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Introduction.

Oka [18] solved the Levi problem, which is the problem to ask if a pseudo-
convex domain is a domain of holomorphy, in a domain spread over $C^{n}$ . At
the same time, Bremermann [1] and Norguet [16] solved this problem in $C^{n}$ .
Their results were extended to a domain spread over the complex projective
space $P_{n}(C)$ of dimension $n$ by Fujita [4], Kiselman [9] and Takeuchi [22].

In the last fifteen years, the Levi problem has been discussed in various
infinite dimensional spaces. Gruman [5] and Gruman and Kiselman [6] solved
this problem in a complex Banach space $E$ with a Schauder basis, and Hervier
[7] extended this result to a domain spread over $E$ . Dineen [2] and Gruman
[5] solved this problem in an infinite dimensional vector space $E$ with the finite
open topology, and Kajiwara [8] extended this result to a domain of the com-
plex projective space induced from $E$ .

The aim of this paper is to prove the following two theorems having their
sources in the Levi problem and in the imbedding theorem of a Stein manifold.

THEOREM 1. Let $E$ be a complex Banach $sPace$ with a Schauder basis, and
$P(E)$ the complex projective $sPace$ induced from E. Let $(\Omega, \phi)$ be a domain
spread over the comPlex projective sPace $P(E)$ . SuPpose that $\Omega$ is not homeo-
morphjc to $P(E)$ through $\phi$ . Then the following conditions are equivalent:

(1) $\Omega$ is pseudoconvex.
(2) For every finite dimenstonal linear subspace $F$ of $E$ and the projective

space $P(F)$ induced from $F$, the inverse image $\phi^{-1}(P(F))$ of $P(F)$ by $\phi$ is a Stein
mamfold.

(3) $\Omega$ is a domain of holomorphy.
(4) $\Omega$ is a domain of existence.

THEOREM 2. Let $H$ be a separable complex Hilbert space, $\{e_{j}\}_{j=1}^{\infty}$ an ortho-
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normal baszs of $H$, and $P(H)$ the complex projectjve space induced from H. Let
$(\Omega, \phi)$ be a pseud0c0nvex domain spread over $P(H)$ . Suppose that $\Omega$ is not homeo-
morphjc to $P(H)$ through $\phi$ . We denote by $H_{n}$ the linear span of the set
$\{e_{1}, e_{2}, \cdots , e_{n}\}$ and denote by $P(H_{n})$ the complex pr0jective space induced from
$H_{n}$ . Then there exests an injective holomorphic mapping $f$ of $\Omega$ into $H$ such that
for every positive integer $n$ the restnction mapping $f|\phi^{-1}(P(H_{n}))$ of $f$ on
$\phi^{-1}(P(H_{n}))$ is a regular and pr0per holomorphic mapping of $\phi^{-1}(P(H_{n}))$ into $H$.

The author would like to thank the referees for their kindly advice, valuable
suggestion and encouragement.

1. Banach complex manifolds and domains spread over Banach complex
manifolds.

Let $E$ and $F$ be complex Banach spaces, and $U$ an open subset of $E$ . A
mapping $f:Uarrow F$ is said to be holomorphjc in $U$ if $f$ is continuous in $U$ and
if, for any $(a, b)\in U\cross(E-\{0\})$ and for any continuous linear functional $\alpha\in F’$ ,

the composite mapping $\lambdaarrow\alpha\circ f(a+\lambda b)(\lambda\in C)$ is holomorphic where it is defined.
A function $P:Uarrow[-\infty, +\infty$ ) is said to be plurisubharmonic if $p$ is upper-
semicontinuous in $U$ and if, for any point $(a, b)$ of $U\cross(E-\{0\})$ , the function
$\lambdaarrow P(a+\lambda b)(\lambda\in C)$ is subharmonic where it is defined.

A Hausdorff space $M$ is called a complex mamfold modeled on a comPlex
Banach space $E$ if there exists a family $\mathfrak{F}=\{(U_{i}, \phi_{i});i\in I\}$ of pairs $(U_{i}, \phi_{i})$ of
open sets $U_{i}$ of $M$ and homeomorphisms $\phi_{i}$ of open sets $U_{i}$ onto open sets of
$E$ satisfying the following conditions:

(1) For any elements $i,$ $j$ of $I$ with $U_{i}\cap U_{j}\neq\emptyset$ , the mapping $\phi_{i}\circ\phi_{j}^{-1}$ :
$\phi_{j}(U_{i}\cap U_{j})arrow\phi_{i}(U_{i}\cap U_{j})$ between open sets in $E$ is holomorphic.

(2) $\bigcup_{i\in I}U_{i}=M$ .
$\mathfrak{F}$ is called the atlas of $M$. An element of $\mathfrak{F}$ is called a chart of $M$.
Let $M$ and $N$ be complex manifolds with atlases $\{(U_{i}, \phi_{i});i\in I\}$ and

$\{(U_{a}’, \phi_{a}’);\alpha\in A\}$ respectively. Then a mapping $f:Marrow N$ is said to be holo-
morphjc if, for any $i\in I$ and $\alpha\in A$ with $f(U_{i})\cap U_{a}’\neq\emptyset$ , the mapping $\phi_{\alpha}’\circ f\circ\phi_{t}^{-1}$

is holomorphic. Particularly, if $N=C,$ $f$ is called a holomorphjc function. We
denote by $H(M)$ the family of all holomorphic functions in $M$. A function
$p:Marrow[-\infty, +\infty)$ is said to be Plurisubharmonic if, for any $i\in I$ , the function
$f\circ\phi_{i}^{-1}$ is plurisubharmonic.

We consider subsets $\Delta_{1}$ and $\Delta_{2}$ in $C^{2}$ defined by

(1.1) $\Delta_{1}=\{(z_{1}, z_{2})\in C^{2} ; |z_{1}|=1, z_{2}\in[0,1]\}\cup\{|z_{1}|\leqq 1, z_{2}=0\}$ ,

(1.2) $\Delta_{2}=\{|z_{1}|\leqq 1, z_{2}\in[0,1]\}$ .
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A complex manifold $M$ is said to satisfy the Kontinuitatssatz if any holomorphic
mapping of a neighborhood of $\Delta_{1}$ into $M$ is extended holomorphically to $\Delta_{2}$ .

Let $M$ be a complex manifold. If there exists a local biholomorphic mapping
$\phi$ of a complex manifold $\Omega$ into $M,$ $(\Omega, \phi)$ is called a region spread over $M$.
Moreover, if $\Omega$ is connected, $(\Omega, \phi)$ is called a domain sPread over $M$.

Let $(\Omega, \phi)$ and $(\Omega’, \phi’)$ be regions spread over $M$. If a holomorphic mapping
$\lambda$ of $\Omega$ into $\Omega’$ satisfies $\phi=\phi’\circ\lambda,$ $\lambda$ is called a maPping of $(\Omega, \phi)$ into $(\Omega’, \phi’)$ .
Let $(\Omega, \phi)$ be a region spread over a complex manifold $M$ and let $\mathfrak{F}\subset H(\Omega)$ .
If $(\Omega^{f}, \phi’)$ is a region spread over $M$ then a mapping $\lambda$ of $(\Omega, \phi)$ into $(\Omega’, \phi’)$

is said to be an $\mathfrak{F}$-extension of $\Omega$ if for each $f\in \mathfrak{F}$ there exists a unique
$f’\in H(\Omega^{J})$ such that $f’\circ\lambda=f$. A mapping $\lambda$ of $(\Omega, \phi)$ into $(\Omega’, \phi’)$ is said to be
a holomorphic extension of $\Omega$ if $\lambda$ is an $H(\Omega)$-extension of $\Omega$ . $\Omega$ is said to be
an $\mathfrak{F}$-domain of holomorPhy if each $\mathfrak{F}$-extension of $\Omega$ is an isomorphism. $\Omega$ is
said to be a domain of holomorphy if $\Omega$ is an $H(\Omega)$-domain of holomorphy. $\Omega$

is said to be a domain of existence if there exists $f\in H(\Omega)$ such that $\Omega$ is an
$\{f\}$ -domain of holomorphy.

