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1. Introduction.

The probabilistic approach to the Littlewood-Paley-Stein inequality was
begun by Meyer [18]. Recently Bakry and Emery introduced the concept of I's.
They used it to discuss the hypercontractivity. Further Bakry [4] established
the Littlewood-Paley-Stein inequality for a diffusion process under the condition
that I', is non-negative and subsequently, in [6] he obtained it for a diffusion
process on a complete Riemannian manifold under conditions for Ricci curvature
and the Hessian of the density function, which assures equivalently that I, is
bounded from below. The main purpose of this paper is to extend his result
to the case that I', is bounded from below under the general setting. Moreover
we discuss the sections of Hermitian bundles. We begin with introducing I.

Let M be a complete separable metric space and m be a Borel measure on
M. Suppose we are given an m-symmetric diffusion process (X;, P.).ex on M
and let ¢‘Z be the corresponding symmetric semigroup on L*M; m) with the
generator L. We assume that the diffusion (X;, P.).ex iS conservative and that
there exists a dense subspace A in L¥M; m) such that

(i) A is an algebra,

(ii) ASMisp<wl?(M; m)NDom(L),

(iii) A is stable under the operation of L.

Then we can define a sesquilinear map I": AXA—A by

I, 8 = 5 \LGUD—(LNE~ (LB}
where -~ denotes the complex conjugate. Then I, is defined by
Iif, 8) =5 (LI, )~T(Lf, )~Tf, L&) .

We simply denote I'y(f, f) and I'(f, f) by I':(f) and I'(f), respectively.

More generally, we consider a trivial vector bundle E=M XC™" and denote
the set of all sections whose components belong to A by A(C"). Then L can
be easily extended to the space of sections of E. Similarly, I" can be extended
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to A(C™) in natural way. We consider an operator of the form L—U where
U(x) is nXn Hermitian matrices which we call a potential. We assume that
U is locally bounded and further there exists 8=0 such that

Ulx) =z —B1, for xe M

where I, is the identity matrix. For this operator L—U, we define ﬁz by

Palu, v) = 5 (LT, )= (L =0, )=, (LU}
for u,ve AC™).

The semigroup on L*M; m)QRC™ generated by L—U is not a contraction
semigroup in general and we consider the following generator L ;

L=L-Ux)—al,

where « is a positive constant. Taking « to be large enough, the semigroup
generated by L is contraction and we can define Littlewood-Paley G-functions
associated with L (for precise definition, see section 2).
We suppose that I, is bounded from below, i.e., there exist constants a,
b=0 such that
Fy(u) z —al(w)—blul®.

We assume that the above inequality holds for not only u= A(C™) but also
P, us4 (C") where {P,} is the semigroup generated by L. Here we implicitly
suppose that I'; is well-defined for P,u, usA(C™).

Our main results below will be to establish the Littlewood-Paley-Stein
inequality for such G-functions. Moreover we also discuss the case that a fiber
space is a Hilbert space. We discuss two examples. First one is considered
on an abstract Wiener space. In this case, we have to consider a vector bundle
whose fiber is a Hilbert space. Second one is a Laplacian acting on a vector
bundle over a complete Riemannian manifold.. As applications we will discuss,
in another papers, the problem related to the Riesz transformation and Sobolev
spaces on an abstract Wiener space ([23]) and on a complete Riemannian mani-
fold ([301]).

The organization of this paper is as follows. In section 2, we give estimates
of I'(P,) and I'(§,), P,, J. being a semigroup and a Cauchy semigroup generated
by L, respectively. In these estimates, the assumption that [, is bounded from
below is crucial. In section 3, we introduce the Littlewood-Paley G-functions
and H-functions and discuss the relation among them. In section 4 we give
estimates of G-functions and H-functions and thereby obtain a proof of Lit-
tlewood-Paley-Stein inequalities. Here we follow a probabilistic proof of Meyer
[187] and Bakry [6], in which inequalities for submartingales play an important
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role. We give examples in section 5.

2. Symmetric diffusion.

Let M be a complete separable metric space and m be a o-finite Borel
measure on M. By L*M; m), we denote the complex L2space. Let (X;, P.)ren
be an m-symmetric diffusion process on M. We assume that the diffusion is
conservative. Then the corresponding contraction semigroup {P.,} on L*M; m)
is given by;

2.1) Pf(x)=E.[f(XD], feLM;m)

where E, stands for the expectation with respect to the probability measure
P,. Let L be the generator of {P;}. We assume that there exists a dense
subspace A in LM ; m) satisfying (i), (ii) and (iii) in section 1.

As in section 1 we define sesquilinear maps I" and I'; as follows. For
[, 8EA,

2.2) I, &)= AL D—(LAE—{(LD},

@3) Ii(f, 8) = 5 LT/, )~ T(Lf, TS, L)}

We simply denote I'(f, f) by I'(f) and 'y (f, f) by I'«(f), respectively and we
remark that I'(f)=0 (see e.g., Bakry-Emery [3]). We set E=MXC?", i.e., E
is a trivial vector bundle over M with a fiber C*. We denote the set of all
sections of E by I'(E). In general, we denote the space of LP-sections by
L?(I’(E); m). We also denote the set of all sections whose components belong
to A by A(C™). Then L can be extended to A(C"™) componentwise. Also I
can be extended to A(C™) naturally as follows;

I'(u, v)= -;—{L(u-v)—Lu-v—u-Lv}

= ér(ui’ ,Ui)’ for u:(ul’ tty un)y y:(vl, Tty vn)EJ(Cn):

where - stands for the inner product in C": z-z’=3%,zz’t. We consider an
operator of the form L—U(x) where U(x) is an nXn Hermitian matrix function
which is locally bounded and we assume that U(x) is bounded from below, i.e.,
there exists $=0 so that

(A.1) Ulx) =z —B1, for x& M.

Further [ , associated with L—U is defined by
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Fou, v)= —%—{LF(u, =T L—Uu, v)~I(u, (L—Uw)}.
We consider an operator L of the following form;
(2.4) L=L-U—al,
where a is a positive constant. We denote by {P,} the semigroup generated

by L.

