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1. Introduction.

This paper extends some results of [2, 3, 6]. We have an interest in the
invariant subspace structure of certain subalgebras of von Neumann algebras
constructed as crossed products of finite von Neumann algebras by trace-preserv-
ing automorphisms. These subalgebras were studied systematically by McAsey,
Muhly and the second author (and by others) [2, 3, 4, 5, 6, 7, etc.] under the
name “nonselfadjoint crossed products” ; nowadays, for a variety of reasons, we
call them “analytic crossed products”.

In this paper, our setting is the following. Let (X, #) be a ¢-finite standard
Borel space and let 7 be an invertible measure-preserving ergodic transformation
on X. Then 7 induces uniquely a unitary operator u on L*(X, ) such that
(ux))==x("), xeLlX, pNL*X, p). Form the Hilbert space L*=I[*Z)
QL*X, ) and consider the operators L., xL>(X, ) and L; defined on L?
by the formulae L.=IXx and L;=S®u where S is the usual shift on (3(Z).
Then the von Neumann crossed product determined by L=(X, p) (=M) and 7 is
defined as the von Neumann algebra £ on L? generated by {L,: xe L>(X, p)}
(=L(M)) and L; while the subalgebra which we call an analytic crossed pro-
duct is the o-weakly closed subalgebra £, generated by L(M) and the positive
powers of L;. Let H?® be the subspace ((Z,)QL*X, p) of L* where Z,=
{neZ :n=0}. We shall denote by Lat(¥,) the set of all invariant subspaces
M under L, such that N, LFM={0}.

In [2, 3], McAsey introduced the notion of canonical models for Lat(Z,).
That is, a family of left-pure, left-full, left-invariant subspaces {M;}:c; in Lat(¥,)
constitutes a complete set of canonical models for Lat(¥,) in case (a) for no two
distinct indices i and j, Py, is unitary equivalent to P;mj by a unitary operator
in R (=); and (b) for every M in Lat(L,), there is an 7 in I and a partial
isometry V in ® such that VPg,V*=Py, so that M=VM, Let M=I["(X),
where X is a finite set with elements ¢, ¢;, ---, ¢,-; and let ¢ be the permuta-

* The second author was partially supported by Grant-in-Aid for Scientific Research
(No. 62540094), Ministry of Education, Science and Culture.



544 T. KoMmiNATO and K.-S. Sarto

tion of X defined by z(t))=tis, (G#k—1) and z(¢,_;)=?t. Then McAsey
studied a complete set of canonical models for Lat(2,) which consists of two-
sided invariant subspaces of L2 Further, Solel studied a complete set of
canonical models for Lat(2,) in case (X, p) is a non-atomic standard Borel space
with a finite measure p. We refer the reader to [1, 5, 7, etc.] concerning in-
variant subspace structure in more general framework.

In this paper, we consider a complete set of canonical models for Lat(¥,)
in the following setting. Let X be a standard Borel space with a o-finite
infinite positive measure g, that is, pu(X)=oco. Let r be an invertible measure-
preserving ergodic transformation on X. First we shall prove that, for every
Z \J{co}-valued measurable function m on X, there exists a left-pure, left-
invariant subspace M of L?* with the multiplicity function m. As a corol-
lary, we can construct a left-pure, left-full, left-invariant subspace M., of L?
such that m(t)=co for almost everywhere ¢ in X where m is the multiplicity
function of M... Therefore, we have that, for every non-zero M<=Lat(R,), there
exists a partial isometry V in % such that VPy V*=Py, so that M= TVM...
This implies that the complete set of canonical models is the singleton {M..} in
this case. Finally we shall consider the structure of two-sided invariant sub-
spaces of L* and the case that (X, ) is an atomic measure space.

2. Definitions and preliminaries.

Let (X, ) be a o-finite standard Borel space with p(X)=co. Let r be an
invertible measure-preserving ergodic transformation on X. Using the product
of the counting measure on the integers Z, and the measure ¢ on X, we may
realize ZxX X as a measure space. The space L*Z x X) of all measurable func-
tions on Z X X satisfying

2
S| o o1dp < oo,
is a Hilbert space with inner product

(f, 8 =3 SX fn, g, Ddp(ty,  f, ge LAZXX).