Let $E$ be a complex Banach space with a norm $\Vert\cdot\Vert$ and let $(\Omega, \phi)$ be a
region spread over $E$ . For a point $z$ of $E$ and for a positive number $\epsilon$ , we
define the open ball $B(z, \epsilon)$ by

(1.3) $B(z, \epsilon)=\{w\in E ; \Vert w-z\Vert<\epsilon\}$ .

For any point $x$ of $\Omega$ , there exists a positive number $\epsilon(x)$ such that, for any
positive number $\epsilon$ with $\epsilon<\epsilon(x)$ , there exists uniquely an open neighborhood
$\Delta(x, \epsilon)$ of $x$ which is mapped by $\phi$ homeomorphically onto the open ball
$B(\phi(x), \epsilon)$ . The open neighborhood $\Delta(x, \epsilon)$ is called the oPen ball in $\Omega$ with
center $x$ and with radius $\epsilon$ . We define the boundary distance function $d_{\Omega}(x)$ on
$\Omega$ by

(1.4) $d_{\Omega}(x)= \sup$ { $x$ ; the oPen ball $\Delta(x,$ $\epsilon)$ exists}.

Let $a$ and $b$ be points of $\Omega$ . By a line segment $[a, b]$ in $\Omega$ we mean a set in
$\Omega$ containing the points $a$ and $b$ and homeomorphic under $\phi$ to the line segment
$[\phi(a), \phi(b)]$ in $E$ . By a polygonal line $[x_{0}, x_{1}, \cdots , x_{n}]$ in $\Omega$ we mean a finite
union of line segments of the form [Xj-l, $x_{j}$] with $j=1,$ $\cdots$ , $n$ .

REMARK 1.1. Let $x$ and $y$ be two points which belong to a connected
component of $\Omega$ . Since there exists a polygonal line $[x_{0}, x_{1}, \cdots , x_{n}]$ with $x_{0}=$

$x$ and with $x_{n}=y$ , there exists a finite dimensional linear subspace $F$ of $E$ such
that the set $\{x, y\}$ is contained in a connected component of the inverse image
$\phi^{-1}(F)$ of $F$ by $\phi$ .
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2. Complex projective spaces induced from complex Banach spaces.

In this section we first give some properties of a complex projective space
induced from a complex Banach space. Then we give the definition of pseudo-
convexity of a domain spread over the complex projective space, and prove
some lemmas with respect to pseudoconvexity.

Let $E$ be a complex Banach space with the norm $\Vert\cdot\Vert$ . Let $z$ and $z’$ be
points in $E-\{0\}$ . $z$ and $z’$ are said to be equivalent if there exists a complex
number $\lambda\in C-\{0\}$ such that $z’=\lambda z$ . The quotient space $P(E)$ of $E-\{0\}$ by
this equivalence relation is called the comPlex Projective sPace induced from $E$ .
We denote by $Q$ the quotient map of $E-\{0\}$ onto $P(E)$ . For any $\xi\in E-\{0\}$ ,
we denote by $[\xi]$ the equivalence class of $\xi$ . Then we have $Q(\xi)=[\xi]$ .

Let $E’$ be the complex Banach space of continuous linear functionals on $E$ .
We set

(2.1) $S=\{(f, a)\in E’\cross E;f(a)\neq 0\}$ .

For each $f\in E’-\{0\}$ , we consider a hyperplane $E(f)$ of $E$ and an open subset
$U(f)$ of $P(E)$ defined by

(2.2) $E(f)=\{\xi\in E ; f(\xi)=0\}$ ,

(2.3) $U(f)=\{[\xi]\in P(E);f(\xi)\neq 0\}$

respectively. For every $(f, a)\in S$ , we define a homeomorphism $\phi_{(f,a)}$ of $U(f)$

onto $E(f)$ by
$\phi_{(f.a)}([\xi])=(1/f(\xi))\xi-(1/f(a))a$

for every $[\xi]\in U(f)$ . The family $\{U(f), \phi_{(f.a)}\}_{(f.a)\in S}$ defines the complex
structure of the projective space $P(E)$ .

Let $S(E)$ be the unit sphere in $E$ . Then the topological space $P(E)$ is a
quotient space of $S(E)$ . The topology of $S(E)$ as a subspace of $E$ induces the
topology on the quotient space $P(E)$ . $S(E)$ is a principal fibre bundle over $P(E)$

with circle group. Since $S(E)$ is a subspace of the metric space $E$ , the metric
on $S(E)$ induces a metric $d( , )$ on $P(E)$ by

(2.4) $d(P, P’)= \inf\{\Vert z-z’\Vert ; z\in Q^{-1}(p)\cap S(E), z’\in Q^{-1}(p’)\cap S(E)\}$

for any points $P$ and $P’$ of $P(E)$ . Since $E$ is complete and $S(E)$ is closed, $S(E)$

is a complete metric space. From the compactness of the fibre of $S(E)$ , it
follows that $P(E)$ is also complete.

Let $(\Omega, \phi)$ be a domain spread over the complex projective space $P(E)$

induced from E. $E-\{0\}$ is the total space of the holomorphic principal bundle
over $P(E)$ with the complex multiplicative group $c*$ . We consider the fibre
product $X$ of $\Omega$ and $E-\{0\}$ given by
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(2.5) $X=\{(z, w)\in\Omega\cross(E-\{0\});\phi(z)=Q(w)\}$ .
We denote by $\phi$ and $\tilde{Q}$ projections of the fibre product $X$ into $E-\{0\}$ and into
$\Omega$ respectively. Then (X, $\hat{\phi}$ ) is a domain spread over $E$ .

For any $(z, w)\in X$ and for any $\lambda\in C^{*}$ , we set

(2.6) $\lambda\cdot(z, w)=(z, \lambda w)$ .

Then points $\lambda\cdot(z, w)$ of $\Omega\cross(E-\{0\})$ belong to $X$ for all $(z, w)\in X$ and for all
$\lambda\in C^{*}$ . The mapping $(\lambda, x)arrow\lambda\cdot x$ is a holomorphic mapping of $C^{*}\cross X$ onto $X$.
Then $\Omega$ is the quotient space of $X$ by this $c*$-action and $\tilde{Q}$ is the quotient map
of $X$ onto $\Omega$ . $X$ is the total space of a holomorphic Principal bundle over $\Omega$

with the complex multiplicative group $c*$ . We have the following commutative
diagram:

$Xrightarrow^{Q\tilde}\Omega$

(2.7)
$\downarrow\tilde{\phi}$ $\downarrow\phi$

$E-\{0\}arrow^{Q}P(E)$ .
Let $f$ be a holomorphic function in $X$. We set

(2.8) $\tilde{f}(x)=(1/2\pi)\int_{0}^{2\pi}f(e^{i\theta}\cdot x)d\theta$

for every $x\in X$. Then $f$ is a holomorphic function in $X$ and we have

(2.9) $\tilde{f}(e^{t\eta}\cdot x)=\tilde{f}(x)$

for every $\eta\in[0,2\pi$ ) and for every $x\in X$. By the identity theorem of a complex
variable holomorphic function theory, we have

(2.10) $\tilde{f}(\lambda\cdot x)=\tilde{f}(x)$

for every $\lambda\in C^{*}$ . Therefore $f$ is constant on $\tilde{Q}^{-1}(z)$ for every $z\in\Omega$ . We define
a holomorphic function $f^{*}$ in $\Omega$ by

(2.11) $f^{*}(z)=\tilde{f}(\tilde{Q}^{-1}(z))$

for every $z\in\Omega$ . We have

(2.12) $(g\circ\tilde{Q})^{*}=g$

for every $g\in H(\Omega)$ . Hence we obtain the following lemma.

