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Introduction.

By an equivalence data between two categories i, $ we mean a 4-tuple
(I, 4, r, 3, where I' : A— 3 and 4: 83— are functors and 7 : I'd~1I, 8:4I'~1
are isomorphisms of functors such that

dy = a4, yI' =1T29.

The Morita theory deals with equivalence data between left module cate-
gories pM, sM for rings R, S. It is known that every equivalence data up to
isomorphism is described in terms of some Morita equivalence data (sPg, rQs, a, B)
with bimodule isomorphisms

a: PRrQ =S, B:QR®sP=R

as follows: I' takes M€ r M to PRQrM< s M and 4 takes NE g H to QRsNE M.
The isomorphisms 7, 8 come from a, B respectively.

When A, @ are monoidal categories, the 4-tuple (I', 4, 7, 8) is called a
monoidal equivalence data if in addition I', 4 are monoidal functors and 7, & are
isomorphisms of monoidal functors. A basic example of a monoidal category is
provided by %z the category of all R-bimodules. For R-bimodules M, N, the
tensor product MQgrN (of My with rN) has an R-bimodule structure (coming
from zM and Nz). Together with unit R, this tensor product makes g Hg into
a monoidal category.

A natural question arises: What happens if we consider monoidal equivalence
data between bimodule monoidal categories r Mg and s Mg ?

We begin with two simple examples of monoidal equivalence data. Let
(sPg, r@s, @, B) be a Morita equivalence data as before. There is an associated
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monoidal equivalence data (I', 4, 7, 8) between p Mgz, sMs: I' takes M<p My
to PRrRMQrQ < s Ms and 4 takes NEgHs to QRsNRsPE rMr. By means of
a, B, we can define a natural monoidal structure on I', 4 as well as natural
isomorphisms 7, 8. (See (2.2) for details).

To give the second example, we note that we can relate all the consider-
ation to a fixed base ring k. This means R, S are k-algebras, and all bimodules
such as gMg, sNs, sPr and so on have one underlying k-module structure. (We
omit the symbol 2 but the monoidal categories g Mz, s HMs are related with &).
Further this means we consider only k-linear (monoidal) equivalence data in the
sense that I', 4 are k-linear functors.

Let A be an Azumaya, i.e., a central separable k-algebra. There is a
natural (k-linear) equivalence data (I', 4) between M, and ,H,: I' takes
Ve, to AQ, Ve, M,y and 4 takes Me , M, to MA={xeM | ax=xa, Yacs A}.
One sees (2.4) I', 4 have a natural monoidal structure together with natural
isomorphisms 7, 8.

Two k-algebras R, S are called ~/Morita equivalent (over k), written
R~ yS, if there is a k-linear monoidal equivalence data between g Mg, sMs.
Similarly, we define the Morita equivalence relation R~yS. Obviously, R~ %S
implies R®,R°°~uSQ,S°?. (The name +/Morita stems from this property,
suggested by Moss Sweedler). The above examples show that we have

R~yS = R~ %S,
A is Azumaya =—— A~uik.

One of the main results (2.5d) tells that the converse of the last implication
holds true. Thus, ‘being ~Morita equivalent with the base ring’ characterizes
Azumaya algebras.

Just as usual Morita theory, the main problem of +/Morita theory is how
to describe all ~'Morita equivalences. We have two kinds of description, one
coalgebraic (§3) and the other algebraic (§4). The coalgebraic description is
universal in the sense that every monoidal equivalence data between two bimodule
monoidal categories comes from some coalgebraic +/Morita equivalence data,
but the appearance is quite technical, so we do not reproduce it here. The
coalgebraic description is applied to deduce

R; ~VM S: (=1,2) = R1®R2 ~VM S:®S..

The algebraic description has an appearance quite similar to the usual
Morita equivalence data, while it applies only between those algebras which are
finite projective k-modules. Let R, S be finite projective k-algebras. An S|R-ring
means a pair (A, 7) of an algebra A and an algebra map 7: SQR°*—A. One of
the simplest example is the R{R-ring EndR. If A is an S|R-ring, and B is an
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R|U-ring (let U be a finite projective algebra), then there is an S|U-ring
AXgB.

(This corresponds to the usual procedure to get a bimodule s(P®RzQ)y from
bimodules sPg, zQ@y). The product Xy was first introduced by Sweedler [5] in
case R is commutative, and generalized by the author [6]=[GA] to the non-
commutative case. The R|R-ring End R is the unit with respect to X, thus
we have

AXREDdRZA, El’ldRXRBZB.

An algebraic ~Morita equivalence data between R, S means a 4-tuple
(Asig, Bris, 4, ) where A and B are an S|R-ring and an R|S-ring respectively,
and

A AXgB ~EndS an S|S-ring isomorphism,
g BxsA=EndR an R|R-ring isomorphism

satisfying some coherence condition. Just as the usual Morita equivalence data,
this induces a monoidal equivalence data (I, 4, y, 8) between rHe and s Hs:
I’ takes MEgMr to AXgMeE g Ms and 4 takes NE g Mg to BXsNE Mz The
isomorphisms 7, 4 are induced from 4, g#. The fact that I', 4 have a natural
monoidal structure, together with the fact that AXzB is an algebra for an

algebra A over R (=R°?) and an algebra B over R, follows from the fact that
the bifunctor [GA, p. 465, (1.1)]

(_)XR("‘) P EMEX g Mg —> My, (M, N)|——>A/[XRN

has a natural monoidal structure. We prove (5.10) that every monoidal equiva-
lence data between pMyp and s Mg comes from some algebraic /Morita equivalence
data up to isomorphism if the algebras R, S are finite projective.

In §1, we discuss formal ring laws. The notion of an Amitsur 2-cocycle
has been generalized to noncommutative algebras by Sweedler [4]=[MA]. When
0= a;Rb;R¢c;ERKQRXR is a 2-cocycle in his sense [MA, (2.1)] we say
o(X, Y)=> a;Xb;Yc; with noncommuting indeterminates X, Y, is a formal ring
law over R because the defining formulas (ibid., (2.2) and (2.3)) can be read as

oX, 0¥, 2)=0(cX,Y), 2),
Je,e R such that ¢(e,, X)= X = ad(X, e,).

For a formal ring law ¢(X, Y) over R, there is some associated monoidal
functor

(=) : pMp —> reMgo, M+— M?,
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We give a criterion (1.17) for this to be a monoidal equivalence. The formal
ring law ¢(X, Y) is called snvertible if this is the case. Our criterion tells that
if ¢ is invertible, then it has an inverse, i.e., a formal ring law (X, Y) over
R such that (—)7 is the strict inverse of the monoidal functor (—)°. Therefore,
the monoidal functor (—)? is an zsomorphism if ¢ is invertible.

If R is commutative, ¢ is invertible if and only if it is invertible in the
usual sense. If R is Azumaya, ¢ is invertible if and only if the algebra R? is
Azumaya.

The brief summary offers another approach to the ~/Morita theory.
The idea of generalizing Morita equivalences to monoidal categories appears in
Pareigis [2] This paper gives some influence to our theory. Most main
results of the paper were obtained while the author was staying at the Univer-
sity of Munich in 1983/84. He thanks the Alexander von Humboldt Foundation
for its support, Professor B. Pareigis for his friendship and hospitality, and
Moss Sweedler for conversation with the author.

§0. Conventions.

Throughout we work over a fixed commutative ring £ with 1. All algebras
and modules are unitary k-algebras and k-modules. All algebra maps are
unitary. Unadorned ), Hom, and End mean &,, Hom,, and End, respec-
tively. M, denotes the category of all modules. For algebras R, ---, R,,
Ry, Ry Mp, ..., denotes the category of all left Ry, ---, R, right Ry.1, -+, R,
multimodules. Such a multimodule is defined to be a module M with 8,: R,—
EndM an algebra map for 1=</=¢ and an opposite algebra map for t<i<n
such that 0;(r,)0,(r;)=0,r,)0:(r;) for all i+j, r;eR;, r,=R;.

For an algebra R and R-bimodules M, N, the tensor product M&zN (taken
for My and zN) is again an R-bimodule (the structure coming from zM and
Npg). The monoidal category (rMr, Qr, R) plays an essential role. A monoid
object in r Mg is called an R-ring (algebra over R [5, 6], R/k-algebra [7, 8]). It
is identified with a pair of an algebra F and an algebra map R—E. The
category of all R-rings is denoted by Rg.

