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Introduction.

In this paper (M, g) will denote a C* Riemannian manifold with Riemann
curvature tensor R defined by

Rxy = D[X,YJ_[DX, DY]

where D denotes the Levi Civita connection and X, Y are tangent vector fields.
(M, g) is said to be curvature homogeneous if for each pair of points » and
g there exists a (linear) isometry F between the tangent spaces T,M and T M
such that
F*Ry)=R,,

or equivalently, there exists an orthonormal basis of 7, M and one of T M such
that the corresponding components of R, and R, are the same. This turns out
to be equivalent to the following: the Riemann curvature tensor R of (M, g)
viewed as an equivariant map from the total space of the orthonormal frame
bundle OM of (M, g) into the space R(V) of algebraic curvature tensors over
V=R", n=dim M, maps OM into a single O(n)-orbit of R(V). (See for
more details.) Further, a homogeneous Riemannian space (M’, g’) with Riemann
curvature tensor R’ is called a homogeneous model for (M, g) if R(OM)C
R'(OM’).

The notion of a curvature homogeneous Riemannian space has been intro-
duced by Singer in 1960 [13]. Sekigawa and Takagi produced the
first examples of irreducible complete Riemannian manifolds which are curva-
ture homogeneous but not locally homogeneous. All these examples have a
symmetric model, i.e., their Riemann curvature tensor satisfies

Ryy-R=0

where the operators Ryy act as derivations on R. Riemannian manifolds satis-
fying the last algebraic condition are said to be semi-symmetric. Many examples
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which are not curvature homogeneous are known.

This broader class of all semi-symmetric spaces has been studied exten-
sively by Szabé [14], [15], [16] A pure existence theorem in [15] shows that
the semi-symmetric spaces in each dimension =3 depend on arbitrary functions
of two variables and functions of one variable. Thus one can expect more
examples of curvature homogeneous spaces inside this class. Motivated by
Szabd’s results, and by a conjecture of M. Gromov (see [2], [6], [7], [18],
for more details), the authors constructed in [6], new explicit examples of
manifolds of the previous type which are curvature homogeneous. Also a com-
plete study of the isometry classes is given there. These examples are obtained
in a geometric way by deforming a flat right invariant metric on a semidirect
product of R and R™*.

In this paper we construct new examples of curvature homogeneous spaces
by deforming a flat right invariant metric on a Lie group which is a semidirect
product of R? and R? In this way we obtain now spaces which are curvature
homogeneous but not semi-symmetric. All of our examples are non-compact.
Actually, the only known examples of compact curvature homogeneous Rie-
mannian spaces which are not locally homogeneous are the non-homogeneous
examples of isoparametric hypersurfaces in spheres described in [4]. It would
be interesting to find other examples in case they exist.

In this context it is worthwhile to mention some recent results of K. Yamato
on three-dimensional curvature homogeneous spaces [2I]. Some of his results
suggest that it could be very difficult to produce compact three-dimensional ex-
amples, but he was able to construct new complete irreducible curvature homo-
geneous metrics on R® with three distinct principal Ricci curvatures. We shall
show here that all these examples have homogeneous models.

It is also remarkable that the isoparametric hypersurfaces in real space
forms are not the only curvature homogeneous hypersurfaces. K. Tsukada con-
structed in an example of a four-dimensional hypersurface in the hyper-
bolic space H°(—1) which is neither locally homogeneous nor isoparametric.
This manifold is isometric to (SOQB)/K)XR*, K=Z,XZ, endowed with a
suitable cohomogeneity one Riemannian metric. The embedding of this mani-
fold in H®%—1) has type number two and it is uniquely determined up to local
congruence. We shall show that this example does not admit a homogeneous
model. To our knowledge, this is the first example of a curvature homogeneous
space without any homogeneous model.

The paper is organized as follows. In Section 1 and Section 2 we construct
our new examples. We focus on some of their curvature properties in Section
3. Section 4 is devoted to the study of the homogeneous model spaces. After
giving a summary of the main results in Section 5, we concentrate on the irre-
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ducibility and the completeness of a special class of examples of Section 6. In
Section 7 we treat the isometry classes of these examples. We finish this paper
by giving some new results about Yamato’s and Tsukada’s examples in Section 8.

1. The group R?x R? with the flat invariant metric g,.

A (connected) Lie group G admits a flat left or right invariant Riemannian
metric g, if and only if its Lie algebra g is the semidirect sum of two mutually
orthogonal Abelian subalgebras §) and f where § acts on f by skew-symmetric
endomorphisms (see [9, p. 298]). In other words g splits as

(1.1) g = 5Pt

where Y is an Abelian subalgebra of g and f an Abelian ideal. Moreover, §
and f are orthogonal and, for each X belonging to ), the operator

(1.2) ady:f—> 1Y —adyY =[X, Y]

is skew-symmetric with respect to go.

Now, let p=dim}) and ¢=dim¥f. Then we can realize the universal cover-
ing group of G as a semidirect product R?x R? of the two additive groups R?
and R? in the following way. We identify %) with R? and ¥ with R? by choos-
ing an orthonormal basis of § and of f. Further, let A be the 8o0(g)-valued
linear form defined on §=R? by

(1.3) AW) = —adw, web.
Then the product in R?x R? is given by the following rule:
(1.4) W, X)(W’, X')=W+W’', e 4P X"+ X).