We assume that fz is bounded from below, i.e., there exist constants a, b=
0 such that

(A2) Tyu)=—al(w)—blu|® for ue AC™ and u= Pw, ve AC™).

Here we have to assume that lz"2 is well-defined for not only u<A(C™) but also
P, us A(C™) because Pu, usA(C") is not in A(C™) generally. A sufficient
condition is that for u€A(C™), | P,u|? belongs to Dom(L) and further I'(Pu)
belongs to Dom(L).

We now give a probabilistic representation of the semigroup {P,} and
thereby we show that {P,} is a contraction semigroup if we take a large enough.
First we define a multiplicative functional M,=M,(X) of X as the solution to
the following differential equation;

dM; = ‘—MgU(Xz)dt
Mo = In.

Define a semigroup {P,} on L¥I(E); m) by

(2.5) {

2.6) Pu(x) = E.[e-*M(X)u(X,)], for ue LXI'(E); m).
The following proposition is a generalization of Feynman-Kac formula.

PROPOSITION 2.1. {P,} is a strongly continuous symmetric semigroup on
L¥I'(E); m) with the generator L. Moreover it holds that

(2.7) | Pau(x)| < e~ @=P'P,|u|(x)

PrROOF. Let M,(X)* be the adjoint matrix of M,(X). Then M,(X)* satisfies
the following differential equation;

{ dM(X)* = “'U(Xz)Mt(X)*df

28 M(X)*=1,.

Hence for £=C™,

%IMz(X)*EP = —(U(X)M(X)*&, My(X)*€)—(M(X)*E, UX)M(X)*€)
= 2B Mu(X)*§|".
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By the Gronwall inequality, we have
IMU(X)*€|* = e*#*1€]".
Thus we have
IM{( X)) £ce = 1M X)*]| cemy < et

where ||-] -« stands for the operator norm.

Now it is easy to see that {P,} isa strongly continuous semigroup satisfy-
ing (2.7). Moreover, by using the Itd formula, we can show that L is the
generator of {P,}.

Next we show that {13,} is symmetric. To show this, let E, denote the
expectation for the process (X;) with initial distribution m. Take any T >0
and fix it. Let us consider the reversed process Y,=Xr_,, 0<t<T. Note that
{M,(Y)™'} satisfies

dM(Y ) =UY dM(Y ) dt
{ MY)?*=1,.
Hence

{ & Mo (VY Mo(¥) = ~U(KDMy_(Y Y Mr(Y),

My oY) Mz(Y) = 1.

By the uniqueness of the solution to (2.8), we have for 0<t<T,
M- oY) 'Mz(Y) = M((X)*.

In particular, it holds that Mp(Y)=Mp(X)*. By the symmetry of (X,), (X.)osssr
and (Y.)es:sr have the same law under P, and hence we have

Eal(Mo(X)u(Xz), u(X)] = Enl(w(Xz), Mo(X)*v(X0))]
= Enl(u(Y o), Mr(Y)u(Y )]
= En[(u(Xo), Mr(X)v(X1))]

which implies that {P,} is symmetric. [J

By the above proposition, {P,} is a contraction semigroup if a=p. There-
fore, throughout this paper, we always assume that a=f8. We construct the
Cauchy semigroup (or Poisson semigroup) by the following subordination method.
For any t=0, let p, be the probability measure on [0, ) such that

S:e‘“;z;(ds) =e %t for 2>0.

As is well-known, g, is of the following form;
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(2.9) #t(ds): 2\1‘/;@-:2/“8—3/2[18_

Then the Cauchy semigroup is defined by

(2.10) G. = Putds).

The generator of {Q,} in L*I(E); m) is —V—L. We call it the Cauchy
generator and denote by C.
Next we consider I'(P,u) and I'(Q.u) and have the following proposition.

PROPOSITION 2.2. Assume that (A.1) and (A.2) hold. Take a,7>0 so that
aza+7y and a>B+7r. Then we have

(2.11) T'(Pu) £ P.I(u)+KP# | u|?
where K=b/(a—B—7) and P{=e¢ %P,
PrOOF. Take any T >0 and fix it. Define g(t) for 0Zt<T by
g(t) = PEOT(Proyu)+KP&0 | Progu|®.
We first show that g’(t)=0. In fact, by using (A.1), (A.2) and (2.7) we have
g'(t) = P& LI'(Pp_yu)—2r P& I(Pr_yu)
—PEOL(LPr_yu, Pr_ju)—P@#°(Pp_ou, LPr_u)
+KPEOL| Pp_qu|*—2rKP& | Pp_yu|®
—KPE(LPp_yu, Proyu)—KP#(Pp_yu, LPr_u)
= P& LT(Pp_ou)—2r PEPT(Pp_u)—PEPT(L—U)Pr_u, Pr_u)
— P& (Pp_yu, (L—U)Pp_u)+2a P& (Pp_ou)
+KP#L| Pp_yu |*—2rKP$ | Pp_yu|*— KPP (LPy_qu, Pr_.u)
—KP&(Pr_u, LPr_u)+2Ka P& | Pr_u|?
+KPE(U Pr_yu, Pr_ou)+KP&P(Pp_qu, UPp_ 1)
> 2PEPL ( Pr_u)+2(a—7)PE T (Pr_ou)
+2KPE T (Pr_qu)+2a—1)KPE#0| Pr_ou|?
—2BKP&P | Pr_u|®
= Aa—7—a-+K)PE(Proyu)—2bP 80| Pr_ou|?
+2K(a—B—1)P&| Pr_yu|?
= {2K(a—B—7)—2b} P&*° | Pr_qu|®
=0.
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Thus we have g(0)<g(T) and hence, we have
I(Pru)+K|Pru|® < PEPT(u)+KPEP |u ).
Now (2.11) easily follows. [

By the above proposition, we have the following key inequality. We denote
the subordination of {P{*"} by {Q{"} i.e.,

Qer = {"Pen pu(ds).
0
PROPOSITION 2.3. Under the same assumptions as in Proposition 2.2, we have

(2.12) IQ.u) < QI(wW)+KQE |u|.