We deal with monoidal functors

It g Mg —> s Ms

for algebras R, S. Refer to (and [9], too) for a general theory of monoidal
categories and functors. We always assume I' is k-linear in the sense that
I:p MM, Ny>sMs('M, ’'N) is a k-module map for all M, NEzMp. The
monoidal structure on I' is given by defining a product xyeI'M®zN) for
x€I'M and yeI'N in such a way that the product map (x, y)—xy gives an
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S-bimodule map
I'M@sI'N —> I'(M@QgN)

which is natural in M, N, associative in the sense that
(xy)z = x(yz)  in I'(MQQrNQrP)

for zeI'P with P= g Mg, and having a unit 1eI'R. The monoidal functor I’
is called a monoidal equivalence if it is an equivalence as a functor and the
structure maps (product and unit) are isomorphisms.

§1. Formal ring laws.

We give a new interpretation to Sweedler’s 2-cocycles [MA, p. 308, Def. 2.17.
We work over an algebra R.

1.1. DEFINITION. For a finite set of indeterminates X,, ---, X,, we denote
by R{X,, ---, X,> the free R-ring on X, ---, X,. If U is an R-ring, then for
any elements u,, -+, u, in U, there is a unique R-ring map R<{X, -, X,>—U
which takes X; to u;. The image of f(X,, -, X,)ER{X,, -, X,,> is denoted
by f(u,, -+, #,). The induced map

Un—_>U) (uh Tty un)‘_—‘-)f(uly Tty un)
plays a role later.

1.2. DEFINITION. The sub-R-bimodule RX,RX, --- X,R of R{X,, ---, X,) is
denoted by R(Xj, ---, X,). This is isomorphic to RQRE - QR (n+1 copies).
Its elements are called n-forms (in X, ---, X, over R). Any n-form is a finite
sum of monomial forms a,X,a,X, - Xp,a, with a;=R. The 0-forms are identified
with elements in K.

1.3. SUBSTITUTION LEMMA. Let [1, N1=I,\U --- \Ul, be a division into n
disjoint intervals. We assume x<y for x€l, and yl;if i<j. Let f(X,, -, X,)
and gY;, -+, Yy), where {j, ---, k}=I;, for 1=i<n, be forms over R. (Here
Yy, -+, Yy are non-commuting indeterminates). Then f(gi, -+, &x), which isla
well-defined element in R{Y,, ---, Yy», is an N-form in Y,, ---, Yy over R.

This is easily verified. In particular, for f(X), g(X)eR(X), we have
flgXNeR(X). We put (f-g)(X)=f(g(X)). The 1-forms R(X) form an algebra
with product - and unit X, which is isomorphic to RXR°P.

1.4. DEFINITION. A 2-form ¢(X, Y) over R is called a formal ring law
over R if we have
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(1.4a) oX,0¥,2Z)=0cX,Y), 2Z) as 3-forms in X, 7Y, Z,
(1.4b) de, € R such that ¢(X, ¢;) = X = o(e,, X).

Conditions (1.4) are simply restatements of [MA, (2.2) and (2.3)]. Hence
g X, V)= a;Xb;Xc; is a formal ring law if and only if 3 a,Qb:;Qc;= RQRQR
is a 2-cocycle. The element e,, called the unit, is unique. The trivial formal
ring law XY is denoted by w(X, Y).

Sometimes we use the n-times iterated product c,(X,, Xi, -+, X») of the
formal ring law ¢(X, Y), defined inductively by

(1.5) O'k<X0, Tty Xk) = G(XO’ O-k—l(le Y Xk))

Starting With GI(X(), Xl)-:d(Xo, Xl): or (To(Xo):Xo.
For an R-ring U, the formal ring law ¢(X, Y) over R induces an associ-
ative product

(1.6) o :UxU—U, (u, v) —> o(u, v)

to get a new algebra written U? with unit ¢, [MA, p.308]. In particular we
have an algebra R°, and the algebra map R—U induces an algebra map R°—U°".
Thus we have a functor

(1.7 (—)? ¢ Rp —> Rpo, U—U’° (cf. [3, p. 144]).
The trivial formal ring law induces the identity.

1.8. DEFINITION. Let ¢(X, Y)and v(X, Y) be formal ring laws over R. A
1-form f(Z) is a map o—7 if we have

(1.8a) fle(X, Y) =(f(X), f(Y)) in R(X,Y),
(1.8b) fles) =e;. '

If f:0—7 and g:7—p are maps of formal ring laws over R, then g-f,
the product in the algebra R(Z), is a map o—p. The (small) category of all
formal ring laws over R is denoted by .

f(Z) is a map og—r if and only if ¢ is cohomologous to v via f [MA, p. 309,
Def. 2.7]. It follows directly from (1.8) that if this is the case, the induced map

(1.9) fvo: U —U", ur—> f(u)

is an algebra map for all R-ring U. The algebra map (1.9) is natural in U.
We show the functor (1.7) comes from some monoidal functor pHMr—ro Mg,

For M€ My, we have a(R, M), ¢(M, R)YCM in any R-ring containing M. This

o-product makes M into a R?-bimodule, written M?, and we get a functor

(1.10) (=) 1 pMr —> RoMpo (cf. [3, p. 149)).
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For meM, neN with M, N Mg, consider the product

(1.10a) a(m, n)dj—e:f > amb;@ne; = > a;mQ@bine; € MRrN

where ¢(X, V)= a;Xb;Yc;. The o-product induces a R°-bimodule map
(1.10b) M QreN° — (MRrN)?, mRn —> g(m, n).

Together with the identity R°=R?, this makes (1.10) into a monoidal functor,
and the functor (1.7) is induced from this.
For a map f(Z)=X p;Zq;: 6—7 in Fr and M & r Mg,

(1.11a) fu: M°— M, m+—> f(m)=X pmq;

is semilinear with respect to fz (1.9) taking ¢-product to z-product. Hence this
gives rise to a map of monoidal functors

(1.11b) f- 1 (=) —>fore(—)

with the forgetful monoidal functor for: g HMrc—reHMre With respect to
fr:R°—R".

We show the composite of monoidal functors of type (1.10) is of the same
type. To establish this, we require some technical map which is contained
implicitly in the proof of [3, Prop. 4.3].

Let ¢(X, Y) be a formal ring law over R. Let

(1.12a) O™ 2 R<X,, -, X)) —> RCX, o, Xi)?

be the R’-ring map taking X; to X;. This induces a R?-bimodule map
(1.12b) ™ 0 ROU(X,, -, Xu) — R(Xy, -, Xa)?.

s is the identity of R?. In terms of iterated product, we have
(1.12¢) (a0 X101 X, - Xn@n) = Gan(ao, Xy, a1, Xs, -+, Xn, a2)

for a;eR. The ¢,-map commutes with substitution. For forms f, g,, --, &»
over R? as in (1.3), let f'=¢,(f) and gi=¢,(g;). Then we have

¢1§N)(f(g1; T gn)) — f/(gI,’ ) g:z)'
From this follow the following facts easily:

(1.13a) @ : RY(X)—R(X)’=R(X) is an algebra map (cf.[3, Lemma 5.1]). (The
unit e, Xe, goes to X).

(L13b) If (X, Y) is a formal ring law over R° with unit e., then ¢ (t)(X,Y)

s a formal ring law over R with the same unit.
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(1.13¢c) If f(Z):ti—7. is a map in Fre, then PP (fNZ): 9P (t)—PP(ty) is a
map in Fp.

Summarizing these facts, we get a functor
(1.13) ¢g . (_'-.FRO‘ —> g
taking the trivial formal ring law w? to g.

1.14. DEFINITION. For ¢=%x and =% s, We put

O*T = @,(7) € Fp.
1.15. LEMMA. Let 0(X,Y) be a formal ring law over R, and let f(X,Y)

be a 2-form over R°. Put f'(X,Y)=¢(f)(X,Y). For any R-ring U, the
f-product on U’ is the same as the f’-product on U.

PrROOF. We may assume f(X, Y)=aXbYc¢ (a, b, ccR°). We have f'(X,Y)
=a4a, X, b,Y, ¢) taken in R(X, Y). For u,velU’ the value f(u,v) is the
product aubvc in U’, namely, o,(qa, u, b, v, ¢) taken in U, which is precisely
f'(u, v). Q.E.D.

It follows immediately that we have
Ua*r — (Ud)':
as algebra for any R-ring U and t€%zs. We write U"=U°*,

1.16. THEOREM. Let 0%y, 1€Fgo and pEFpoc. We have

a) (o*T)xp = o*(txp),
b) WG = ¢ = 0*w°’,
¢z('n) ¢én)
c) 0('121') : RUT(‘YI’ v ’ Xﬂ) I Ra(le ot ’ Xn)r —> R(Xh e ’ Xﬂ)ar)
b P
d) Pose : Fpov—> Fpo —> Fp,
(=) (=) _
e) (—)* : R Mp —> go Mo —> gorMpor as monoidal functors.