We denote by w’, x* and A%(W) the components of the vectors W, X and
the entries of the matrix A(W), respectively. (Here and in the sequel, the Latin
indices 7, 7, --- run from 1 to p, and the Greek indices «, 8, --- from p+1 to
p+g.) The entries A% of A are linear forms. Hence one may write

(1.5) ASOW) = w'A%, or AW)=w'A,

where A;=80(q) for i=1, ---, p.
Now, an easy computation shows that the differential one-forms
6 = dw?,
(1.6) _
0% = dx*+A%xPdw’

form a basis for the space of the right invariant differential one-forms on the
Lie group R?x R?. Moreover,
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» . . p+q
(L.7) 8= 20RO+ S 6°Q0°

a=p+1

is a flat right invariant Riemannian metric on this group.
The exterior derivatives of the forms #¢ and ¢ are easily computed from

(1.6). We have

dgt =0,
(1.8) {

40« = — A%:6° NG5

Further, the dual basis is given by the right invariant vector fields

1.9 !
o L5
aT oxe”
From this we get at once
Lei, e;]1=0,
(1.10) [eq, 61 =0,

Less ea] = Alges.
Finally, we note that the endomorphisms A; commute, i.e.,
AiAj - Ain, Z.: ]:1’ Tt py

as follows immediately from the Jacobi identity and [1.3).

2. The deformation of the metric g, and the curvature
homogeneous examples.

Now, we consider on the group manifold R?x R? the Riemannian metric

P . D+q
2.1 g= E w’®wl+a=§+lw“®w“
where

wi — figi, fi>0
2.2)

wa _— 0a

for some positive differentiable functions f* defined on R?*%. The dual ortho-
normal frame is given by the vector fields

{ Ei=(f)"es,
E,=e,.

(2.3)
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Then, from and we get
@.4) { do' = (f)'dfi Ao = (f)HELf '+ Es(f o’} A&,
' do® = d6* = —(f1) A%’ AeP.

As usual, we compute the connection forms w# and the curvature forms 2%
by using the Cartan structural equations. A straightforward computation yields

0§ = ;(fi)'l 0,
(2.5) wh = (f)Es(fHet,
wi = (fO)TE{fY0'—(f)Ef e,

and

(2.6) Q5=0,

(27) ,Qfg = —(fi)_l {_72 E‘an(fi)wi/\(Uj—az] EaE,g(fi)w“/\w"},
2.8) Q== eldf, df)e' N

+(fH > {ERE{(f)— (P EdOHELf ) o* Aot
-2 {ExE(f) =) Ex(fHE(f o A
+(f) D ELE(fo* ANo'=(f) 7 D EE(fo* N
Here g(df?, df’) denotes the inner product of the one-forms df* and df’ induced

by the metric g.
Of course, the metric g is in general no longer right invariant nor homo-

geneous. Nevertheless, it follows from [2.6), [2.7) and [2.8) that this metric is
curvature homogeneous if the following sufficient conditions are satisfied :

(2.9) E.Es(f*) = 251°,

(2.10) EsE(fY) = phift, for =7,

(2.11) gldfs, dfi)y=yvififi,  for i#j,

(2.12) OV HERE(O)—TEOE DY = 04js,  1#], R#,

where Ais, p}; v¥ and ¢y, are constants.

We will not solve the system (2.9)-(2.12) completely. For our purposes it
will be sufficient to provide a particular solution which produces an interesting
example. In order to do this, we note that may be rewritten in the form

otf? )
2.13 =z = Alsft.
(2.13) dxeoxf P f
The integrability conditions show that the matrices *=(4:3) must have rank
one. Therefore, their entries may be written as
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(2.14) Aip = plcich

where p' and ¢} are constant. Then may be solved explicitly. Recall
that we look for positive solutions on the whole of R?*%. Therefore, we may
suppose that the constants p' are positive and equal to 1. In this case, the

general solution of and hence of is given by
(2.15) fi= ai(w)eEac2za+bi(w>e-zac};za’

where a*(w) and b*(w) are arbitrary functions of w=(w!, ---, w?) such that f>0.
In what follows we consider only the special case

(2.16) e, (fH=0

for all 77, and do not pursue the search for the general solution. These con-
ditions (2.16) are equivalent to

gij — Agpxfelaiw) =0,
(2.17) o

ow’ +A§'ﬁx‘86’§bi(w) =0,
for all 7. Hence, we must have

et
2.18) ow’  ow’ 0

> Afgcl =0, i=+7.
Then (2.10) and are also satisfied and (2.11) reduces to

(2.19) D ELVEL) =S i# ]
On the other hand, we have

(2.20) E(f)=cig', i=1,-,p
where

2.21) gt = ai(w)e e " —pi(w)e e,

Therefore, we must have

(2.22) (Zcked)g'g? = vifif?
for /#;7. In what follows we always suppose
Sicked # 0.
a
(Note that ¢i=0, a=p-+1, ---, p+gq, for some 7 gives a trivial product case.)

Then the ratios g'g?/f‘f’ must be constant. This is possible if and only if
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a‘(w)=0 or b (w)=0 identically.
In the sequel we suppose b*(w)=0 for /=1, ---, p. Then we get
PROPOSITION 2.1. Let g be a metric given by (2.1), (2.2) and (1.6) such that
(223) fl = ai<wi)e2ac£¥xar Z':lr Tt p,

where each a'(w?) is an arbitrary positive function of the variable w' and the ci
are constants. If these constants satisfy

(2'24) EA;IﬁC,; = fO?’ Zi]’ i; ]:1’ P,
then the metric g is curvature homogeneous.

It is useful to notice that, if we consider the vectors

¢t = (Chs1r 15 Chag)
as elements of R?=t, then is equivalent to
(2.25) Ac) =0,

where the A; are the skew-symmetric operators introduced in Section 1. In
other words, the vectors ¢/ must belong to the kernel of A; for ;7.

