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1. Introduction.

As in [T], we define a geometry ['=(48,, -, B,; *x) to be an ordered
sequence of » pairwise disjoint non-empty sets $; together with a symmetric
incidence relation * on their union #=%,\U---\UB, such that if F is any maxi-
mal set of pairwise incident elements (i. e. a maximal flag), then |[FN3;|=1
for ;=1, ---, ». The number r is called the rank of I'. The geometry I is
called connected if the r-partite graph (8, *) is connected.

We recall that a generalized n-gon (for n=2) is a geometry ['=(®, .L; %)
of rank 2 such that the bipartite graph (®\U.L, %) has diameter n and girth 2x.
The elements of & are called points and the elements of . lines. A generalized
n-gon is called thick if every vertex of the graph (¢\U.L, %) has at least three
neighbors. If II=(®, .L; %) is a thick generalized n-gon, we define II, to be_}
the geometry (&F, PUL; %), where F is the set of maximal flags of I/ and =
the natural incidence relation. Then I, is a generalized 2n-gon having two
lines through every point (but more than two points on a line). We will call
such a generalized 2n-gon point-thin.

The building attached to the group PSp.(p*) is a generalized quadrangle.
For p=2, this geometry, which we denote by O(k), is self-dual (see [3]), and
Q(k), is a point-thin generalized octagon on which aut(PSp.(p*)) acts flag-
transitively. Similarly, there is a self-dual generalized hexagon associated with
the group G.(3%), which we denote by 4(%2), such that aut(G,(3*)) acts flag-
transitively on the generalized dodecagon 4 (k),. The building attached to the
group 2F,(2%) is a generalized octagon with 1+2* points on a line. We call this
octagon O(k) and write ©(k)° to denote its dual. '

Let F be a non-maximal flag of a geometry I'=(8,, ---, B,; *). The set

J={ilB:NF+Q}

is called the type of F. For each m&J, let 8L ={us B, | uxx for all x=F}.

* Research partially supported by NSF Grant DMS-8901904.
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The residue /'y is defined to be the rank r—|J| subgeometry of /' on the sets
B%. We will always assume that for given type J, the residue [y is inde-
pendent, up to isomorphism, of the given flag F. Then (as usual) there is a
diagram with » nodes associated with I”, the links of which reflect the structure
of the rank 2 residues of I'. In particular, a link consisting either of n—2
strokes (n=2) or a single stroke labelled (n) indicates a generalized n-gon and
a link labelled C indicates the geometry of vertices and edges of a complete
graph.

An extended generalized n-gon is a connected rank 3 geometry [ '=(&, £,
C; *) with diagram

c _(n)

where the elements of @, £ and C are called points, lines and circles, respec-
tively. In this paper, we will examine extended generalized n-gons I” under
the assumption that there is a group G<aut(/") acting flag-transitively on I.
The case n=3 leads to the three Mathieu groups M,,, M,, and M,,. The case
n=4 was first examined in pioneering work of Buekenhout and Hubaut [2] as
a special case of their locally polar spaces. The classification of extended
generalized quadrangles with classical point-residues was completed in [5], [14]
and [17]. There exit well known extended generalized n-gons for n=6 asso-
ciated with the sporadic groups J, and Suz [11] and for »=8 with Ru [9].
The universal covers of these geometries are infinite [8], so some additional
condition is needed to characterize them. In [15], we showed that the J,- and
Suz-geometries, together with two more having automorphism group 2°: G4(2)
and 27: G4(2), are the only extended generalized hexagons which have as point-
residues finite classical thick generalized hexagons and which satisfy the condi-
tion that

(%) there exist triples of pairwise collinear points not lying on any circle.

In [16], this result was extended to a classification in the case that the point-
residues are finite classical point-thin generalized hexagons. In this paper, we
treat the remaining cases, those in which the point-residues are finite classical
point-thin or thick generalized n-gons with n=8. (We call a point-thin generalized
2n-gon I1, classical if the thick generalized n-gon II is classical.)

(1.1) THEOREM. Let I'=(, .L, C; %) be an extended genmeralized octagon
with a flag-transitive group G=aut(l"). Suppose I satisfies (*) and that for each
Pc@, the residue I'p is isomorphic to Q(k)y for some k=1. Then one of the
following holds :

(a) k=1, |2 =5 and G = L,4).2?
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(b) k=1, |P| =112 and G = 2-Ly4).2,
(c) k=1, |P| =66 and G = M,
d) k=1, || =132 and G = 2-M,, or
() k=2, |®P| =2058 and G = He.2.

In each case (a)-(e), I" is uniquely determined.

(1.2) THEOREM. Let I'=(®P, .L, C; *) be an extended generalized octagon
with a flag-transitive group G<aut(l"). Suppose I' satisfies (x) and that for each
Pc@, the residue I'p is isomorphic to O(k) or O(k)° for some k=1. Then [ p=
o(l), | 2| =4060, G=Ru and I" is uniquely determined.

(1.3) THEOREM. There are no flag-transitive extended generalized dodecagons
satisfying (x) for which the point-residues are isomorphic to JH (k) for any k.

For the sake of completeness (see [6, 7]), we include the following observation.

(1.4) THEOREM. There is no flag-transitive geometry I’ =(B,, -+, B,; %)
having diagram

such that for P= B, the residue I'p is isomorphic to one of the geometries clas-
sified in (1.1) or (1.2).

The geometry (b) of (1.1) is the subgeometry of geometry (e) left pointwise
fixed by an involution of type 2A of He. The group G acts on £ as a permuta-
tion group of rank 5 in cases (b) and (d), rank 4 in case (e) and rank 3 in the
remaining cases. The rank 3 action of Ru on 4060 points is well known [9].

To prove (1.1)-(1.3), we start by observing in (2.2) below that a famous
result of Suzuki on the non-existence of certain one-point extensions implies
that %2 is bounded. Condition (x) then serves two purposes. It is first applied
in (2.4) to show that, in general, the stabilizer G of a point P acts faithfully
on the residue I'p. This alone implies the non-existence of I’ in the cases
I'p=01)° and I'p=4((1), in §6 and §7 below. In the remaining cases, condi-
tion (x) provides extra cycles in the collineation graph on the points of .
These extra cycles are made to yield relations which do not hold in the
universal cover of these geometries. The group G is then determined by coset
enumerations which have been carried out using CAYLEY.

It is perhaps of interest to note that the list of sporadic simple groups
characterized in terms of towers of locally polar-spaces of extended generalized
polygons now includes M., Mys, My, Fiss, Fiss, Fioy, McL, Suz, HS, J,, Cos, Co,
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Mi,, He and Ru.
Notation such as 2-L4(4).2? and A,.2, is taken from [4].