PrROOF. For any R-ring U, we have U“?¢=[°“, Taking U=R{(X,Y)
and considering the product of X and Y, we conclude a). b) follows similarly.
We have ¢S =¢i™¢p{™ as R°*-ring map by definition. This yields c¢). d) We
have @,..=@,°¢. on objects by a), and on morphisms by c) for n=1. e) Take
MerMp. Embed M into an R-ring U. Since U*=(U°), it follows that
Mo =(M?)" as R°’-bimodules. We may write it as M7 in the sequel. Take
another N€z Mg, and embed M and N into an R-ring V so that the product of
V induces an injection MQrN—V. Since V7*=(V?)" as algebras, it follows
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that the o+*r-product map for M, N (1.10b) factors as
Mar®RarNar > (M0®RUN¢1)T N (M®RN)UT

with the z-product for M?, N° and the o-product for M, N. This means we
have (—)7**=(—)"-(—)? as monoidal functors. Q.E.D.

1.17. INVERTIBILITY THEOREM. For o9, the following conditions are
equivalent with each other.

1) There is t€Fgo such that oxr=w and t*c—w°.

2) Thereare t€F o and p E F gor such that oxr=win Fpand txp=w’ in F go.

3) The functor ¢, (1.13) is an equivalence.

4) The functor ¢, (1.13) is an isomorphism.

5) The functor (—)° (1.7) is an equivalence.

6) The functor (—)° (1.7) is an isomorphism.

7) The monoidal functor (—)° (1.10) is a monoidal equivalence.

8) The monoidal functor (—)° (1.10) is an isomorphism.

9) The R°-ring map ¢&™ (1.12a) is an isomorphism for all n.

10) The map ¢ (1.12b) is an isomorphism for all n.

11) The R°-ring map ¢ (1.12a) is an isomorphism.

12) The map ¢ (1.12b) is an isomorphism and the structure map (1.10b) is

an isomorphism for all M, NE p HMp.

The formal ring law o¢(X, Y) is called snvertible (with inverse 7(X, Y) in
1)) if these equivalent conditions hold. It follows from 1) that invertible formal
ring laws are closed under the x-product.

In §3, we refine conditions 10) and 12) as follows (3.20):

10)" The map ¢{™ (1.12b) is an isomorphism for n=1, 2.

12)"  The map ¢ (1.12b) s an isomorphism, and the structure map (1.10b)

s an isomorphism for M=N=RQR.

The algebra R is categorically rigid [3, Def. 6.1] if the functor (1.7) is an
equivalence for all 6= 5. In our terminology, this is the case if all 6=%5 is
invertible.

Proor. We prove the theorem as follows:

|
6 —-5—- 9 —11 1 -2
T T ! T 7
8 7—-12—-10—-4—-3

Trivial implications: 6)=5), 8)=7), 9)=11), 1)=2), and 4)=3).
5)=9). There is a R%-ring isomorphism R<{X,, ---, X,>=U? for some



310 M. TAKEUCHI

R-ring U. The composite

(n)

U® = R(X,, ) Xod———> R(X,, -+, Xad°

is of the form X° for some R-ring map X:U—R(X,, -, X;>. Assume X; in
R<(X,, ---, X,> corresponds with u; in U? (=U). Then we have X(u;)=X,.
Define an R-ring map 8:R{(X,, -+, X,)—U by B(X;)=u;. Then X-B=Id. On
the other hand, B?-X°=Id since U°=R"<u,, ---, u,>. We have B-2=Id since
(—)° (1.7) is an equivalence. Thus X, hence X° too, is an isomorphism. This
means the map ¢ is an isomorphism for all n.

11)=10). The substitution f(X;, ---, Xp)—f(X, -, X), R(X,, -, Xp)—
R{X> gives rise to an isomorphism of R-bimodules

B R, -+, X,) = R

Through this isomorphism, the R-ring map ¢ : R°(X>—R(X)>? is identified
with the direct sum of ¢{». It follows that 11) is equivalent to 10).

7)=(5) and 12)). Since the monoidal functor (1.10) induces the functor
(1.7), we have 7)=5). The latter half of condition 12) is contained in 7). The
first half is a special case of 10), and we know 7)=5)=9)=11)=10) already.

8)=6). The inverse of the monoidal functor (1.10) induces the inverse of
the functor (1.7).

12)=10). The product induces an isomorphism of R-bimodules R(X;, ---, X,)
RrR(Xp41)=R(X,, -+, Xy, Xp+1). Through this isomorphism, the map ¢{*** is
identified with the composite

RSV
RU(XI; ) Xn)@RURU(XnH) R(Xh Tt Xn)a®R°R(Xn+l)”

[R<X1’ T Xn)®RR(Xn+1)]U-

1.10b)

Hence by induction, the map ¢¢* is an isomorphism for all n if it is for n=1.

10)=4). We have ¢ :RX,Y)=R(X,Y) and ¢{”:R°(Z)=R(Z) by as-
sumption. Since the ¢,-map commutes with substitution, it follews directly
that #(X,Y) in R°(X,Y) is a formal ring law over R’ if and only if
o2(t)(X, Y) is a formal ring law over R. (We are using condition 10) for
n=1, 2, 3). It also follows that for 7, p in Fges and f(Z) in R°(Z), we have
fit—p if and only if ¢°(f): ()~ (p). Hence @, : Fro—TFr (1.13) is an
isomorphism of categories.

The following lemma is required to prove the rest implications.

1.18. LEMMA. 8) follows if c~w in Fp.

PrOOF. The monoidal functor (—)° (1.10) is isomorphic with the isomorphism
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rMp—rre Mps Iinduced from some isomorphism R°—R (1.11). This means (—)°
is a monoidal equivalence, i.e., 7) holds. We know 7)=12)=10)=4). Hence
bo: Fro=TFp Assume the isomorphism o=~ comes from an isomorphism w’=t
in Fgo. Since this yields g*r=w, it follows from (1.16) that the monoidal
functor (—)° has a left inverse (—)°. Since r=~w’ the monoidal functor (—)°
has a left inverse, too. Hence (—)7 is an isomorphism, and so is (—)°. This
means 8). Q.E.D.

2)=8). The above lemma together with (1.16) implies (—)"-(—)° and
(—)Peo(—)" are isomorphisms. Hence (—)7 is an isomorphism, and so is (—)°.

3)=2). There is 7t in s such that @,(r)=g*r~w in Fz. By the above
lemma, 8), hence 4) too, holds for oxr. By (1.16d), the composite functor
Pop:: Froe—TF g is an isomorphism. Since ¢, is an equivalence, so is ¢.. The
argument applied to ¢ shows there is p in Fger With Txp~e’.

4$)=1). In the above proof 3)=2), we can replace ‘=’ (two places) by ‘=’.
We have ¢=p by group theory. Q.E.D.

1.19. EXAMPLE. Let R be an Azumaya (i.e., central separable) algebra.
There is a canonical isomorphism [MA, (1.3) and (1.6)]

R(Xlr Ty Xn) = Hom(®nR’ R)
(X, e, Xp) <— ]?5 U, Q - Qup—f (Uy, -+, Un)

for all n. In particular R(X)~EndR as algebras (definition of Azumayal!).
Since the isomorphism commutes with substitution, the following facts follow :

(1.19a) A 2-form (X, Y) over R is a formal ring law if and only if (R, &) is
an (associative unitary) algebra.

(LL19b) For o, t in Ty, the isomorphism R(X)~EndR induces Fgleo, 7)=
Alg(Re, R%). In particular 6=t in Fp if and only if R°~R* as algebras.

1.20. THEOREM. Let 6(X,Y) be a formal ring law over the Azumaya
algebra R. ¢ is invertible if and only if R° is an Azumaya algebra.

PrOOF. The ‘only if > part follows from (2.5). Assume R° is Azumaya.
There is a unique 7 in F s such that R=(R°)". This means w=¢x*r. Replacing
(R, o) with (R’ 7) we see there is p in T with w’=rxp. Obviously, =0p.
Hence ¢ is invertible. Q.E.D.