Moreover, we stress the fact that we always suppose that the scalar pro-
ducts

(2.26) {cty > = = cicd

are different from zero.

3. Further properties of the curvature homogeneous examples.

In this section we continue the study of the deformed metric under the
hypotheses of [Proposition 2.1. First, from [2.6), [2.7) and [2.8)] we get

25=0,
(3.1) R} = .cjé(za] o)\t
Qi = —<ct, et AN

where
et 7> #= 0.

We use these formulas to determine the Riemann curvature tensor of g which
is given by

3.2) R=-2> Q58Rw* \w?, A, B=1, -, p+q.
A,B
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We obtain

(3.3) R= —ZiEj ct, c’)mi/\w7®w"/\w7—4i aZﬁ chcho' Ao Q' AwP.
So, the possible non-zero components of R are

{ Rijiy= =< ¢y, i#],

Riaiﬁ = _C&Cé.

(3.4)

Further, it follows easily from [3.4) that the Ricci tensor p is given by
(3.5) o= — lz;e ct, ck>w"®wi—a%kc’;c’,§w“®wﬁ,

and the scalar curvature t by

(3.6) = S-S e,

Further, we compute the covariant derivatives with respect to the Levi
Civita connection D of the metric g. First, from we have

Wi = ;(fi)'l 10",

3.7) wh = cjo’,
) = 0.
Hence,
Dxw' = —o' (X)X cjw?,
(3.8) { h

D xo® = X cfo’(X)w'— T (f) ' A%e (X))o’
j “.p
and

DyE; = —0' (X)X cjEs,
3.9 { 8

DxE, = 3 clw’(X)E;+ Zﬁ(f’)"‘A?awj(X)Eﬁ-
J Js
Taking into account [3.5), [3.8) and [2.24), we can now compute easily the

covariant derivative Dp of the Ricci tensor. We get

(3.10) Do = 2/3 ety e M(ehp—cB) (0" Ru’ Ru'+ o' Qo' RQw?)
i. k,

+ 2}}9 cic AT (0 Q' Qo +0' Quw’ RQa) .
t,a, B.r
Therefore, the possible non-zero components of Dp are
Dipg: = 2Lc, c*M(ch—ch),
(3.11) { o .
Diprp = S cach ARSI

From this we get
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PROPOSITION 3.1. Let Ai(c*)#0 for some ic{l, ---, p}. Then |Dpl| is not
constant and the Riemannian manifold (R?*%, g) is not locally homogeneous.

PrROOF. We have ‘
(3.12) IDpl* =2 %(Dﬂom)?—% 2 et PN AdeNIE ).
Moreover, 2; s(D:pp:)? is constant.

It is important to note that shows that the curvature tensor R does
not depend on the operators A; but only on the constant ci. So, by changing
the A; and by keeping fixed the ¢, we get examples of metrics on R?*? with
the same curvature. In particular, we may put A;=0 for all ;=1, ---, p. We
denote by g’ the Riemannian metric obtained in this way. It is defined by
and where

0t = duw?, 0% = dx*.

In this case, the semidirect product R?x R? is just the direct product of R?
and R? and g, is the standard Euclidean metric of R?*?. Further, from
we get that the covariant derivatives of the one-forms w# are linear combina-
tions with constant coefficients of w*@w®. From this and from it follows
that the metric g’ on RP?*? is infinitesimally homogeneous in the sense of Singer
[13]. Therefore, it is locally homogeneous. Actually, it is locally isometric to
a homogeneous Riemannian space—one of the model spaces—which we will
determine and study in the next section.

4. The model spaces.

In contrast to what we did in Section 1, we consider now the Lie group G
which is a semidirect product of R?x R? where R?is acting on R? as follows:

(4.1) a(X W = e ¢ OW
where
SlaClx® 0 0
0 >alix® ... 0
4.2) C(X)=
0 0 s SNaCEx?

The product law of G is given by
4.3) Wo, X)W, X) = (Wete CFoW, X+ X).
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Hence, the left translations are given by

. el @ .

WL iyy zp = e Pataro iy )1

“4.4)
X% Ly, 2y = X%+ x§.

It follows that a basis of the space of left invariant one-forms on G is given by

&t = f-idwi’
4.5) {

0% = dx*,
where
(4.6) ]?1 — aiezacéa;d

for some non-zero constants a‘.
The first structural equations of G are

4@ = —cla@' N&",
4.7

do* = 0.
Further, let g be the left invariant Riemannian metric on G given by
(4.8) g= ; o' R+ %} TRL

Since are, mutatis mutandis, exactly the same as the first structural equa-
tions of the locally homogeneous metric g’, defined at the end of Section 3,
both metrics have the “same” connection forms. Namely, we have

(4.9) @3=0, @p=ci@’, @=0

(compare with where A;=0). Hence, the Riemannian curvature tensor R
of the metric g is given by

(4.10) R = —2Fc, ¢Ha Ao’ Ra’ \N&
1.7

—4 3 clep@t No R NG?.
i B
Therefore, (G, g) is the desired model space for all the metrics introduced in
[Proposition 2.1| with the corresponding constants cg.
Note that the spaces (R?*%, g’) (see the end of Section 3) and (G, g) are
locally isometric since they have the “same” connection forms. Moreover, if
the functions a’(w?) are bounded from below by positive constants

(4.11) (@ wHyr =z (a' >0, 1=<i<p,

then also the metric g’ is complete. In fact, the intrinsic distance correspond-
ing to g’ is bounded from below by that of g (for more details, see for ex-
ample [7]). In that case, (R?*?, g’) and (G, @) are globally isometric.



