Certain invariant subspace structure of analytic crossed products

By Tomomi KOMINATO and Kichi-Suke SAITO*

(Received March 19, 1986)

1. Introduction.

This paper extends some results of [2, 3, 6]. We have an interest in the invariant subspace structure of certain subalgebras of von Neumann algebras constructed as crossed products of finite von Neumann algebras by trace-preserving automorphisms. These subalgebras were studied systematically by McAsey, Muhly and the second author (and by others) [2, 3, 4, 5, 6, 7, etc.] under the name "nonselfadjoint crossed products"; nowadays, for a variety of reasons, we call them "analytic crossed products".

In this paper, our setting is the following. Let (X, μ) be a σ -finite standard Borel space and let τ be an invertible measure-preserving ergodic transformation on X. Then τ induces uniquely a unitary operator u on $L^2(X, \mu)$ such that $(ux)(t)=x(\tau^{-1}t), \quad x\in L^{\infty}(X,\mu)\cap L^2(X,\mu)$. Form the Hilbert space $L^2=l^2(Z)\otimes L^2(X,\mu)$ and consider the operators $L_x, \quad x\in L^{\infty}(X,\mu)$ and L_{δ} defined on L^2 by the formulae $L_x=I\otimes x$ and $L_{\delta}=S\otimes u$ where S is the usual shift on $l^2(Z)$. Then the von Neumann crossed product determined by $L^{\infty}(X,\mu)$ (=M) and τ is defined as the von Neumann algebra $\mathfrak L$ on L^2 generated by $\{L_x: x\in L^{\infty}(X,\mu)\}$ (=L(M)) and L_{δ} , while the subalgebra which we call an analytic crossed product is the σ -weakly closed subalgebra $\mathfrak L_+$ generated by L(M) and the positive powers of L_{δ} . Let H^2 be the subspace $l^2(Z_+)\otimes L^2(X,\mu)$ of L^2 , where $Z_+=\{n\in Z: n\geq 0\}$. We shall denote by $Lat(\mathfrak L_+)$ the set of all invariant subspaces $\mathfrak M$ under $\mathfrak L_+$ such that $\bigcap_{n\geq 0} L^n \mathfrak M=\{0\}$.

In [2, 3], McAsey introduced the notion of canonical models for $\operatorname{Lat}(\mathfrak{L}_+)$. That is, a family of left-pure, left-full, left-invariant subspaces $\{\mathfrak{M}_i\}_{i\in I}$ in $\operatorname{Lat}(\mathfrak{L}_+)$ constitutes a complete set of canonical models for $\operatorname{Lat}(\mathfrak{L}_+)$ in case (a) for no two distinct indices i and j, $P_{\mathfrak{M}_i}$ is unitary equivalent to $P_{\mathfrak{M}_j}$ by a unitary operator in \mathfrak{R} (= \mathfrak{L}'); and (b) for every \mathfrak{M} in $\operatorname{Lat}(\mathfrak{L}_+)$, there is an i in I and a partial isometry V in \mathfrak{R} such that $VP_{\mathfrak{M}_i}V^*=P_{\mathfrak{M}}$, so that $\mathfrak{M}=V\mathfrak{M}_i$. Let $M=l^{\infty}(X)$, where X is a finite set with elements t_0 , t_1 , \cdots , t_{k-1} and let τ be the permuta-

^{*} The second author was partially supported by Grant-in-Aid for Scientific Research (No. 62540094), Ministry of Education, Science and Culture.

tion of X defined by $\tau(t_i)=t_{i+1}$ $(i\neq k-1)$ and $\tau(t_{k-1})=t_0$. Then McAsey [4] studied a complete set of canonical models for Lat(\mathfrak{L}_+) which consists of two-sided invariant subspaces of L^2 . Further, Solel [6] studied a complete set of canonical models for Lat(\mathfrak{L}_+) in case (X, μ) is a non-atomic standard Borel space with a finite measure μ . We refer the reader to [1, 5, 7, etc.] concerning invariant subspace structure in more general framework.