1.21. EXAMPLE. Let R be a commutative algebra. If ¢(X,Y) is a formal
ring law over R, then e, is a unit since 1=¢(1, ¢,)=e¢,R, and we have an
algebra isomorphism R~R? a«<ae,. For a in R, m in M with an R-bimodule
M, we have o(ae,, m)=am and o(m, ae,)=ma, hence the R’-bimodule M? is
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simply the transport along R=R°. For M, N in z Mz, we view MKRN as a
RRQRRR-module as usual. If ¢(X, V)= a;Xb;Yc,;, then we have 7)=38) if and
only if X a;®b;Qc; is a unit in RYRRQR. Next, consider ¢ : R/ (X)—R(X).
For a, b in R, e,aXe,b goes to gy(eqsa, X, e,b)=aXb. Hence this is always an
isomorphism. Summarizing we have:

1.22. THEOREM. Let (X, Y)=2> a;Xb;Yc; be a formal ring law over the
commutative algebra R. ¢ is invertible if and only if X a;Qb:Qc; is a unit in
RYRQR. Hence invertible formal ring laws (or Sweedler 2-cocycles) are identified
with Amitsur 2-cocycles. The first half of condition 12) is always true.

Simple criteria such as (1.20) and (1.22) for ¢ to be invertible cannot be
expected to exist in general. Riffelmacher’s criterion [3, Lemma 6.3] seems to
contain some error (ibid., p. 154, |12~]16).

§2. +/Morita equivalences.
We work over two algebras R and S.

2.1. DEFINITION. A ~/Morita equivalence data between R and S means a
4-tuple (', 4, r, 8) where I':pMp—sMs and 4:sMs—rMp are monoidal
functors, and

(2.1a) r:rd~1, 3:4r =1
are isomorphisms of monoidal functors such that
(2.1b) 4y = 84, yI' =1T94.

If we have a monoidal equivalence I':pMr—sMs, then it has a quasi-
inverse since ¢ s has a generator, and the quasi-inverse has a natural monoidal
structure. It follows that I' embeds into a +~/Morita equivalence data between
R and S.

We write R~.y4S (resp. R~yS) if there is a +/Morita (resp. Morita)
equivalence data between R and S. (We note that we are considering only
k-linear equivalences).

R~4%S implies RQR°P~uSR®S°P obviously. The name ~/Morita stems
from this (suggested by M. Sweedler).

2.2. EXAMPLE. Let (sPz, rQs, @, B) be a Morita equivalence data between
R and S with bimodule isomorphisms a:PRzQ=S and B:Q®sP=R. This
induces a +Morita equivalence data (I', 4, 7, 8) as follows: I takes M&r Mg
to '(M)=PRrMRJrQ <€ s Ms, and 4 takes N Mg to AN)=QRsNRQsP<E rMp.
We put



+/Morita theory 313

a@RI yQa
7~ : TAN)=PRRrQRsNQsPRQrQ SQQsNKsS=N
and 3y=pRI QB similarly. We have (2.1b). For M,srMr (=1, 2), there is
a product S-bimodule map
FM1®SPM2:P®RM1®RQ®SP®RM2®RQ

IQBR!

———> PROrM QrRQQrMQrQ=I(M,QrM,).
Together with a™!: S—PQrQ=TI(R), this makes I' into a monoidal functor.
Similarly 4 is a monoidal functor. We see y and & are isomorphisms of
monoidal functors. Hence the 4-tuple (I, 4, r, 8) is a +vMorita equivalence
data between R and S. This means R~yS implies R~ S.

2.3. ExampPLE. Let ¢(X,Y) be a formal ring law over R. We have a
monoidal functor (—)?: rMr—reMrs (1.10). By (1.17), this is a monoidal
equivalence if and only if ¢ is invertible. If t&€ %+ is its inverse, we see the
pair ((—)?, (—)7) is a strict ~/Morita equivalence data between R and R° in the
sense that we can take the identities as 7 and 8 (2.1). Thus we have R~ R’
for =%y invertible.

2.4. ExaMPLE. Let A be an Azumaya algebra. We have an equivalence
(2.4a) AR— + My —> 4 My, Vi— AQV.
For Ve, (=1, 2), the canonical A-bimodule isomorphism

(AQVIRQ(AQV ) = AQ(V.QV,)

and the identity A=A®#% make the functor (2.4a) into a monoidal equivalence.
The quasi-inverse is given by

(2.4b) (=) My —> My, M—> MA={xeM | ax=xa, Vac A}.
Thus we have A~ k.

2.5. THEOREM. We have

a) R~uS=R~,%S=RYRP~uSRS°P,

b) R~ uxS=cent(R)=cent(S),

c) R~y %S and R is central (resp. separable, resp. simple)= S is central
(resp. separable, resp. simple),

d) an algebra A is Azumaya if and only if A~yk.

PrROOF. a) follows from (2.1) and (2.2). b) Any monoidal equivalence
rMr=sMs takes R to S inducing End,q,(R)~Endg«(S). We have only to
identify cent(R)=End,4,(K). ¢) Assume R~ 4S. If R is central, so is S by
b). Saying that R is separable (resp. simple) is equivalent with saying R is a
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projective (resp. simple) object in M. Since there is an equivalence  Hz= 5 Ms
such that R« S, it follows that if R is separable (resp. simple), then so is S.
d) The ‘only if’ part follows from (2.4). The ‘if’ part from c). Q.E.D.

In the next section, we refine b) to claim that R~ xS (over k) implies
R~ %S over the common center cent(R)=cent(S). We also prove that R;~,uS:

(=1, 2) imply R,QRy~,%4S:QS..

§3. The coalgebraic description.
We work over algebras R, S, T, V.

3.1. DEFINITION. An R-coring means a comonoid object in the monoidal
category rHMg, i.e., a triple (zCg, A, &) with R-bimodule maps A:C—C®zC and
e:C—R satisfying usual coalgebra condition. It is called an R/k-coalgebra
in [7].

Let C be an R-coring. For Meyr Mg, we put

¢C(M) - RL%R<C, M)

the R-bimodule maps C—M. If f€®@.,(M) and ge® (N) with M, N Mz,
then the composite

A Qg
fxg : C—> CRrC—> M®xN

is in @,(MXrN), and we get a linear map
3.2) D (M)QDP(N) —> OPc(MKQrN), fQg > fxg.

We see the functor @, becomes a monoidal functor with product (3.2) and unit
k—®:(R), 1=>¢. This means for any R-ring U, ®.({U) becomes an algebra. In
particular

(3.3a) c* ;—f@c(R)

has an algebra structure, and @.(U) becomes naturally a C*-ring. InTfact, for
Me g Mg, the map

C*®¢C(M)®C*=QC(R)®¢C(M)®¢C(R>

sx-product
- ¢C(R®RM®RR)=¢C(M)

makes @¢(M) into a C*-bimodule, and the map (3.2) induces a C*-bimodule map
(3.3b) Do(M)QRcsP(N) —> P (MRQeN).

Together with the identity (3.3a), this makes the functor
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3.3) Dc : pMr —> cxHMox

into a monoidal functor, and the previous C*-ring @,(U) for an R-ring U is
induced from this.

3.4. LEMMA. Let C be an R-coring. Thereis a 1-1 correspondence between
algebra maps 0 : S—C* and multi-module structures g sCg s such that for a, beS
and c=C with Alc)=2Y) ¢,&K¢s,

(3.4a) Alach) = X ¢,bRac,,
(3.4b) elac) = &(ca).

For an algebra map 7, the action sCs is defined by

(3.4¢) ac =Y ¢y pla)c,),

(3.4d) ca = 2 nla)cey)-cs.

For a multi-module g sCg, s satisfying a), b), the algebra map 7 is defined by
(3.4e) n(a)(c) = elac) = &lca).

PrROOF. Begin with a multi-module. The map 7(a) of e) is an R-bimodule
map, hence is in C* a) implies e(ach)=X e(cib)elac,)=(n(b)*n(a))(c), and b)
implies &(acb)=¢(cba)=n(ba)(c). Hence 7 is an algebra map. Letting b=1 in
a), we have ac=3 ¢,-¢(ac,) which means c). Similarly d) follows. Conversely,
assume we are given an algebra map %. The operations c¢) and d) are
R-bimodule endomorphisms, hence we get a multi-module g sCr s. [f we put
A0)=2 R, R, €CRCKRRC, it follows from c) that we have Alac)=
> ei®eep(a)(c) =3 ¢:Rac,, and Alca)=3 ¢,a®c, similarly from d). This yields
a). Applying ¢ to ¢) and d), we get b) and e). This establishes the 1-1
correspondence. Q.E.D.

3.5. DEFINITION. An S|R-coring means a pair (C, y) with an R-coring C
and an algebra map 7:S—C*, or the R-coring with the corresponding multi-
module structure g sCr s (3.4a, b).

