the property ii) in the definition of
W#. We next prove that Q-almost all W have the property iii). In order to
prove the first part of iii) holds Q-a.s., it is enough to prove that @Q{Aapcq}=0
for any rational numbers a<b<c<d, where Agca={WEW: supe, ,» W=
supe. oW}, Set m=(b+c)/2, Xi=supacz<p{W(x)=W(b)}, Y1=W(b)—W(m), X,=
SUPc<z<a {W(x)—W(c)} and Y,=W(c)—W(m). Then X,,Y,, X, and Y, are inde-
pendent. Since the distributions of ¥; and Y, have densities, so do the distri-
butions of X;+Y, and X,+Y,. Therefore

Q{(Sublf)) W-——(gudlgW} = Q{X,+Y +W(im) = Xo+Y . +W(m)}

= Q{X1+Y1 = X2+Yz} = O.

Similarly the second part of iii) holds @Q-a.s.. [0
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For We W*, we give the definition of a valley of W. A part {W(x), a<
xZc} of W is called a valley of W if
(i) a<ec,
(ii) there exists b=(a, ¢) such that
{ W(a) > W(x) > W(b) for every x<=(aq, b),
Wic) > W(x) > W(b) for every x<(b, ¢,
(iii) W is continuous at a, b and c.
(iv) H-=sup{W(y)—W(x): asx=y=b} <W(c)—W(b),
H, =sup{W(x)—W(y): b=x=y<c} <W(a)-W(O).
For simplicity, we write (a, b, ¢) instead of {W(x), a<x<c¢}. A=H,VH. is
called the inner directed ascent and D=W(a)—WO)HAW{(c)—W (b)) is the depth

of the valley.

In our discussions a valley (a, b, ¢) with a<0<c¢ plays a particularly im-
portant role. Kesten [9] gave another description of such a valley. Following
we define (a;, bz, ¢;) for We W and 2>0. Set

¢y

inf{x>0: W*(x)— ionf)W*zl}, ¢y = sup{x<0: W*(x)— <inf]W*g,%},
{0, x x,0

Vi= inf Wi+2, Vi= inf Wi+4,

£0,¢f1 Lc7,0]
bf = inf {x=0: Wi(x)=Vi—2}, bz =sup{x=Z0:Wux)=V7i—2},
Mi= sup W*, M7 = sup W¥*,

£0,6373 t67, 01
af = inf {x=20: WHx)=M7}, a7 =sup{x=<0:W*x)=M7},
ef = inf{x=ci: Wu(x)=W*(ci)+2/2 or WH(x)SWH(ci)—2/2},
e7 = sup{x=ci: Wi(x)ZW*(cz)+4/2 or W*(x)SW*(c7)—4/2},

df =inf{x=cf: W*(x)= ﬁu;))r W*}, di =sup{x<c7:W*(x)= sup W*}.
(c7.ep) (eg.c7)

Let a;, b; and ¢; be measurable functions on W defined as follows:
ar if MIVVi<Mz,
dz if MfvVi=M7z and MjVvVi<Vy,
(3.3a) a;=a;W)=
1 di  if MiVVEiSMiVVs,

.—1  otherwise,
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b if MIVVi<MzVV3,

(3.3b) bi=b:W)=3 bz if MiVVi>M3VVy,
if MzVvVizMf and M7VvVi<Vi,

} if MIVVi>MivVi,
1 otherwise.
Note that (aj, by, ¢z) is not necessarily a valley; however, if W& W¥, then
(az, ba, cz) 1s a valley of W with A<A<D (see [9], or [7]; see also Figure
1). The reason why we used d} and d7 for defining a; and c¢; is to make W
continuous at a; and ¢;. The centering constant b;(-) appearing in our main
theorem is the b; defined by in terms of bf and b7. We note that b}
can also be characterized as the beginning of the first descending ladder excur-
sion with height =4 of {W(x), x=0}. Here €={W(x)—W(x,), x:<x=<x,}, 0
x,< X, 18 called a descending ladder excursion of {W(x), x=0} if

W(xy) <E0’£1}£]W for any ¢=(0, x,) when x,>0,

0 otherwise,
i if MpVvVi<M{p,

Q

ot

d
(3.3¢) c,=c,(W)= ;

>~

3.4) Wi(x,) £ W(x) for any x=(x,, x3),
W(x,) > inf W  for any >0,
[z Tg+e]

and H(E)= supiz, z,1{W(x)—W(x,)} is called its height. In particular, if We W
and

Figure 1. Here b;=0b}, a;=a7 and c;=dj.
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if x,, x; are integers with 0= x,<x,, (3.4) yields

Wix) <W(n) for any n<[0, x.)NZ,
(3.4) Wix) € W(n) for any ne(x,, x.)NZ,
W(x1) > W(x,).