PROOF. We note the Schwarz inequality for I, i.e., |I'(u, v)|<~I'(u)%
~T'(v). Then we have,

I'@w) = F(S:’ﬁ,u #(ds))
= ([ Pauptas), | Papae)
- S:pt(ds)gjyt(dr)r(ﬁgu, P
= (") ntde) VI (Paw) VI Pty
= {{VIPaw) paas)} = [TrPanpads)

= [TPL GO+ KPED 017 pr(ds) = QU+ KQEP u]?
which is the desired result. [

So far, we take C™ as a fiber space. More generally, we can take a Hilbert
space 4 in place of C". In this case, we sometimes need to consider an un-
bounded potential U. It is difficult to handle the general case however and we
assume that U is constant: U(x)=A, for all x&M. Furthermore, we assume
that A is a self-adjoint operator and bounded from below, i.e., there exists a
constant 8 so that

(A.1y Az —Bla
where I4 is the identity operator on 4. This condition is similar to (A.1).
So we consider an operator of the form L=L—A—aly4 on L¥I'(E); m), where

in this case, E=MXJ4. We set A(4) to be the set of all 4 -valued functions
u of the form

N
u = afzh“ for fl SR h; S5 Cw(A)
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where C2(A)=N%-.Dom(A™).

The semigroup {P,} generated by L is represented by
(2.13) Bu(x) = E.[le=*T u(X,)]

where T,=e"*4. Note that |Pu(x)|s4<e PP, u|q(x) where |-|4 is the
Hilbert norm in 4. In fact,

| Bou(x) s < E.[le ' Tou(X,)| 4] < E.[e~**ef* | u(X.)] &]

< e PPy | 4(x).

On the other hand, we have

Cyu, v)= -;—{Ll"(u, =T L—U)u, v)—I(u, (L—UW)}

= %{LF(u, W—T(Lu, v)—(u, Lv)+T(Au, v)+T(Au, v)} .

By using (A.1), we easily have
I'(Au, u) = —BI(u, u).

Assuming that I', associated with L is bounded from below, i.e., there exist
constants a, b=0 such that

(A2  TIyf)z—al'(f)—=blfI* for fedand f=Pg gE A,
we have
Cyu) = —(a+Pw)=blul?  for ue AHL) and u = P, v & A(K).

Hence by a similar proof to that of Proposition 2.2 and Proposition 2.3, we
have the same result in infinite dimensional case;

PROPOSITION 2.4.. Assume that (A.1) and (A.2) hold. Take a, >0 so that
a>a+B+r. Then for ueA(H),

(2.14) I'(Pu) < P.T(w)+KP& |u |
and
(2.15) F(Qw) < QI (u)+KQE |u|®.

where K=b/(a—B—T7).

For simplicity, we consider, in the sequel, only the finite dimensional case,
the infinite dimensional case being similarly discussed by virtue of Proposition
2.4 under the assumptions (A.1)’ and (A.2).
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3. Littlewood-Paley G-functions.

Let us introduce the Littlewood-Paley G-functions. For any usA(C™") (or
A(4)), define

& 0= |2 Gt

g'(x, t) = I'(Q.u)x)
g(x,t) =g (x, )+g"(x, t).

Then, Littlewood-Paley’s G-functions are defined by

3.1 Gux) = {[te(x, ndt} "
3.2) Gru(x) = {S:tg’(x, ndt}
3.3) Gux) = {{ gz, at} .
Moreover, we define the H-functions by

3.4 Heu(x) = {[tQue-x, ndt}”
3.5) Hu(x) = {{tQue(x, et} "
(3.6) Hu(x) = {[ 1Qugtx, ar} ™.

The following proposition is easily obtained by the spectral decomposition :

PROPOSITION 3.1. For a=p, it holds that
37 1G-ull = 5 lu—Eouls,
where E, is the projection to Ker(L) and Sfurther
(38) 16"l < 7 lula.

PrROOF. (3.7) is well known. We show (3.8). By the spectral decomposi-
tion for L, we have

z=_g°"

a

E;.
ME;

Hence
16l = tde{ P@axemid) = (e (LG, Quuxm(dx)

= —S:t dtSM(Z@zu, C—?zu)(x)m(dx)—gjt dtSM((U-i—a)@:u, Q.u)(x)m(d x)
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gg“’tdtr ,ze—mdlEm|2—(a—/3>§°°tdtg°° e | Eu|?
0 a-B 0 a-8
< “ 2 — 2
[ ardiBamr = Fhult.
Here in the fifth line we used S:te'zf‘dt=l/452. O
Next we establish the relation between G-functions and H-functions. For
notational simplicity, we write |ull,<|[v|, if there exists a positive constant

¢p depending only on p so that ||u|,<c,llv]|,. We use this convention without
mentioning.

PROPOSITION 3.2. For az=f it holds that
3.9 G*u £ 2H"u.

Further assuming the same assumptions as in Proposition 2.2, it holds that for
p=2,

(3.10) 1G ull, < 1H ullp+~E/7lul,.

PROOF. By Proposition 2.1 we have,
Q)1 < [T 1Pt Ppds) < [TemseoPyu ()p(ds)

< S:Pslulz(x)pz(dS) = Q.|ul*(x).
Therefore

g (x, 2t) = 182 su(x)l;t = | CQuu(x)|?
= 10,C0u(x)* < Q.1COwu|(x) = Qug"(x, 1).

Thus we have,

Gu(x) = {S tg

0

~(x, t)dt}m - {4S:°tg~<x, 2t)dt}”2

< {4S”tQ,g~<x, z)dt}’” — 2Hu(x).

0

Next we show (3.10). By using Proposition 2.3 and the Hélder inequality,
we have

|Gruo)]? = {[ @™
= {S?KQJ’ (u)(x)+KQézf>|u|2(x))d¢}’"’2

Il

{HTu(x)Z—}-Kg:otQéZ” |u|¥(x)dt }pm
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p/2

< HruGr+ Koo T1Qem | (odt |
Let ¢ be a conjugate exponent of p/2: (1/9)+(2/p)=1. Then we have
[{§t@em utrar )™
- e memaf e rrons)”|

B Y R |

S ) s oo

< \/—7;‘ (q+1p,n/2q“ u “ g S:et V7p/20-tVTD Yt

= Julpy Tl < g T
Thus we have

1G ullp < IH ullp+~VE/Tul»
which completes the proof. O

LEMMA 3.3. For ucJA(C™), set f(x, a)=|Qqu(x)| and for ¢>0, fdx, a)
=+/f(x, a?+¢e®. Then for p=2 it holds that

(3.11) (55+L) /220
and for 1<p<2, it holds that
62 -2
(3.12) (5o +L) 2z 2p(0-1f%
where g=g(x, a) is defined by
805, @)= | - Qo] T @),

PrROOF. We first show

(3.13) (Z5+L) s, 0 = 26(x, @).