We give several comments on an S|R-coring C. It follows from (3.4c, d)
that we have

(3.5a) 2 ac,Rc, = 2, Resa.

This means the image A(C) is contained in the centralizer [CXRzC]S. Secondly,
the algebra map 7 induces a forgetful monoidal functor c«Mes— s Ms. By abuse
of notation, we let @, mean the following composite monoidal functor

O, (3.3) forg. (n)

(35b) ¢c . R‘mR —_> C*s%()* E— Sj'ls.
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Thus the S|R-coring C induces a monoidal functor rMp—sMs. For Mer Mg,
Do(M)=prMp(g, sCr, s, RMp) inherits an S-bimodule structure from sCs (in the
opposite way). The last remark is that the S-bimodule structure of @,(M) in
is precisely this.

More generally, a multi-module z sAg, s represents a functor
(3.5¢) Oy : pMp—> sMs, Mr—> O (M)=pe(4, M).

The last remark means an S|R-coring structure on A yields a monoidal struc-
ture on @, We have the converse:

3.6. THEOREM. Let g sdps be a multi-module. There is a 1-1 corre-
spondence between R-coring structures (A, &) on A making it into an S|R-coring,
and monoidal structures on @, (3.5¢). If @D, is a monoidal functor, then the
corresponding coring structure (A, &) is defined as follows: A:A—ARrA is the
image of IQsIE D A)RsD 4(A) under the product D[ A)RsPy(A)—DP 4 ARrA),
and ¢: A—R is the image of 1S under the unit S—®@ 4(A).

We leave it to the reader to establish this standard result.
As the easiest example, the multi-module .R,Q,R. (-, X meaning R) rep-

resents the identity .. M.—,.HM,. The corresponding X|--coring structure on
R,RQR. is given by

(3.7a) Ala@b) = (a@DQr(1QD),
(3.7b) e(a@b) = ab

for a, beR.

3.8. COROLLARY. Let C, D be S|R-corings. There is a 1-1 correspondence
between S|R-coring maps C—D and maps of monoidal functors @p,—P.

PrOOF. We have a 1-1 correspondence between R, S-bimodule maps C—D
and maps of representable functors @,—®, (3.5¢). It follows from (3.6) that
the multi-module map C—D commutes with the coring structure if and only if
the natural transformation @,— @, commutes with the monoidal structure.

Q.E.D.

It follows that if I': pMr—sMs is a monoidal functor representable as a
Sfunctor, then it is represented by an S|R-coring which is uniquely determined
up to isomorphism. We say I' is a representable monoidal functor.

3.9. PROPOSITION. The composite of two representable monoidal functors

r 4

rRMg —> s Mg —> 7 My
18 still representable.
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PrOOF. We can ignore the monoidal structure. Assume functors I', 4 are
represented by multi-modules r sPr s, s,7@s,r respectively. Let Q-P denote the
quotient of Q&P by the submodule

{aybQ@x—yRbxa | y=Q, x=P, a, beS}.
The multi-module g y[Q-Plg r represents the composite 4-I. Q.E.D.
The above proposition leads to the concept of the composite coring.

3.10. THEOREM-DEFINITION. Let C be an S|R-coring and let D be a T|S-
coring. Define a multi-module g r[D-Clgr as in the proof of (3.9). Let
dece D-C denote the image of dQcs DRC. If Alc)=2] ¢,Qcs and A(d)=2 d1Qd,,
then we can well-define an R-coring structure (A, €) on D-C by

(3.10a) A(dec) = 2 (d1°))RQ(dze¢,) E(D-C)Rr(D-C),
(3.10b) e(dec) = ele(d)c)

to get a T|R-coring D-C. There is a canonical isomorphism of monoidal func-

tors
(3.10C) ¢Doc = ¢D°¢C-

Proor. It follows from (3.9) that there is a natural isomorphism of functors
[3.10c). Let us transport the monoidal structure of @,-®@, onto P,.c through
this isomorphism. By (3.6), there is a corresponding 7T |R-coring structure on
D-C. One sees easily the structure (A, ¢) is described by (3.10 a, b). Q.E.D.

Thus we have defined the composite T|R-coring D-C for a T|S-coring D
and an S|R-coring C.

3.11. PROPOSITION. For a V|T-coring E, a T|S-coring D, and an S|R-coring
C, we have canonical isomorphisms:

(3.11a) (E<D)C = E-(D-C) as V|R-corings,
(3.11b) (SRS)C =~ C = C-(RRR) as S|R-corings.

This follows immediately from The isomorphism (3.11a) is induced
from the canonical isomorphism (EQRQD)RC~EX(DRC). Under (3.11b) we have
(IR1)ecrcec-(1RQ1) for c=C.

Let Ty, S;, R; (i=1, 2) be algebras. For a T;|S;-coring D; and an S;|R;-
coring C; (=1, 2), we see D@D, and C,QC, are a (T,QT,)|(S;RS,)-coring and
a (S;QS)|(R,QR,)-coring respectively., One sees there is an isomorphism of
(T:QT)|(R,QR,)-corings
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‘ (312) (Dx"cl)@(Dz"Cz) = (D1®D2)°<C1®C2)y
dioc:RQdsec, < (41 Qds) (i QcCs) .

3.13. DEFINITION. A coalgebraic ~'Morita equivalence data between R and
S means a 4-tuple (Cs\r, Dgpis, 7, ) where C and D are an S|R-coring and an
R|S-coring respectively, and

(3.13a) 7:S®S=C-D, 0: RQYR=D-C

are an S|S-coring isomorphism and an R|R-coring isomorphism respectively such
that the following diagrams commute :

(3.13b) (S®S)oC =~ C-(RYR) (RQR)°D = D-(SKS)

lroc lcoa lBoD lpor

(CoD)eC =~ Co(D-C) (D+C)eD =~ D-(C-D)
where we use the canonical isomorphisms (3.11).

A coalgebraic +/Morita equivalence data (C, D, 7, 8) induces a +/Morita
equivalence data (@, @p, 7, d) (2.1) where

[7/]

(3.14a) 700, =D, - Dses = 1d,
]

B.14b) 3 : OpPo = By —> Brop ~ Id

with isomorphism [3.10c). ((3.13b) implies (2.1b)).

Any equivalence of module categories is representable, by Morita theory.
It follows that any monoidal equivalence of bimodule monoidal categories is
representable. In view of (3.8)-(3.10), this means any +/Morita equivalence
data between R and S is isomorphic with the data determined by some coalge-
braic data as above. In addition the coalgebraic data is determined up to
isomorphism. Thus we get the following coalgebraic description theorem.

3.14. COALGEBRAIC DESCRIPTION THEOREM. If (C, D, 7, 0) is a coalgebraic
v Morita equivalence data between R and S, then we have a ~/Morita equivalence
data (@¢, @p, 7, 8) with (3.14 a,b). Any ~'Morita equivalence data between

R and S is of this form up to isomorphism with a uniquely determined coalgebraic
data (C, D, 7, 0) up to isomorphism.

We describe briefly the coalgebraic +/Morita equivalence data corresponding
to Examples 2.2-2.4.

3.15. EXAMPLE. Let (sPg, rQs, @, B) be a Morita equivalence data (2.2).
There is an induced coalgebraic ~/Morita equivalence data (Cs g, Dris, 7, 0)
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defined as follows: We put

R, SCR,S = (RQS)@(SPR), S,RDS,R = (sPr)Q(rQs) .

We define an R-coring structure (A, ¢) on C as follows:

IRa QI
(3.15a) A: QRP —> QRSRKP ——— (QRP)RQr(QRP),

IRx —> YRR«
cano. B
(3.15b) e: QRP —— QRsP—> R.

Then C becomes an S|R-coring. Similarly, D is an R|S-coring. The S|S-coring
isomorphism 7 is defined by

a'Qa?
71 S®S ———— (PRROIQPRRQ) = (QRP)(PRQ)
(xRRX(x'Ry") <= (YRx")(xRy").

The R|R-coring isomorphism & is defined similarly.
With the notation of (2.2), for M ez Mg, an element xRmRy € PRrMR:Q
=I'(M) induces an R-bimodule map
C=QRP— M, Qx> B(y'@x)mB(y&Qx").
This gives rise to an S-bimodule isomorphism

I'(M) = pHe(C, M) = ®c(M).

One sees the S|K-coring structure on C corresponds to the monoidal structure
on I'. Similarly, the monoidal functor 4 is represented by the R|S-coring D.
Thus the ~/Morita equivalence data (I", 4, 7, 3) of (2.2) is isomorphic to the
data coming from the coalgebraic data (C, D, 7, 9) defined above.