In this paper, we consider a complete set of canonical models for $\operatorname{Lat}(\mathfrak{L}_+)$ in the following setting. Let X be a standard Borel space with a σ -finite infinite positive measure μ , that is, $\mu(X) = \infty$. Let τ be an invertible measure-preserving ergodic transformation on X. First we shall prove that, for every $Z_+ \cup \{\infty\}$ -valued measurable function m on X, there exists a left-pure, left-invariant subspace \mathfrak{M} of L^2 with the multiplicity function m. As a corollary, we can construct a left-pure, left-full, left-invariant subspace \mathfrak{M}_{∞} of L^2 such that $m(t) = \infty$ for almost everywhere t in X where m is the multiplicity function of \mathfrak{M}_{∞} . Therefore, we have that, for every non-zero $\mathfrak{M} \in \operatorname{Lat}(\mathfrak{L}_+)$, there exists a partial isometry V in \mathfrak{M} such that $VP_{\mathfrak{M}_{\infty}}V^*=P_{\mathfrak{M}}$, so that $\mathfrak{M}=V\mathfrak{M}_{\infty}$. This implies that the complete set of canonical models is the singleton $\{\mathfrak{M}_{\infty}\}$ in this case. Finally we shall consider the structure of two-sided invariant subspaces of L^2 and the case that (X, μ) is an atomic measure space.

2. Definitions and preliminaries.

Let (X, μ) be a σ -finite standard Borel space with $\mu(X) = \infty$. Let τ be an invertible measure-preserving ergodic transformation on X. Using the product of the counting measure on the integers Z, and the measure μ on X, we may realize $Z \times X$ as a measure space. The space $L^2(Z \times X)$ of all measurable functions on $Z \times X$ satisfying

$$\sum_{n\in\mathbf{Z}}\int_{X}|f(n,\,t)|^{2}d\mu(t)<\infty\,,$$

is a Hilbert space with inner product

$$(f, g) = \sum_{n \in \mathbb{Z}} \int_{\mathbb{X}} f(n, t) \overline{g(n, t)} d\mu(t), \quad f, g \in L^2(\mathbb{Z} \times X).$$

We shall denote it by L^2 . Define the following bounded linear operators on L^2 ;

$$\begin{split} &(L_{\delta}f)(n,\,t)=f(n-1,\,\tau^{-1}t)\,,\\ &(R_{\delta}f)(n,\,t)=f(n-1,\,t)\,,\\ &(L_{\phi}f)(n,\,t)=\phi(t)f(n,\,t)\,,\qquad \phi\in L^{\infty}(X) \end{split}$$

and

$$(R_{\phi}f)(n,t) = \phi(\tau^{-n}t)f(n,t), \qquad \phi \in L^{\infty}(X).$$

Note that L_{δ} and R_{δ} are unitary operators on L^2 . Put $M = L^{\infty}(X)$. Let L(M) (resp. R(M)) denote the algebra generated by $\{L_{\phi} : \phi \in M\}$ (resp. $\{R_{\phi} : \phi \in M\}$). Clearly L(M) and R(M) are abelian von Neumann algebras. The left (resp. right) von Neumann crossed product of $L^{\infty}(X)$ by τ is defined as the von Neumann algebra \mathfrak{L} (resp. \mathfrak{R}) generated by L(M) and L_{δ} (resp. R(M) and R_{δ}). Define the left (resp. right) analytic crossed product as the σ -weakly closed subalgebra \mathfrak{L}_+ (resp. \mathfrak{R}_+) generated by L(M) and L_{δ} (resp. R(M) and R_{δ}). Furthermore, we define $\mathbf{H}^2 = \{f \in \mathbf{L}^2 : f(n, \cdot) = 0, n < 0\}$.

DEFINITION 2.1. Let \mathfrak{M} be a closed subspace of L^2 . We shall say that \mathfrak{M} is left-invariant if $\mathfrak{L}_+\mathfrak{M}\subset\mathfrak{M}$, left-reducing if $\mathfrak{L}\mathfrak{M}\subset\mathfrak{M}$, left-pure if \mathfrak{M} contains no non-trivial left-reducing subspace and left-full if the smallest left-reducing subspace containing \mathfrak{M} is L^2 itself. The right-hand versions of these concepts are defined similarly, and a closed subspace which is both left- and right-invariant will be said to be two-sided invariant.