2. Preliminary observations.

Let I'=(&, .L, C; %) be an extended generalized n-gon with a flag-transitive
group G=<aut(I"). Suppose that for each P=<, the residue ['p is isomorphic
to Q(k)w, O(R), O(k)° or H(k), for some 2=1(so n=8 in the first three cases
and n=12 in the last). For each P=®, let Gp denote the group induced by
Gp in I'p.

(2.1) LEMMA. If I'p=Q(k),, then either Gp contains a normal subgroup iso-
morphic to PSp,(2%) or k=1 and Gp=A:.2, or As2,. If I'p=0(k) or O(k)°, then
either Gp contains a normal subgroup isomorphic to *F,(2%) or k=1 and Gp=*F,(2)'.
If I'p=4(k)o, then Gp contains a normal subgroup isomorphic to Go(3%).

Proor. If I'p=Q(k), respectively 4 (k),, then Gp contains a subgroup of
index two acting flag-transitively on the generalized n-gon Q(k), respectively
H(k). The claim now follows from [10] m

Let (P, [, 7) be a maximal flag of I'. Then @'=@'*" since I'; is a gene-
ralized 2-gon, so |P'|=2 since [, is a geometry of type C. Also |LP7|=
s+1, so |9"|=s+2, where s=2% if ['p=Q(k), or O(k), s=4% if I"'p=@©(k)° and
s=3*% if I'p=Jl(k),.

Let A be the collinearity graph on 2. (This is the graph with vertex set
% with two points joined by an edge whenever they lie on a line of I'.) Since
I' is connected, so is A. Choose P=®. We define a map ¢ from .LF to A(P),
the set of neighbors of P in A, by setting ¢(/)=Q, for each /=L, where @'=
{P, Q;}. The map ¢ is of course surjective. By (2.1), Gp acts primitively on
LF, so ¢ is in fact bijective. Thus, we can identify an element x=.£\UC with
the set @¢* and we will do so from now on. We denote by G; the group
induced by the stabilizer G, on 7, i.e. on &7, and N, is the kernel of the action
of G, on 7.

(2.2) LEMMA. k<2 and G; =S, if I'p=0Q(k)y, k=1 and G;=S;.s if [ p=
O(k) or H(k), and k=1 and G;=PGL,5) if ['p=0(k)°.

PrROOF. By (2.1), (G;)p contains a normal subgroup isomorphic to L.(2%) if
I's=Q(k), or O(k), to Sz(2*%) if I'p=0O(k)° and to PGLy3%) if ['p=4(k),. Since
G acts flag-transitively on /', the group Gy is a transitive extension of (G;)p.
By [12], it follows that |7|<6. m

(2.3) LEMMA., Let II=(P, .L; %) be a generalized m-gon and let @ denote
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the bipartite graph (PUL, *). Let K=aut(®) and P=P. If II=(P, L; *)=
Q(R)y, O(R) or O(k°), then KEINKr=1 for each TP at distance eight from P
in @ and KF'=1 unless II=0(k), in which case |K}*?|=2*% and KFPNK{#=1 for
all vertices U distinct from P. If II=9(1),, then Kp acts irreducibly on Kii=
32, KB=1 and KENK§=1 for vertices U at distance four from P in II. Here
KE3 denotes the largest subgroup of Kp fixing all the vertices of @ at distance
at most ¢ from Pin .

ProoFr. These facts are well known. ®

Choose [={P, Q}=.L?. Fori=1, 2, 3 and 4, let X, denote the set of elements
of £f at distance 2; from [ in the graph II,=(LPUCF, %) and let YV,={U<
?|{P, U} X;}. For each U=, let Ny denote the kernel of the action of Gy,
on A(U).

(2.4) LEMMA. If condition () is satisfied, then either Gp acts faithfully on
AP) or ['p=0(1), |Np|=2 and V.S AQ) but Y uNAQ)= for m=3 and 4.

PROOF. Suppose first that I'»=Q(1),, Q(2), or O(1)°. We claim that N,
acts trivially on A(P). By condition (%), AQNY n#=@ for some me{2, 3, 4}.
If H denotes the pointwise stabilizer of Y, in Gp o, then HNGr<Np for each
T<Y, by (2.3). Thus we can assume that A(Q)NY,=@, so m=2 or 3. By
(2.1), Gpo acts transitively on both Y, and Y, so Ny acts trivially on Y.
Thus (2.3) implies that Ny<Np as claimed. Since |Ny|=|Np|, we have Ny=
Np, and so Np is normal in {Gp, G;>. Since A is connected, <Gp, G;> acts
transitively on ¢. Thus Np=1.

If 'p=0() or H(1),, then Np=1 follows by a similar argument unless
AQNY ,# @ and A@Q)NY »n=0 for m=3. In this case, (2.3) implies that Ny
Na<Np for R&Y,, so NoN\Ng=NyN\Np and NyN\Ng<NzN\Np. Since these
. three groups are conjugate in G, we conclude that

IVPF‘,NQ = AVPAIVR = lVQf-\NR .

Thus NpN\Ng is normal in {Gp g, Gp,r, Gi>={Gp, G;>=G, so NpN\Ny=1. By
(2.3), we have either Ng<NpN\Ng=1 or I'p=0(1) and [Ny|=|Ny/NoN\Np|=2
or I'p=J4((1), and |Ny|=|Ny/NoN\Ne|=9. Suppose we are in this last case.

Let M;=<{Ny | U&y). Since NpN\Ny=1, we have |M,|=|NpN,|=3* Since
|N,|=|N,/Np|-|Np|=3°-3%, it follows that |N,/M,|<3°. On the other hand,
M, acts trivially on the set of vertices of the graph Il p=(LF\UCF, %) at distance
three from 7, so Gg,; acts non-trivially on N,/M,. Thus G, acts non-trivially
on N,/M,. Since G;=S; and |N,/M,;| <3?, this is impossible. m

(2.5) LEMMA. If I'p=Q(1),, Q(2)s or O(1), then G, acts trivially on the set
of Gp q-orbits in A(P)NA(Q).
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Proor. Let v&G,\Gp, By (2.1), the group Gp contains elements ex-
changing any given pair of elements of A(P) (i. e. all the suborbits of Gp in
A(P) are self-paired). It follows that if U<=A(P)NA(Q), then Gy contains
elements exchanging P and Q. If g is such an element, then gvEGpq, so U
and U#*=U" lie in the same Gp -orbit. M

3. The proof of (1.1): k=1.

Let I" and G fulfill the hypotheses of (1.1). By (2.2), we have £ <2. Suppose
first that k=1. By (2.1) and (2.4), Gp=A4.2,, As.2; or 422 If Gp=A,.2;, then
there exist generators a, b, ¢, d and u of Gp such that

a*=1[a,b]l=1 [a,c]=b,a"=d and b" =c¢ for »r = ada,

3.1

S b*=d and c¢*=¢

and either

(3.2/2) wt=(a(ru)®)*=1 if i=2 or
(3.2/3) ut=c¢ and (Gu)¥=1 if /=23,

If Gp=A..2% then there exists an additional generator ¢ such that (3.1) and

="[tal=[tbl=[t cl=[t d]l=1,

(3.3)
[t,ul=c¢ and (ruy¥=u’=1

hold. If we set x,=abt, x,=bt, x,=t, x,=tc, x,—=tcd and x,=x%, then
x{=2x4 ¢ for p=xftand 07 <4, x{=x4;, for o =x% and 1 <7 <5,
x5 =xi=[x0, x:] =[x0, x:] =1, [x0, x5] = x:%, and (po)' = 1.