Curvature homogeneous spaces with a solvable Lie group 471

Further, the covariant derivatives of the forms @' and & with respect to

the Levi Civita connection D of g are given by
Dxa' = —&'(X) S cka",
(4.12)

Dya* =3 cid( X))@’
J

Using [(4.12) and [(4.10), a straightforward computation yields the following ex-
pression for the covariant derivative of the curvature tensor:

(4.13) R=4 2ﬂ<cf, cH(eh— ) R{a® N/ R N+ &' N’ QaP N&'}.
i, 7,

Because <c?, ¢?>+0 for all 7, j according to our assumption (see Section 2),
we obtain

PROPOSITION 4.1. If the vectors c¢' are not all equal, then the model space
(G, g) is not symmetric.

REMARK. also implies the following general statement: A model space
(G, §) is symmetric if and only if the following condition holds: for each pair
(7, 7) with i<j we have either {ct, ¢/>=0 or c*=c’.

A more algebraic method to prove this result is to show that (G, 2) is
locally symmetric if and only if
(4.14) Ryxy-R=0

for all X, Y. In fact, it has been proved in [15] that a homogeneous semi-sym-
metric space is always locally symmetric.

Next, we consider the possible irreducibility of a model space (G, g) (under
the same hypothesis about {c?, ¢’)).

PROPOSITION 4.2. Let p=q. If rank(ci)=q, then (G, 3) is irreducible.

PROOF. We consider the Riemann curvature tensor R as a two-form with
values in the Lie algebra 8o(p+¢). Then we have

(4.15) R = -2, Hd' NFRE;;—4 2 clehd' No*QE s,
1.7 i

where E,p, 1< A<B<p-+gq, are the skew-symmetric matrices all of whose
entries are zero except those of place (A4, B), and (B, A) respectively, which
are +1, and —1 respectively. Further, recall that

(4-16) [EAB, EBC] = E4¢

for A=B=C=A.
First we see from that E;; belongs to the holonomy algebra Hol(G, 3)
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for all pairs (7, ), i+, because {c*, ¢’>+#0. Further, we also derive from [(4.15)
that

4.17) c:;;a ctEip € hol(G, §)

for every 7 and a. Since for each 7 there exists at least one index a for which
ci#0 (because ¢'#0 for 1<:<p), (4.17) yields

(4.18) % c}Eip € 00l(G, ), 1<i<p.

Then we also have

(4.19) W ZB‘, chEp] = %}CéE,‘ﬁ € §ol(G, &)

for all 7, . By a renumeration of our basis of R?, we can achieve that det(c})
#0 for i=1,2, ---, ¢; B=p+1, ---, p+q. Then yield

(4.20) E;5 € 9ol(G, 2)

for all j and 8. Finally, using [4.16) and [4.20), we see that the operators E,g
also belong to %o!(G, z) and hence

5l(G, &) = 80 (p+q).

This implies that (G, g) is irreducible.

5. Summary.

Before we return to the study of the curvature homogeneous examples we
summarize the main result we obtained up to now.

THEOREM 5.1. Let g be the metric on R?*Yw, x) given by
(5.1) g= Zi]w"@w"—}— Zaa)“@w“
where

w' = 10 = fidw?,
|

w* = 0% = dx*+ AZxPdw?,
i=1, -, p, & B=p+1, -+, p+gq, p=2 and
(5.3) fi= a"(wi)ez“”g‘za, ¢t = const, a*(w*) > 0.
Further, let the operators A;: R*—R? given by
(5.4 Adépsn o5 Eprd) = (BaAfprs, ) 2i€aAlprd)
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be skew-symmetric with respect to the standard metric of R? and suppose they
all commute. If the vectors

(5'5) ¢t = (C;:)+1y Tty c;+q)

satisfy the following conditions:

(i) ¢’ belongs to the kernel of A; for i#j;

(ii) there exists at least one index ¢ such that Ay(c*)+0;

(iii) the inner products {c*, ¢’Y)=3.clc are different from zero,
then (R?*9, g) is a non-homogeneous curvature homogeneous Riemannian manifold
with a non-symmetric homogeneous model. The corresponding model space is one
of the homogeneous spaces (G, 3) treated in Section 4.

REMARK. We see easily that we cannot combine the conditions in
5.1 with those of [Proposition 4.2 which would assure the irreducibility of a
model space (G, Z) (and of the metric g too). In fact, if p=¢, rank(ci)=q and
if (i) of holds, then we always have dimker A;=¢—1 and hence
all the skew-symmetric operators must vanish because rank A,=¢—dim ker 4,<1,
and rank A; is even. Therefore, (R?*% g) would be locally homogeneous as
showed before. Thus we have to consider reducible model spaces as we will
do in the next sections.

6. Irreducibility and completeness for a special class of examples.

In this section we shall construct a family of non-homogeneous examples
with a model space (G,, ;) which is a Riemannian product of the form (G, g)
X R.

THEOREM 6.1. Let (G=R*'x R?, 3) be a model space as in Section 4 where
p=g—1=2, rank(cp)=qg—1 and {c', ¢’>+0 for all i, j=1, -, p. Further, suppose
that for some j={1, ---, p}

6.1) span(ct, -, &, -+, ¢?)&span(ct, -+, ¢P) in R,

Then there is a non-empty family of non-homogeneous spaces (R?*9, g) with the
same curvature tensor as (G, 3)X(R, {,Ycan) (and thus curvature homogeneous).
All spaces of this family are irreducible and complete.