In this paper, all results will be formulated in terms of left-invariant subspaces. We leave it to the reader to rephrase them to obtain "right-hand" statements.

An important tool for dealing with invariant subspaces is the notion of multiplicity function introduced in [2, 3]. To obtain it, note that the space L^2 may be identified with the direct integral $\int_X^{\oplus} l^2(\mathbf{Z}) d\mu(t)$, and the algebra L(M)', acting on it, may be identified with $\int_X^{\oplus} B(l^2(\mathbf{Z})) d\mu(t)$, where $B(l^2(\mathbf{Z}))$ is the algebra of all bounded linear operators on $l^2(\mathbf{Z})$. Let \mathfrak{M} be a left-invariant subspace of L^2 . Then the orthogonal projection $P_{\mathfrak{F}}$ on $\mathfrak{M} \ominus L_{\mathfrak{F}} \mathfrak{M} = \mathfrak{F}$ lies in L(M)', so it is written as a direct integral $\int_X^{\oplus} P(t) d\mu(t)$, where P(t) is a projection in $B(l^2(\mathbf{Z}))$ for almost everywhere $t \in X$. We define the multiplicity function m by letting m(t) be the dimension of the range of P(t). Then it is cleart hat m is a measurable function on X with values in $\mathbf{Z}_+ \cup \{\infty\}$. By [3, Theorem 3.4], we have the following proposition.

PROPOSITION 2.2. For i=1, 2, let \mathfrak{M}_i be a left-pure, left-invariant subspace of L^2 . Let $\mathfrak{F}_i=\mathfrak{M}_i \ominus L_{\delta}\mathfrak{M}_i$ and m_i the multiplicity function of \mathfrak{M}_i . Then the following statements are equivalent:

- (1) $P_{\mathfrak{M}_1} = V P_{\mathfrak{M}_2} V^*$ for a partial isometry V in \mathfrak{R} , so that $\mathfrak{M}_1 = V \mathfrak{M}_2$,
- (2) $m_1(t) \leq m_2(t)$ a.e., and
- (3) $P_{\mathfrak{F}_1} \lesssim P_{\mathfrak{F}_2}$ in L(M)'.

Let \mathfrak{M} be a left-pure, left-invariant subspace of L^2 . We shall denote the multiplicity function by $m[\mathfrak{M}](t)$ in this note.

3. Invariant subspace structure.

Keep the notations and the assumptions in § 2. Our aim in this section is to construct a left-pure, left-full, left-invariant subspace of L^2 such that the multiplicity function $m(t) = \infty$ for almost everywhere t in X. To do this, we need some lemmas.

LEMMA 3.1. Let $\{\mathfrak{M}_i\}_{i\in I}$ is a finite or countable collection of left-pure, left-invariant subspaces of L^2 such that \mathfrak{M}_i is orthogonal to \mathfrak{M}_j , for $i\neq j$. Then $\mathfrak{M}=\sum_{i\in I}\mathfrak{M}_i$ is a left-pure, left-invariant subspace with the multiplicity function $m[\mathfrak{M}](t)=\sum_{i\in I}m[\mathfrak{M}_i](t)$, a.e.

Proof. See [6, Lemma 3.1].

Let χ_E be a characteristic function of a measurable subset E in X. We define a projection P in L(M)' by

$$(Pf)(n, t) = \begin{cases} \chi_E(t)f(0, t), & n=0, \\ 0, & n\neq 0. \end{cases}$$

Let E_n be the projection on L^2 defined by the formula

$$(E_n f)(k, t) = \begin{cases} f(k, t), & k=n, \\ 0, & k \neq n. \end{cases}$$

Since $P \leq E_0$ and since $\{L_{\delta}^n E_0 L_{\delta}^{*n}\}_{n \in \mathbb{Z}}$ is mutually orthogonal, $\{L_{\delta}^n P L_{\delta}^{*n}\}_{n \in \mathbb{Z}}$ is mutually orthogonal. We define a subspace $\mathfrak{M}(E)$ of L^2 by $\mathfrak{M}(E) = \sum_{n=0}^{\infty} \bigoplus (L_{\delta}^n P L_{\delta}^{*n}) L^2$. As in [6, Lemma 3.2] and [5, Lemma 5.1], we have

LEMMA 3.2. (i) $\mathfrak{M}(E)$ is a left-pure left-invariant subspace of H^2 with the multiplicity function $\chi_E(t)$.