These are just the Steinberg relations for PSp,(2), from which (3.1)-(3.3) are
easily deduced. By the definition of Q(1),, there exists a point Q<=A(P) and a
circle yeCPNcC? such that Gp,=<a, b, ¢, d, t) and Gp,o=<b, ¢, d, u, t), where
the element ¢ is to be ignored unless Gp=A,.2%. If N, denotes the kernel of
the action of G, on7, then N,=<b, ¢, t). Since G;=S,, there exists an element
veG, inducing the transposition (P, @) on y. Then

=Wl =[v,d]=1 (mod N,).
We have in fact

(3.4) LEMMA. The element v can be chosen so that v*=(va)*=[v, c]=1, [v, u]
=b*c’d* and either

(A) [v,t]=1, [v, bl=c and [v, d]=c*"* or

(B) [v, t]=1, [v, bl=tc and [v, d]=tct or

(C) [v, tl=c, [v, bl=c and [v, d]=c**
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for i, j=0or 1. If Gp=As2, or A¢2s, then, in fact, (A) holds (without the
relation [v, t]=1).

Proor. The element v can be chosen conjugate to a¢ in N,, so that v*=1.
Suppose that Gp=A,.2; or A.2;. Since G, acts on N,=2% it follows that [vd,
N,]=1. In particular, va acts fixed point freely on N,, so (va)®*=1. Since
[v, d]J=N, and d*=1, we have [v, d]=c® for x=0 or 1. The element v nor-
malizes both <b, ¢, d> and Gp o=<b, ¢, d, u), so [v, ul=b*c’d* for i, j, k=0 or
1. Since u?=1, we have k=:i. Then u*¢=(b'c’d*u)t=b**'c’*'d**'y and u®=
(bedu)’=>bi*1c=*+i+idi+y,  Since [u, [v, d]]=1, it follows that x=:+1 (mod 2).

Now suppose that Gp=A4;.2% so N,=2?. With respect to the basis b, ¢, ¢
of N,, the elements a and d are represented by the matrices

1 01 1 00
A={0 1 0 ) and D=[0 1 0 |,
0 01 1 01

where we interpret matrices as acting on column vectors by left multiplication.
If V=GL2) satifies Vi=(AV)=[V, D]=1, then

100 1 00 1 00
V=01 0] 110 or {010
1 01 1 01 1 11

We will call these three possibilities case (A), case (B) and case (C). Since [v, d]=
N, and d*=1, we have [v, d]=c"t?. In cases (A) and (B), Ce,: o(va)=<t).
Replacing v by vt if necessary, we can assume that (va)*=1. In case (C), we
arrange that (va)*=1 by substituting vbt for v if necessary. The element v
normalizes <b, ¢, d, t) and Gp ¢=<b, ¢, d, t, u) and u’=1, from which it follows
(as above) that [v, u]l=b'c’d* for 7, 7=0 or 1. Then u=(u")’=(b*c’d‘u)’=c**t*Vu,
so xi=y;=0 in cases (A) and (C). By a similar calculation, we find that x/=0
and yi=: in case (B). We then calculate that cYu=u°""Y=yt> I=(h** ¢/ 1 +1y)v¢
=c'*+7t¥y and therefore y=0 and x=/+1 (mod 2) (using xi=y/=0) in cases
(A) and (C). By a similar calculation, we find that y=1 and x=7 in case (B). =

We now apply condition (*). Recall the definition of ¥, from §2 above.

(3.5) LEMMA. If AQ)NY =@, then Gp= A:2% (3.4.B) holds, |P|=66, G=
My, and I’ is uniquely determined.

Proor. Let R=Q"*". Then R=Y, and Gp g r=<b, t). I AQ)NY.#@,
then Y,SA(Q). Thus R=A(P)NA(Q), and so R™W<=A(P)NA(Q) as well. We
have Gp o.roa=Gp,q.z in cases (A) and (B) and Gp g roa=Xb, tc) in case (C).
The only fixed points of b in A(P) not co-circular with {P, Q} are R and R°.
Since ¢¢ fixes neither R nor R°, it follows that we are in case (A) or (B) and
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that vc*d=Gp .z for k=0 or 1. Substituting vc for v if necessary, we can
assume that 2=0. Thus vd-u" induces a 3-cycle on {P, Q, R}. In case (A),
we have CG&';' 0. zvdu")=<b> and tvev"=th, from which we conclude that Gpz
Ag2%. Let Gijm.n be the group generated by elements a, b, ¢, d, u and v
defined by the relations (3.1), (3.2/m), (3.4.A) (without [v, t]=1) and (vdu")*=>b".
By coset enumeration, we find that @i,,-,m,nzl for all 7, j, m and n. Thus
Gp= A,.2°, we are in case (B) and Ce, , ,(vdu")=1. This time let G, ; be the
group generated by elements a, b, ¢, d, u, t and v defined by the relations (3.1),
(3.3), (3.4.B) and (vdu")*=1. By coset enumeration, we find that éi,j-——l unless
;=0 and j=1, in which case the index of <{a,b, ¢, d,t, up=A.2* in this group is
66. Thus |G, .|=|M;.|. Let 5=G~0,1. Since M, contains subgroups H,= A,.2?,
H,=[64] and H,=2%.S, such that H,"\H,=[32], H,"H,=2*.S; and H,"\H;=2%2*
(see [4]), it follows that M,, actually acts on an extended generalized octagon
with point residues isomorphic to QO(1),; it is easily seen that this geometry
satisfies condition (x). (In fact, Y .S A(Q) for m=2 and 4.) We conclude that
G=G=M,, and I is isomorphic to
F<5; Hl, ﬁz; ﬁs),

the geometry with points the left-cosets of H,=<a, b, ¢, d, t, ud, lines the left-
cosets of H,=<b, ¢, d, t, u, v> and circles the left-cosets of H,=<a, b, ¢, d, t, V>
in G, in which two of these left-cosets are incident whenever their intersection
contains a left-coset of the intersection of the corresponding subgroups. m

(3.6) LEMMA. If A(Q)NY s+ @, then either

(1) |2|=56 and G=Ly4).2,, L(4).2, or L,4).2% or

(i) |@|=112and G=2-L,(4).2,, 2- L(4).2; or 2- L,(4).2% (where G’ is perfect).
In both cases, I' is uniquely determined. If Gp=As2%, then (3.4.C) holds.