LEMMA 2.1. For any $f\in H(X)$ , a holomorPfuc function $\tilde{f}$ in $X$ defned by
(2.8) is constant on $\tilde{Q}^{-1}(z)$ for every $z\in\Omega$ . Thus we can define a holomorphic

function $f^{*}$ in $\Omega$ by (2.11).
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Let $F$ be a closed linear subspace of $E$ . We denote by $X_{F}$ and by $\Omega_{F}$

regions spread over $F$ and spread over the complex projective space $P(F)$ in-
duced from $F$, respectively, defined by

(2.13) $X_{F}=\tilde{\phi}^{-1}(F-\{0\})$ ,

(2.14) $\Omega_{F}=\phi^{-1}(P(F))$ .
$X_{F}$ is a holomorphic principal bundle over $\Omega_{F}$ with the complex multiplicative
group $C^{*}$ . We have the following commutative diagram induced from the
commutative diagram (2.7):

(2.15)
$x_{F}^{\underline{\tilde{Q}|X_{F}}}\Omega_{F}1^{\phi|X_{F}}\downarrow\phi|\Omega_{F}$

$F-\{0\}P(F)\overline{Q|(F-\{0\})}$

Let $(\Omega, \phi)$ be a region spread over a complex projective space $P(E)$ induced
from a complex Banach space $E$ . Then the region $(\Omega, \phi)$ is said to be pseudo-
convex if, for every $f\in E’-\{0\}$ and for the open set $U(f)$ , defined by $(2, 3)$ , of
$P(E)$ , the open set $\phi^{-1}(U(f))$ of $\Omega$ satisfies the Kontinuit\"atssatz.

LEMMA 2.2. Let $E$ be a complex Banach space and $(\Omega, \phi)$ be a domain spread
over the complex prOjective space $P(E)$ . Suppose that $\Omega$ is not homeomorpfuc to
$P(E)$ through $\phi$ . Then for any fimte dimenszonal linear subspace $F$ of $E$ and
for any connected component $V_{F}$ of $\Omega_{F}$, there exzst a fimte &mmsional linear
subspace $G$ of $E$ and a connected comp0nent $V_{G}$ of $\Omega_{G}$ satisfyng the following
conditions:

(1) $V_{F}$ is a closed complex submamfold of $V_{G}$ .
(2) $V_{G}$ is not homeomorphic to $P(G)$ through $\phi|V_{G}$ .

PROOF. By Remark 1.1 and by the commutative diagram (2.15), there exist
a finite dimensional linear subspace $F_{0}$ of $E$ and a connected component $V_{F_{0}}$ of
$\Omega_{F_{0}}$ such that $V_{F_{0}}$ is not homeomorphic to $P(F_{0})$ through $\phi|V_{F_{0}}$ . We take a
point $z$ of $V_{F}$ and a point $w$ of $V_{F_{0}}$ . By Remark 1.1 and by the commutative
diagram (2.15), there exists a finite dimensional subspace $F_{1}$ such that a con-
nected component $V_{F_{1}}$ of $\Omega_{F_{1}}$ contains the set $\{z, w\}$ . Let $G$ be the complex
vector space spanned by all elements of the union $F\cup F_{0}\cup F_{1}$ . Then $P(F)$ and
$P(F_{0})$ are closed complex submanifolds of $P(G)$ . We denote by $V_{G}$ the con-
nected component of $\Omega_{G}$ containing the set $\{z, w\}$ . Since $(V_{G}, \phi|V_{G})$ is a
domain spread over $P(G)$ , both $V_{F}$ and $V_{F_{0}}$ are closed complex submanifolds
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of $V_{G}$ . Then $V_{G}$ satisfies the required conditions (1) and (2). This completes
the proof.

LEMMA 2.3. Suppose that $\Omega$ is not homeomorphc to $P(E)$ through $\phi$ and that
$\Omega$ is pseudOcOnvex. Then, for any fimte dimenszonal linear subsPace $F$ of $E,$ $\Omega_{F}$

is a Stein manifold. $X$ satisfies the Kontinuitatssatz.

PROOF. Let $F$ be a finite dimensional linear subspace of $E$ . Let $V_{F}$ be any
component of $\Omega_{F}$ . By Lemma 2.2 there exists a finite dimensional subspace $G$

of $E$ and a component $V_{G}$ of $\Omega_{G}$ satisfying the conditions (1) and (2) in Lemma
2.2. Since $\Omega$ is pseudoconvex, $V_{G}$ is also pseudoconvex. By Fujita [4], Kisel-
man [9] and Takeuchi [22], the pseudoconvex domain $V_{G}$ spread over $P(G)$ is
a Stein manifold. Since $V_{F}$ is a closed complex submanifold of the Stein mani-
fold $V_{G},$ $V_{F}$ is a Stein manifold. Thus $\Omega_{F}$ is a Stein manifold. $X_{F}$ is the total
space of a holomorphic principal bundle over the Stein manifold $\Omega_{F}$ with the
complex multiplicative group $C^{*}$ . Therefore $X_{F}$ is a Stein manifold by Matsu-
shima and Morimoto [12]. Since (X, $\tilde{\phi}$ ) is a domain spread over $E,$ $X$ satisfies
the Kontinuit\"atssatz by Noverraz [17]. This completes the proof.

LEMMA 2.4. With the assumPtion of Lemma 2.2 the following conditions are
equivalent:

(1) $\Omega$ is pseudOcOnvex.
(2) $\Omega_{F}$ is a Stern manifold for every finite dimensional linear subspace $F$

of $E$.
PROOF. It follows from Lemma 2.3 that (1) implies (2).

We will show that (2) implies (1). Let $f$ be an element of $E’-\{0\}$ . By
the assumption, for every finite dimensional linear subspace $F$ of $E$ with $\dim_{C}F$

$\geqq 2$ and $F\not\subset\{f=0\},$ $\Omega_{F}$ is a Stein manifold. We set $H=\phi^{-1}(\{[\xi]\in P(F);f(\xi)$

$=0\})$ . Since $H$ is a hypersurface of $\Omega_{F}$ and $\Omega_{F}\cap\phi^{-1}(U(f))=\Omega_{F}\backslash H,$ $\Omega_{F}\cap\phi^{-1}(U(f))$

is a Stein manifold. $\phi^{-1}(U(f))$ and $\Omega_{F}\cap\phi^{-1}(U(f))$ are identified with regions
spread over the Banach space $\{f=0\}$ and spread over the finite dimensional
subspace $\{f=0\}\cap F$ of $\{f=0\}$ respectively. Therefore by Noverraz [17] the
domain $\phi^{-1}(U(f))$ satisfies the Kontinuit\"atssatz. Thus $\Omega$ is pseudoconvex. This
completes the proof.

3. Some properties of the fibre product $X$.
In this section we will research some properties of the fibre product $X$, de-

fined in the preceding section, of $\Omega$ and $E-\{0\}$ for a complex Banach space $E$

with a Schauder basis and for a pseudoconvex domain $(\Omega, \phi)$ spread over the
complex projective space $P(E)$ .

Let $E$ be a complex Banach space with the norm $\Vert\cdot\Vert$ and a Schauder basis
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$\{e_{j}\}_{j=1}^{\infty}$ . Let $(\Omega, \phi)$ be a pseudoconvex domain, which is not homeomorphic to
$P(E)$ through $\phi$ , spread over the complex projective space $P(E)$ .

Since $\Omega$ is pseudoconvex, by Lemma 2.3 $X$ satisfies the Kontinuit\"atssatz.
By Noverraz [17], we have the following Lemma 3.1.