PrOOF. First, note that our conditions imply that (G, 3) is irreducible and
non-symmetric. On the other hand we can see that the new model space (G, g)
X(R, { dcan) is isometric to a model space (G,=R?x R?, 3,) from Section 4 such
that ‘e R with ¢},,=0 for i=1, -+, p. Thus, we shall construct non-homo-
geneous examples (R?*?, g) in the class given in with the addi-
tional conditions c¢}.,=0.
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A. Construction of the non-homogeneous family.

After a renumeration of the vectors ¢!, ---, ¢’ R? we can suppose that
i=1, -, g—1,

B=p+l, -, ptg—1

and is satisfied for ;=1. We define an orthonormal basis (e;, -+, ¢5) of

det(cf) #0  for {

R? as follows: (es, -+, ¢,-1) is an orthonormal basis of span(c? -, ¢*!)=
span(c?, ---, ¢?), e, is a unit vector in span(c', ---, ¢?"') orthogonal to
span(c? -, ¢') and ¢,=%0, ---, 0,1). We define a skew-symmetric operator

A, on R? by the formulas
Aier) = ey, Ailey) = —ey, Ai(e;) =0 otherwise.

We see that A,(¢)#0 and Ai(c))=0 for i=2, ---, p.
Further, we define
Azz"':APZO.

implies that the space (R**9, g) given by (5.1)-(5.4) is a cur-
vature homogeneous space with the model space (G, 3)X(R, <, can). Proposi-
tion 3.1 implies that (R?*%, g) is not locally homogeneous.

B. Irreducibility.

From the proof of Proposition 4.2 it follows that the holonomy algebra of
(R?*4, g) contains all E;;, E;5, E,p5 fori, j=1, -+, pand a, B=p+1, ---, p+q—1.
Further, from and we obtain easily

(6.2) (Dg,RYE1, Eg) =2(f1)" {ch 2 AL E s+ ) 163 Al B}
7 7.

where the coefficient of E,,,, is non-zero for some S because ¢'#0 and
(6.3) ; Afpigcih = (ALY, egy = —< Ai(ey), ¢*> = <ey, ¢y #+ 0.
Hence, E,,.,=hol(R?*?, g) and then we derive that

E4p < hol(R7*9, g)
for all A<B, A, B=1, ---, p+q. This yields the irreducibility.

C. Completeness.

In the matrix notation of we can write
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6.4) g= 3w @du+100,
where

Xp+1
0 =dX+ A, Xdw', X= ( : )

xP‘HI

and Alz(Af‘ﬁ), a, ﬂ:p.{_l, oy P

Now, put
up+1
U=e¢e»4uX, U :( : )
uP‘HI
Then
(6.5) dU = e*'414, URAU = 0R0
and hence,
j4 ) ) p+q
(6.6) g = 1_221(f‘)%iw‘@)a’uﬂ-%—a;pﬂdu“@du“.

Here and X=e 10 imply
6.7) fi= ai(wi)ezch%(wl)uﬁ,

where (P§(w'))=exp(—w'A,) is an orthogonal matrix function and hence |P§(w")|
<1 for all a, B.
Now, in the same way as in [7, Section 11] (see also [12, Prop. 2.1]) we
see first that the metric
p+g
(6.8) g1 = (dw'Qdw'+ a=2+1du“®du“

P

(which is that of a generalized warped product) is complete on R?*™ if 0<a<
a(w')<b holds. But (RP*? g) is then the usual iferated warped product of
(R?*Y, g,) and (R, <, >carn) (made ¢—1 times). Hence, (R?*, g) is complete [3].
Thus, the inequality of the form

0<a<awh)<b

is the only limitation for our family of examples to ensure the completeness.

7. The isomeiry classes of the special examples.

We consider now the examples constructed in Section 6 and study their
isometry classes. Before doing this, we recall that following [3.5), the Ricci
tensor p may be written as
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D ) } p+g
0= 2 bio'QRu'+ = baﬂm“®w‘3
i=1 a, B=p+1
where
bi: "’<ci: éck>; Z."—“]-’ ] p,
(7.2) k=1
baﬂ = _<ca7 C,B>; a, ,3:17+1, ) .17‘*‘(]-

The quadratic form Q=3b,;0*Qw® can be transformed into its diagonal form
p+q l @ a
a=§+1 a77 ®1]

where 4,,,=0. To do this, we only have to take in (2.3) a new orthonormal
(sub)basis
E,=XpEEs, a=p+1, -, p+q,

consisting of eigenvectors of Q. This change is metric preserving. Hence,
from now on, we may assume
+g-1

(7.3) o= Sbw'Bu'+ 3] A Qo

Now, we call our model space to be generic if all scalar products <c?, 2:c*>,
i=1, -+, p, and all eigenvalues of the matrix ({c., cz>), @, f=p+1, -, p+qg—1,
are mutually different and non-zero.

Then we have

PROPOSITION 7.1. For a generic model space, the isomelry classes of the
family constructed in Section 6 depend on one arbitrary function of one variable.

PrROOF. We first fix a generic model space and compare two non-homo-
geneous examples (R?*9, g), (R?*%, §) with the same operator A,=(A4%,). Next,
let ¢ be an isometry between both spaces. Then ¢*j=p and this yields at
once

(7.4) P*@' = o', P*@* = o
Comparing now i]ﬁﬁ]logo:{lell, we get from [3.12)
Jrop=f

(note that Dp involves only f'). In particular we get

and hence

A = edw?, e==+1.

From we then also get
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(7.5) d¥*+eX AfpxPdw! = e (dx+ 3 AfgxPdw?),
with ¢,==+1 and for a=p-+1, ---, p+q. This yields

(7.6) d(F%—ex%) = —eZﬁ}Ai’ﬁ(i‘S—asaxﬁ)dwl
and hence

(7.7) Fr—egqx® = @a(w?),

(7.8) %A?ﬂ(fﬂ—esaxﬁ) = —epu(w'),

a=p+1, -, p+g.