3.16. ExAMPLE. Let o(X, Y)=2 a;Xb;Yc; (a;, b;, c;=R) be a formal ring
law over R. The R-bimodule RQR has the following R-coring structure (4,, &,)
(‘ comultiplication alteration’):

(3.16a) A; 1 RQR —> RYRRXIR=(RRYR)Ra(RRR)
A;(u@u) = 2 uaQb:Kciv,
(3.16b) g, : RQR — R, e, (u®u) = ueqv.

This R-coring is denoted by RQ,R. For a=R, we have an R-bimodule map
a: RQ,R— R, U@ ,v —> uav.

The map a—a is seen to give an algebra isomorphism
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(3.16¢) R = (RR,R)*.

This -makes R ,R into a R°|R-coring.
For meM with M Mg, we have an K-bimodule map

m : RQR—M, uX) v —> umv.
As before, we see the map m—m gives a R’-bimodule isomorphism
(3.16d) M? = @pre z(M).

For neN with N&rMg, the product #m*iie€ Pre, r(MPN) (3.2) comes from
o(m, n)e MX:N (1.10a). This means [3.16d) gives an isomorphism of monoidal
functors

(3.16e) (=) = @Prg k-
If 7(X,Y) is a formal ring law over R“, then there is a natural isomorphism
of R°7|R-corings
(3.161) RR)oueR =~ (R°Q.R%)(RR,R), 1@ o4l < (6,R):€4)°(1X,1).
If ¢ is invertible with inverse 7, then [3.16f) induces isomorphisms
0: RRR ~ (R*Q.R)(RY,R) as R|R-corings,
71 RFQR° = (RQQsR)(R'Q.R7) as R?|R?-corings.
We see the coalgebraic ~Morita equivalence data (RR,R, R°Q.R’, 1, §) repre-
sents the strict ~/Morita equivalence data ((—)?, (—)7) of (2.3).

3.17. ExXAMPLE. Let A be an Azumaya algebra. The dual k-coalgebra
A*=Hom(A, k) is a k-coring with A=A** hence an Al|k-coring. In general R
has a trivial R-coring structure. Hence A is an A-coring with 2=cent(A)
=pMr(A, A), thus a k|A-coring. We show the pair (A¥ 4, A4 ) has a coalge-
braic +~/Morita structure (7, d) representing the +/Morita equivalence data of
(2.4). We see from definition the canonical isomorphisms

ARV =~ Hom(A*, V) = @ V), Ve wu,,
M4 = 4 HA(A, M) = @ (M), Me 4 M,

give isomorphisms of monoidal functors
A®(“—) = ¢A* and (‘—)A =~ @A.

Let (7, 6) be the coalgebraic +/Morita structure corresponding to the +/Morita
equivalence data (AR(—), (—)4) (2.4). We see

0: k=A-A%



~/Morita theory 321
is the unique coalgebra map, i.e., the inverse of the counit. If we identify
A*  A=A*QA=End A, we see

7 ARA = A*-A
is given by r(1®1)=id.
The next theorem is an easy application of the coalgebraic description.

3.18. THEOREM. For algebras R;, S; (1=1,2), Ri~uqS: (=1, 2) imply
R1®R2N~/ﬁsl®52-

Proor. Let (C;, D;, 75, 0;) be a coalgebraic ~/Morita equivalence data
between R; and S;. Then we have a coalgebraic +v/Morita equivalence data
(CiRCs, D,RDs, 1, 0) between R,QR, and S,&®S,, where 7 is the composite

7 ¢ (S1®S)R(S:RSs) = (S1QRQSDR(Se@S2)

71072
——> (Cy° D, CeeD,) ——= (CiKRC,)*(D1KRD,)
( &N )m( XC2)e (D1

and ¢ is defined similarly. Therefore R,®R, and S,®S, are ~/Morita equiva-
lent. Q.E.D.

An S|R-coring C is invertible if the monoidal functor D¢ : r Me— s Hs (3.5b)
is a monoidal equivalence. This is equivalent with saying that C embeds into
a coalgebraic ~/Morita equivalence data between R and S.

3.19. THEOREM. The S|R-coring C is invertible if and only if the following
conditions hold:

a) gCr is a progenerator in pMp.

b) S®S°? —=> End,a,(C).
¢) P(RYR)QsP(RRR)

~

?(RQYRQR).
(prod. str.)

ProOOF. By Morita theory, a) plus b) is equivalent with @, being an
equivalence. If this is the case, the functor @, preserves colimits, hence the
product @ (M)RsP(N)—D(MRrN) becomes an isomorphism for all M, NE p Mz
if condition c¢) holds. Thus, a)-c) imply that @, is a nonunitary monoidal
equivalence. It follows from [9, Lemma 5.12] that we have S—=C*. Q.E.D.

Conditions a)-c¢) are independent of each other. We assume S=C*. If
C=RQ,R (3.16) with commutative R, then a) and b) are always true, and c)
is enough for ¢ to be invertible. If R=k (and S=C*), then c) is always true,
and a) plus b) means C* is an Azumaya algebra.

Applying (3.19) to C=R&,R (3.16), we can refine conditions 10) and 12) of
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(1.17) as follows:

3.20. COROLLARY. With the notation of (1.17), conditions 10) and 12) are
equivalent to 10) and 12)" below:
10)) The map ¢ (1.12b) is an isomorphism for n=1, 2.
12)" The map ¢ (1.12b) is an isomorphism, and the structure map (1.10b)
s an isomorphism for M=N=RRR.

PrROOF. Put S=R’, C=RQ,R in (3.19). a) is true. The algebra map of
b) is identified with the map ¢¢. (Remember R(X)=~RQR°P). The map ¢
factors as

PP RPN d. str.)
6P 1 R°(X,;, Xp) ————> R(X))’QroR(X,)° ————> R(X,, X5)°.
Hence we have b) plus ¢)&10)'<12)’, and we know ¢ is invertible if and only
if the R?|R-coring RQ,R is invertible. Q.E.D.

Finally we refine (2.5b) as an application of the coalgebraic description.

3.21. THEOREM. If R~ xS (over k), then there is a commutative k-algebra
K such that R, S have a central K-algebra structure in such a way that R~ %S
over K.

ProoF. Take a coalgebraic ~/Morita equivalence data (Cgsiz, Dris, 7, 0).
The equivalence @., together with the structure isomorphism S=C*=0@,(R),
induces an algebra isomorphism cent(R)=End, s ,(R)=End ¢ (P c(R))=End ¢ (S)
=cent(S). We see the inverse is induced from @, in a similar way. We can
take a commutative k-algebra K and make R, S into central K-algebras in such
a way that this algebra isomorphism cent(R)=~cent(S) becomes a K-algebra
isomorphism. For ¢=K with images azx=R and as=S, we conclude easily
from (3.4c, d) that we have

(3.21a) ArXx = xag and asX = Xag

for all x in C or D. Let C be the quotient module of C by
{apx —xap (=xas—asx) | x€C, ac K}. Define D similarly. C and D have one
K-module structure, and we see they inherit the structure of an S|R-coring and
an R|S-coring respectively. It follows from (3.21a) that y and é induce K-module
isomorphisms

7 S®KS = C°D— and 0: R@KR:E"C

respectively. They are obviously an S|S-coring isomorphism and an R|R-coring
isomorphism respectively. We have a coalgebraic ~Morita equivalence data
(C, D, 7,3) between R and S over K. Hence R~ xS over K. Q.E.D.
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3.22. COROLLARY. If R is v/Morita equivalent with a commutative algebra,
then R is separable over the center.

This follows from (2.5d) and (3.21).

§4. The algebraic description.

The concept of X-product introduced by Sweedler [5] and generalized by
the author [GAT plays an essential role in this section. We work over algebras
R, S, and T. As in [GA], R denotes the opposite algebra to R with anti-
isomorphism aR—d<R. For left modules zM and gN, the quotient k-module
of MQN obtained by identifying @axQ®y=xRay for acR, x&M, yeN is
denoted by

6M®aeR aN~

This is the same as MQ:N if we view M as Mz.

Recall [GA, (1.1)] that for bimodules zMz and zNg, the k-submodule of
all X x:R0%:€:MR®qcr oN such that 3 x:0Qy,=3 x;Qy;b for all beR is
denoted by

MxgN.
We get a bifunctor
4.1) (=)Xr(—) 1 RMrX R Mr —> My, (M, N)+—> MXgN.