PrROOF. If S=Q"", then S&Y,. If A(Q)NY =@, then A(Q)SY,, so S=
A(Q). Then vgeGs for some g=Gp o by (2.5). Suppose first that Gp= A4,.2%,
so Gp,o.5=<bty. Thus <bt) is normalized by vg. This implies that (3.4.C)
holds, and we can assume that g=<{c¢, t>. Replacing v by vc¢ if necessary, we
can assume that in fact ge=c{t). Let @i,j_m,n be the group generated by
elements a, b, ¢, d, t, v and v defined by the relations (3.1), (3.3), (3.4.C) and
(vet™-r*"¥=(bt)* for i, j, m, n=0 or 1. By coset enumeration, we find that
éi,j,m,nsl unless ;=j7=1 and m=n=0 and that the index of <a, b, ¢, d, ¢, ud
in Guioo is 112. Let G=Gi1 10,0 Then |G|=2-|Ly4)|-2°. Since 2-Ly4).2?
has the right configuration of subgroups (see [4]), it follows that either G=
2-Ly4).22 and I'=I'(G ; H,, H,, H,) with H,=<a, b, ¢, d, t, u>, H;=<b, ¢, d, t, u,
vy and ﬁ3=<a, b, ¢, d,t,v) or G=L44).22 and [’ is isomorphic to the quotient
of I’(é; H, H, ﬁ3) obtained by identifying vertices at distance 4 in A.

Suppose that Gp=A,.2; for =2 or 3, so Gp ¢ s=1. In this case, we know
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only that g&Gp o. By replacing v by vc if necessary, we can assume that in
fact g=b'cd™u® for [, m, n=0 or 1. Let G, t..mn be the group generated
by elements a, b, ¢, d, u and v defined by the relations (3.1), (3.2/k), (3.4.A)
(without the relation [v, t]=1) and (vb'cd™u™-r*")*=1. By coset enumeration,
we find that wa k.1.m =1 unless [=m=n=0, /=1 and either j=1 and k=2
or 7=0 and k£=3. It is easﬂy checked, however, however, that G1 1.2,0,0,0 and

.....

in the previous paragraph. m

3.7 LEMMA. If AQ)NY ,# @, then either G and I' are as in (3.5) or (3.6.1)
or Gp=A2% (3.4.B) holds, |P|=132, G=2-M,, and I" is uniquely determined.

Proor. If A(Q)NY,# @, then either Y, SA(Q) or Gp=A..2,, Y, consists of
two self-paired Gp g-orbits and A(Q)NY, is one of them. Suppose first that
Gp=A.2%. Let e=(bdu)™” and T=Q° Then T&Y,and Gp o r=<u>. If T
A(Q), then vg=Gr for some g=<b, ¢, d, t) by (2.5). Since vg normalizes Gp, g, 1,
we must have g=dit**/¢bdt)>. Replacing v by vc if necessary, we can assume
that g=dt**/(bdt)™ for m=0 or 1. Let CN;i,j,X,m,n be the group generated by
elements a, b, ¢, d, u,t and v defined by the relations (3.1), (3.3), (3.4.X) and
(vdt**(bdt)™-e)*=u™ for 7, j, m, n=0 or 1 and X=A, B or C. By coset enumera-
tion, we find that (N;i,j,x}m,nzl unless m=0, j=n=1 and either /=0 and X=B
or /=1 and X=C. The index of the subgroup <a, b, ¢, d, t, u)> in GNO,l,B, o1 1S
132. Adding the relation (vdu")*=1 to the definition of Go, 5.0, yields the
group called G=M, in the proof of (3.5). The index of the subgroup <a, b, c,
d,t, uy in GNU,C,(,,I is 56. By coset enumeration, we check that the relation
(ver*T)*=1 holds in Gy, 4 ¢0,0,1, S0 this group is a homomorphic image of the group
called G=2-L4).2* in the proof of (3.6).

Now suppose that Gp= A,.2,. Let e=(bdu)™*" (as above), f=(cu)™*", T,=Q°
and T,=Q’. Then T, and T, are representatives of the two Gp, p-orbits in
Y, and Gp g r,=<c*u) for k=0 and 1. If T,=A(Q), then again vg fixes T,
for some g=<b, ¢, d) by (2.5). Since vg normalizes Gp g r,, it follows that
d'g=<{c) and /=j. Replacing v by vc if necessary, we can assume that in fact
g=c*dt. Let &,k,n denote the group generated by elements a, b, ¢, d, u and v
defined by the relations (3.1), (3.2/2), (3.4.A) with /=7, but without the relation
[v, t]=1, and either (vde)*=u" if k=0 or (vedf)*=(cu)* if k=1. By coset
enumeration, we find that 51-,;;,11:1 unless i/=n=1 and that (vedf)*==cu and
(ver*7)*=1 both hold in Gioy Thus both 51 o1 and Gy, are homomorphic

Suppose, finally, that GP~AS.23. This tlme, let T=u""". Then TeY4 and
Gp.qr=1. Again we have vg=Gr for some g=Gp . Replacing v by ve if
necessary, we can assume that in fact g=b*cd™u™ for k, m, n=0 or 1. Let
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éi, sk m.n denote the group generated by elements a, b, ¢, d, u and v defined
by the relations (3.1), (3.2/3), (3.4.A) (without the relation [v, t]J=1) and (vg-
u™")®=1. By coset enumeration, we find that éi,j,k,m,nzl unless ;=n=1 and
Jj=k=m=0 and that (vc-r*")*=1 holds in GNI,O,O,O,I, so that this group is a

3.6). m

4. The proof of (1.1): Conclusion.

To conclude the proof of (1.1), it remains only to consider the case k=2.
By (2.1) and (2.4), we have Gp= PSp,(4).4, so there are elements x,, x,, X5, X3, X4,
¢, f and u generating Gp which satisfy the following relations :

xT=x,; for r=x3%+ and 0Z/L2, x%=x,.; for 1Zi<2, (ur)i=1,
xi=xi=[x0, x:1=[x0, x:.1=1, [xo, x:]=2x:1x,, *=f’=[c, f1=1,
cT=c"Y, fr=fcY, c¢t=cf, t*=1 where t=u?,

and [¢t, r1=[t, xol=[c¢, x2:]=(cx0)*=(cxox)’=1.

4.1)

ct=c"!

These are just the Steinberg relations for PSp,(4) together with a graph automor-
phism u ; the element t=u® is a field automorphism centralizing <x,, ---, x., x%>
=~ PSp,(2) and normalizing <{c¢, f>=3% a Cartan subgroup of (Gp). There exists
a point Q=A(P) and a circle yeCfNC? such that Gp ,=<x,, -+, x4, ¢, f, t> and
Gp =%y, ==+, X4, ¢, f, u>. The elements x,, x, and ¢ satisfy the following
defining relations for A;:

= x=x2= (xox.)° = (cx0)® = (cxx,)° = (cr)? = 1.
Since (G;) = A,, there exists an element v&G, exchanging P and @ such that
vP=(vxo) = [, 1] = @we)’ =1 (mod Ny).