(ii) If $\mu(E) < \infty$, then $\mathfrak{M}(E)$ is the closed linear span of $\{L_{\delta}^{n}L_{\phi}e_{0}: \phi \in L^{\infty}(X, \mu), n \geq 0\}$, where $e_{0}(n, t) = 0$ if $n \neq 0$ and $e_{0}(0, t) = \chi_{E}(t)$.

Let E and F be measurable subsets of X such that there are measurable subsets $\{E_n\}_{n=0}^{\infty}$ and $\{F_n\}_{n=0}^{\infty}$ with the following properties:

- (1) $E_n \subset E$ and $F_n \subset F$, $n \ge 0$,
- (2) $E_n \cap E_m = F_n \cap F_m = \emptyset$, $n \neq m$,

(3)
$$\mu(E \setminus \bigcup_{n=0}^{\infty} E_n) = \mu(F \setminus \bigcup_{n=0}^{\infty} F_n) = 0$$
, and

(4)
$$F_n = \tau^n(E_n)$$
, $n \ge 0$.

Then we have the following lemma.

LEMMA 3.3 ([6, Lemma 3.4]). $U = \sum_{k=0}^{\infty} L_{\chi_{F_k}} L_{\delta}^k$ is a partial isometry in \mathfrak{L}_+ with the initial projection L_{χ_F} and the final projection L_{χ_F} .

By the proof of [6, Lemma 3.5] and [5, Lemma 5.4], we have

LEMMA 3.4. Let E, F, $\{E_n\}$, $\{F_n\}$ be as $(1)\sim(4)$ in the above. Suppose that $\mu(E)=\mu(F)<\infty$. Then there exists a left-pure, left-invariant subspace \mathfrak{M} of $\mathfrak{M}(E)$ such that $m[\mathfrak{M}](t)=\chi_F(t)$ a.e. and $\sum_{n\in \mathbb{Z}}L_\delta^nP_{\mathfrak{F}}L_\delta^{*n}=R_{\chi_E}$ where $\mathfrak{F}=\mathfrak{M}\ominus L_\delta\mathfrak{M}$.

Let \mathfrak{M} be a left-pure, left-invariant subspace of L^2 . Then $m[\mathfrak{M}](t)$ is a measurable function with values in $\mathbb{Z}_+ \cup \{\infty\}$. Conversely, we have the following

THEOREM 3.5. Let m be a measuable function on X with values in $\mathbb{Z}_+ \cup \{\infty\}$. Then there exists a left-pure, left-invariant subspace \mathfrak{M} of \mathbb{L}^2 with the multiplicity function m(t).

PROOF. Put $E_n = \{t \in X : m(t) \ge n\}$ for all $n \in \mathbb{Z}_+ \cup \{\infty\}$. Then E_n is a measurable subset of X and $m(t) = \sum_{n=1}^{\infty} \chi_{E_n}(t)$. If $\mu(E_n) = \infty$, by the σ -finiteness of μ , there exists a family $\{E_{n_k}\}_{k=1}^{\infty}$ of mutually disjoint measurable subsets of X such that $\mu(E_{n_k}) < \infty$, for all k, and such that $E_n = \sum_{k=1}^{\infty} E_{n_k}$. Therefore we may rewrite

$$m(t) = \sum_{n=1}^{\infty} \chi_{E'_n}(t), \quad \mu(E'_n) < \infty, \quad n \ge 1.$$

At first, put $F_1 = E_1'$. Define the set $\{F_2^{(k)}\}_{k=0}^{\infty}$ and $\{G_2^{(k)}\}_{k=0}^{\infty}$, inductively as follows. For k=0, let $F_2^{(0)} = E_2' \cap (X \setminus F_1)$ and $G_2^{(0)} = F_2^{(0)}$. For $k \ge 1$, put

$$F_2^{(k)} = \tau^{-k} (E_2' \setminus \bigcup_{n=0}^{k-1} G_2^{(n)}) \cap (X \setminus \bigcup_{n=0}^{k-1} F_2^{(n)}) \cap (X \setminus F_1)$$

and

$$G_2^{(k)} = \tau^k(F_2^{(k)})$$
.