We now prove that Af;+0 always implies eg=¢c.. Indeed, fix an index a
and let K and L, respectively, be the subsets of indices in {p+1, -+, p+g}
for which eg=e¢e,, or eg=—ee, respectively. Then together with
yields

(7.9) > Af(#P+esx?) = —eph(w')— 2 Ao (wh),
BeL rEK
and substituting once more, we get
p+q
(7.10) 23 Atgepx® = —ega(w')— X Afe(w?).
BelL r=p+1

This should be satisfied on the whole of R?*?. But, if some A is non-zero
for B= L, we get a relation between the independent variables x?*!, .-, xP*+2, ?,
which is a contradiction.

Then [7.8) may be rewritten in the form

(7.11) Vo= ——8%]1411‘39)/5, a=p+1, .-+, p+q.

7 = (ﬁozﬁ%(w ))
§0p+q(w1)

we get a matrix differential equation

Putting

(7.12) 7' =—eAZ
with the general solution

(7.13) Z =e*avZ,
that is,

(7.14) ¢a(w) =3 Pg(w")zf

where (P§(w?)) is an orthogonal matrix and zf are real numbers. This yields
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(7.15) J?"‘:eax“-i-%P‘ﬁ(w‘)Z@, a=p+1, -, p+q.

Then, flop=F" and d¥'=edw' imply

1a 1«
d1(6w1+r>ezcaxa — al(wl)ezcaxﬂ

which means

(716) dl(ewl—{—r)ezcclrsaxaexcépg(wl)llg — al<w1)e§:céza’
where » is a constant. Hence e,=1 for a=p+1, ---, p+¢ whenever ¢}+0, and
(7.17) a(ewr+r) = al(wl)e—icéi’g(wl)sz.

Because the matrix (Afs) was fixed in advance, the matrix (P§(w')) is also
well-defined (up to taking the transpose). We see that the function a,(w!) be-
longs to a family containing the function ¢,(w') and depending on ¢+1 arbitrary
parameters and the sign e.

We conclude that, roughly speaking, the isometry classes of our special
non-homogeneous examples depend on one arbitrary function a,(w!) of one
variable.

REMARK. The isometry classes do not depend on other arbitrary functions
because, for =2, ---, p, we can always make the reduction of f2, ---, f? to
fixed functions when introducing the new variables @*=w*w?®) by

dwt = al(w¥)dw?, =2, -, p.

Then is reduced to fi=e®a=® for i>1.

8. Appendix: The examples of Yamato and Tsukada.

In this final section we give some additional results about the curvature
homogeneous examples of Yamato and Tsukada. In particular we focus on the
existence problem of a homogeneous model space. In this context we note that
up to now and to our knowledge there was no example known of a curvature
homogeneous Riemannian manifold whose curvature tensor is not that one of a
homogeneous Riemannian space. We will show that for Yamato’s examples
there exist model spaces but, as we will see, the example of Tsukada has no
homogeneous model at all.

A. The examples of Yamato.

K. Yamato constructed the first example of a three-dimensional non-homo-
geneous curvature homogeneous Riemannian manifold with three distinct (con-
stant) principal Ricci curvatures p;, ps, 03 [21]. Not all possible triples (o1, p2, p3)
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are admitted. Namely, if we put

(8.1) A= &i‘u” B 1~ 0s C = _(pl+PZ)(p3"'P2)2

2 - pa—Pz, N (02— p1)?
we have the restrictions

8.2) A>0, C >0, A+4+BC > 0.

2

Yamato’s explicit example is the complete space (Rx, y, z), &) where g is
given by
g= iZ:)i o' Qo'
with
' = dx—{xg(e)+yf ()} dz,
0® = dy—{xg(z)+ By¢(2)}dz,
' =dz.
Here ¢(z) is a solution of the differential equation
98 1+ BYg—C) =0
satisfying ¢*<C and f, g are the functions chosen so that
f*—g*=2{p,+(1+B)C},

(f+8)* = LA+ B¢,

f+g>0.
For these manifolds we have

PROPOSITION 8.1. Let § be a Riemannian metric on R® of Yamato’s type
with principal Ricci curvatures pi, ps, ps. Then p3<0, p10.<0 and g has the
same curvature as a three-dimensional unimodular Lie group endowed with a sui-
table left invariant Riemannian melric g'. :

PROOF. From we obtain, assuming B=1,

8.3 p: = (B+1)(B—1)""{2A+C(B+1)},
(8.4) p: = —(B+1)X(B—1)""{2A+ BC(B+1)},
(8.5) 0 = —(B+1C—2A.

Note that B#—1 since the p, are distinct. Moreover, B+1 always holds since
otherwise A=—C=1/2p, and A4 BC=0 in contrast to the conditions (8.2).

From and we get p;<0. On the other hand [8.2), and
yield p,0.<0. Therefore the signature of the Ricci tensor is (4, —, —).
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Now, from [9] we know that a unimodular three-dimensional Lie group G
endowed with a left invariant metric g’ admits an orthonormal frame (ey, e, ¢;)
whose elements are left invariant vector fields satisfying

(8.6) e, ex] = Ases, [es, es] = Asey, [es, e1] = Ase,

where the A;, 7=1, 2, 3 are constants. The corresponding principal Ricci cur-
vatures are given by

(8.7) P11 = 2[12[13, P22 = 2#3[11, P33 = 2[11/12
where
{8.8) 2#1’ = (h+2A+1)—1;,

i=1, 2, 3. Solving (8.7) for ‘uvi, =1, 2, 3, we get

8.9 942 — P22033 ) 22 = Q33011 2,2 — 0110322 )
©3) “ Pu He P22 Ha P33
It is clear that these equations always admit a solution if p;;=p:, =1, 2,3 and

0s<0, 0:0,<0. This gives the desired metric g’.