2
To show this, we note that (aa—az—{—L)Qau(x):O. Hence
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(Zo+L)fx, ar

= (2 +1)iGure

2 — — — — — - —
= 2Re( 25 O, Gur))+2( 2 Qut, 2 Qo) +2 Re(LTo, Q) +2T @t

= —2Re((L—U—e)at, Q) +2| 2 Gor| +2Re(Leu, o) +2I (@)

> 2(a—B)|Qau|*+2g(x, a)
= 2g(x, a).

Here Re denotes the real part and we used (A.l) in the fourth line.
Secondly we show (3.11). To show this we recall the following fundamental
relation of L and I': for F(&, &, ---, &M C=(R™) and f!, f2, -, frEUA

LR, £ £ = B35 L+ 31 S8, £

(see [3] Lemme 1). Hence we have,
(Zsrr)rr= (2t L)
= 2y (Lo n) e B (L ) (L) )

=2 (o) Lo (S p) o).

Hence, by using (3.13) for p=2,

az
s tL) 2z pfre(x, a)20

which proves (3.11).
Lastly we show (3.12) for 1<p=<2. Let us recall the derivation property
of I' (see [3]);
I'(fg, hy=fI'g, W+gl'(f, h).

Then, writing @au=v=(v‘, v?, -+, v™), we have
L) =rys=rIrue, ~»
= F é viﬁ, é Uj;>
i=1 j=1

= B WG, PTG, v

7, j=1
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(2

\/ig',’;llvafIZ{\/mﬁillr<z7, 57"”\/1-%'”?' v)?

,é: WA T, V) +0 I TG, o)+ TG, DR N ORI

1

AN

] B0 i 5 e o)
<4| vl”\/ PP ACINCD

< 4jv]* 3 1)
< 41Qou* T (Qau).

Therefore,

2 i)

= p777%80e, 0+ L0277 {t Re( L Gurt, Que) +410u T (@)}

= pfra(r, o+ D01 a] 2 Gun

1Gaul*+41Gaul TG e}

-

0
%Qau

2+F(@au)}

= pf2%8(x, +p(0—~2f 2
Z p(p—Df (%, )

which completes the proof. O

4. The proof of Littlewood-Paley-Stein inequalities by martingale
approach.

In this section, we give estimates of G and H by a probabilistic method.
The original idea is due to P. A. Meyer [18] but we mainly follow Bakry [6].
So many parts are merely repetition of Bakry [4, 6] or Meyer [18, 19] with
slight modification, but we give proofs for the completeness. Let (X;, P;) be
the diffusion process on M as before. We need an additional 1-dimensional
Brownian motion (B,):;, and we regard M as a vertical space. So, from now
on, we write P} in place of P,. Let (B, P;) be a 1-dimensional Brownian
motion starting at a= R with the generator d?/da® Note that the time scale
of this Brownian motion is different from the standard one up to constant, but
we use this for notational simplicity. Let ¢ be the hitting time of (B;) to 0, i.e.,

v =inf{t; B,=0}.
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We consider the following stopped diffusion (Y, P, 4;) on the state space M X
R, where R,=[0, <o);

4.1 Yii=(Xine, Bipe)y  Peaoari= PiQP3.

So the generator of (V) is (6%°/0a*)+ L. We denote the integration with respect
to P> and SMP(I,a)m(dx) by E.. ., and E,, respectively.
The following relation is fundamental.

LEMMA 4.1. Let p: MXR,—[0, ) be measurable. Then

4.2) Ea[gzn(yt)w] - SMS:n(x, 1)t Aa)dt
and
4.3) Ea[gzn(mdﬂx, =x] = S‘:Qm(-, 1))t Aa)dt.

PROOF. See e.g., Meyer [18]. O

Set N,=05,, u(Xip) for usA(C™). Then, by noting ((6%/da*)+ L)Q.u(x)
=0, (N,) is a C™-valued martingale. Hence (|N.|) is a non-negative submar-
tingale and by the Doob inequality, it holds that for p>1

4.4 E(z.a)[stlglopth]p] = (P/(P—l))pEu,a)[INz\p]
=@P/(p—DIPE ¢ ollu(X)]?].

We need another inequality for submartingales. Let (Z,) be a continuous
submartingale with the following Doob-Meyer decomposition;

ZL:MZ+A5

where (M;) is a continuous martingale and (A4;) is a continuous increasing
process with A,=0. Then, for p>0, it holds that

(4.5) E[AZ] = (2p)pE[§gng:lp]~

For the proof, see Lenglart-Lépingle-Pratelli [15].
Now we have the following proposition.

PROPOSITION 4.2. For p=2, it holds that
(4.6) [Hull, < llul,  for u< H(C™).

Proor. For usA(C"), set f(x, a)=l@au(x)[ as in Lemma 3.3. Define
(Z1)1z0 bY
Zy=f(Y ..

Then (Z,) is a submartingale under P .. In fact, set
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62

M, = f =" (5 L) v dds

and
Aty 02
A= (G + L) ods.
Then (M,) is a martingale and (A;) is an increasing process because of (3.11).
Thus Z,=M,+ A, is a submartingale. Hence, by (4.5) and (4.4), we have

/2

wn Ec.o[ {7 (2 + L)1 0ds)™] < Ber olsupl 2771 S Ece w1 2.177]

0

= E¢. o[ f(Y2)"] = Ee, o[ |Qot(X)|?] = E ¢z, o[ | u(X)| 7].
On the other hand, using (3.13) and (4.3) of Lemma 4.1, we have

Hu(x) = “{S:’zQ,g(x, nat}”" 1

< [frdZ +e)r el

<t o0

E;—{—L)fz(x, t)(rf/\a)dt}p/2

_ LimSMm(dx)Ea[S:(% +L)fY )ds| X(z')=x]p/2

<ume ([ yroraad ]

a—oo

Combining (4.7) and (4.8), we have

Hu(x) £ lim| m(d0)B ool u(X91?] = lim| |u()|7m(dx) = ulg

which completes the proof. [J
PROPOSITION 4.3. For 1<p=2, it holds that
4.9) 1Gull, < llull,  for ue HC™).