Then $\{F_2^{(k)}\}_{k=0}^{\infty}$ and $\{G_2^{(k)}\}_{k=0}^{\infty}$ are mutually disjoint respectively. Put $F_2 = \bigcup_{k=0}^{\infty} F_2^{(k)}$ and $G_2 = \bigcup_{k=0}^{\infty} G_2^{(k)}$. Then $F_1 \cap F_2 = \emptyset$ and $G_2 \subset E_2'$. For $k \ge 1$, we have

$$\begin{split} \varnothing &= F_2^{(k)} \cap (X \backslash F_2^{(k)}) \\ &= \tau^{-k} (E_2' \backslash \bigvee_{n=0}^{k-1} G_2^{(n)}) \cap (X \backslash \bigvee_{n=0}^{k-1} F_2^{(n)}) \cap (X \backslash F_1) \cap (X \backslash F_2^{(k)}) \\ &= \tau^{-k} (E_2' \backslash \bigvee_{n=0}^{k-1} G_2^{(n)}) \cap (X \backslash \bigvee_{n=0}^{k-1} F_2^{(n)}) \cap (X \backslash F_1) \\ &\supset \tau^{-k} (E_2' \backslash G_2) \cap (X \backslash F_2) \cap (X \backslash F_1) \\ &= \tau^{-k} (E_2' \backslash G_2) \cap (X \backslash (F_1 \cup F_2)) \;. \end{split}$$

Thus $\tau^{-k}(E_2' \setminus G_2) \subset F_1 \cup F_2$ for all $k \ge 1$. Put $K = \bigcup_{k=1}^{\infty} \tau^{-k}(E_2' \setminus G_2)$. Then $\tau^{-1}(K) \subset K \subset F_1 \cup F_2$. Since τ is measure-preserving and $\mu(F_1 \cup F_2) < \infty$, $\mu(K \setminus \tau^{-1}(K)) = 0$

and so $\tau^{-1}(K)=K$ a.e. Thus $\mu(K)=0$. This implies that $\mu(E_2' \setminus G_2)=0$. Thus $\{F_2^{(k)}\}_{k=0}^{\infty}$ and $\{G_2^{(k)}\}_{k=0}^{\infty}$ satisfy the following conditions:

(1)
$$F_2 = \sum_{k=0}^{\infty} F_2^{(k)}$$
 and $E_2' = \sum_{k=0}^{\infty} G_2^{(k)}$ a.e., and

(2)
$$G_2^{(k)} = \tau^k(F_2^{(k)}), k \ge 0.$$

Inductively, we can define the measurable subsets $\{F_n\}_{n=1}^{\infty}$, $\{F_n^{(k)}\}_{k=1}^{\infty}$ and $\{G_n^{(k)}\}_{k=1}^{\infty}$ with the following properties: for $n \ge 1$,

(1)
$$F_n = \sum_{k=0}^{\infty} F_n^{(k)}, \ F_n^{(k)} \cap F_n^{(k')} = \emptyset \ (k \neq k') \text{ and } E_n' = \sum_{k=0}^{\infty} G_n^{(k)},$$

(2)
$$G_n^{(k)} = \tau^k(F_n^{(k)}), k \ge 0, G_n^{(k)} \cap G_n^{(k')} = \emptyset \ (k \ne k')$$
 and

(3)
$$F_n \cap F_m = \emptyset$$
, for $n \neq m$.