In this case {(Wn)—W(x,), n=lx,, x:JNZ} is also called a descending ladder
excursion.

The following lemma can be proved easily.

LEMMA 3.2. For each 2>0 there exists WiC W# with Q{W¥$}=1 and with
the following property: For any WeW§ and for any sequence {W,, n=1} in
W converging to W with respect to the Skorohod topology, a:(W,), b,(W,) and
¢:(W,) converge to a (W), b:(W) and ci(W), respectively.

For Wregw+, W-=9- and A>0 (recall that W* (resp. %-) is the space of:
nonnegative step functions satisfying 1° and 2° of § 1), we introduce the follow-
ing notation :

i = pi(W*) = min{n=0: W*(n)=4},
(3.5) {

07 = p3W") = max{n=0: W-(n)2 2},

H*(4)

——
e

; A |B3 rJ

T*(4) H(3) 72) *() 0] e*QQ) @*(2) a*l(3) o'+‘(4)

Figure 2. Here t7(N})=1%(3) and o+(1\~l}”)=o+(3) (¢*(k), ﬁ*(k), Ni
are defined in (4.10), (4.11) aad (4.12) by using ¢ instead of 2).
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0) =¥, W*) =0, 7 (0)=7(0, W-)=0,
(3.6) H(k) = t*(k, W*) = max{n<t*(k—1): W*(n)<inf{W*(j): j<n}}, k=1,
™ (R) =t (k, W) =min{n>t"(k—1): W-(n)<inf{W-(7): j>n}}, k=1,
A { H*(R)=H*k,W*)=max{W*(n)—W*(z*(k)): t*(R)<n<t*(k—1)}, k=1,
H-(k)=H (b, W )=max{W - (n)—W(z7(k)): - (k—1)<n=<t(k)}, k=1,
38 { Nf = Ni(W*) =max{k=1: lrxng}a;li H+ (7)<},
N7y = NzW-)=max{k=1: max H-(5)<4}.

In and (3.6) the convention min ¢=—max ¢=co is used while in (3.7) and
(3.8) max ¢=0.

Denote the random walks {W(n), n=0, @} and {W(—=n), n=0, @} by IB*
and ¥B-, respectively. Let @i and Q3 be the probability measure on 9* and
-, respectively, determined by the following conditions.

(D {W+*(n), n=0, Qi} is a ¢;(XW*)-chain and {W*(—n), n=0, QF} is a p(IB*)-
chain, respectively, and {W*(n), n=0, Qi} and {W*(—n), n=0, Q;} are
independent.

(ii) {W-(n), n=0, Q7} is a p(W~)-chain and {W-(—=n), n=0, Q7} is a ¢,(TW")-
chain, respectively, and {W-(n), n=0, Qz} and {W-(—n), n=0, Q3} are
independent.

LEMMA 3.3. (i) Under Q@ {W(Oi-+n)—WhB), —bis<n=<cf—bi} and
{W(bz—n)—W(b3), bi<n<bij-—c3} are independent.
(ii) {(WOi+n)—W©1), —bf=n=ci—bi, Q}
= [WH(n), TH(N=n=<p}, Q).
(iii) {Wbz—n)—W(b2), bisn<bi—c3, Q}
d
= {W(—n), —t"(N1)=n<=—p7, Qz}.
PROOF. Since (i) is obvious, we prove (ii). For W9 and A2>0 set
7(0) =0, 7(k) = min{n>z(k—1): W(n)<W(z(k—1))}, k=1,
H(0) =0, H(k) = max{Wn)—W(t(k—1)): t(k—1)Zn=<t(k)}, k=1,
N; = max{~,=0: max H(j)<A4}.
1sjsk
Then the descending laddsr excursions
0, W(t(k—1D)+1D)—W(r(k—1)), ---, W(z(k)—W(z(k—1))), k21,

are independent; N;+1 is the index of the first excursion with height H(:)=4;



536 K. Kawazu, Y. Tamura and H. TANAKA

7(N;)=b3;. Therefore, {W(n), 0<n<bf} and {W(bi+n)—W(b}), n=0} are inde-
pendent. Consider the reversed excursions

wi = (0, W(z(k)—D—W(z(k)), -,
W(t(k—D+1)—W(c(k)), W(z(k—1)—W(z(k))).