PrOOF. Let f and f. be as in Lemma 3.3. Then, by Lemma 3.3, we have
1 0*
< — =  lim(— 2-p
g(x, a) < 2—D) t%n%(aaz +L>f’§f .
On the other hand,
£, @)= 13au(x)] < [TPul(palds) < [ul o)

where
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|u]*(x) = sup Pe|ul(x).
t20
Hence we have,

pl2

IGulp = |{{; agtx, axda}”

}plz
1

o 2
< ”lu]*p(z—p)/z{S al_i_ﬂ_1< 0
0 &—0

S allm(aa 5 +L)

by the Holder inequality for 2/(2—p) and 2/p. The following maximal ine-
quality is well-known: [u*|,<|ul, (see e.g., [21]). Hence it is easy to see
that ||| u|*P||E-P72=||u|*| 3¢ P2 u]|5¢-#>/2, Moreover, by (4.2) of Lemma 4.1,
we have

< Muproyp-rre

Coim(Z vy ],

= Li_rgsum(dx)s hm(at2 +L)fp(x Dt Aa)dt

= 1imEa[S:g§no_(5t; +L) f’:(Y,)ds].

Now we set Z;=f.(Y;)?. Then (Z,) is a submartingale such that
Zy=M+A,
where (M.) is a martingale defined by

My = 1 = (g + L) f2cr i

and (A,) is an increasing process (recall (3.11)) defined by
At g2
A= " (G +L) s,
Thus by (4.5) and (4.4), we have
s 02 B
Eceoo| |{(Gor +L) 150 )5] < B, wlsupf (¥ )P
= Ecx.a)[Stlzl‘I)-)f(Yz)p'f'Ep]
S E(z,a)[f(yt)p]+sp

= E ol | u(X)|P]+eP.
By the Fatou lemma, we have
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Ece.o| |im( 2y +L) 724 )d5] S Bee oo [1u(X017]

and hence

B [t (e + 1) F20vds] < .

Therefore we have,
1Gullp < llull3® P *(lullp)?’* = lul}
as desired. [
Now the following main theorem is easily obtained.
THEOREM 4.4. If a=B, then for 1<p<oo, it holds that
(4.10) lu—Ewul, KNG ull, S lu—Eowull, for ue AC™).

where E, is the projection to Ker(L). Moreover, we suppose (A.l1), (A.2) and
aza+r, a>B+7r. Then it holds that

(4.11) 1G ull, < A+VE/Dlull,  for ue AC™)
where K=b/(a—B—T7).
ProoF. For 1<p<2, we have, by Proposition 4.3,
1Gullp < lu—Eoullp, G ull, < lullp.

Here we used G*u=G"(u—E,u). Similarly, for p=2 by Proposition 3.2 and
Proposition 4.2,

1G ullp, = 21H~ul, < lu—Eoull,.

By using |G ul|,<|ull,, we can show |u—Eul<| G ul, by the duality where
g is the conjugate exponent of p: (1/p)+(1/¢)=1. In fact, by using (3.7) and
Proposition 3.1 and the polarization,

(u—Eou, v—EW)r2cre; m>

= 4§Mm(dx)g°:t(%é,u(x), %a;v(x)) dt, u,ve AC™.

Hence
‘ Sy(u(x), v(x)—Eov(x))m(dx)‘

= |{ =B, v0—Eateymdz)
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IA

4SM m(dx)Sjtt%—@m(x)‘ l%@,v(x)t dt

oo ol

IA

4SM m(dx){&jtl%@cu(x)

— 4SMG"u(x)G*v(x)m(dx)

S 4G ulp| Gvlly < 4lull 1 Govlly-

Thus we have |[v—Ew|[,<|Gv],.
To show (4.11) for p=2, we assume (A.l), (A.2) and a=a+7, a>B+7.
Then by (3.10) of Proposition 3.2 and Proposition 4.2, we have

1G ully < 1H ullp+~VE/Tulp < lulp+~E/Tul,

which completes the proof. O

5. Examples.
We shall give two examples in this section.

ExaMmPpLE 5.1. Let (B, H, p) be an abstract Wiener space: B is a separable
real Banach space, H is a separable real Hilbert space which is imbedded densely
and continuously in B, and p is the Gaussian measure satisfying

_ 1
a0 = | exp{v =1z, Dpdp(dx) =exp{~5 |1lt}, 1€ Brc. Hx,
We consider the following Ornstein-Uhlenbeck semigroup;

G P =[ et vImE T )udy)  for e L.

Here A is a non-negative definite self-adjoint operator in H. The above ex-
pression (5.1) is well-defined if the semigroup {e~‘“4} generated by A can be
extended to a strongly continuous contraction semigroup in B so that

(5.2) le=*4lrm <1,

where | -]l r¢s denotes the operator norm. In this case, {P,} is a Feller semi-
group with the probability kernel given by

pt, %, O)= | Lol x4 vT=e y)u(dy),

and it defines a symmetric diffusion process on B. We give the corresponding
Dirichlet form. Set A to be the set of all functions of the form

(5-3) f(x) = p(3<x7 ll>B*’ Ty B<x; ln>B*); ne N’
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where p is a polynomial on R™ and [,, ‘-, [,€ C*(A¥*)N\B*, A* being the dual
operator of A in the dual space H* (we do not identify H and H*) and C=(A¥*)
=N5-1Dom(A*"). Then the Dirichlet form is given by

(5.4) ef, 8)= SB(\/Z*Df(x), V A*Dg(x))asp(d x).
Here Df(x)=H* is a H-derivative of f at x;

(5.5) wlhy D(x)ome = M

In place of the assumption (5.2) for A, it is enough to assume that C*(A*)N\B*
is dense in H* to ensure the existence of a diffusion process with the Dirichlet
form (5.4) (see e.g., [14, 1, 22] for the construction of diffusion processes).
We denote ~/A*D by D, and the generator by L, to specify A. The
generator L, is given as follows; for f(x)=p(a{x, l1Dps, =+, B{X, {n)Bx)

(5.6) Laf(x) = 3(A% L) ggragr (a5, Loz oy o, Lndae)

85‘65’

~E<x A*ly > (8$x, {)pey ) B, ln)pe).