By Lemma 3.4, there exists a left-pure, left-invariant subspace \mathfrak{M}_n of $\mathfrak{M}(F_n)$ such that $m[\mathfrak{M}_n](t) = \chi_{E'_n}(t)$. Since $\{F_n\}_{n=1}^{\infty}$ is mutually disjoint, the family $\{\mathfrak{M}(F_n)\}_{n=1}^{\infty}$ of left-pure, left-invariant subspaces of L^2 is mutually orthogonal. Put $\mathfrak{M} = \sum_{n=1}^{\infty} \oplus \mathfrak{M}_n$. By Lemma 3.1, \mathfrak{M} is a left-pure, left-invariant subspace of L^2 and

$$m[\mathfrak{M}](t) = \sum_{n=1}^{\infty} m[\mathfrak{M}_n](t) = \sum_{n=1}^{\infty} \chi_{E'_n}(t) = m(t)$$
.

Thus the multiplicity function of \mathfrak{M} is m. This completes the proof.

COROLLARY 3.6. Let m be a measurable function on X such that $m(t) = \infty$ for almost all $t \in X$. Then there exists a left-pure, left-full, left-invariant subspace \mathfrak{M}_{∞} of L^2 such that $m[\mathfrak{M}_{\infty}](t) = \infty$ for almost all $t \in X$.

PROOF. Since (X, μ) is σ -finite, there exists a family $\{E'_n\}_{n=1}^{\infty}$ of measurable subsets of X such that $X = \bigcup_{n=1}^{\infty} E'_n$, $E'_1 \subset E'_2 \subset \cdots \subset E'_n \subset \cdots$ and $\mu(E'_n) < \infty$, $n \ge 1$. Then we have $m(t) = \sum_{n=1}^{\infty} \chi_{E'_n}(t) = \infty$ a.e. Let $\{F_n\}_{n=1}^{\infty}$ be the family of mutually disjoint measurable subsets of X as in the proof of Theorem 3.5. Thus there exists a left-pure, left-invariant subspace \mathfrak{M} of L^2 such that $m[\mathfrak{M}](t) = \infty$, for almost all t in X and $\sum_{n \in \mathbb{Z}} L_{\delta}^n P_{\mathfrak{F}} L_{\delta}^{*n} = R_{\chi_{\bigcup_{n=1}^{\infty} F_n}}$, where $\mathfrak{F} = \mathfrak{M} \ominus L_{\delta} \mathfrak{M}$. Put $F_0 = X \setminus \bigcup_{n=1}^{\infty} F_n$. Define $\mathfrak{M}_{\infty} = \mathfrak{M}(F_0) \oplus \mathfrak{M}$. It is clear that \mathfrak{M}_{∞} is a left-full, left-pure, left-invariant subspace of L^2 such that $m[\mathfrak{M}_{\infty}](t) = \infty$. This completes the proof.

By Corollary 3.6, we can construct a left-pure, left-full, left-invariant subspace of L^2 such that $m(t)=\infty$ for almost all $t \in X$. We denote this space by \mathfrak{M}_{∞} . Then we have the following theorem.

THEOREM 3.7. Let \mathfrak{M} be a left-pure, left-invariant subspace of L^2 . Then there exists a partial isometry V in \mathfrak{R} such that $P_{\mathfrak{M}} = VP_{\mathfrak{M}_{\infty}}V^*$, so that $\mathfrak{M} = V\mathfrak{M}_{\infty}$.

PROOF. Since $m\lceil \mathfrak{M} \rceil(t) \leq \infty = m\lceil \mathfrak{M}_{\infty} \rceil(t)$, Proposition 2.2 implies the conclusion.

4. Remarks.

In this section, we shall remark the structure of two-sided invariant subspaces of L^2 . Keep the notations and the assumptions as in §2 and §3.

At first, we suppose that (X, μ) is non-atomic and $\mu(X) = \infty$. As in the proof of [6, Theorem 4.1], we have the following theorem.

THEOREM 4.1. Let m(t) be a non-zero measurable function with values in $\mathbb{Z}_+ \cup \{\infty\}$. Then there is a two-sided invariant subspace \mathfrak{M} with multiplicity function m(t) if and only if there is a measurable function d on X with values in \mathbb{Z} such that $d(t)-d(\tau^{-1}(t))=1-m(t)$ a.e. and $|d(t)|<\infty$ a.e.