Then wy, k=1, are i.i.d. and by the process defined by piecing
together these w, as in (2.3) is a p(W*)-chain. Since (wx,, ww,_, -, w1)

2 (w1, we, -+, wy,), the process (W(bi+n)—W (b)), —bi<n=<0, @} is equivalent
to {W*(n), n<0, Qf} considered up to a certain random time but this random
time is nothing but z¥(Nj). Next we show that

(Wbt +n)—WbD), 0Sn<ci—b}, Q) = {W*(n), 0<n<pf, QF}.
For any Borel sets A,C[0, A), 0<k<rn—1, and A,C[4, ) we have
QWi+ k)—WbHE Ay, 0=k <n, cf—bf=n}
= QW(B)S Ay, 0<E<n}/Q{H(1)=2}
= 50<Ao>§ 7200, dxog ¢2(x1, dx2) S 02(xno1, dxn)
A4 Ap Ap
= QH{WH(R)E Ay, 0k <n, pi=n},

where ¢i(x, dy) is the transition function of ¢,(28*)-chain. This proves (ii).
The statement (iii) can be proved similarly. [

In what follows, for W= W and A>0, we put
(3.9) at = a(@;W), b*=b(0; W), c*=c(D;W).
We then have
(3.10) a; W)= oDa*, b;(W)= @A)b*, c:(W)= (i)

§4. Diffusion processes in the random environment (%, Q).

Let 2={w: [0, «)—R; continuous and w(0)=0} and let P be the Wiener
measure on £. Let B(Y)=w(t) be the value of w (£2) at t=0. Then {B(t),
t=0, P} is a one-dimensional Brownian motion starting at 0. For We W, we
set

Sw =" exo Wy, A= exp(—2W(S-(Buw)du,

X(t, W) = STH(BA™®),



Localization of diffusion processes 537

where S-* and A~' are the inverse functions of S and A, respectively. Then
{X(, W), t=0, P} is a diffusion process with generator Lu=(1/2)e"®(d/dx)-
(e7"=(d/dx)) starting at 0. Then the following scaling relation holds (see
[8]): For fixed 2 and W

4.1) {X(t, A0, W), 120, P} = {p(D) X(p(A)t, W), '220, Pi.

Let Py be the probability measure on £ induced by the diffusion process
X(-, W).

We set §=C([0, co)—R) and write &(t) for the value of & (=) at t. For
a<c and W W we denote by vwra, .5 the probability measure on [a, ¢] defined
by

4.2) Vwia,c(dx) = e"W“)dx/gce‘W(y)dy.

We then denote by Puwre ¢ the probability measure on £ governing the diffu-
sion process with state space [a, ¢], with (local) generator .Ly, with reflecting
barriers at a and ¢ and with initial distribution vy, ;. Note that this reflect-
ing diffusion is a stationary diffusion process. It is also noted that Py, ¢ is
concentrated on the closed subset 2, .=C([0, «o)—[a, ¢]) of 2.

4.1. Outline of the proof of the main theorem. Here we give an out-
line of the proof (the following 1° and 2° are discussed in the next subsection
while 3° and 4° are discussed in §5).

1°. We consider the asymptotic behavior of the diffusion process {X(e?+¢,W),
t=0, Py} in the environment W under Q as A—oo. By the scaling relation
4.1), X(e*+-, W) is equal to ¢(2)X(p(2)-%e*+-), 20, W) in law and by Assump-
tion (A), (@;W, @) converges to (W, Q) in law as 2—oo. Then using the esti-
mate of the exit time of [a,(D,W), ¢,(®,W)] for X(., 20;W) (see
and the coupling property we see that the asymptotic distribution of the
diffusion X(p(2)"*e*+-), 10,;W), as 1—oo, is equal to the asymptotic distribu-
tion of the stationary reflecting diffusion in the environment A29;W on the
state space [a(@,W), c,(®,W)].

2°. Next we divide the space 9¥ into two events, that is, {b,(D,W)=
=b¥(D W)} and {b,(D,W)=b7(®,W)}, and we consider the asymptotic behavior
of the stationary reflecting diffusion on each of the events. We consider the
case of {b(@ ,W)=b1(P,W)}. Since the invariant probability measure for the
stationary reflecting diffusion in the environment A®;W under @ converges in
law to the d-distribution at b{(W) under @, when studying the asymptotic pro-
perty of this stationary reflecting diffusion as A—c one may restrict its state
space to a much smaller interval containing b1(P ;W) (see Lemma 4.4).

3°. By the scaling relation and [Cemma 5.3, we change the
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environment AQ;W to W again to consider the asymptotic distribution of the
stationary reflecting diffusion with random centering b3(W) on the restricted
state space. Then, by virtue of the study of the distribution of
this diffusion in the environment W under @ turns to that of the distribution
of a stationary reflecting diffusion in the environment W under the probability
Qi;RQz on WHXW~. Since the restricted state space of the stationary reflecting
diffusion can be small enough, by using the renewal property of the environ-
ment W under @iRQ7 we see that the event {h,=0bF} and the diffusion become
asymptotically independent as A—co ((5.13)). The probability of the event
{b,=0b7} evaluated under Q@ XQ7 converges to p=Q{b,=b%} as A—oo ((5.16)).
4°. The final step is to study the limit distribution of the stationary dif-
fusion in the environment W under Qj}. This can be done by proving the
formula [(5.18). To derive we use [Proposition 2.3 and the following facts:
the restricted state space expands to R as 1—co, QF converges to @*, as i—oco
(Theorem 2.3 and Remark 2.1), and e % is in L' a.s. under @* (Corollary 2.2).