LEMMA 3.1. $-\log d_{X}$ is a continuous plunsubharmOnjc function in $X$ where
$d_{X}$ is the boundary distance function on X. For any finite dimenstonal linear sub-
sPace $F$ of $E,$ $\phi^{-1}(F)$ is a Stein mamfold.

We can choose a Schauder basis $\{e_{j}\}_{j=1}^{\infty}$ of $E$ such that the intersection of
the image of $\tilde{\phi}$ and the linear space $\{\lambda e_{1} ; \lambda\in C\}$ is nonempty. For every $\xi\in E$ ,
$\xi$ can be represented in a unique way

(3.1) $\xi=\sum_{n=1}^{\infty}\xi_{n}e_{n}$ .

We denote by $E_{n}$ the linear span of the set $\{e_{1}, e_{2}, \cdots , e_{n}\}$ , and by $u_{n}$ the map-
ping of $E$ onto $E_{n}$ defined by

(3.2) $u_{n}( \xi)=\sum_{j=1}^{n}\xi_{f}e_{f}$ .

We denote by $\mu_{n}$ a continuous linear functional of $E$ defined by

(3.3) $\mu_{n}(\xi)=\xi_{n}$

for every $\xi=\sum_{j=1}^{\infty}\xi_{j}e_{j}$ .

LEMMA 3.2. There exist a norm $\Vert|\cdot\Vert|$ of $E$ and positive constants $c_{1}$ and $c_{2}$

satisfyng the following conditions:
(1) $c_{1}|\xi|\leqq\Vert|\xi\Vert|\leqq c_{2}|\xi|$ for every $\xi\in E$ .
(2) $\Vert|u_{n}(\xi)\Vert|\leqq\Vert|\xi\Vert|$ for every posttive integer $n$ .

The proof of Lemma 3.2 is in Singer [21]. The condition (1) of Lemma
3.2 implies that the Banach space $(E, \Vert|\Vert|)$ with the norm $\Vert|\Vert|$ is equivalent to
the Banach space $E$ with the original norm $\Vert\Vert$ . Therefore we may assume
that the norm of $E$ satisfies the condition

(3.4) $\Vert u_{n}(\xi)\Vert\leqq\Vert\xi\Vert$

for every positive integer $n$ .
Let $x_{0}$ be a point of $X$ with $\hat{\phi}(x_{0})\in E_{1}$ . We may assume that the norm

$\Vert\Vert$ of $E$ is chosen such that $d_{X}(x_{0})\geqq 1$ . For every $n$ we set

(3.5) $X_{n}=\tilde{\phi}^{-1}(E_{n})$ ,

(3.6) $A_{n}= \{x\in X ; \sup_{m\geqq n}\Vert u_{m}\circ\tilde{\phi}(x)-\tilde{\phi}(x)\Vert<d_{X}(x)\}$ ,

(3.7) $v_{n}(x)=(\tilde{\phi}|\Delta(x, d_{X}(x)))^{-1}\circ u_{n}\circ\tilde{\phi}(x)$
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for every $x\in A_{n}$ . Then $\sup_{m\geqq n}\Vert u_{m}\circ\emptyset(x)-\hat{\phi}(x)\Vert$ is continuous on $X$, and $A_{n}$ is
an open subset of X. $v_{n}$ is a holomorphic mapping of $A_{n}$ into $X_{n}$ for every $n$ .

Let $(Y, \psi)$ be a region spread over a complex Banach space $F$. Then we
use the notation $d_{Y}(A)= \inf\{d_{Y}(x);x\in A\}$ where $A$ is a subset of $Y$ .

The proof of the following lemma is in Lemma 54.5 of Mujica [13].

LEMMA 3.3. There exzst two increasing sequences $\{B_{n}\}_{n=1}^{\infty}$ and $\{C_{n}\}_{n=1}^{\infty}$ of
open sets $B_{n}$ and $C_{n}$ of $X$ such that

(a) $\{x_{0}\}\subset C_{n}\subset B_{n}\subset A_{n}$ for every $n\geqq 1,$ $X= \bigcup_{n=1}^{\infty}B_{n\cup n=1}^{\infty}=C_{n}$ .
(b) $a_{A_{n}}(B_{n})\geqq 2^{-n}$ and $B_{m}(\backslash X_{n}\iota s$ relatively compact in $A_{m}\cap X_{n}$ for every $m$ ,

$n\geqq 1$ .
(c) $d_{c_{m+1}}(C_{m})\geqq 2^{-m-1}$ and $v_{n}(C_{m})\subset B_{m}\cap X_{n}$ for every $m\geqq 1$ and every $n\geqq m$ .
For every $x\in X$, we define the sets $V(x)$ and $S(x)$ by

(3.8) $V(x)=\{\lambda\cdot x ; \lambda\in C^{*}\}$ ,

(3.9) $S(x)=\{e^{i\theta}\cdot x ; 0\leqq\theta\leqq 2\pi\}$ .

Let $K$ be a compact subset of a Stein manifold $S$ . We use the notation

(3.10) $K(S)=$ { $x \in S;|f(x)|\leqq\sup_{y\in K}|f(y)|$ for all $f\in H(S)$ }

The set $K(S)$ is called the holomorphically convex hull of $K$ in the Stein mani-
fold $S$ . If $K(S)=K,$ $K$ is said to be Runge in $S$ . Let $S_{1}$ be a Stein manifold
and $S_{2}$ be a Stein open subset of $S_{1}$ . $S_{2}$ is said to be Runge relative to $S_{1}$ if,
for any compact subset $K$ of $S_{2},$ $K(S_{1})$ is a compact subset in $S_{2}$ .

We denote by $K_{n}$ the holomorphically convex hull of the topological closure
of the set $B_{n}\cap X_{n+1}$ in the Stein manifold $X_{n+1}$ . Since $X_{n+1}$ is a Stein mani-
fold, $K_{n}$ is a compact subset of $X_{n+1}$ and Runge in $X_{n+1}$ . On the other hand
$\sup_{m\geq n}\Vert u_{m}\circ\hat{\phi}(x)-\hat{\phi}(x)\Vert$ is continuous in $X$, and $\sup_{m\geqq n}\log\Vert u_{m}\hat{\phi}(x)-\hat{\phi}(x)\Vert$

$-\log d_{X}(x)$ is a continuous plurisubharmonic function of $X$ into $[-\infty, \infty$).

Therefore by Narasimhan [15], $A_{n}\cap X_{n+1}$ is Runge relative to $X_{n+1}$ and $K_{n}$ is
compact in $A_{n}\cap X_{n+1}$ .

LEMMA 3.4. Let $\{c_{n}\}_{n=1}^{\infty}$ be a sequence of points of $X$ such that $c_{n}\in X_{n}$ ,
$c_{n}\not\in X_{n-1}$ and $V(c_{n})\subset X\backslash K_{n}$ . Then, for any sequence $\{\lambda_{n}\}_{n\Rightarrow 1}^{\infty}$ of posttive numbers,
there exists a sequence $\{f_{n}\}_{n=1}^{\infty}$ of holomorphic functions $f_{n}$ in $X_{n}$ such that

(3.11) $f_{n+1}|X_{n}=f_{n}$ ,

(3.12) $|f_{n+1}(x)-f_{n}\circ v_{n}(x)|<1/2^{n}$

for any $x\in K_{n}$ , and

(3.13) ${\rm Re} f_{n}(x)\geqq\lambda_{n}$
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for any $x\in S(c_{n})$ where ${\rm Re} f_{n}$ represents the real Part of $f_{n}$ .
PROOF. We will show this lemma by induction with respect to $n$ . We set

$f_{1}(x)=\lambda_{1}$ for every $x\in X$. Then $f_{1}$ satisfies (3.13). We assume that there exist
holomorphic functions $f_{k}$ in $X_{k}(1\leqq k\leqq n)$ with (3.11), (3.12) and (3.13). We set

(3.14) $g(x)=f_{n}\circ v_{n}(x)$

for every $x\in X_{n+1}\cap A_{n}$ . Closed subsets $K_{n}\cup X_{n}$ and $(X_{n+1}\backslash A_{n})$ are mutually
disjoint because $K_{n}$ is a compact subset of $X_{n+1}\cap A_{n}$ . Therefore there exists a
$C^{\infty}$-function $\eta$ in $X_{n+1}$ such that $\eta=1$ on a neighborhood of $K_{n}\cup X_{n}$ , and that
$\eta=0$ on a neighborhood of $(X_{n+1}\backslash A_{n})$ .