€z

We shall denote it by L% Define the following bounded linear operators on L?;
(Lsf)n, t)= f(n—1, z7%),
(Rsf)n, t) = f(n—1, 1),

(Lgf)n, ) =dB)f(n, 1), LX)
and ’
(RyfYm, ) =z ") f(n, 1), dL=(X).
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Note that L; and R; are unitary operators on L2 Put M=L>(X). Let L(M)
(resp. R(M)) denote the algebra generated by {Ls: ¢ M} (resp. {Ry: d=M}).
Clearly L(M) and R(M) are abelian von Neumann algebras. The left (resp.
right) von Neumann crossed product of L=(X) by t is defined as the von Neu-
mann algebra £ (resp. M) generated by L(M) and L; (resp. R(M) and Rj;).
Define the left (resp. right) analytic crossed product as the g-weakly closed
subalgebra ¥, (resp. %,) generated by L(M) and L; (resp. R(M) and Rj).
Furthermore, we define H*={f< L*: f(n, -)=0, n<0}.

DEFINITION 2.1. Let M be a closed subspace of L?®. We shall say that M
is left-invariant if L, MCM, left-reducing if LMCI, left-pure if M contains no
non-trivial left-reducing subspace and left-full if the smallest left-reducing sub-
space containing WM is L? itself. The right-hand versions of these concepts are
defined similarly, and a closed subspace which is both left- and right-invariant
will be said to be two-sided invariant.

In this paper, all results will be formulated in terms of left-invariant sub-
spaces. We leave it to the reader to rephrase them to obtain “right-hand”
statements.

An important tool for dealing with invariant subspaces is the notion of
multiplicity function introduced in [2, 83]. To obtain it, note that the space L?

may be identified with the direct integral SilZ(Z Ydu(t), and the algebra L(M)’,
acting on it, may be identified with SiB(lZ(Z))dy(t), where B((3(Z)) is the alge-

bra of all bounded linear operators on (3(Z). Let M be a left-invariant subspace
of L?. Then the orthogonal projection Py on MOLM=F lies in L(M), so it

is written as a direct integral SiP(t)d;z(t), where P(t) is a projection in B{((*%(Z))

for almost everywhere t= X. We define the multiplicity function m by letting
m(t) be the dimension of the range of P(f). Then it is cleart hat m is a meas-
urable function on X with values in Z,\U{co}. By [3, Theorem 3.4], we have
the following proposition.

PROPOSITION 2.2. For i=1, 2, let WM; be a left-pure, left-invariant subspace
of L*. Let Fi=MOLM; and m; the multiplicity function of M;. Then the
following statements are equivalent :

(1) Pp,=VPq,V* for a partial isomeiry V in R, so that M=V,

@) m@®Smyt) a.e., and

@) Pz <P, in L(M).

Let M be a left-pure, left-invariant subspace of L®. We shall denote the
multiplicity function by m[M](¢) in this note.
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3. Invariant subspace structure.

Keep the notations and the assumptions in §2. Our aim in this section is
to construct a left-pure, left-full, left-invariant subspace of L? such that the
multiplicity function m(f)=occ for almost everywhere ¢t in X. To do this, we
need some lemmas.

LEMMA 3.1. Let {M;}ic; is a finite or countable collection of left-pure, left-
invariant subspaces of L* such that M; is orthogonal to M;, for i#j. Then
M=>ic:PM; is a left-pure, left-invariani subspace with the multiplicity function
m[M]()=2icrm[M:1(D), a.e.

PrOOF. See [6, Lemma 3.1].

Let Xz be a characteristic function of a measurable subset E in X. We
define a projection P in L(M)’ by
XE(t)f(O, t) » n:0 )
(Pf)n, t)=
0, n+0.
Let E, be the projection on L? defined by the formula
f(k,t), k=n,

(Enf)k, l‘)={
0, k+n.

i

Since P<E, and since {L}E,L§"},cz is mutually orthogonal, {L}PL§"},cz is
mutually orthogonal. We define a subspace M(E) of L* by ME)=
o P(LEPL¥L%:. As in [6, Lemma 3.2] and [5, Lemma 5.1], we have

LEMMA 3.2. (i) M(E) is a left-pure left-invariant subspace of H? with the
multiplicity function Xg(t).