85‘

Here {(x, A*l;> stands for the Wiener integral for A*/;=H* (so it is defined
p-almost everywhere). Moreover, by using the Wiener integral, the semigroup
(5.1) is well-defined for f=. By H-differentiating both hands in (5.1), we have,

DPfYx) = [ D (et 4x vV T=E Ty yudy) = 4 PLDS ().
Hence we have the following commutation relation;
(5.7) DuP, = e *4'P,D,.
By differentiating in ¢, we have
(5.8) DyL,=(L4—A"D,4.
Now we can compute I',. First note that I" is given by
(5.9) I'(f, 8) = (VA*Df(x), vV A*Dg(x))ae.
Then,
2I'(f, g)x)
= Lul'(f, 8Xx)—I'(Laf, gXx)—I'(f, Lag)x)

= Lu(Daf(x), Dag(x))—(DaLaf(x), Dag(x)—(Daf(x), DaL48(x))
= Lu(Daf(x), Dag(x))—(LaDaf(x), Dag(x))—(Daf(x), LaDag(x))



270 I. SuicekawA and N, YosHIDA

+(A*Daf(x), Da8(xDue+(Daf(x), A*D4&(x))u-
= 2(Dif (%), Dig(x)uwon-+2(A*Daf(x), Dag(x))n-.

Hence we have

(5.10) Iy(fXx) = | Daf () bronst(A*Daf (x), Daf(x))ue = 0

because A* is non-negative definite. Thus I, is non-negative in this case.
Further let 4 be a separable real Hilbert space and C be a non-negative
self-adjoint operator in 4. We consider the following operator L in LH(p)Q4 ;

(5.11) L:=L,—C.

Then the assumptions of Theorem 4.4 are all satisfied. Hence we have for
1<p <o,
lull, S NG ull, < lullp,  w € AH)
and
G ully, < llullp, u s AH).

ExXAMPLE 5.2. Let M be a d-dimensional complete Riemannian manifold.
We shall consider a diffusion process on M with the Dirichlet form on L*e ?°d x)
of the following form.

(5.12) elf, g) = _;_SM(Vf(x), Vg(x))r, we ™ dx

where p is a C> function on M and dx is the Riemannian volume. We set
m=e **dx for simplicity. We denote the generator by L. Then it is easy to
see that

(5.13) L= -;—A+b

where b is a vector field defined by b=—gradp. We assume that the diffusion
process generated by L is conservative. A sufficient condition is given in Bakry
[5] for example.

Moreover we consider a complex vector bundle E with fiber dimension n
equipped with a Hermitian fiber metric. We assume that a unitary connection
V: I'(E)-»T'(EQT*M) is given where I'(E) and I'(EQT*M) denote C* sections.
We consider a sesquilinear form ¢ on I'(E) of the form

(6.14) q(u, v) = ’;_SM(Vu(x), Vo(x))e jore,me ™20 P d x

+SM((Ux)u(x), wx)ee?®dx  for wu,ve I'(E)

where Us['(Hom(E ; E)) is a potential. First we assume that there exists a
constant 8=0 such that
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M.1) Ulx)= —Blg for x € M.

Let L is the associated symmetric operator in L*I'(E); m) where L¥[(E);
m) is a Hilbert space of all square integrable sections of E with respect to the
measure m. We can write L as

(5.15) L= %AE+V,,+U

where Ag is the covariant Laplacian: Ag=>1¢,V'V;. In this case, the vector
bundle E is not trivial and so our results are not applicable. Hence we have
to introduce horizontal lifts.

Let O(M) be the orthonormal frame bundle and P be the principal fiber
bundle associated with E. The structure group of P is U(n), the set of all
unitary matrices of order n. Since M is a Riemannian manifold, we can in-
troduce the Levi-Civita connection on M which defines a connection form '
on O(M). Similarly, covariant derivative V on E defines a connection form w”
on P. Let O(M)+P be the product bundle, i.e., the set of all (», s)=O(M)XP
such that zn(r)=n(s). Let ® be the connection form on O(M )+ P defined by
w=0'+w”. So w is a differential form with values in o(d)+u(n) where o(d)
and u(n) are Lie algebras of O(d) and U(n), respectively. We can regard r=
O(M) and s=P as isometric linear mappings in the following way;

r. Rd‘—*>T,l(r)M, S: Cn—>En(3).

Let (X, P.).ex be the diffusion process generated by L. Then the horizontal
lift of (X,) is realized as follows. Let L, ---, L; be the system of basic
horizontal vector fields, i.e.,

m(Li(r, 8)) = 1r(0:) € TarsM for i=1,--,d

where 0,, -+, 04 is the canonical basis in R¢. Moreover let L, be a horizontal
lift of b.
Let us consider the following stochastic differential equation on O(M )+ P;

d .
dVi= 3 LV dwit LoV )dt

(5.16) {
Vo={(r, s) = O(M)+P.

Here (wi, -+, wi) is a d-dimensional Brownian motion starting at 0 and - stands
for the Stratonovich symmetric integral. We denote a solution to (5.16) by
(Vir, s)). The generator of (Vi(r, s)) is L=(1/2)2%, L3+ L,. Moreover it is
well-known that (z(V(r, s)) is a diffusion process on M generated by L.

We introduce a symmetrizing measure # for (V,(r, s)) on O(M)+P. Let
v be a Haar measure on O(d)xU(n) with total mass 1. Then s is given
locally as



272 I. SHicEkaAwA and N. YosHIDA

m=mXy on =z~ Y0)=0X0(d)XU(n)

~

where O is a neighborhood in M. Then s is well-defined since v is invariant

~

under the action of O(d)XU(n). Further # is invariant under the action of
O(d)xU(n) on O(M)+P on the right and mh=m.
For any usl(T?(M)RE), we can define a scalarization #: O(M)+P—
(REPER(RE)*®RQC™ as follows
a(r, s) = (r"'Qs Hu(a(r, s)).