B. The example of Tsukada.

Finally, we turn to Tsukada’s four-dimensional example mentioned in the
introduction. In case that it admits a homogeneous model (M’, g’), the universal
covering of it must be a symmetric space or a Riemannian group space since
every four-dimensional simply connected homogeneous Riemannian manifold is
a symmetric space or a Lie group with a left invariant metric on it (see, for
example, [1]). The case of a symmetric model can be excluded since it follows
easily from Tsukada’s explicit formulas that the Riemann curvature tensor R
does not satisfy Ryy-R=0. So we are left with the possible existence of a
Lie group as model space. We shall now prove that such a model space can-
not exist.

First of all we recall the basic property of the curvature of Tsukada’s ex-
ample (M, g): in each tangent space T,M there exists an orthonormal basis
for which the components R, of the Riemann curvature tensor are given by

R1212 = 3,
(8.10) Ri;; = —1 for each couple (7, j) such that 1<i<j<4, @, )+, 2),
Ri;»i =0 whenever at least three indices are different.

Now, let g be the Lie algebra of the supposed model space (M, g")=(G, g')
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and let (e, e, es, e,) be an orthonormal basis of (g, <,») for which the curva-
ture components of (G, g’) satisfy (8.10). Let &', ---, * be the invariant one-
forms which are dual to e,, ---, e, i.e., g =30*®w’. The structural equations
of Cartan are given by

(8.11) do'+X b No™ =0, oito]=0,

(8.12) dw}%—%}wﬁn/\w,- = %kﬁl Rijn@* Nt

where 7, J, k, I {1, 2, 3, 4}. Further, we have

(8.18) OHES ? I, ,7=1,2,3,4

where I'%, are constant coefficients (the components of the Riemannian con-

nection).
By differentiation of we obtain

; (Rnjr 107+ Rimp i@l + Rijmiof + Rijr o) A0* No' = 0,

k

and substituting from (8.13) we get the (reduced) second Bianchi identity
(8.14) @n,k,l[%(ijkzri"}r{‘Rimklpﬁ—l—Rijthﬂ'*‘Rukmrﬂz)] =0,
1Sh<k<lZd4, 1<q, j=4.

By a routine calculation, using the conditions (8.10) and the skew-symmetry
I'i,+I'i,=0, we obtain the following relations for the connection coefficients:

I'ity =0 whenever 1</<2 and 3<j, k<4,
(8.15) I'si+I'%, =0,
I'si+rs, =0.
Hence, (8.13) takes the form
wi = aw'+bw’+ cwd+ fwt,
©} = dw'+bw,+ 0’ + fot,
(8.16) = awlﬂi “
w; = do'+ Bo?,
0 = 70— aw?,
0 = 0w'—aw?,

with constant coefficients.
We shall now rewrite in the more explicit form using (8.13):
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(8.17) = (L TR—T )+l fi— Tl = Rijaa.

If we substitute here the reduced forms (8.16) we obtain a system of 36 qua-

dratic equations for the 14 unknowns a, b, ¢, f, @, b,¢, f, a, B, 7,0, &, B. For

the sake of brevity, we shall denote by E(%, jo, ko, [o) the equation of

corresponding to the fixed choice of indices (7, 7, &, )=, Jo, ko, Lo), 1=140, Fo,

ko, [b<4. We will show that this system of algebraic equations is inconsistent.
First, the equations E(1, 3, 2, 3) and E(2, 3, 1, 3) give

(8.18) 2ac—pc =0, 2a¢c—0¢ =0
and hence (f—8)¢=0. Next, the equations E(1, 4, 2, 4) and E(2, 4, 1, 4) give
(8.19) 2af+Bf =0, 2af+rf=0

and so (8—7)f=0. Since the equation E(3, 4, 3, 4) means that ¢*+ f2=1, there
are just three possible cases:
i) ¢=0, =1, B=r71;

iiy ¢2=1, =0, f=0;

iliy fe+0, =7, f=0.

We treat these cases separately :

—the case 1)

The equation E(1, 2, 3,4) means that c¢i+ff=0, i.e., f=0. Then [8.19)
implies B=7r=0. The equation E(2, 3, 2, 3) then yields «*=1 and implies
c=0. From E(1, 4,2, 3) we get §=0. Comparing the equations E(l, 4,1, 4)
and E(2, 4, 2, 4) we get af=0, a contradiction.

—the case 1)

From the equation ¢é+ff=0 we get ¢=0 and from we obtain F=4d
=0. The equation E(1, 4, 1, 4) then yields &*=1 and implies f=0. Then
the equation E(1, 3, 2, 4) implies f=0. Comparing the equations E(1, 3, 1, 3)
and E(2, 3, 2, 3) we get ac=0, a contradiction.

—the case ii7) '

The equation E(1, 2, 1, 2) implies a*+7*+a*+0*=3+a*+b*. Comparing the
equation E(1, 3,1, 3), E(2, 3, 2, 3) we get a®+7*=1, and comparing the equations
E1,4,1,4), E2,4,2,4) we get a*+0°=1. Hence 2=3+a*+0b% a contradiction.

This finishes the proof of our claim.