By Theorem 4.1, if m(t) is a multiplicity function of a two-sided invariant subspace \mathfrak{M} of L^2 , then $\mu(m^{-1}(\{\infty\}))=0$. However, by Corollary 3.6, we can construct a left-pure, left-full, left-invariant subspace \mathfrak{M}_{∞} such that $\{t \in X: m[\mathfrak{M}_{\infty}](t)=\infty\}=X$. Thus, \mathfrak{M}_{∞} is not two-sided invariant. Therefore, it is impossible to find a complete set of canonical models among the two-sided invariant subspaces.

Finally, we suppose that (X, μ) is atomic and $\mu(X) = \infty$. Thus the space X is countably discrete. Let $X = \{x_n\}_{n=-\infty}^{\infty}$ and the map τ will be the translation $\tau(x_i) = x_{i+1}$ of X. In this case, McAsey studied the structure of invariant subspaces in [2, Chapter IV]. He considered the four classes of all non-negative $Z_+ \cup \{\infty\}$ -valued functions on X. A function m from X to $Z_+ \cup \{\infty\}$ is of type 0 (resp. 1, 2) in case the cardinality of the set $m^{-1}(\{\infty\})$ is 0 (resp. 1, 2). Such a function is of type 3 in case the cardinality is greater than or equal to 3. Further, he defined the notion of admissible functions. That is, the function m from X to $Z_+ \cup \{\infty\}$ is an admissible function in case m is either of

- i) type 0, or
- ii) type 1 (suppose $m(x_k) = \infty$) and one of the following conditions holds:
 - a) supp $m = \{x_k\},\$
 - b) supp $m \subset \{x_k\} \cup C$ and supp $m \neq \{x_k\}$,
 - c) supp $m \subset \{x_k\} \cup D$ and supp $m \neq \{x_k\}$,

where $C = \{x_{k-1}, x_{k-2}, x_{k-3}, \cdots\}$ and $D = \{x_{k+1}, x_{k+2}, x_{k+3}, \cdots\}$,

iii) type 2 (suppose that $m(x_k)=m(x_j)=\infty$, j>k) and supp $m\cap(C\cup E)=\emptyset$, where $C=\{x_{k-1},\,x_{k-2},\,x_{k-3},\,\cdots\}$ and $E=\{x_{j+1},\,x_{j+2},\,x_{j+3},\,\cdots\}$. By [1, Theorem 4.13], a function m from X to $\mathbb{Z}_+\cup\{\infty\}$ is an admissible multiplicity function if and only if it is the multiplicity function of a two-sided invariant subspace. However, in § 3, we constructed a left-pure, left-full, left-invariant subspace \mathfrak{M}_{∞} such that $m[\mathfrak{M}_{\infty}](x_k)=\infty$ for all $k\in\mathbb{Z}$. Of course, \mathfrak{M}_{∞} is not two-sided invariant.

References

- [1] S. Kawamura, Invariant subspaces of shift operators of arbitrary multiplicity, J. Math. Soc. Japan, 34 (1982), 339-354.
- [2] M. McAsey, Invariant subspaces of nonselfadjoint crossed products, Thesis, University of Iowa, 1978.
- [3] M. McAsey, Invariant subspaces of nonselfadjonint crossed products, Pacific J. Math., 96 (1981), 457-473.
- [4] M. McAsey, Canonical models for invariant subspaces, Pacific J. Math., 91 (1980), 377-395.
- [5] M. McAsey, P.S. Muhly and K.-S. Saito, Equivalence classes of invariant subspaces in nonselfadjoint crossed products, Publ. RIMS, Kyoto Univ., 20 (1984), 1119-1138.
- [6] B. Solel, The multiplicity functions of invariant subspaces for nonselfadjoint crossed products, Pacific J. Math., 113 (1984), 201-214.
- [7] B. Solel, The invariant subspace structure of nonselfadjoint crossed products, Trans. Amer. Math. Soc., 279 (1983), 825-840.

Tomomi KOMINATO
Department of Mathematics
Faculty of Science
Niigata University
Niigata 950-21
Japan

Kichi-Suke SAITO
Department of Mathematics
Faculty of Science
Niigata University
Niigata 950-21
Japan