We consider a $\partial$-equation on $X_{n+1}$ :

(3.15) $\partial v=(\mu_{n+1}\circ\hat{\phi}(x))^{-1}g\partial\eta$

where $\mu_{j}$ are defined in (3.3). Since $X_{n+1}$ is a Stein manifold, and since the
right hand side of (3.15) is $\partial$-closed, there exists a $C^{\infty}$-function $v$ on $X_{n+1}$ satis-
fying (3.15). We set

(3.16) $h(x)=\eta(x)g(x)-(\mu_{n+1}\circ\emptyset(x))v(x)$

for every $x\in X_{n+1}$ . Then $h$ is holomorphic in $X_{n+1}$ and satisfies $h|X_{n}=f_{n}$ .
Since $v$ is holomorphic in a neighborhood of a Runge compact subset $K_{n}$ of
$X_{n+1}$ , by Oka-Weil theorem there exists a holomorphic function $w$ in $X_{n+1}$ such
that

(3.17) $|v(x)-w(x)|<1/(2^{n+1}M)$

for every $x\in K_{n}$ where $M= \sup\{|\mu_{n+1}\circ\tilde{\phi}(x)| ; x\in K_{n}\}$ . We set

(3.18) $F(x)=h(x)+(\mu_{n+1}\circ\tilde{\phi}(x))w(x)$

for every $x\in X_{n+1}$ . Then we have

(3.19) $|F(x)-f_{n^{\circ}}v_{n}(x)|<1/2^{n+1}$

for every $x\in K_{n}$ .
We set

(3.20) $T=S(c_{n+1})\cup K_{n}$ ,

(3.21) $V_{n+1}=V(c_{n+1})$ .
We denote by $T$ the holomorphically convex hull of $T$ in $X_{n+1}$ . Since $X_{n+1}$ is
Stein, $\hat{T}$ is compact in $X_{n+1}$ .

We will show that $\hat{T}\subset V_{n+1}\cup K_{n}$ . Let $x$ be a point of $X_{n+1}\backslash (V_{n+1}\cup K_{n})$ .
Since $X_{n+1}$ is a Stein manifold, by Oka-Cartan theorem there exists a holo-
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morphic function $s$ in $X_{n+1}$ with $s=0$ on $V_{n+1}$ and with $s(x)=1$ . Since $K_{n}$ is
a Runge compact subset of $X_{n+1}$ , there exists a holomorphic function $f$ in $X_{n+1}$ ,
such that $|t(x)|>1$ and $\Vert t\Vert_{K_{n}}<1/(\Vert s\Vert_{K_{n}}+1)$ where $\Vert s\Vert_{K_{n}}$ and $\Vert t\Vert_{K_{n}}$ represent
supremums of functions $|s(\cdot)|$ $and|t(\cdot)|$ , respectively, on the compact $setK_{n}$ .
Then we have $|s(x)t(x)|>1$ and sup $\{|s(y)t(y)| ; y\in T\}<1$ . Therefore $x$ cannot
belong to $ff^{\backslash }$ . Thus we have $\hat{T}\subset V_{n+1}\cup K_{n}$ .

Since by the assumption $V_{n+1}\cap K_{n}=\emptyset$ , it follows that $(f\cap V_{n+1})\cap K_{n}=\emptyset$

and $\hat{T}=(ff\cap V_{n+1})\cup K_{n}$ .
Since $\hat{T}$ is a Runge compact subset of $X_{n+1}$ , there exist Stein neighborhoods

$\Delta_{1}$ and $\Delta_{2}$ of $(\hat{T}\cap V_{n+1})$ and of $K_{n}$ , respectively, in $X_{n+1}$ with $\Delta_{1}\cap\Delta_{2}=\emptyset$ . We
set $L= \sup\{|F(x)| ; x\in S(c_{n+1})\}$ . We define a holomorphic function $\alpha$ in a Stein
manifold $\Delta_{1}\cap V_{n+1}$ by

(3.22) $\alpha(\lambda\cdot c_{n+1})=(L+\lambda_{n+1}+1)/\lambda\mu_{n+1}\circ\emptyset(c_{n+1})$

for every $\lambda\cdot c_{n+1}\in\Delta_{1}\cap V_{n+1}(\lambda\in C-\{0\})$ . Since $\Delta_{1}\cap V_{n+1}$ is a closed complex
submanifold of $\Delta_{1}$ , by Oka-Cartan theorem there exists a holomorphic function
$A$ in $\Delta_{1}$ such that $A|V_{n+1}\cap\Delta_{1}=\alpha$ . We define a holomorphic function $B$ on
$\Delta_{1}\cup\Delta_{2}$ by $B|\Delta_{1}=A$ and $B|\Delta_{2}=0$ . Since $\Delta_{1}\cup\Delta_{2}$ is a neighborhood of the Runge
compact subset $\hat{T}$ in $X_{n+1}$ , there exists a holomorphic function $G$ on $X_{n+1}$ such
that

(3.23) $|G(x)-B(x)|<1/\{2^{n+1}(L’+1)\}$

for every $x\in\hat{T}$ where $L’= \sup\{|\mu_{n+1^{o}}\tilde{\phi}(x)| ; x\in S(c_{n+1})\cup K_{n}\}$ . We set $f_{n+1}(x)$

$=F(x)+(\mu_{n+1}\circ\tilde{\phi}(x))G(x)$ for every $x\in X_{n+1}$ . By (3.19) and (3.23) we have

(3.24) $|f_{n+1}(x)-f_{n}\circ v_{n}(x)|<1/2^{n}$

for every $x\in K_{n}$ . By (3.22) and (3.23) we have

(3.25) ${\rm Re} f_{n+1}(e^{i\theta}\cdot c_{n+1})\geqq\lambda_{n+1}$

for every $\theta\in R$ . Since $f_{n+1}|X_{n}=f_{n}$ , this completes the proof.

LEMMA 3.5. Let $\{\epsilon_{n}\}_{n=1}^{\infty}$ be a sequence of $po\alpha tive$ numbers with $\sum_{n=1}^{\infty}\epsilon_{n}<\infty$

and $\{f_{n}\}_{n=1}^{\infty}$ be a sequence of holomorphc functions $f_{n}$ in $X_{n}$ such that $f_{n+1}|X_{n}=f_{n}$

and $|f_{n+1}(x)-f_{n}\circ v_{n}(x)|<\epsilon_{n}$ for every $x\in K_{n}$ . Then there exests a holomorphc
function $f$ in $X$ such that $f|X_{n}=f_{n}$ .