If we have some additional operations on M or N commuting with the R- or
R-biactions, then we get the corresponding operations on M XgN. Thus, for
example, the bifunctor induces

(4.1a) 8, M3, e X gpMr —> s Mg,
(4.1b) EMeX g, v Mp, 7 —> 7 My,
(4 1C) S, ﬁﬂ’l& EXR, rMrr —> s, 7Ms. T and so on.

The direct product of two monoidal categories has a natural structure of a
monoidal category. We show the bifunctor has a natural structure of a
monoidal functor. This is done by modifying [GA, Propositions 1.11, 1.12] as
follows: For M;=z Mz, N;=EpHMr (=1, 2), the twist isomorphism M, QN
M,QN, =M, QM,QN,QN, induces a k-linear map

(M X rNDR(aM:Qaer oN2) —> GM:1QrM2)Qser(sN1QrN?)

similar to the ¢-map [GA, (1.11)]. Further, this map induces
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4.2) (M, % RN1)®(M2 X glNp) —> (M1®I_EM2) X (N1 QrN>)
(2 2:Ry:)Q(X x5Qy5) —> 2 (x:Q@xHR(¥:Ry5)

similar to the &map (ibid., (1.12)). Together with the trivial map 2—R XzR,
1—1®1, (4.2) makes into a monoidal bifunctor. Similarly, bifunctors
(4.1a, b, ¢c) have a structure of a monoidal functor.

4.3. DEFINITION. An S|R-ring means an SQR-ring.

For example, End R is an R|R-ring [GA, p. 465].
Let A be an S|R-ring. By means of (4.1a), we have a functor

(4.4) AXR_ P M —> s Ms, N|—‘>A><RN.

The monoid structure of A and the monoidal structure of (4.1a) make (4.4) into
a monoidal functor. The product is given by

(AXgNDQs(AX gNz) —> A X p(N1QrN3)
(2 a:Ry)Q(X aiQy)) —> X a:a;Q(y:Qy})

for N;€z Mg (t=1, 2). The unit is given by S5 AXzR, s—s®1. The monoidal
functor (4.4) plays an essential role.

4.5. ExaMpLE. Consider the monoidal functor EndRXz— of ¥ into
itself. For M< i My, there is a canonical R-bimodule map [GA, (2.2)]

8’ : EndRXzM — M, 2 [iQx —> 2 fi(Dx;.

We have X fi(a)x;=2 f:(x;a for a€R, X fi{Q®x;=End RX M (ibid.). It fol-
lows that for X g,Qy,€End RX gN with N& Mg, the product

(Z[i®x:)(X :R0y;) = 2 [1°8/9(x:Qy ;)
is mapped by 8’ to
2 filgxi®@y; = 2 [i(Dx@g(L)y; = 6'(Z fiRx:)8" (2 g,Qy;)-

This means we have a map of monoidal functors @’ :EndRxXz— —Id. If R is a
finite projective k-module, this is an isomorphism [GA, (4.14)].

4.6. PROPOSITION [GA, (3.1)]. If B is a S-ring and A an S-ring, then
Bx A is an algebra with product
(2 b:Qa )X biRaj) = X bbjRaiaj
and with unit 1Q1. If B isa T|S-ring and A an S|R-ring, then BXgA becomes
a T|R-ring.

If #p and p, denote the multiplication of B and A, then the above product
is simply the composite
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4.2) UBX stha
(BXsA)Q(BX sA) ——> (BRQsB) X s(AQsA) —

BxsA.

The monoidal functor for S (as R) takes the monoid object (B, A) into a
monoid object. The algebra BX sA is precisely this. Similarly, the last state-
ment follows by using the monoidal functor (4.1c) after appropriate permutation
of R, S, T.

For example, if A is an S|R-ring, then EndSx sA is also an S|R-ring. It
follows from (4.5) that

(4.7a) 6 : EndSxsA— A
is an S|R-ring map. Similarly, we have an S|R-ring map [GA, (2.2)]
(4.7b) 0 : AxzgEndR — A, > a,Qf i — X fill)as.

These are isomorphisms if S and R are finite projective k-modules.

For LesMs, Mcs sMs p and NegrMp we can define a k-module
LxsMxgN in the same way as [GA, (1.4)] (where the case S=R is treated),
and we get a trifunctor

(=)Xs(=)XRr(—) 1 §MsX s, gMs, X gMp —> M.

The previous arguments are easily generalized to see the trifunctor has a
structure of a monoidal functor with product similar to (4.2), and further we
have its variations — monoidal trifunctors similar to (4.1a-c). If Bisa T|S-ring
and A an S|R-ring, then we get a monoidal functor just as

BXgAXp— : gMg —> 7 My,

and if E is an R|U-ring with an algebra U, then BXgAXgE becomes a
T|U-ring just as (4.6).
We have associativity maps [GA, (1.7)]

a’ a
LXs(MXR]V)—‘% LXsMXRNé—‘(LXSM>XRN

for LesMs, M= g rMs 5, and NEp M. One verifies directly @ and &’ are maps
of monoidal functors. It follows that for a T|S-ring B and an S|R-ring A, we
have maps of monoidal functors

a’ a
(4.8a) BXs(AXp—) —> BXgAXp— <— (BXgA) X z—
and T'|U-ring maps

a’ a
(4.8b) BXs(AXRE) —> BXsAXgE <— (BXgA)XgE

for an R|U-ring E.
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4.9. LEMMA. Let BegMs and Acs gMs,n If S is a finite projective
k-module and B is a dirvect summand of some finite direct sum of EndS as a
S-bimodule, then the natural transformations a, &' of (4.8a) are isomorphisms.

PrROOF. We may assume B=EndS. For N&,%; we have a commutative

diagram

End SX s(AX gN) %> End SX sAX &N < (End SX s A) X 2N

9
6; 81X N

AXeN

where 8] :End SxsA—A and 6;:End SX s(AXzN)—AXzN are the 8’-map (4.5),
and the map 8¢ is defined by

02 [i1Qa:Ryi) = 2 fi(1)ai@y;.

The commutativity is obvious. It follows from [GA, Cor. 4.14] that 8] and 6,

are isomorphisms. Since EndS is left S-projective, it follows from [GA, Prop.

1.7,ii)] that &’ is an isomorphism. It follows that 8> and a are isomorphisms.
Q.E.D.

Throughout the rest of this section, we assume all algebras R, S, T, U, --
are finite projective k-modules.

4.10. DEFINITION. An S|R-ring A is admissible if A is a direct summand
of a finite direct power of End R as R-bimodule.

4.11. THEOREM. Let B be a T|S-ring, let A be an S|R-ring, and let E be
an R|U-ring.

1) If the T|S-ring B is admissible, then the maps (4.8) are isomorphisms.
Thus we have an isomorphism of monoidal functors g Mg—rMr

(4.11a) BXg(AXp—) =~ (BXsA)Xp—
and a T|U-ring isomorphism
(4.11b) BXs(AXgE) = (BXsA)XrE.
ii) The S|R-ring maps (4.7) are isomorphisms, thus we have
(4.11c) EndSxgA ~ A~ AxgEndR.

iii) If both B and A are admissible, then the T|R-ring BXsA is admissible,
too.

Proor. i) follows from Lemma 4.9. ii) is obvious. iii). Assume
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B@(EndS)™ as S-bimodule and A®@(EndR)" as R-bimodule. We have
BxsA®@(EndS)"x sA=(EndSx sA)" =A™ @ (End R)™" as R-bimodule.
Q.E.D.

One sees the isomorphisms (4.11b, ¢) satisfy the coherence condition.

4.12. DEFINITION. An aigebraic ~/Morita equivalence data between R and
S means a 4-tuple (Asg, Bris, 4, #) where A and B are an admissible S|R-ring
and an admissible R|S-ring respectively and

A: AXpB =~EndS an S|S-ring isomorphism,
(4.12a)
¢ : BXxsA=EndR an R|R-ring isomorphism
such that the following diagrams commute (cf. (3.13)):
(4.12b) (AXgB)X A =~ AXg(BXsA) (BXsA)XgrB =~ BXS(AXRB)
lXXSA lAXRﬂ lﬂXRB lBXs]
EndSxsA =~ AxgEndR EndRxzB =~ BxXsEndS

where we use the canonical isomorphisms of (4.11).

Just as the coalgebraic case, an algebraic +/Morita equivalence data
(A, B, 2, p) induces a +/Morita equivalence data (AXz—, BXg—, 4, g) with

AX s—

(4.13a) A: AXg(BXg—) = (AXgB)Xs— ———> EndSxs— =~1d,
#X r—

(4.13b) 2 BXs(AXr—) = (BXsA)Xg— — > EndRx p— = Id,

where we use and (4.5).