Let y,=x¢ for /=1 and 3 and y,=x{. Then O,N,)=<{x1, y1, Xs, Vo, Xg, Ysr=2°
and N,=O0y(N,)-{cf>.

(4.2) LEMMA. The element v can be chosen so that v*=(vx,)*=[v, x.]=[v, x,]
=], x¥=x,, *=cf* and u'=u""'.

ProOF. We have {cf>&Syly(/V,) and CGP,T(cf)NT/N,EAS, 20) Cgr(cf)Nr/N =
A, Thus we can choose vECq,(cf) conjugate to x, so that v*=1. Let M=
O,(N,). Since x,, x, and v are all involutions, both (vx,)* and [v, x,] are in-
verted by v. This implies that both (vx,)® and [v, x,] lie in M and hence in
Culcf)=1. Since Cy(cf)=1, we can consider M as a GF (4)-module for Cgp(cf).
With respect to the basis x;, x,, x; the elements x,, x, and ¢ are represented
by the matrices
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1 1 00 A 00
14, X4:<110), C:<010 ,
1 1 01 0 0 p
where 4 and g are the two elements of GF(4) different from 0 and 1, and the
element cf by
A 0 0
D=0 4 0
0 0 2

since xf=x¢/. If VeGL,4) satisfies V:=(X,V)*=[V, X,]J=1 and (CV)*=<D>,
then

1 00

V=001

010
Thus [v, x;]=1 and x3=x, Since (CV)?)=D"!, we have (cv)chECGT(NT)zl,
80 ¢’=c"Y(cf) '=cf'. Since v normalizes both <{x,, ---, x4, ¢, f> and Gp o, We
have [u, v]Je{x,, -+, x4, ¢, f, t>. Since the element [u, v] inverts the Cartan

subgroup {c, f>, it follows that [u, v]i<tc, f>. Since [u, v] also centralizes
x4, in fact [u, v]=t(cf)* for some 7. Then u=(u’)’=(u"'c'f*)’=uc’ implies that
w=u"t!t. =n

Recall that A(Q)NY .+ @ for m=2, 3 or 4 by condition (x).
(4.3) LEMMA. AQ)NY =@ for m=2 and 4.

PrROOF. Let R=Q"*". Then R&Y, and Gp, ¢ r=<x1, X3 ¢, [, 1>. 1f A(Q)N
Y.+ @, then RcA(Q) and hence vg& Gy for some g=Gp,,. Since, however,
G3%.0.r=<x1, x4, ¢, f, t) is not conjugate to Gp oz in Gpy Wwe conclude that
AQNY .=D.

Let T=Q*""". Then T<Y, and Gp g, r=<c, f, ud. If AQ)NY,#@, then
T<A(Q) and hence vg=Gr for some g=Gp . Since v normalizes Gp, o, r and
T is the only fixed point of Gp o r in Y, we conclude that in fact v=Gry.
Hence (v-u™*")*e{c, f, u>. By coset enumeration, we find that the only group
generated by elements x,, -+, x4, ¢, f, u and v satisfying the relations (4.1), (4.2)
and (v-u™*")y*=h for any given element he{c, f, u> is the trivial group. =

(4.4) LEMMA. If AQ)NY ;+ @, then |P|=2058, G=He.2 and I' is uniquely
determined.

PrROOF. Let S=Q"". Then S€Y,; and Gp o s=<x1, ¢, f, ). If AQ)NY,
+@, then S€A(Q) and so vgEGp, g s for some g=Gp . Since v normalizes
{(xy, ¢, f,t> and S is the only fixed point of this subgroup in Y;, we must have,
in fact, v=Gpqs. Thus (W-r*")*&Gpq.s. Since Ceyepy Wr*")=<{x1, ¢, )
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and v inverts (v-r*")}, it follows that either
(4.5) (-r*T) = xif?
for /=0 or 1 and j=1 or 2 or

(4.6) (v-rvTP = xi?

for 7, /=0 or 1. Let CN}H be the group generated by elements xo, -+, X4, ¢, f, U
and v defined by the relations (4.1), (4.2) and [4.5). By coset enumeration, we
find that G, ;=1 for all ; and ;. Replacing by in the definition of
5i,,~, we then find that 5i,j—_—1 unless ;=7=0 and that the index of {x,, ---,
X4y € fr up in Goo is 2058, s0 |Goo|=|He|-2. Since He.2 has the right con-
figuration of subgroups, we conclude that G=He.2 and [ is uniquely determined.

|

5. The proof of (1.2).

Let G and I' fulfill the hypotheses of (1.2). By (2.1) and (2.4), Gp=>F,(2)
or ®F,(2) and |Np|<2. If Np#1, we let zy denote the unique involution in Ny
for each U=%. The Schur multiplier of 2F,(2) is trivial, so (Gp) =2F,(2).
Thus, there exist generators t,, ---, te, @, b, ¢, and d of (Gp) satisfying the
following defining relations for 2F,(2) :

17 =to; for r =1 and 0 <7 <8, ti=t;,_; for s=t{> ¢

and 1=/<9,
a*=d, b*=c, a"=c¢, [b, rl=t, ti=ti=(rs)*=1,
(5.1) a?=ttots, [to, t:]=1 for 1<i<4, [to, ts]1=ts, [lto, tol=tsls,
[to, tid=titotstabts, [ty, ts]=[t1, ts1=1, [t, t.]=ttats, [a, t=ts, [a, bl=titt,,
Ca, tod=tsts, [a, cl=tistbts, and [a, ts]=t:tsct.

If Gp=*F,(2), then there is an additional generator f with f?=t; (mod Np) whose
action on (Gp)’ is given by the following relations:

[tO) f:l = tlt2t31 [th f:l =1 fOI' 7= 1 and 3,
[t27f]:t3: [a)f]:[b’f]:t4’ Ets’f]:tT and Ef,S:lzl.

If we set u;=t; for 7 even, u;=f, u,=bf™*, uy=au3* and u;=uf,_; for ;=7 and
9, then the relations and (5.2) are easily deduced from the following defin-
ing relations for ®F,(2) taken from [13]:

(5.2)

u?=1 for i even, u!=1 for ; odd,
uS=u_; for s=(ud)*1" and 1</<9, ul=u,_; for r=u and 0<;<8,

(5.3)  [uy, usl=[uy, usJ]=[us, us]="[us, usl=1, LU, us]=us, [u1, usl=uj,
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[, Us]=ustlg, LUy, Us]=ususus, [uy, ur']=usu3'us,
Cuy, usl=u uduus'usu, and (rs)®*=1.