PROOF. Since, by Lemma 3.3, $v_{n+j}(C_{n+j-1})\subset B_{n+f-1}\cap X_{n+j}\subset K_{n+j-1}$ and
$C_{n}\subset C_{n+j-1}$ , we have $|f_{n+j^{o}}v_{n+j}(x)-f_{n+j-1}\circ v_{n+f-1}(x)|=|f_{n+j}(v_{n+j}(x))-f_{n+j-1}$

$\circ v_{n+j-1}(v_{n+j}(x))|<\epsilon_{n+j-1}$ for any positive integers $n$ and $j$ and for any $x\in C_{n}$ .
Thus for any $m,$ $n$ we have
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$|f_{n+m} \circ v_{n+m}(x)-f_{n}\circ v_{n}(x)|\leqq\sum_{j=1}^{m}|f_{n+j^{\circ}}v_{n+j}(x)-f_{n+j-1}\circ v_{n+j-1}(x)|$

$\leqq\sum_{j=1}^{m}\epsilon_{n+j-1}\leqq\sum_{j=1}\epsilon_{j}$

for every $x\in C_{n}$ . Therefore the sequence $\{f_{n}\circ v_{n}\}_{n=1}^{\infty}$ converges uniformly on
each $C_{n}$ to a function $f\in H(X)$ . Then $f$ satisfies $f|X_{n}=f_{n}$ . This completes

the proof.

We can obtain the following two lemmas by the application of Lemma 3.4
and Lemma 3.5.

LEMMA 3.6. With the conditions of Lemma 3.4, there exists a holomorphjc

function $f$ in $X$ such that ${\rm Re} f(x)\geqq\lambda_{n}$ for every $n$ and for every $x\in S(c_{n})$ .

LEMMA 3.7. Let $F$ be any fimte dimensional complex linear subspace of $E$.
Then the restnction mapping of $H(X)$ into $H(\phi^{-1}(F))$ is surjective.

4. Proofs of Theorem 1 and Theorem 2.

In order to prove Theorem 1 and Theorem 2, we will prepare some lemmas.
Throughout this section $E$ means a complex Banach space with a Schauder
basis $\{e_{n}\}_{n=1}^{\infty}$ and $(\Omega, \phi)$ means a domain, which is not homeomorphic to the
projective space $P(E)$ through $\phi$ , spread over $P(E)$ .

LEMMA 4.1. If $\Omega$ is a domain of holomorphy, $\Omega$ is pseudOcOnvex.

PROOF. For any continuous linear functional $f$ of $E$ and the open set
$U(f)=\{[\xi]\in P(E);f(\xi)\neq 0\}$ , we have only to show that the domain $\phi^{-1}(U(f))$

satisfies the Kontinuit\"atssatz. Since there exists a biholomorphic mapping $P$ of
$U(f)$ onto the complex Banach space $L=\{\xi\in E;f(\xi)=0\}$ , the domain
$(\phi^{-1}(U(f)), p\circ(\phi|\phi^{-1}(U(f)))$ is a domain spread over $L$ . Since $\Omega$ is a domain of
holomorphy and since, for any sequence $\{x_{n}\}_{n=1}^{\infty}$ of $\phi^{-1}(U(f))$ converging to a
point of $\Omega\backslash \phi^{-1}(U(f))$ , the set $\{p\circ\phi(x_{n})\}$ is an unbounded subset of $L,$ $\phi^{-1}(U(f))$

is also a domain of holomorphy. By Noverraz [17], $\phi^{-1}(U(f))$ satisfies the
Kontinuit\"atssatz. This completes the proof.

With the conditions and notations in Section 3, we set

(4.1) $S(K_{n})=\{e^{i\theta}\cdot x ; \theta\in[0,2\pi], x\in K_{n}\}$

for each $n$ . $S(K_{n})$ is compact in $X_{n+1}\cap A_{n}$ . We denote by $S(K_{n})\wedge$ the holomor-
phically convex hull of $S(K_{n})$ in $X_{n+1}$ . Since $A_{n}\cap X_{n+1}$ is Runge relative to

–
$X_{n+1},$ $S(K_{n})$ is a compact subset of $A_{n}\cap X_{n+1}$ . We set $e^{i\theta}\cdot C_{n}=\{e^{i\theta}\cdot x;x\in C_{n}\}$ .
For any $\theta\in R$, we have
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(4.2) $e^{i\theta}\cdot C_{n}\cap X_{n+1}\subset S(K_{n})\subset S(K_{n})\wedge$ ,

(4.3) $v_{n}(e^{i\theta}\cdot C_{n})\subset S(K_{n})\subset S(K_{n})\wedge$ .
Hereafter we assume that $\Omega$ is pseudoconvex in a series of lemmas.

LEMMA 4.2. Then for any holomorphic function $f$ in $X_{n}$ there exzsts a sequence
$\{f_{n+k}\}_{k=0}^{\infty}$ of holomorphic functions in $X_{n+k}$ satisfying the following conditions:

(1) $f_{n}=f$,
(2) $f_{n+k}|X_{n+k-1}=f_{n+k-1}$ ,

(3) $|f_{n+k}(x)-f_{n+k-1}\circ v_{n+k-1}(x)|<1/2^{n+k}$ for every $x\in S(K_{n})\wedge$ .
PROOF. We can prove this lemma by the same way as the proof of

Lemma 3.4.

REMARK 4.3. By the same way as the proof of Lemma 3.5, we can prove
that there exists a holomorphic function $F$ in $X$ such that $F|X_{n+k}=f_{n+k},$ $F(x)$

$= \lim_{k-\cdot\infty}f_{n+k}\circ v_{n+k}(x)$ for every $x\in X$. By (4.2) and (4.3), we have

(4.4) $|F(x)|= \lim_{marrow\infty}|f_{m}\circ v_{m}(x)|$

$\leqq\lim_{marrow}\sup_{\infty}\{\sum_{k=N}^{m}|f_{k}\circ v_{k}(x)-f_{k-1}\circ v_{k- 1}(x)|+|f_{N}\circ v_{N}(x)|\}$

$\leqq 2^{-N}+\sup\{|f_{N}\circ v_{N}(y)| ; y\in S(C_{N})\}<\infty$

for every $N\geqq n$ and for every $x\in S(C_{N})$ where $S(C_{N})$ is the set $\{e^{i\theta}\cdot z;(\theta, z)\in$

$R\cross C_{N}\}$ . Thus we have sup $\{|F(x)| ; x\in S(C_{N})\}<\infty$ for every $N\geqq 1$ .
We denote by $D_{m}$ an open subset of $\Omega$ defined by $D_{m}=\tilde{Q}(C_{m})$ for every

$m\geqq 1$ .

LEMMA 4.4. For any holomorphjc function $f$ in $\phi^{-1}(P(E_{n}))$ there exzsts a
holomorphic function $F$ in $\Omega$ such that $F|\phi^{-1}(P(E_{n}))=f$ and $\sup\{|F(x)| ; x\in D_{m}\}$

$<\infty$ for every $m\geqq 1$ .

PROOF. We consider a holomorphic function $g$ in $X_{n}$ defined by $g=f\circ(\tilde{Q}|X_{n})$ .
By Lemma 4.2 and by Remark 4.3, there exists a holomorphic function $G$ in $X$

such that $G|X_{n}=g$ and sup $\{|G(x)| ; x\in S(C_{m})\}<\infty$ for every $m\geqq 1$ . We set

$\tilde{G}(x)=(1/2\pi)\int_{0}^{2\pi}G(e^{i\theta}\cdot x)d\theta$

for every $x\in X$. Then $\tilde{G}$ is a holomorphic function in $X$ and constant on $\tilde{Q}^{-1}(z)$

for every $z\in\Omega$ . We define a holomorphic function $F$ by $F(z)=\tilde{G}0\tilde{Q}^{-1}(z)$ for
every $z\in\Omega$ . Then we have $F|\phi^{-1}(P(E_{n}))=f$ and $\sup\{|F(x)| ; z\in D_{m}\}\leqq$

$\sup\{|G(x)| ; z\in S(C_{m})\}<\infty$ for every $m\geqq 1$ . This completes the proof.
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LEMMA 4.5. For any &fferent Points $z$ and $w$ in $\Omega$ , there exzsts a holomorPhc
function $f$ in $\Omega$ such that $f(z)\neq f(w)$ and that sup $\{|f(p)| ; p\in D_{m}\}<\infty$ for every
$m\geqq 1$ .