We use ~ to denote the scalarization. Fortunately, we do not need to use com-
plex conjugate in the sequel, so there is no fear of confusion. We note that
# is equivariant, i.e., for g=0(d)XU(n),

a((r, s)g) = g~ 'u(r, s).

Here the action of O(d)XU(n) is extended to (R%)P®RQ(R¢)**®QC™ in natural
way.
We note the following fact; for usl'(E)

W;i - Lﬂ/_t
where ;7 denotes the i-th component of covariant derivative. Moreover by

noting that L,=3¢,5'L;, we have for ucsI'(E),

" 14 @ (le— oy 1o
617 La=(53 Li+Lo)a = E{fvzu;i;ﬁ-b‘Vu;i} = 5 Bpu+Tou.

i=1

We shall give the Dirichlet form on L2(7%) for the diffusion process (V(r, s)).
To do this, we give another expression of #. Let {A4,} and {A/} beYbases of
o(d) and u(n), respectively. Then we can write

o= Za}w’”‘Aa—i-;w”’A,.
Moreover let §=(6*, ---, 6%) be a canonical 1-form on O(M )+ P defined by
O o(X)=r"'meX for X& T o(OWM)+P).
Define a volume form 7 by
N =CO'N - NO N A -+ AW ECEDEAGMN oo A PHDI2

where C is a normalizing constant. It is easy to see that e *’y» defines’a
measure 7. For any XeI'(T(O(M)+P)), we denote the Lie derivative by L y.
Then by the structure equation (see [13] Theorem III. 2.4), we can see

Lyn=0 for /=1, .---,d.
Then the Dirichlet from of (V (7, s)) is given by
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§f =5 HLfLedi for f, g CHOM+P)

OCM)+P i=1

where CZ(O(M)4P) is the set of all C* functions on O(M)+P with compact
support. To see this, we note that for fCP(O(M)+P),

SO(M)+P LL’(fyn =0.
Hence
0= SO(M)+P LLi(fgn)
- SO(”’“”(LLif)gY]+SO<M)+Pf(LL‘g’?H_SO(MHPfgLLf"7
which implies
S0<1ll)+P(Ll"f)g77 - —S0<M>+Pf(LLfg)77 :
Thus, by using Lo=2?=15iLi=—2?=,_V?}Li, we have
- 1 a -
8(f: g) - 7SO(M)+P E LifLige i
- ‘lg 2 LdLif e gy = —lS > (Lif —2Lip Lif)ge "y
2 Joun+p &1 TN 2 Joaussp i E 10 L

= _SO(M)+P(lé L%f——V—p;Lif)ge‘“’ﬂ = —S (Lf)gdm

i= oM +P
which means that L is an associated generator. We take C2(O(M )+P) as an
algebra A.
Define L by
5 1 4 —
(5.18) L= 'gigl L%+L0+U,
then, by using (5.17), it is easy to see that for usl'(E),
(5.19) la=TLu.

3

Let {P,} and {P,} be semigroups generated by L and E, respectively. Then
we have

(5.20) Pa="Pu.
Moreover, by the definition of #, the scalarization
I'EYsur—a € I'(OM)+P)XC™)

is an isometric linear mapping from LP?(I'(E); m) into L*(I"((O(M)+P)XC™);
). Now we can discuss everything on O(M)+P. But we remark here that
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we treat only equivariant functions on O(M)+P since our interest is in I'(E).
So to be precise, we consider the set of all equivariant C™-valued functions in
place of A(C™).

Let us check assumptions in Theorem 4.4. First of all, let us compute I
for (Vi(r, s)). For @, 5el'((O(M)+P)XC™),

{L(a-0)—(La)-v—a-(Lo)}

which is a well-known result. Here - stands for the Hermitian inner product
in C™.

To compute r ., the commutation relation is fundamental. So we shall
obtain the explicit form of [L;, L;]. We note that [L;, L;] is vertical since
the torsion vanishes (see [13] Proposition II.5.4) and w([L;, L;])=—282(L,, L)
(see [13] Corollary I1.5.3) where £ is the curvature form on O(M)+P. For
any Aeo(d)+u(n), a l-parameter subgroup {exptA} induces a vector field on
O(M)+P since O(d)xU(n) acts on O(M)+P on the right. We denote it by
A*, Then it holds that [A’*, L,]=3;A";L; for A’=o(d), and [A”*, L;]=0
for A”u(n) (see [13] Proposition II1.2.3) where A’/; are components of A’.
Hence, writing a basis of o(d) and u(n) by {A,} and {A}} respectively, we
have

[L;,, L= —-2382"*(L,, L,-)Af,,*—Z}I]Q“(Li, L)A/*
where 2'¢, 277 are components of curvature forms £2', 2”. Hence, by noting
that L,=>1¢,b'L;, we have :
d _ d - -
(Lo L =] B8Lo L] = 2 FTLy LI~LFILY

d _— J—
=2 {_VP;tELi’ Li]"i'vzp;i;flfi}

-

é ERToa2'(Li, L)AF+25T0:2" (Lo, LYAP*+T0,0, L)

-,

and further
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(L% L= LiL,—L;Li= LJ{Li, L+[Ls, LyIL;

= —2L(SQ"*(Ly, LYA})—252'(Ly, L)AXLq
—2L(S2" (Ly, LYAf¥)—229"/(Ls, L)AP*L

= —25(Li2"*(Li, LYAF—~2502""(L, L)L A
—25Q'%(Ly, L)L AF—222"(Ly, L)LAX, L]
—25Li2"M(Ly, L)Ap*—2537%(L,, L)L.Ap*
—230"X(Ly, L)LiAp*—232"(Ly, L)Af*, L]

= —25(LQ"*(Li, L)AF—452"(Ly, L)L, A

—2229’“(13“ LpA&iLy—23(Ls L271(Ly, L)Ap*
—43071(Ly, L)L.Ap*
= —ZE(LiQ,a(Li, Lj))A;*—4EQ,a(Li, Lj)LiA;*