4.2. Some lemmas. We consider a coupling of diffusion processes. Let us
define the measurable functions R, T and T of (w, @, W)= Q2X 2 X W as follows:

(4.3) R = R, &) = inf{t=0: w(t)=&()},
4.4) T =T(w, @ W)= inf{t=R: o@t)&(a,(W), c. (W)},
(4.5) T =T, &, W)= inf{i=R: @) (a (W), c.(W))}.

For 1>0, we write T*=T(w, &, @;W) and T =T(w, &, ;W) for simplicity.
We also write Py=Pio,w, P4=Pio,wrar 1y and PH=P,RP%. Recall
for a* and ¢*. Then for each :>0 we can regard P#{R<t<T*} as a random
variable defined on the probability space (%, Q). Now if we set

o(t) for 0<t<R,
w'(t) = {

at) for t>R,
then for each fixed W

(4.6) {o(1), 0<I<T?, PY} = {o'(t), 0<t<T?, P4},

LEMMA 4.1. Let 7(A) be an arbitrary function satisfying 7(2)—1 as A—oco,
Then

PH{R< expAr(A)<T(-, -, W)}
=PH{R< expAr()<T(, -, W)} —> 1
in probability with respect to Q as A—co.

Proor. Let {2,, n=1} be any sequence of increasing positive numbers with
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A,—o. Since {@,;W, Q}—{W, Q} in law as 2—, an application of Skorohod’s
realization theorem of almost sure convergence entails the existence of a pro-
bability space (2, &, @) and W-valued random variables W, W,, n=1, defined

on (2, 3, @) such that (i) {W,, Q}é;{q)an, Q}, (W, Q}={W, @} and (i) W,—W
(in the Skorohod topology), @-a.s. as n—co. By Lemma 3.1, we can assume
that We W#. Set T,=TW,), T.=T(,) and

P.= P .w, 9P, ,a,#y.c ;a1

Then the following is known (Kawazu-Tamura-Tanaka [7; p. 179]; this is
originally due to Brox who discussed the Brownian environment case):
P.{R<exp [4,7(4,)]1<T »}
=P, {R<exp [, 7(A.)]1<T,} — 1 (Qa.s.) as n—oo.

This implies our assertion. [

We denote by 3, the o-algebra on @ generated by the sets {&: &(s)<x},
0<s<t, xR and put $=V.s03.. Let 8., t=0, be the shift operator on £
defined by (8.3)(s)=a(t+s), s=0. For 1>0, we define ¥;: -0 by
4.7) (T 18Xt = p(Da(e(A)?),  t=0.

For 3= and x=R, &+x denotes the path whose value at time ¢ is &(¢)+x.
Since an element @ of £ is also an element of 2, 6,0, ¥,0 and w+x are well-
defined. Set s(2)=¢(A)~%e*. Then the scaling relation (4.1) implies for each
fixed W

d

(48) {(0exp(l)w)(t>; tgo, PW} - {(wlas(bw)(t), 1.20, PMDZW}-

LEMMA 4.2. For any fixed positive constant h and I'e 3,

E Py {Ocxpcro—b:W)ET}] = E[PH{G—b* €T} ] +es,

where €;—0 uniformly in I'E 3, as A—oo.

PrROOF. We put #(A)=s()+¢(A)*h. Then both s(4) and #(1) are of the
form exp(4A7(2)) with 7(1)—1 as 4—c. We have

E°[Py{lcxpcso—b (W)} ]
= E[P}{V 0 c0—o@b*=l}]  (by [3.10) and [4.8)
= E°[P} {0, 0—b* T3, R<s()<H(A)<T*}14¢; (by Lemma 4.1)
= EUP{0,1na—b T (), R<s(A)<tA<T*}]1+e;  (by
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= E P4 {0, ,6—b2€T()}]+e;  (by Lemma 4.1)
= EUP}{6—-b2 T} ] +ez (stationarity),

where ¢; and e¢; converge to O uniformly in I" as A—oco. This proves the
Lemma. O

To proceed let We W, 0<e<1 and define uf(W) to be the beginning of the
last descending ladder excursion of {W(x), x=0} with height =& before b3(W).
Recalling the definitions in (3.6), (3.7), (3.8), for A>0 and W=®,;9% we have

QT (NE(W)+1, W)+bt(W),  if Ni(W)=1,
4.9) uf(W)= R
, if N¥(W)=0,
where Weg+ is defined by
W(x) = WOV b+ )AH—WHT), xR,