PROOF. There exist two different points $x$ and $y$ in $X$ such that $\tilde{Q}(x)=z$

and $\tilde{Q}(y)=w$ . There exists a positive integer $N$ such that the set $\{x,$ $y,$ $v_{N}(x)$ ,
$v_{N}(y)\}$ is contained in $C_{N}$ and that $\tilde{Q}(v_{N}(x))\neq\tilde{Q}(v_{N}(y))$ . Then the compact sets
$S(x),$ $S(y),$ $S(v_{N}(x))$ and $S(v_{N}(y))$ , defined in (3.9), are contained in $S(C_{N})$ . We
consider closed submanifolds $V(v_{N}(x))$ and $V(v_{N}(y))$ , defined in (3.8), of the Stein
mainfold $X_{N}$ . By Oka-Cartan theorem, there exists a holomorphic function $g$

in $X_{N}$ satisfying $g|V(v_{N}(x))=2$ and $g|V(v_{N}(y))=0$ . By Lemma 4.2, there exists
a sequence $\{g_{m}\}_{m=N}^{\infty}$ of holomorphic functions $g_{m}$ in $X_{N+m}$ such that $g_{m}|X_{m-1}$

$=g_{m-1},$ $g_{N}=g$ and $|g_{m}\circ v_{m}(t)-g_{m-1^{o}}v_{m-1}(t)|<1/2^{m}$ for every $m>N$ and every
$t\in S(C_{m-1})$ . Let $G$ be a holomorphic function defined by $G(t)= \lim_{marrow\infty}g_{m}\circ v_{m}(t)$

for every $t\in X$. Then we have $|G(t)-gQv_{N}(t)|\leqq 1/2^{N}$ for every $t\in S(C_{N})$ . Thus
we have ${\rm Re} G(e^{i\theta}\cdot x)\geqq{\rm Re} g\circ v_{N}(e^{i\theta}\cdot x)-1/2^{N}\geqq 3/2$ and ${\rm Re} G(e^{i\theta}\cdot y)\leqq$

${\rm Re} g\cdot v_{N}(e^{i\theta}\cdot y)+1/2^{N}\leqq 1/2$ . By Remark 4.3, the holomorphic function $G$ in $X$

satisfies sup $\{|G(t)| ; t\in S(C_{m})\}<\infty$ for every $m\geqq 1$ . We set

$\tilde{G}(t)=(1/2\pi)\int_{0}^{2\pi}G(e^{i\theta}\cdot t)d\theta$

for every $t\in X$. Then $\tilde{G}$ is a holomorphic function in $X$ and constant on $\tilde{Q}^{-1}(\zeta)$

for every $\zeta\in\Omega$ . We set $f(\zeta)=\tilde{G}\circ\tilde{Q}^{-1}(\zeta)$ for every $\zeta\in\Omega$ . Then $f$ is a holo-
morphic function and satisfies ${\rm Re} f(w)\leqq 1/2<3/2\leqq{\rm Re} f(z)$ . Moreover we have
$\sup\{|f(\zeta)| ; \zeta\in D_{m}\}\leqq\sup\{|G(t)| ; t\in S(C_{m})\}<\infty$ . $f$ satisfies the requirement of
this lemma. This completes the proof.

We set $\mathfrak{D}=\{D_{n}\}_{n=1}^{\infty}$ and set $|f|_{n}= \sup\{|f(x)| ; \chi\in D_{n}\}$ for every $f\in H(\Omega)$

and every $n\geqq 1$ . We denote by $A(\mathfrak{D})$ the Fr\’echet space defined by

$A(\mathfrak{D})=$ { $f\in H(\Omega);|f|_{n}<\infty$ for every $n$ }.

LEMMA 4.6. For each countable set $P$ of $\Omega$ there exzsts a function $g\in A(\mathfrak{D})$

such that $g(x)\neq g(y)$ for all $(x, y)\in P\cross P\backslash \Delta$ where $\Delta$ is the diagonal set of $P\cross P$.

PROOF. By Lemma 4.5, the set $S_{xy}=\{g\in A(\mathfrak{D});g(x)\neq g(y)\}$ is nonempty
for each $(x, y)\in P\cross P\backslash \Delta$ . The set $S_{xy}$ is open in $A(\mathfrak{D})$ . We claim that $S_{xy}$

is dense in $A(\mathfrak{D})$ . Let $f$ be an element of $A(\mathfrak{D})$ with $f\not\in S_{xy}$ . We choose $g\in$

$S_{xy}$ and set $g_{n}=f+(1/n)g$ . Then we have $g_{n}\in S_{xy}$ for every $n$ and $g_{n}arrow f$ in
$A(\mathfrak{D})$ . Since $A(\mathfrak{D})$ is a Baire space, the set $S=\cap\{S_{xy} ; (x, y)\in P\cross P\backslash \Delta\}$ is
dense in $A(\mathfrak{D})$ , and in particular nonempty. This completes the proof.

PROOF OF THEOREM 1. It follows from Lemma 2.4 that (1) and (2) are
equivalent. It follows from Lemma 4.1 that (3) implies (1). It is clear that (4)
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implies (3).

Now we will show that (1) implies (4). Let $E_{n}$ be the linear span of the
set $\{e_{J}, \cdots , e_{n}\}$ . We may assume that $Q(e_{1})\in\phi(\Omega)$ . Since $P(E)$ is separable,
there exists a countable dense subset $D$ of $P(E)$ . We set $P=\phi^{-1}(D)$ . Then $P$

is a countable dense subset of $\Omega$ . By Lemma 4.6, there exists a holomorphic
function $g\in A(\mathfrak{D})$ such that $g(x)\neq g(y)$ for every $(x, y)\in P\cross P\backslash \Delta$ . Let $d$ be
the distance of $P(E)$ defined by (2.4). We denote by $\Omega_{n}$ the region, defined by
$\Omega_{n}=\phi^{-1}(P(E_{n}))$ , spread over $P(E_{n})$ for every $n$ . We denote by $d_{n}$ the boundary

distance function of the region $(\Omega_{n}, \phi|\Omega_{n})$ with respect to $d|P(E_{n})$ . For each
$x\in\Omega_{n}$ we denote by $B_{n}(x)$ the open neighborhood, which is homeomorphically
mapped by $\phi|\Omega_{n}$ onto the set $\{\zeta\in P(E_{n});d(\phi(x), \zeta)\leqq d_{n}(x)\}$ , of $x$ in $\Omega_{n}$ . We
set $L_{n}=\tilde{Q}(K_{n})$ for each $n$ where $K_{n}$ is defined in Section 3. Each $L_{n}$ is a
compact subset of $\Omega_{n}$ and $U_{n=1}^{\infty}L_{n}=\bigcup_{n=1}^{\infty}\Omega_{n}$ . Let $\{a_{n}\}_{n=1}^{\infty}$ be a sequence of
points $a_{n}$ in $\Omega_{n}$ such that $\{a_{n}\}_{n=1}^{\infty}$ is dense in $\Omega$ . We can find a sequence
$\{b_{n}\}_{n=1}^{\infty}$ in $\Omega$ such that $b_{n}\in B_{n}(a_{n})\backslash L_{n}$ and $b_{n}\in\Omega_{n}\backslash \Omega_{n-1}$ . There exists a
sequence $\{c_{n}\}_{n=1}^{\infty}$ in $X$ such that $\tilde{Q}(c_{n})=b_{n}$ . Then we have $V(c_{n})\cap K_{n}=\emptyset$ . By
Lemma 3.6, there exists a holomorphic function $f$ in $X$ such that ${\rm Re} f(x)\geqq n+$