In this section, we suppose that I'p=©(1), so there exist Q=A(P) and y=CfnN
C¢ such that

GP-T:<t07 "',tg, a, b, C, f, ZP> and GP'Q:<t1, "‘,tg, a, b, C, d, f, 2P>,

where the element f is to be ignored if Gp=?F,(2)’ and the element zp is to
be ignored if Np=1. Let h=t;b"'a™!, w=ht,dc and W=04C¢[(w)), where [=
{P, Q}. Then |w|=5, |h|=4 and w"=w*. Since (w>&Syly(Gpq), We can
choose veWNG, exchanging P and . Then

(s, zpy  If Gp="Fy(2),
(fyzpy if Gp="F,(2).

(5.4) LEMMA. If Np#1, then [v, zp)=t; and if Gp=2F,2), then f*=t;. In
particular, Gp=2X?*F,(2) if both Gp=?F,(2) and Np+1.

[v, hK]IEWNGr.q ={

ProoF. If Gp=?F,(2), then f%*=t; (mod Np). Since v normalizes WNGp, g,
we have [v, f]€<{s, zpy and therefore [v, f2]=1. If Np#1, then zp+z, (since
otherwise <zp)<(Gp, Go>=G which would imply that zp=1), so zp=z, implies
[v, zp]=t; and f*=t; since fP€Cq, (). W

Recall that A(Q)NY .+ @ for m=2, 3 or 4 by condition (x).

(5.5) LEMMA. If Y\NAQ)# @ and Gp=2F,(2), then [v, h]=<{ts> and [v, ui]
=1, where u,=au3z'=afb™' as above.

Proor. Let T=Q*°". Then T€Y,, O4Gp o.r)=<{w)> and w has exactly
four fixed points in Y,. Let X be the set of these four fixed point together
with P and Q. If Y,NAQ)+# @, then Y,SA(Q) since Gp,q acts transitively on
Y.. Also Np=1 by (2.4). Let G% denote the permutation group induced on
X by the stabilizer Gx. Then (G%)p=5: 4. Since [v, w]=1 and v exchanges
P and Q, it follows by (2.5) that v=Gy (so G% is a transitive extension of
(Gy)r and hence G3=PGL,5)). Let Ny denote the kernel of the action of
Gx on X. Now suppose that Gp=®F,(2). Then Ny=<w, u,)». Since [v, h]le
{fo, h=u7'f"" and [v, f]1={s>, we have [v, u,J=<{f>. It follows that [v, u,]
=NxN{f>=1 and hence [v, h]=[v, u7lf']=t:>. W

(5.6) LEMMA. If condition (%) holds, then [v, h]&<ts, zpy.

PrRoOOF. We have [v, t;1=1. If [v, h]=t;, zp), then h2=tt; and [4, t;]=
Lh, zp]=1 imply that [v, t;]J=1. Let M=0xGp,o). Then

M=<,, - ,t, b, ¢, f,zpy and M =<, -, t>
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and v acts on M/<{M’, f, zp>=2*. Since w acts non-trivially on M/<{M’, [, zp)
and commutes with the 2-element v, it follows that v acts trivially on M/<{M’,
f, zp>. Thus
[v, b1 = t5thritits fA 2%
for a, .-+, p=0 or 1. Let N=04G,). Then
N:<t1: “'ytﬂ a; b: C, f’ ZP> and N’:<t2; "'9t6) b>-

Since v normalizes N’, we have e=Ai=p=0. Since [b, t,]=[v, t;]=1and [1,, t]
1, it follows that 6=0. Then b*=t.t.ts, [v, t;]=1 and (b2)*=(¢%t5¢%h)*=b* imply
that [v, ti,]=1. Since s=({;-(h~'w)*)*, we have [v, s]=1. This implies that
also [v, tet,]=1. Let U=<x* N’ | x=N). Then U=<t, t;,, N> and U/N’'=2"
Since [v, tgt;]=[v, t,]J=1, the element v acts trivially on U/N’. Since G,/
C"r (U/N")=S,, we have CGT(U/N’):OZ(GT). Thus v=0,(G,) (and v acts as
the product of two transpositions on y). Then G,/ CGT(<Z‘3, ts>)=S,, S0 CGr(<t3’
t59)=04(G;) as well. It follows that v also acts trivially on Z(N)N\N'=<t,, ts>.
Thus [v, ts¢,]=1 implies [v, t,]=1 and hence [v, t;]=1 (since [v, s]=1). Con-
jugating [k, b]=t,t, by v, we find that [v, t,]=t5. Then ®=t2t5tl¢ implies
that [h, c]°=[h, t3thc]=t5t3*Ptg-t;b.  Since (t:b)°=1%t6t0-1,b, it follows that a=
6=0. Since a=h"'b""%,, we have [v, a]=ti{t;s, zp).

The group Gp acts as a rank 5 permutation group on A(P), so condition (x)
implies that YV, S A(Q) for m=2, 3 or 4. Suppose first that Y,SA(Q). Let R=
Q*". Then R€Y, and

GP.Q,R - <ZI) Tty Z57 a, b; f: ZP>-

By (2.5), there exists an element g=Gp,o such that vg=Gp and hence (vg-s”)®
&Gp,g.r. Since v normalizes ¢y, -+, t5, @, b, f, zp>, so must g. Thus, we can
assume that g=t% for 2#=0 or 1. Then tf”‘fs”?’:(t’gts)w"é”>2::---:z‘s. This con-
tradicts the fact that ¢, and ¢; are not conjugate in <{¢y, -, ts5, @, b, f, zp).
Suppose that Y ;S A(Q), so Np=1 by (2.4). If S=Q"", then SeY, and
Gp, g s=(t1, tay ts, @) O iy, by, b5, @, bf *>. Thus Gp o sN\(Gp) =<2, ts, ts, atbthy
for ;=0 or 1. We have vgeGs for some g=Gp,o by (2.5). Since <ty, t,, t5, @)
=Gp,q. 5N\ (GCp) =(Gp, o, sN\(Gp))¥={t, s, t;5, atht’s >4, it follows that ;=0 and g<=
tBty, -, ts, @, bfY, bts>. Note that [#,, g]+1 since otherwise t®#7° *=¢, which
contradicts the fact that ¢, and #; are not conjugate in Gp o s. Suppose that
Gp=*F,(2). Substituting vf for v if necessary, we can assume that 3=0. Then
(bf ' )¢=Gp,o, s implies that gedt,, -+, ts, a, bf™*> which contradicts the fact
that [t;, g]#1. Hence Gp=*F,(2) and ge&tf(bto)*tit,, ts, ts, ts, a> for 4, p=0
or 1. This time [¢, g]#1 implies that A=8+1 (mod2). Then q@sT =
a(titsts)?, so =0 since a and atfsf; are not conjugate in Gp g 5. Thus g=bt.x
for some x<<¢ty, -+, t;, ay. Since »*" is an involution in Gp exchanging @ and
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S and Gp ¢, s acts transitively on {P, Q, S}, we can assume that (vg)*=1. Thus
x &Lty -+, t5», since otherwise (vg)’=a*=t, (mod {t;, ---, t;>). But then (vg)=
t, (mod {ts, t5)).