—22!2"‘,(1,,, L,)Lk—ZZ(L L271(L;, L)Ay*
—4;‘,9”’(@, L)L A7*.
Note that A’*#=0 and A”*#=—A"# for a scalarization # of uI'(E)and A’
o(d), A”=u(n). Moreover
2Q2(L,, L;)=R(TM);,
22"(Li, Ly) = R(E)s;,
2L.Q27(L;, L;)=R(E)j,

(see [13] Theorem III.5.1 and Proposition II1.5.2). Here R(TM) and R(E) are
curvature tensor of TM and E, respectively. Hence we have

[Lo, L;]@ {ZZVp Vo,:R271(L;, L)A*a+Yp,s; Lt}

{2\7p Vo,:27(Li, L))a+V?p,..;L it}

i

I
uMo. iMe M=

{VP tR(E)uu’FVzp 143 ;L u}

and
SLLL La= 5 {251  (Ly, L)A{a—450" (L, L)L Afa)

-2 é 2% (L, L)L
i=14=1
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&

= 3 {-2L0(L,, L)a—42"(L, L)L} =23 5 Q*(Ly, L)Lsa

i

[

Il
Ma

- a
{—VR(E);j,:#a—2R(E);; L;ui} 42 kngkJLkﬁ

o,
[
-

{(—=VR(E).;,:u—2R(E):;L w1 +2S:;L it}

Il
Ma

1

-
(]

where S is the Ricci tensor;

—L,((3 5 L+ L-D)a) - Lp
(3 5 L+ L-D))}
} LAL - L o)+ LoLsit- Lo+ Lyi- LaLd

le ., _ _ _
(52 Liu)-Ljv—L,-Lou'Ljv

— — 1 4
+(L;D)a-Lg+TLya) L—L;a- L,(fg L%ﬁ)
—L,ﬁ~L,L017+L,-ﬁ-(L,-l7)z7+L,-ﬁ-(UL,-U)}

= %i,% {L?(Lﬂz-t' L,z?)—(L,Lfﬁ)- Lj‘l-}”“LﬂZ' LjLzl-i}

1¢ _

7; {LLo, Lla- Lo+ Lyw-[Lo, L;10+2(U L;in)- LD
+(L;0)a- Lo+ La-(L,0)v}

(L% L@ Lo+ La-[L} L;Jo+2L,LaLL,v}

1

-

-+

1
414

1 —
7;‘1 {[Lo, Ljl@-Lip+L@-[ Lo, L,]Jo+2(UL;&)- LD

Mea

<]
[

+
+(L0)a- L+ La-(L;0)w}
{—=VR(E)t- L5—2R(E);Li#t)- L o

1

12

= Zi.J
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+28;Lyit+ Lp— L;it-NR(EYij:0—2L - (R(E)i; L )
+2L;a-Si;Lio+2L,L;alLp
+2Vp. R(E);;ii- L5+2Vp,,;Liii- Lo
+2L;it-VpR(E):+2L;5-VPp,s,; L5}

1

oy ji‘, {20 L,a)- Lo +(L;0)a- L+ La-(L,0¥%)

=1 3, - ORE L L2 (TRESd)

1

ul;]H

i,
—4R(E)y;L:wt)- L5+4S:;Lw- Lp+2L;L,aL;Lp
+2Vp.;R(E);;it- L5+2L;i-Vp,.R(E): ;o
+2¥%0,4,;Lsii- L}

—;—é (2T L) Lo+(LDYa-Lg+L,a (LT
= %L%l {2(54;+V%0,4,)Liti- Lp—2(R(E)i;Lsit)- L v
+L.LaL:Lp}+ ,d§ (UL,a) Ly
+5 3 2 TRE i) Lp—2 Ly (TRE 1.0
20, R(E)isit- L 5+2L 2V, R(E)uso}
+5 zz: (L,0)a- Lo+ Ly (L0} .

For Fel'(T.M)=I(T*MQT*M), we define Ftel'(TMRIT*M)=
I'(Hom(T M)) by

gX, F*Y)=F(X,Y) for X, Y eI'(TM)

where g is the Riemannian metric on M. Hence S*, (V*p)¢*=l'(Hom(T M)).
Similarly, we can define R(E)}*<I'(Hom(TM®E)). We assume the following
conditions : there exists a constant ¢=0 such that

M.2) S*QIlg+ (Vo) RIg—R(EY+1rxQU = —clru@IE
and
M.3) SUVR(E)iz1, VpQR(E) and VU are bounded.

Then under the conditions (M.1), (M.2) and (M.3) we have



278 I. SHIGEKAwWA and N. YosHIDA

2{ (2 TRE0)

oo

+2HVP®R(E)IIM+IIVUIIw) [Vul ||

{Ja(gv o )}1/2

FITp@REN w5 IV ) T+ 1)

= —CIVu_IZ—(

o

e+ S (ST},

Jj=1

HITp@RE 5 1TV ) @)

~({ £ (2 TFB )| +1Te@RE N+ 51701 121

j=1\i=1

The above inequality is valid for equivariant C* sections. By noting the
hypoellipticity of L, we have that P, is equivariant and C* and hence the
assumption (A.2) is satisfied. Thus the assumptions of TheoremA4.4 are all
satisfied. Hence we have estimates (4.9) (4.10) of G-functions for L=1 0 —a.

By projecting this result to the base manifold M, we have similar estimate
of G-functions for L=L—U—a. We sum up in a theorem.

THEOREM 5.1. Assume that (M.1), (M.2) and (M.3) hold. Then for a, >0

such that a=c+7+{Z(ZVR(E)i;:)'H 2 llet [VoQR(E) |+ (1/2)[VU [, a>B+7,
we have for 1<p<co,

lul, S 1Gull, < lull,  for ue I'(E)
and

1G ull, SA+~VE/Dlull,  for u e I'(E)

where K =(|{Z(Z:VR(E)i;:)* ot IIVNoQ@R(E) | +(1/2)|VU ||)/(@—B—7) and
I'(E) is the set of all C* sections with compact support.
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