Note that the graph of W is illustrated by Figure 2 with A=¢. We next define
vI(W) for W= W and ¢<(0, 1). Put

CIW) = inf{xzb]: W*(x)—W(b1)=¢},
vEIW) = sup{x<¢f: Wi(x)Z inf Wy},

tef.eta

To define vf ;(W) for W= ®@,;9% we need the following notation: for Wregw*
and ¢>0,

6*(0)=a*(0, W) =0,

a*(k) = a*(k, W*) = min{n>a*(k—1): WHn)Zinf (W*(): j>n}}
k=1,

(4.11) H (k) = H* (b, W*) = max{W+(n): a*(k—1)<n=<a*(k)}, k=1,

(4.10) {

4.12) Nt = N¥(W+*) = max{k=1: max H*(j)<e}.

1sjsk

We define vi (W) by
(4.13) viaW) = Q) e (N W), W+bIW),  Wedw.
Then we see that for We @, %
viaW) = viW)— ().
Furthermore we use the following notation: for Wew
b2 =b{(D; W), ul? = uf(@;W), vi?*=vi i (DW).

LEMMA 4.3. (i) For any (0, 1),
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(4.14) lim lim Q{uf*<b**—a} =1,
040 A=co
(4.15) lim lim Q{v'*>b"2+46} = 1.
040 A-co
(ii) For any 6>0,
(4.16) li{l;l lll—m Q{uf*<br*—4} =0,
(4.17) li?;l 121—1’1’1- Q{vHA>b" 4140} = 0.

ProoF. Noting that {®,W, Q} converges in law to {W, Q} as i— by
the assumption (A), we have [(4.14) and [(4.16). By a consideration similar to
we see that there exists a subset W# of W* with Q{W#}=1 such
that for any We W# and for any sequence {W;,, n=1} with W, €@, W which
converges to W in the Skorohod topology, vf :,(W3,) converges to vi(W) as
n—oo. This fact combined with the relation between v} and vf; implies
and (4.17). O

LEMMA 4.4. Let h be any fixed positive constant. Then, for I'e 3, and
>0,

E[P}{G—b*<T}, br=b+1]
= EQ[PXG)zW[u;"z +,2]{(?)"—bZEF}, bz=b+'1]+0(1):

»V1/2

where o(1) is a term which tends to 0 uniformly in '€ 3, as A—c (and which
may depend on h and ¢).

PROOF. As was already remarked, {@,W, @} converges to {W, Q} in law
as A—oo. Let {A., n=1} be an arbitrary sequence of positive numbers with
A,—o0 as n—co. By Skorohod’s realization theorem of almost sure convergence,
there exist a probability space (2, 3, @) and W-valued random variables 7,

W, n=1, defined on (2, 3, Q) such that (i) {W., @={0, W, Q}, {W, Q=
{(W,@} and (ii) W,—»W (in the Skorohod topology), @-a.s., as n—co. From
now on, we consider the case where b,(W)=bt(W). Set am=a,W.), b=
bl(Wn)’ c(n)zcl(Wn)a b'{n):bT(—W—n) and CTn):cT(Wn)- Then, bY Acnds
bensy Cenys blay and ¢ty converge (@-a.s.) to a,(W), by(W), (W), b1W), ci(W),
respectively, as n—oo. Let § be any positive number and set @,=0V (bf,,—0),
En=Cliy Aty +0), a=0V(b1(W)—8) and e=ct(WH)AGBL(W)+d). Then, a@,—a
and ¢,—¢ (Q-a.s.). Let v, be the probability distribution defined by [4.2) but
with the replacement of W and [a, ¢] by 2.W, and [ac,, cmy], respectively.
Then, since bt(W) is a point of local minimum for W, we see that

(4.18) v, converges weakly to the d-distribution at b3(W).

Set
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T =inf{t=0: @(1)& (@, ¢a)}.
Then, Proposition I-3 in [7: p. 179] combined with (4.18) implies

(4.19) Piwotacmcomi T >ht — 1, Py w e, e, dT>ht —> 1,
as n—co Q-a.s. on {b(W)=>bt(W)}. Therefore writing

En = S:;n exp{-—Zan(x)}dx/SC(n)eXp{__zn['/l_/n(x)}dx,

n a(n)
we have, on the set {b,(W)=b1(W)},
(4.20) P, #.tacny ecnyl@®@—bany e}
= P #otacny ccnyi®@—btnel, T>h}+o(l)  (by
= kaPiWotay, ey 1G—bt €L, T>h}+0(1)
= Py, wua,. eal@—btmEl, T>h}+0(1)  (since k,—1)
= Py #otaneni@—btmel}+o(1)  (by [E19),

where o(l) is a term (which may depend on ¢ and 4 and differ from place to
place) such that the integral of its absolute value over the set {b,(W)=bi(W)} F
with respect to @ tends to O uniformly in '€ &, as n—oo. Using Lemma 3.1,
we see that Li,,-s%, ) =1, =stap @-a.s. as n—oo. Therefore yields