Let T=Q*""" and suppose that Y,SA(Q), so again Np=1 by (2.4). Then
T<A(Q). Let X be as in the proof of (5.5). Suppose first that Gp=%F,(2).
Substituting vf for v if necessary, we can assume that ==0. We have vf™<
Gr for some m since {f) acts transitively on X\{P, Q}. By (5.5), both v and
f centralize Gp g r=<w, u, s0 WfM)P=Z(Gpg.r)=1. Thus vf™ inverts
vf™-s™" and commutes with w, so (vf™-s"*")*=1. Since [v, t,]=1 and v*={f),
we have v*=t¢{ for /=0 or 1. Since (vf™)*=1, we have i=m(/+1) (mod 2), where
Lv, f1=ti. By coset enumeration, however, we find that the group generated
by elements t,, ---, t5, a, b, ¢, d, f and v defined by [5.1), (5.2), f2=t;, v2=tIV+D,
(v, wl=[v, b]=1, [v, f1=[v, h1=t} and (vf™-s"*7)*=1 is trivial for all values
of / and m. Thus Gp=*F,2), so C¢,(w) induces a group isomorphic to L,(5)
on X and therefore vt(i=Gr for k=0 or 1. Since (vt2)*=Gp, o rNW =1, the
element (vtt-s7°")* of Gp, o r commutes with w and is inverted by vt%, so (vtk-s75")
=1. Let 5ﬁ,j_k be the group generated by elements ¢, -+, 1y, @, b, ¢, d and v
defined by v=[v, t;s1=[v, wl=1, [v, b"*]=t8, [v, h]=t} and (vtt-s7°7)*=1.
By coset enumeration, we find that GN@, s,e=1for all B, 7 and 2. m

By (5.6), we can assume that [v, h]1={f, zp)\{ts5, zpy. In particular, Gp=
:F(2). As above, we let u;=t; for 7/ even, u;=/f, u;=bf"!, u,=au3* and u;=
u$o_¢ for 7=7 and 9. By (5.4), ui=¢; for 7 odd, and Gp is generated by the
elements u,, ---, u, satisfying (5.3) and, if Np+1, also zp with

(5.7) (v, zpl=1ts, [2p,u;]=1 for 079 and zi=1.

In particular, w=u7'u, and h=u7'u;!. We will continue, sometimes, to write
t; in place of u; for 7 even.

(5.8) LEMMA. The element v can be chosen so that [v, ut*]=[v, us']l=u;tizg,
ud=u3'ty, [v, us]=tr*, v*=t%, and

(UotgV)® = FiUsuely - 1oULTHHYYE

for i, 7, n, p, =0 or 1.

PROOF. Since v normalizes WNGp,o={us, zp», we have ul=utiz} for k&,
m=0 or 1. Since [v, h]l={us, zp)\{ts, z2p), it follows that [v, ui']=ustizp for
i, n=0or 1. Then v»’&WNGp o={us zpy and (u?)’=(u,ustiz3)’=u k" "*z% imply
that m=0 and k=n+1 (mod 2). Since [v, w]=1 and w=u7lu,, also [v, u;']=
ustizd and thus s*=(t4'’=t,s. As in the proof of (5.6), v acts trivially on
MM, us, zpy=2%, soO

(v, us'] = tSubultiultyzl
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for a, .-+, =0 or 1. Since v normalizes N'=<(t,, -, ts, ususy (wWhere N=0,(Gy)
as above) and [v, us]=t72*}, it follows that d=p=60=0. Then }=(u})’=t;t¢ and,
since s’=t;s, also [v, t;]=<ts>, so v acts trivially on U/N'=<t,, t,, N'D/N' =22,
where U is as in the proof of (5.6). This implies that v induces the product
of two transpositions on 7. It follows that v acts trivially on Z(N)NN’, so
2=0. Replacing v by vu; if necessary, we can assume that 8=0. Then ul=
[, ull=[us us]=u, and (u})’=wu, This second equation implies that v’
Cug, op5(0, us)=<ts>. Then ud=[u}, uf]l=ustsu,.

The element wu,ugv induces a 3-cycle on 7, so (uougv)*<=N. Let K=
(xeN|x*eN’). Then K=<t us, t:, zp, N') and u,uzv acts fixed point freely
on N/K={uy, u.)K/K=2: Thus (uousv))cK. We have Z(N')=<t,, U, ts),

K/Z(N')y = {t1, Us, U3, Us, Usg, Lo, 2pp Z(N")/ Z(N')=28 or 27
and
Crizew(UottgV) = {yuslhets, Ustisusits, 2p)Z(N')/Z(N'),

SO

A+B A+BtA

(wougv)® = tdububudtBug 28 toudtt

for A, B, C, p, g, =0 or 1. Replacing v by vzg, we can assumie that C=0.
Next we calculate that

3 2
W SHOUES — (f gy papetl)(uoug® — (g petlpatetly g NUoUgD) — patlpetny,

22

whereas [t4ufulud Bud+Bratqudts, uz']=t5u%. Thus a=1, B=0 and e=n. Cal-
culating u{*o*s® in two different ways, we conclude that A=1. Calculating
uito¥s»® in two different ways, we conclude that ¢=i+n-+1 (mod2). m

(5.9) LEMMA. If Y,NAQ)# @, then G=Ru and I' is uniquely determined.

ProOF. Let R=Q7". Then Q<=Y, and Gp g z=<uy, -+, us, zpy. If Y ;N
AQ)# @, then Y,SA(Q). By (2.5), there exists an element g&Gp ¢ such that
vgeGg. By (5.8), v normalizes <{u,, -+, us, 2p). This group has only two fixed
points in Y,, namely R and R%s, so we can assume that g=u? for =0 or 1.
Thus (vu¢-s™P=ushuz for a,v=0,1,2 or 3 and h&{u,, u,; u,, zpy. Then
(uhuy) e =y sty (mod<t,, us, Us, Us, 2py). Since vu@s” must centralize a power
of itself, we conclude that «=y and that « is even. Replacing @ by «a/2, we
have therefore (vu¢s™)=t%ufultiustzzt for a, ---, =0 or 1. Conjugating with
vu¢s™, we obtain t”“’”"”uﬁ+“u5t3+“‘"+3“uf9t“7p, and so f=p=0, 6=aw and =
alw+on+1) (mod 2). Thus (vu@s™ )P =t¢ugvtitizat@rem+)  Next we calculate that
uPues T =gioygtptiterly, whereas [t{uftitgzg@ren P uzt]=ul. Thus 0=w+a
(mod 2), w=i+n-+1(mod 2) and d=w. Replacing v by vt, if necessary, we can
assume that e=0. Hence