NOTE. The main purpose of is the determination of the curvature
homogeneous hypersurfaces in a real space form M"*'(c) (of constant sectional
curvature ¢). There, Tsukada proved that such a hypersurface has constant sec-
tional curvature ¢, or is isoparametric or has type number two at each point.
In the last case n=4 or n=3 if ¢<0, and n=3 if ¢>0. Moreover, for n=4
(and ¢<0) it is locally isometric to the example discussed above. Therefore,
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Tsukada obtained a complete description of the curvature homogeneous hyper-
surfaces of dimension n=4 of real space forms. For n=3 the problem is still
open. Actually, it is not known if there exist curvature homogeneous hyper-
surfaces in S4(1/r%) or HY(—1/r*) which are neither locally homogeneous nor iso-
parametric. In any case, if such a non-trivial hypersurface exists in H*(—1/7?%),
it cannot be compact. In fact, every curvature homogeneous hypersurface must
have constant scalar curvature. Therefore, if ¢<0, a beautiful result of Ros-

Montiel and Korevaar (see [10], [1I], [5]) then implies that M?® is congruent
to a geodesic sphere and therefore is locally homogeneous.

References

[1] L.Bérard-Bergery, Les espaces homogénes riemanniens de dimension 4, Géométrie
riemannienne en dimension 4, Séminaire A. Besse, Cedic, Paris, 1981, pp. 40-60.

[2] M. Berger, L’oeuvre d’André Lichnerowicz en géométrie riemannienne, Physique
quantique et géométrie (eds. D. Bernard and Y. Choquet-Bruhat), Colloque Géométrie et
Physique 1986 en I’honneur d’André Lichnerowicz, Travaux en Cours, Hermann,
Paris, 1988, pp. 11-24.

[3] R.L.Bishop and B.O’ Neill, Manifolds of negative curvature, Trans. Amer. Math.
Soc., 145 (1969), 1-49,

[4] D. Ferus, H. Karcher and H.F. Miinzner, Cliffordalgebren und neue isoparametrische
Hyperflichen, Math. Z., 177 (1981), 479-502.

[51 N.J. Korevaar, Sphere theorems via Alexandrov for constant Weingarten curvature
hypersurfaces-appendix to a note of Ros, J. Differential Geom., 27 (1988), 221-223.

[6] O.Kowalski, F. Tricerri and L. Vanhecke, Exemples nouveaux de variétés rieman-
niennes non-homogénes dont le tenseur de courbure est celui d’un espace symétrique
riemannien, C.R. Acad. Sci. Paris, Sér. I, 311 (1990), 355-360.

[7]1 O.Koewalski, F. Tricerri and L. Vanhecke, Curvature homogeneous Riemannian
manifolds, J. Math. Pures Appl., to appear.

[ 871 F.Lastaria and F. Tricerri, Curvature-orbits and locally homogeneous Riemannian
manifolds, Ann. Mat. Pura Appl., to appear.

£9] J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. in Math., 21
(1976), 293-329.

[10] S. Montiel and A. Ros, Compact hypersurfaces: the Alexandrov theorem for higher
order mean curvatures, to appear in do Carmo 60th birthday volume.

[117 A.Ros, Compact hypersurfaces with constant scalar curvature and a congruence
theorem, J. Differential Geom., 27 (1988), 215-220.

[12] K. Sekigawa, On the Riemannian manifolds of the form Bx ;F, Kodai Math. Sem.
Rep., 26 (1975), 343-347.

[13] I.M. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math., 13 (1960),
685-697.

[14] Z.1. Szabd, Classification and construction of complete hypersusfaces satisfying
R(X,Y)-R=0, Acta Sci. Math., 47 (1984), 321-348.

[15]1 Z.I. Szabd, Structure theorems on Riemannian manifolds satisfying R(X,Y)-R=0,
I, Local version, J. Differential Geom., 17 (1982), 531-582.

[16] Z.I. Szabd, Structure theorems on Riemannian manifolds satisfying R(X,Y).R=0,
I, Global version, Geometriae Dedicata, 19 (1985), 65-108.



484

[17]
(18]
(19]
[20]

[21]

0. KowaLskl, F. TrRICERRI and L. VANHECKE

H. Takagi, On curvature homogeneity of Riemannian manifolds, Téhoku Math. J.,
26 (1974), 581-585.

F. Tricerri, Varieta riemanniane che hanno la stessa curvatura di uno spazio omo-
geneo ed una congettura di Gromov, Riv. Mat. Univ. Parma, 14 (1988), 91-104.

F. Tricerri and L. Vanhecke, Curvature homogeneous Riemannian manifolds, Ann.
Sci. Ecole Norm. Sup., 22 (1989), 535-554.

T. Tsukada, Curvature homogeneous hypersurfaces immersed in a real space form,
To6hoku Math. J., 40 (1988), 221-244.

K. Yamato, A characterization of locally homogeneous Riemann manifolds of di-
mension 3, Nagoga Math. J., 123 (1991), 77-90.

Oldfich KOWALSKI Franco TRICERRI

Faculty of Mathematics and Physics Dipartimento di Matematica “U. Dini”
Charles University Universita di Firenze

Sokolovska 83 Viale Morgagni 67/A

18600 Praha 50134 Firenze

Czechoslovakia Italy

Lieven VANHECKE

Department of Mathematics
Katholieke Universiteit Leuven
Celestijnenlaan 200B

3001 Leuven

Belgium



	Introduction.
	1. The group $R^{p}\ltimes ...
	2. The deformation of ...
	3. Further properties ...
	4. The model sPaces.
	5. Summary.
	THEOREM 5.1. ...

	6. Irreducibility and ...
	THEOREM 6.1. ...

	7. The isometry classes ...
	8. Appendix: The examples ...
	References