(4.21) P/]an[a(n)’“(n)J{a-b(n)ep}l‘b(m:bzrn)’
= P, #tap. e {@— b0t EL L=,y H0(L),
which again yields
(4.22) E°[Pi{s—bicT}, b*=b**]
= E°[Po,wi-, -1{8—b" <}, bA=b"*]40(1),

where [—, —]=[0V(**=9), (b**+d)Ac**] and o(l) means a term which
converges to 0 uniformly in I'e &, as A—co, d and & being fixed. By argu-
ments similar to those used for deriving [(4.20), [4.21) and [(4.22), we have

(4.23) E"[szm_,_]{a—b*"lel“}, bA=b*?, ult<bt -9, v >bt244]
= E[P;owr.. {l@—b"*el}, b*=b4,
ub A<bt =4, vl >0+ 1 4-81+0(1),

where [+, -1=[u#?, v1/#]. (4.23) and Lemma 4.3i) finally imply the assertion
of Lemma 4.4.
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§5. The proof of the main theorem.

In addition to the notation of §3 and §4 we use the following notation for
given Wregw*, W-<9- and 2>0:

(6.1 bf = —t*(N}), b= —7"(N1),
62 { ?f = max{W*(n)—W*@*(N})): t*(N)=n <0},
M7z = max{W-(n)—W(z"(N7): 0=<n<t~(ND)},
(5.3 Vi=2—W*z*(N}), Vi=2a—-W-(z"(N7)),
bi if MivVi<MzVvVy,
(5.4) b=\ bx it MiVVi>MiVV3y,

0 otherwise.

For 2>0 fixed we associate with each fixed W% an element I of 9+ defined
by

(5.5) W(x) =WOVOBI+x)Ac))—W©bE), xR,

(the suffix A in W is suppressed). Then from Lemma 3.3 and its proof we have
following.

LEMMA 5.1. For any €>0 and 2>0 the joint distribution of
{W(bi+x)—W(bD), —bi<x=c7—bi}

and {b}, M}, Vi, tv(NZW)+1, W), a* (N1 (W), W)} under Q is equal to the joint
distribution of {W*(x), t"(N))<x<pi} and {b], Mi, V}, t*(N&+1), 0.(Nas)}
under Q7.

LEMMA 5.2. Let WEW be fixed and let u<v. Then for any I'e & we
have
Py wiw,vl@—b0" €M)} = Purpisu, pcwil@—bIl}.

PROOF. Since bj=¢(A)b™*, we have T;(@—b"*)=¥,5—bj. Noting this
equality we see that the assertion of the lemma is another expression of the
following fact (which itself can be proved easily): Under P;¢,wcu, 1 the process
{T0)1), t=0} (={pQa(e(A)%t), t=0}) is a reflecting diffusion on [¢()u, p()v]
with local generator .Lw and initial distribution vwryca>u, pcaror- O

LEMMA 5.3. Let W be defined by (5.5). Then
(5.6a) eut? = H(N§(W)+1, W)+b;  if NLW)=1,
(5.6b) oDt = o+ (N(W))+b3.
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PROOF. To prove the lemma it is enough to apply [(4.9) and [4.13) to u:*
=uf(D;W) and vid=vi, (D, W), respectively. 0

Let ~ be a positive constant and let '€ &,. Then by Lemma 4.2 we have,
as A—oo,

(5.7) P{X(e*+-, W)—b,(W)eT'} = E°[Py{lecxpcxo—b(W)ET}]
= EP}{G6—b T/} ]+o(1)

= I,+I{+o(),
where

(5.8) 1, = E°[Py{a—b* T}, b*=b+"],
(5.9) 11 = E[P}{a—b*e¥i (D)}, b*=b""*],

b* is defined in a way similar to 4** and o(1) is a term which tends to 0
uniformly in ' 4%, as A—w (and which may depend on 4). Let & be an

arbitrary small positive number (which we let tend to zero later). Then, by
I; can be written as
L = B[ Pio et Lutyiala—b <UD}, bA=b"1+0(D),

and by [Lemma 5.2 and [Lemma 5.3 the right hand of the above is equal to
E°[P T}, bi=bi]+0(1),

where P; stands for Ppra i, a=t*(NLW)+1, W), b=a*N}(W), W) and o(1)
is a term which tends to 0 uniformly in '€ 3, as 4~ (and which may de-
pend on A~ and ¢). Applying Lemma 3.3 and [Lemma 5.1l we obtain