(ii) If p(E)<oo, then M(E) is the closed linear span of {L§Lge,: = L=(X, p),
n=0}, where ey(n, 1)=0 if n=+0 and e,0, 1)=Xg(?).

Let E and F be measurable subsets of X such that there are measurable
subsets {E,}%-o and {F,}5-, with the following properties:

(1) E,cE and F,CF, nx=0,

2 E.NEn=F.NFo,=@, n*tm,

3) (BN \J Ba) = p(FN\J Fr) =0, and
4) F,=t"(E,), nx=0.

Then we have the following lemma.
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LEMMA 3.3 ([6, Lemma 3.4]). U :275=0L1F,,L§ is a partial isometry in L.
with the initial projection Ly, and the final projection Lyg.
By the proof of [6, Lemma 3.5] and [5, Lemma 5.4], we have

LEMMA 3.4. Let E, F,{E.}, {F.} be as (1)~(4) in the above. Suppose that
WE)=u(F)<oco. Then there exists a left-pure, left-invariant subspace M of M(E)
such that m[M](t)=Ap(t) a.e. and ZnezLFPgLE"=Ry, where F=MOL;M.

Let 9 be a left-pure, left-invariant subspace of L?. Then m[M]{) is a
measurable function with values in Z,\U{co}. Conversely, we have the following

THEOREM 3.5. Let m be a measuable function on X with values in Z,\J{co}.
Then there exists a left-pure, left-invariant subspace W of L* with the multiplicity
Sfunction m(t).

Proor. Put E,={teX: m@)=n} for all neZ,\J{}. Then E, is a
measurable subset of X and m(t)=25%-Xg,({). If p(E,)=oco, by the og-finiteness
of p, there exists a family {E,,}, of mutually disjoint measurable subsets of
X such that p(E,,;)<co, for all %k, and such that E,=235%.,E,,. Therefore we
may rewrite

mt)= Ss(®), mEN<oo, nzl.

At first, put F;=FEj. Define the set {F{®}7, and {G{*¥’}5,, inductively as fol-
lows. For k=0, let F{®=FE;N\(X\F)) and G{®=F4». For k=1, put

F® = MBS U GE)N(XN U FMIN(XNF)
n= n=

and
G§® = tF(F§P).

Then {F{®}3, and {G{¥}2, are mutually disjoint respectively. Put F,=
UsoF$® and G,=\UzoG$¥. Then FFNF,=@ and G,CE;. For k=1, we have

B = F{ON(XNFEP)
= e HEN U GIINN FEINXNFINXNFER)
= e EN UGN U Fmn(e Ry
D HENGINXNF)N(XNFY)

=t HENGONXNFIUF)) .

Thus 7~ ¥(ENG,)C F,\UF, for all k=1. Put K=\t *(ENG,). Then t"(K)C
KCF,\UF, Since 7 is measure-preserving and p(F,\UF,;)<oo, u(K \t~}(K))=C
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and so v}(K)=K a.e. Thus p(K)=0. This implies that p(E;\G;)=0. Thus
{F§¥}e, and {G§¥}%., satisfy the following conditions :

1) F,= iF;’“ and E} = iGék’ a.e., and

k=0 k=0

2) GiP =7*FP), k0.

Inductively, we can define the measurable subsets {F,}u-i, {F¥}e: and {GP}i:
with the following properties: for n=>1,

1) F,= kio F® FOAFE = ¢ (b+k’) and E, = §OG;k>,

2) G =t¥F¥), k=0, GPNGF’> =@ (k+Fk’) and
(38) F,NF, =@, for n#m.

By Lemma 34, there exists a left-pure, left-invariant subspace M, of M(F,) such
that m[M,]1(1)=Xg, (t). Since {F,p}%5-: is mutually disjoint, the family {IM(Fy)}7=1
of left-pure, left-invariant subspaces of L*® is mutually orthogonal. Put M=
S PM,. By Lemma 3.1, M is a left-pure, left-invariant subspace of L* and

m[IM]@) = X m[M 1O = 2 Xe, (6) = m(t) .
Thus the multiplicity function of M is m. This completes the proof.