(5.10) (Uué+n+ls?‘)3 — tc}ug+n+ltgz2;;+n+l+a.
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Let éi,j,a,p,,,n be the group generated by elements u,, -+, uy, 2p, v defined by
the relations (5.3), [5.7), (5.8) and [5.10). By coset enumeration, we find that
5i_j,a,p,,,n:l for all 7, j, @, p, 7 and n. If follows that Np=1, so we omit the
element zp, the parameter n and the relations from the definition of
éi,j,a‘p,,_n. It then turns out that G~i,j,a_p,,:1 unless /=0 and j=a=p=r=1
and the index of the subgroup {u,, -+, uy> in GNM,,I,1 is 4060. Thus ]50'1, Ll
=|Ru|. Since Ru has the right configuration of subgroups [9], we conclude
that G= Ru and that I is uniquely determined. m

(5.11) LEMMA. If Y ,NAQ)= @, then G and I' are as in (5.9).

PROOF. By (2.4), we can ignore zp. Let S=Q"''. Then S€Y,and Gp g s
={uy, Uy, Usp. If Y NAQ)# @, then Y,SA(Q). By (2.5), there exists an
element g&Gp, o such that vg=Gs and hence (vg-r*"P=ufufu§ for some A, B,
C. We have (Gp, g, s)"=<{uustt, usus, us»>. This group is conjugate to {u,, u,, us)
in Gp,q only if 7=0. Since vg normalizes Gp ¢, 5, We can assume that g=ult#u,
for 4, p=0 or 1. Replacing v by vt; if necessary, we can assume that p=1.
Next we calculate ufufuf=(ufubud)®e™ =(u,t’u) uB(u,t,)° and thus A=C
=0, so

(5.12) (vuftsu.r*7) = us.

Let 5] o.z.2,8 D€ the group generated by elements u,, -+, uy, and v defined by
the relations (5.3), (5.8) with ;=n=0 and [5.12). By coset enumeration, we find
thatGJ o7 A, B_lunleSSJ =p=r=A=B=]1, that |G1 1111 =|Ru| and that (vu.s™)®

—»1u3t5 hOldS ln G1'1,1,1,1- ||

With (5.5) and (5.6), this concludes the proof of (1.2) in the case I p=&(1).

6. The proof of (1.2): Conclusion.

We assume now that ['r=0O(1)°, so that Nr=1, and there exist Q=A(P)
and yeCfNC? such that

GP.Q - <t0) ) tSy a, b, c, f> and GP.)’:<t1: ) tS) a, b; c, d) f>;

where t,, -+, tg, @, -, d, f are as in and (5.2) with f%*=t;; as usual, the
element f is to be ignored if Gp=*F,(2). Let M=04G,). Then M=<{t,, ---,
ts, b, ¢, >, Z(M)=<t;> and M'=<¢,, ---, {,». Let X=M/M’'. As above, we let
h=tb 'a"' and w=ht.dc. Then |h|=4, |w|=5 and w*=w?. The elements A
and w are represented on X=2* or 2° with respect to the basis t,M’, bM’, ¢cM’,
t M and, only if Gp=*F,(2), fM' by the matrices
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11010 11010
01110 1 0100
H=|0 011 0 and W=|0 1 0 0 O
00010 1 0000
00 001 0 0001

if Gp=tF,(2) or by H, and W, otherwise, where E, denotes the 4Xx4 matrix
obtained from any given 5X5 matrix E by deleting the last row and column.
Since G;=PGLy5), there is an element v in G, such that

vE= ()= @hv)P =1 (mod M).

If VeGL(2) satisfies V*=(VH?=(H"V)*=1(where HY=WHW ! is the matrix
representing h¥=w"‘hw), then V equals either

0 00O

1 1100 2
01100 01 000
A=|0 01 0 0| or B={0 0 1 1 0y
00010 0 0010
0 00 01 000 ;51

where ij=1. Let U=M'/Z(M). Since the elements & and w are represented
on U with respect to the basis t,Z(M), t.Z(M), tZ(M), t,Z(M) by the matrices
H, and W,, the element v is represented on U by A, or B,.

Suppose that the element v is represented by A or 4, on X. Then b»°=bH
(mod M’). Since [M, M'1=Z(M) and M’ is elementary abelian, (b?)*=p?
(mod Z(M)) follows. Since b*=t.t,t; and ti=t,(mod Z(M)), it follows that i=¢,
(mod Z(M)). This implies that v is represented on U by A,. Hence (t:c)°=t;
(mod Z(M)). On the other hand, [¢,, ts]°=[t,, t;](mod Z(M)) since v is repre-
sented by A or A, on X and [M, M']=Z(M). This contradicts the fact that
[tz, ts]:t4te-

We conclude that the element v is represented by B with 771 or B, on
X. Then t3=ctyf’ (mod M"). Since [M, M']=Z(M), t:=1 and M’ is elementary
abelian, it follows that (ctf?)’=Z(M). By however, we have (cts)?=tst;
and (ctsf)*=t,. This completes the proof of (1.2).

7. The proofs of (1.3) and (1.4).

Now suppose that I'p= % (k),. By (2.2), we have k=1 and by (2.4), Np=1,
so Gp acts faithfully on I'p. In particular, N,/Z(N;)=3% Since G;=S;, it
follows that G, acts trivially on N,/Z(N,). But Gp; acts non-trivially on
N;/Z(N,;). This concludes the proof of (1.3).

Let I'=(8,, ---, B,; *) be a geometry fulfilling the hypotheses of (1.4), let
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G=aut(/") be a group acting flag-transitively on /" and let A be the collineation
graph of I" on ®,. As in §2 above, it is easily seen that we can identify
each element x = 4, for /=2 with the subset #%. Since the point-stabilizers
act faithfully on the point-residues for each of the geometries characterized in
(1.1)-(1.2), it follows that Gp acts faithfully on I'p for P= 4,. Choose P<
B, Q=A(P) and 7= 87N B4,

Suppose first that I'p is isomorphic to one of the geometries (a)-(d) of (1.1).
Then N,=2% or 2° and Gp,; acts non-trivially on N,. On the other hand, G;=
S5, which implies that G, acts trivially on N,. Suppose I is isomorphic to the
geometry (e) of (1.1). Let V=04xN,) and H<=Syl;(N,). Then CGP,T(H)V/V acts
faithfully on V. Since, however, CGY(H)NY/NTES7 and A, is not involved in
L,(4), we have a contradiction. If ' is isomorphic to the extended generalized
octagon of (1.2), then Z(N,)=2® and Gp , acts non-trivially on Z(N;). Since
Gy =S;, however, G, cannot possibly act non-trivially on Z(N,). This concludes
the proof of (1.4).
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