EC[P (I}, b;=bi]1= E;[P, (T}, MiVvVi<MzVvVz],

where E; is the expectation with respect to the product probability measure
(5.10) Q:=Qi®¥Q71  on WXW-,

and Py; stands for Pyra,,; with W=W+eWw*, a=r*(NH+1) and b=a*(N3,).
Next, denote by F*(x) (resp. F-(x)) the probability that the process {W(t),
t=0, @} (resp. {W(—t), t=0, Q}) hits (—oo, x—17 before it hits [x, o) and put

(5.11) p= S:F*(x)dF‘(x).
‘We are going to prove

(5.12) E[Py{l}, M3VVi<MivVz1=pE{[PT}+A(T, ¢, B,

where E7} is the expectation with respect to QFf and A,([", ¢, 2) (and also
A", ¢, ), appearing below) represents a term which is dominated in modulus
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by some A(e, 2) satisfying lim.,olim;..|Ae, 2)|=0. Let W/(x)=W*(z*(NH+1)+x)
—WH(z*(NH+1)) and define M} and V4 by and [5.3), respectively, but with
the replacement of W* by W' (it can happen that W/(x)<0 for some x>0 so
that W/ &W*; but even in this case M} and V} are well-defined). Moreover,
let i be the smallest n=7*(N}) such that W+(n)=Mj. Then
Q:AMINVVIEM)NVi—WHeHNH+L)) < Qa{mi=tH(NiE+1)}.
Using (after a suitable scaling) and noting (5.6a), we see that
QM= (NLZ+D} < @{m* = ul?},

where m**=m*(®,;W), m* being the smallest x=0 such that W(x)=MT.
Lemma 4.3ii) then implies

lim fim Q {MiV V=MV i—WHc*(NH+1)}

€40 A-oo

< limlim Q{m**=ur*} = 0.
gl0 A-oo

Therefore,

E; [Pyl MV Vi<MzvVi]
= B[Py AT}, MV = WHeH NG+ D<MV T T1 AT, <, D).
Since (0, WH(—1), -, WHe*(Ni+1)) and
0, WHETHN 5+ D)= D=WHcHNEHD), -, WHeH(ND)—WHeH N+ 1))

are independent under @QFf, we have

(5.13) E [P {l'}, MV i—WHeH NS+ D)< M7V V1]
= Ei{[P{'}:(WHH(NE+1))],

where

(5.14) Oi(x) = QMIVIVi—x)<MzVvVz}.

Using and a scaling we have
(5.15) $1(Ax) = Q{MiV(Vi—2x)<M7iVV3}
= Q{MT VIV —x)<M7 VvV,

where M{*=M{(®W), M7 =M(@;W), VI *=V{(@,W) and V1=V {(@,W).
Therefore from the assumption (A) we see that

(5.16) Eim 01(Ax) = P(x) = QIMIV(Vi—x)<M7VV7i}  for x=0.

1
The identityl gb(O)-——SOF *(x)dF~(x) can be verified by the fact that M1V V1 and
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M7\VvV7 are independent under @ and distributed according to dF* and dF",
respectively. Thus we have

(5.17)  GOEZ[P{T}] < EI[Pi (T} g:(WHrH(NE+1))]
< E;[Pu{l'}¢:(20), WH(z*(NH+1)/A<0]+ Q1 {WH(r+*(N&+1))/4>4}.
Using it is easy to see that for any >0
lim fim Qf {W*(z*(N&+1))/2>8}

£l0 A—oo

= lim lim Q{(®,W)(u} *)>d} =0,

£l0 A-soo

which combined with and (5.17) proves (5.12).
Finally we prove that for any fixed ¢>0

(5.18) Ei{[Py{l}]—> E*[Pyil'}]  as i—oo,

where Py and @ are defined in §1 and E+ denotes the expectation with respect
to @*. First we show in the case where I'={a=2: 3(0)= A}, A= B(R).
In this case [(5.18) is expressed as

(5.19) EI(SJ(Z)nAe‘W”’dx / SJ())‘e‘W(“dx>

([ [eron) i

where J()=[z*(N&+1), 6*(N$.)]. From [Proposition 2.3, we know that

(5.20) Q;-distribution of S e Wy

J (AINL0: o]
——> @Q*-distribution of S e ™y, A—>00,
0

Since {W(x), x=0} and {W(x), x<0} are independent under @3 and the law of
{W(x), x<0, Q3} does not depend on 2, (5.20) implies
(5.21) Q:-distribution of SJ(he‘W““dx

— > §+-distribution of S e WDy Ao,

-0

Taking an arbitrary positive sequence {A,} tending to infinity, we now prove
that holds as A—co via {4,}. We make use of Skorohod’s theorem of
almost sure convergence to construct, on a suitable probability space (2, @),

gy+-valued random variables W and Wi, A=A, s, -, such that (i) {W, Q}=
(W, @*} and {W;, Q}={W, Q) for each =2, and (ii) W - (Q-a.s.) as A—co
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via {4z}. Then, (5.21) implies