COROLLARY 3.6. Let m be a measurable function on X such that m(t)=oo
for almost all t X. Then there exists a left-pure, left-full, left-invariant sub-
space Mo of L? such that m[M.](t)=oco for almost all t<X.

PROOF. Since (X, p) is g-finite, there exists a family {E7}%-; of measurable
subsets of X such that X=\J;_,E}, E{CE{C --- CE,C --- and p(E;)<oo, nz=l.
Then we have m(t)=X5-Xg,(t)=co a.e. Let {F,}5-; be the family of mutually
disjoint measurable subsets of X as in the proof of Thus there exists
a left-pure, left-invariant subspace MM of L? such that m[M](t)=co, for almost
all #in X and EnengPgL*n:Ron;r_an, where F=MOL M. Put Fo=X\Up=1Fn.
Define Mo =M(F,)PM. It is clear that M., is a left-full, left-pure, left-invariant
subspace of L? such that m[M.](¢)=co. This completes the proof.

By [Corollary 3.6, we can construct a left-pure, left-full, left-invariant sub-
space of L* such that m(t)=co for almost all t=X. We denote this space by
M-. Then we have the following theorem.

THEOREM 3.7. Let M be a left-pure, left-invariant subspace of L*®. Then
there exists a partial isometry V in R such that Pp=VPq V*, so that M= VM.

PrROOF. Since m[M]()Zco=m[M.](¢), Proposition 2.2 implies the conclusion.
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4. Remarks.

In this section, we shall remark the structure of two-sided invariant sub-
spaces of L®. Keep the notations and the assumptions as in §2 and §3.

At first, we suppose that (X, g) is non-atomic and p(X)=co. As in the
proof of [6, Theorem 4.1], we have the following theorem.

THEOREM 4.1. Let m(t) be a non-zero measurable function with values in
Z,\J{oo}. Then there is a two-sided invariant subspace W with multiplicity func-
tion m(t) if and only if there is a measurable function d on X with values in Z
such that d(t)—d(z '@®)=1—m() a.e. and |d(@)| <o a.e.

By Theorem 4.1, if m(t) is a multiplicity function of a two-sided invariant
subspace M of L% then p(m '({co}))=0. However, by we can
construct a left-pure, left-full, left-invariant subspace M.. such that {t=X:
m[Ma](t)=c0}=X. Thus, M- is not two-sided invariant. Therefore, it is im-
possible to find a complete set of canonical models among the two-sided invari-
ant subspaces.

Finally, we suppose that (X, g) is atomic and p(X)=co. Thus the space X
is countably discrete. Let X={x,}%--»~ and the map = will be the translation
o(x;)=:x:+; 0f X. In this case, McAsey studied the structure of invariant sub-
spaces in [2, Chapter IV]. He considered the four classes of all non-negative
Z,\J{oo}-valued functions on X. A function m from X to Z,\U{oo} is of type
0 (resp. 1, 2) in case the cardinality of the set m~*({co}) is O (resp. 1, 2). Such
a function is of type 3 in case the cardinality is greater than or equal to 3.
Further, he defined the notion of admissible functions. That is, the function m
from X to Z,U{oco} is an admissible function in case m is either of

i) type 0, or

ii) type 1 (suppose m(x,)=co) and one of the following conditions holds:

a) suppm={x.},
b) supp mC{x,}\UC and supp m+#{x,},
¢) supp mC{x;}\UD and supp m#{x,},
where C={xy.1, Xp-2, Xp-3, -} ANd D={X 441, Xps2, Xp4s, *},

iii) type 2 (suppose that m(x,)=m(x;)=o0, j>k) and supp mN\(CUE)=Q,
where C={x,-1, X2, Xz-35, -} and E={xji1, Xjs2, Xj4s, ='}. By [1, Theorem
4.13], a function m from X to Z,\U{oo} is an admissible multiplicity function
if and only if it is the multiplicity function of a two-sided invariant subspace.
However, in § 3, we constructed a left-pure, left-full, left-invariant subspace M-
such that m[Me](x,;)=oc0 for all ke Z. Of course, M. is not two-sided invariant.
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