$|g(b_{n})|$ for every $n$ and for every $x\in S(c_{n})$ . We set

$f(x)=(1/2 \pi)\int_{0}^{2\pi}f(e^{i\theta}\cdot x)d\theta$

for every $x\in X$. Then $\tilde{f}$ is a holomorphic function in $X$ and constant on the
fibre $\tilde{Q}^{-1}(z)$ for every $z\in\Omega$ . We set $f^{*}(z)=\tilde{f}(\tilde{Q}^{-1}(z))$ for every $z\in\Omega$ . Then $f^{*}$

is holomorphic in $\Omega$ and satisfies ${\rm Re} f^{*}(b_{n})\geqq n+|g(b_{n})|$ . Since the set of quotient
$(f^{*}(x)--f^{*}(y))/(g(x)-g(y))$ with $(x, y)\in P\cross P\backslash \Delta$ is countable, there exists $\theta\in$

$(0,1)$ such that $f^{*}(x)-f^{*}(y)\neq\theta(g(x)-g(y))$ for every $(x, y)\in P\cross P\backslash \Delta$ . If we
set $h=f^{*}-\theta g$ , then $h\in H(\Omega),$ $h(x)\neq h(y)$ for every $(x, y)\in P\cross P\backslash \Delta$ and

(4.5) ${\rm Re} h(b_{n})\geqq n$

for every $n\geqq 1$ . We will show that $\Omega$ is the domain of existence of $h$ . Let
$\lambda:\Omegaarrow\tilde{\Omega}$ be an $\{h\}$ -extension of $\Omega$ , and let $\tilde{h}\in H(\tilde{\Omega})$ with $\tilde{h}\circ\lambda=h$ . To prove
that $\lambda$ is injective, let $a,$

$b\in\Omega$ with $\lambda(a)=\lambda(b)$ . There exist an open neighborhood
$U(a)$ of $a$ and an open neighborhood $U(b)$ of $b$ such that $\lambda(U(a))=\lambda(U(b))$ and
that $\lambda|U(a),$ $\lambda|U(b),$ $\phi|U(a)$ and $\phi|U(b)$ are isomorphisms. Then we have $\lambda(x)=$

$\lambda(y)$ , if $(x, y)\in U(a)\cross U(b)$ and $\phi(x)=\phi(y)$ . Thus we have $h(x)=\tilde{h}\circ\lambda(x)=\tilde{h}\circ\lambda(y)$

$=h(y)$ , if $(x, y)\in U(a)\cross U(b)$ and $\phi(x)=\phi(y)$ . We set $W=\phi(U(a))$ . Then we
have $W=\phi(U(a))=\phi(U(b))$ and $W$ is an open subset of $P(E)$ . $W\cap D$ is nonempty.

Thus there exist $x_{0}\in U(a)$ and $y_{0}\in U(b)$ such that $\phi(x_{0})=\phi(y_{0})\in W\cap D$ . Then
$h(x_{0})=h(y_{0})$ . Since $(x_{0}, y_{0})\in P\cross P\backslash \Delta$ , this is a contradiction. Therefore $\lambda$ is
injective. To prove that $\lambda$ is surjective, we assume that $\tilde{\Omega}\neq\lambda(\Omega)$ . Then there
exists a point $b_{0}$ of $(\tilde{\Omega}\backslash \lambda(\Omega))\cap\overline{\lambda(\Omega})$ where $\overline{\lambda(\Omega)}$ is the topological closure of $\lambda(\Omega)$
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in $\tilde{\Omega}$ . Then there exists a subsequence $\{b_{n_{k}}\}$ of $\{b_{n}\}_{n=1}^{\infty}$ such that $\{\lambda(b_{n_{k}})\}$

converges to $b_{0}$ . Then we have

$|\tilde{h}(\lambda(b_{n_{k}}))|\geqq{\rm Re}\tilde{h}\circ\lambda(b_{n_{k}})={\rm Re} h(b_{n_{k}})\geqq n_{k}$ .
This implies that $\tilde{h}$ is unbounded in a neighborhood of $b_{0}$ . This is a contradic-
tion. Thus $\lambda$ is surjective. Therefore $\lambda$ is an isomorphism. This implies that
$\Omega$ is a domain of existence of $h$ . This completes the proof.

PROOF OF THEOREM 2. Let $\Delta$ be the diagonal set of the product space
$\Omega\cross\Omega$ . Let $(z, w)$ be any point of $\Omega\cross\Omega\backslash \Delta$ . By Lemma 4.5, there exists a
holomorphic function $g_{(z,w)}\in A(\mathfrak{D})$ such that $g_{(z,w)}(z)\neq g_{(z,w)}(w)$ . There exists
an open neighborhood $U((z, w))$ of $(z, w)$ in $\Omega\cross\Omega\backslash \Delta$ such that $g_{(z.w)}(\zeta_{1})\neq$

$g_{(z,w)}(\zeta_{2})$ for every $(\zeta_{1}, \zeta_{2})\in U((z, w))$ . Since $U\{U((z, w));(z, w)\in\Omega\cross\Omega\backslash \Delta\}=$

$\Omega\cross\Omega\backslash \Delta$ and the open set $\Omega\cross\Omega\backslash \Delta$ satisfies the Lindel\"of property, there exists
a sequence $\{(z_{j}, w_{j})\}_{j=1}^{\infty}$ of elements of $\Omega\cross\Omega\backslash \Delta$ such that $U_{J=1}^{\infty}U((z_{j}, w_{j}))=\Omega\cross$

$\Omega\backslash \Delta$ . We set $g_{n}=g_{(z_{n},w_{n})}$ and $M_{n}= \sup\{|g_{n}(\zeta)| ; \zeta\in D_{n}\}$ for every positive
integer $n$ . Each $M_{n}$ is a finite positive number. We define an injective holo-
morphic mapping $g$ of $\Omega$ into $l^{2}$ by

$g=$ $((1/M_{1})g_{1}, (1/2M_{2})g_{2},$ $\cdots$ , $(1/nM_{n})g_{n},$ ).

Since $\phi^{-1}(P(H_{n+1}))$ is a Stein manifold of dimension $n$ for every $n$ , by
Narasimhan [14] and by Remmert [20] there exists $(2n+1)$-holomorphic func-
tions $h_{n,j}(1\leqq j\leqq 2n+1)$ such that $h_{n}=(h_{n.1}, h_{n.2}, \cdots , h_{n,2n+1})$ is a regular, in-
jective and proper holomorphic mapping of $\phi^{-1}(P(H_{n+1}))$ into $C^{2n+1}$ . By Lemma
4.4, there exists a holomorphic mapping $\tilde{h}_{n}$ of $\Omega$ into $C^{2n+1}$ such that
$\tilde{h}_{n}|\phi^{-1}(P(H_{n+1}))=h_{n}$ and sup $\{\Vert\tilde{h}_{n}(x)\Vert_{2n+1} ; x\in D_{m}\}<\infty$ for every $m\geqq 1$ where
$\Vert\cdot\Vert_{2n+1}$ is the Euclidean norm of $C^{2n+1}$ . We set $k_{n}= \sup\{\Vert\tilde{h}_{n}(x)\Vert_{2n+1} ; x\in D_{n}\}$

for every $n$ . We define a holomorphic mapping $h$ of $\Omega$ into $l^{2}$ by

$h=$ $((1/k_{1})\tilde{h}_{1}, (1/2k_{2})\tilde{h}_{2},$ $\cdots$ , $(1/nk_{n})\tilde{h}_{n},$ ).

Then $h|\phi^{-1}(P(H_{n}))$ is a regular, injective, proper holomorphic mapping of
$\phi^{-1}(P(H_{n}))$ into $l^{2}$ . There exists an isomorphism $\alpha$ of $l^{2}\cross l^{2}$ onto $H$. We define
a holomorphic mapping $f$ of $\Omega$ into $H$ by $f(z)=\alpha(g(z), h(z))$ for every $z$ . Then
$f$ satisfies the requirement of this theorem. This completes the proof.
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