(5.22) Sjmexp{—'wj(x)}dx > S“’ e-P®dx in probability,

-0

as A—co via {2,}, where J(2) corresponds to J(A). From the above (ii) and
we can easily show that

S, exp{—Wi(x)}dx —>S e 7@ dx in probability, A—co via {1,},
J(AIn4 A
for any Borel set A in B. This clearly implies

exp{—Wz(x)}dx/Sjm exp{—W(x)}dx

Si(bnA
—>S e P gy / S“’ e-Pdx in probability,  as A—co via {A,}.
A —-00

Since {4,} is arbitrary, holds.
Next we prove for general I'e &,. For positive integers % and !/
with 2<! we put

Az = {Wew*: JADL-!, 1},
By = {Wew: 0sW(x)<p (for all 0<x<0)},
T, = the first exit time of &) from (—I, 1),
I'v,={acl': 80)s[—k, k], Ti=h}.
We are going to estimate
= | E{[P{}]-E*[Py{I}]].
We can write

A < A+A+ A +A+A,,
where

Ef[P '} ]—E{[Py {1} AvNB, 1],

| ESLPy{l e i} —Pweoraf e i} s A2 B, ]l
Ei[ Py, il e} AN B,

Ai= |E{[Pycodlen}; Boil—E* [Pyl e} B,.i1l,
= |E+[PWE-1,13{Fk,z}; Bp.l]—E~+[PW{F}][-

Now we prove

[

2

[>l
ll

(5.23) lim [im lim lim sup4, =0, 1<i<5.

koo lso pooo A-soo I—-E’éh

To prove for /=1, we write A, as the sum
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(5.24) ILPHUINTE ) As N B, J+ELP T} AS 0 UBg ] = A+,

and then note that the first term A,; is dominated by

EilP{aO)s[—k, kI +Pi{@0)e[—k, k], Ti<h}; AzuNB,.i]

-1
< E+ RA¢D) . ~-Wx)
= Ex [{Sch)e dy} chl)n[_k,k]ce dx]
—l—E}“HSH lJe—W(y)dy}—I-Sc—k.kje_W(x)Pé‘;){T‘<h}dx; BP"]

= 51114’5112;
where P is the probability law of the diffusion process with generator Ly

and starting at x. A;;; depends only on %2 and 2 and it follows from that

- ~ o -1

As for A, recalling the definition of ¢;(&)- and ¢(S)-chains with S=2* we
note that

dQ3/d@* = R(0)n:(0)*RW ) n:(W())  on B,
and that this tends to 1 uniformly on B, ; as i~ by and Remark

2.1. Therefore A,;, tends to A, as A—oo, where

~ -1
A = E+H5[-z,ue"w‘”dy} -S[_k,k]e‘W“)Pif’{TKh}dx; BN]

~ -1
+ -W > ) Wem P (o) o
=E [{St-l,ue ! dy} S[_k,kje PP {Tz<h}dx]_Am,

Al,, depends only on % and /, and A};,—0 as [—oo since P {T,<h}—0 (@*-a.s.)
as [—oo. Thus we have

(5.25) lim Iim 1lim lim sup A,; = 0.
k—so l-soo p-oo A=oo FE@]L

The second term A,, in (5.24) can be controlled by

(5.26) Ay < Qi{A5 .\ UB; .},
(5.27) lim lim Q§{A$,UBS .} =0 (I: fixed).

p->0 A-co

From (5.24), [(5.25) and we obtain for 7=1. To prove

for 7=2, it is enough to write
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~ ¢ -1
h ~Ww . -W(x) P (x)
A = Ex[ {.\J(l)e w dy} S[_k.k]e @DPEAl Ydx
-1
—{S[_l’l]e‘w(?’)dy} 'S[_k kje_w(z)P%){Fk,z}dxl ; Az,zf\Bp,;}
<

E;[ {SJ(be‘Ww)dy }’1_{5"[—1. l]e_W(y)dy}‘ll ] S[_k, k]e—W(x)dx]

and then use The rest of the statement [(5.23) can be proved by similar
arguments. The statement now follows from [(5.23).
From what we proved up to now, we have

lim 1, = p-E*[Py{I}].
Since a similar formula for I; can also be obtained, we finally obtain

lim @{X(e*+-, W)—b;(W)eTl'} = p- E* [ By {T"}]+(1—p)E-[Pw{l}].

A—co

The above convergence is uniform in I' $, and hence the convergence also
holds with respect to the total variation norm on #,. Thus our main theorem

is completely proved.
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