4.14. LEMMA. Let sPg and zQu bz bimodules. Viewing P and Q as a left
SQR-module and a left RQU-module respectively, we consider End P and EndQ
as an S|R-ring and an R|U-ring respectively. (Similarly, End(PQrQ) is an
S|U-ring). If P and Q are finite projective k-modules, then there exists an
S|U-ring isomorphism

End PXzEnd Q =~ End(PRrQ)

2 [iQgi—> (xQy — X fi(x)Rg:(y)).
Proor. From the assumption, we have an isomorphism

#(End P)Racr o«(End Q) =~ Hom(PRQ, PRrQ)
Qg — (xQy— f(x)Rg(y)).
Since we have (fa@g)(xQy)=(f®g)(xa®y) and (fRga)xRy)=(fRg)NxRay)
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for a€R, this yields the isomorphism in the statement. It is obviously a
S, U-bimodule isomorphism. For X f:®g:; X fiQg; € End PxzEndQ, the
product X f;fi®g:g; acts on PQrQ as the composite of the corresponding
endomorphisms. Hence the isomorphism is an R|U-ring map. Q.E.D.

We briefly describe the algebraic ~/Morita equivalence data corresponding
to Examples 2.2-2.4.

4.15. ExXAMPLE. Let (sPg, z@s, @, 8) be a Morita equivalence data between
R and S (2.2). We put A=EndP and B=End@. A and B are an S|R-ring
and an R|S-ring respectively by (4.14). Since Pr<&@ (Rgp™ we have
A®@(End R)"* as R-bimodule, hence A is admissible. Similarly, B is admis-
sible. In view of Lemma 4.14, there is a canonical S|S-ring isomorphism
End PXzEnd Q=End(PRzQ), and a induces an S|S-ring isomorphism
End(PRrQ)~EndS. Let

A: AXzgB ~EndS

be the composite. Define an R|R-ring isomorphism p:BXsA=EndR in a
similar way. One verifies the 4-tuple (A4, B, 4, p) satisfies condition (4.12b),
hence it is an algebraic v/Morita equivalence data. We show the corresponding
~/Morita equivalence data (AX z—, BXs—) is canonically isomorphic with the
~/Morita equivalence data (I", 4) of (2.2). For M& Mg, the canonical isomor-
phism

eAQaer oM =~ Hom(P, PQrM),  a@m+—> (x — a(x)Qm)

induces an S-bimodule isomorphism
AXgM ~ Hom_g(P, PRrM)

which becomes an isomorphism of monoidal functors if we define the monoidal
structure on Hom-g(P, PQr—) as follows: For feHom_x(P, PRzM) and
geHom_g(P, PQrN) with N Mg, the product fg is the composite

g &I
fg : P—> PQrN —> PRrMRrN.

The unit is the identity in Hom_x(P, PQrR). On the other hand, there is an
isomorphism of monoidal functors

I'M) = PRrM@rQ = Hom._x(P, PQrM),
x@MQy —> (x"— xQ@mB(y, x)).
Composing the above two, we have an isomorphism of monoidal functors

AXR—“ =T
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and BX g— =4 similarly. Through the induced isomorphisms AXg(BXs—)=~Id
and BXg(AXg—)=dI', one sees the structure isomorphisms 2, g correspond
with 7, 8 respectively. Hence +~/Morita equivalence data (AXgz—, BXs—) and
(', 4) are isomorphic with each other.

4.16. EXAMPLE. Let (X, Y)=> a;Xb;Yc; be a formal ring law over R.
If A4 is an R|S-ring, then the R°-ring A° made from the R-ring A becomes a
R?|S-ring with algebra map S—A°, @— de,. We note the underlying S-bimodule
of A7 is A itself. From definition we see (AXsN)*=A°XsN as R’-bimodules
for NegHs. U x=2u,Qm,eAxsM and y=X2v,Qn,eAXsN with
M, Ne s Mg, then the product a(x, )= axb;yc; in (AX s(MRsN))° (1.10a and
44) is

alx, ) = ;(; aiujbi@)mj)(Zk]vkci@nk)
= 3 (Sambwic)Rm@ny) = 3 olus, vRm@ns)
which is just the product in 47X s(M®sN). This means we have
(AXg—) = A" X g—

as monoidal functors s Ms—gro Mrs. In particular, the monoidal functor (—)? of
(1.10) is isomorphic to (End R)’ X p— where (End R)? is a R°|R-ring. If ¢ has
an inverse 7, it follows there is a canonical algebraic ~/Morita equivalence
data ((End R)’, (End R°)") between R and R’.

4.17. EXAMPLE. Let A be an Azumaya algebra. A is an A|k-ring, and
A is a k|A-ring. The map

2: AX A= AQA ~End A, A(a®b)(x) = axb
is an A|A-ring isomorphism. The map
p: Ax,4A=centA=centA ==~k

is a k|k-ring isomorphism. The 4-tuple (4, 4, 4, ) is an algebraic +~/Morita
equivalence data corresponding to the +~/Morita equivalence data of (2.4).

§5. Duality.

Throughout the section, we assume all algebras R, S, T, --- are finite pro-
jective k-modules. We compare coalgebraic and algebraic ~/Morita equivalence
data by means of the duality introduced in the section in order to prove that
every ~/Morita equivalence data between finite projective algebras comes from
an algebraic ~/Morita equivalence data.
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5.1. DEefrFINITION. We define a contravariant monoidal functor
(5.13) D : RMr —> rMpB.

For M€z M, D(M)=Homg-(M, R) the left R-homomorphisms. For xeD(M)
and meM, we put {x, md=x(m). D(M) is made into a R-bimodule by setting

Lax, my =<x, mya, {xd@, my = <{x, may

for geR. For xeD(M) and ye D(N) with N& Mz, the product xys D(MKQ:N)
is defined by

<xy, m@ny = {x, m<y, ny)
for meM, neN. The product is associative giving a R-bimodule map
(5.1b) DM)RrD(N) —> DIM@grN),  xQy+—>xy.

The contravariant functor (5.1a) becomes a monoidal functor with the product
and unit 1 D(R)=End,-(R). If it is necessary to specify R, we write D=Dg.

The contravariant monoidal functor D takes a comonoid object to a monoid
object. This means if C is an R-coring, then D(C) is a R-ring with product
xxy (x, yeD(C)) defined by

Cxxy, ¢ = 24x, ¢y, ¢»>  (c€C)

where Alc)=2 ¢,&c, as usual. The unit is e.

Let Mgt be the subcategory of all R-bimodules which are left R-finite
projective. This is a monoidal subcategory of r Mg, i.e., MRrNE Mt for
M, NepMgt. The functor D induces an anti-equivalence r Mzi—pMzf, and the
map is an isomorphism for M, N pM;f. This means we have a monoidal
anti-equivalence

D : R(.%Rf —> ﬁﬂﬁf.

Put D=Dg:pMz—rMz. For meM, we have a left R-homomorphism
x—<{x, my, DIM)—R, i.e., an element in D(D(M)). This gives an R-bimodule
map M—D(D(M)) which is an isomorphism if MezMzf. Thus we have natural
transformations

(5.2) I—D-D and I—> D-D.

If we restrict D and D on pMzf and zMzf, then we see (5.2) gives isomorphisms
of monoidal equivalences. (Note the composite of two monoidal anti-equivalences
is a monoidal equivalence). Thus we have a monoidal duality (D, D) between
rMet and z Mzf with adjunction (5.2). This monoidal anti-equivalence takes a
monoid object to a comonoid object. This yields:
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5.3. PROPOSITION. a) If C is an R-coring, then D(C) is a R-ring.

b) If Ais a R-ring which is left R-finite projective, then there is a unique
R-coring structure on D(A) such that A=~D(D(A)) (5.2) as R-rings.

¢) The monoidal duality (D, D) between p Mg’ and g Mzt induces a duality
C—D(C) and D(A)—A between left R-finite projective R-corings C and left
R-finite projective R-rings A.

The comultiplication of D(A) in b) is the composite of D(g): D(A)—>D(ARQzA)
(¢ denoting the multiplication of A) with the inverse of the product D(A)RzD(A)
~D(ARQzA). Under the duality of c), the isomorphisms (5.2) give an R-coring
isomorphism C~D(D(C)) and a R-ring isomorphism A= D(D(A)).

If R is commutative, (5.3) gives the duality of [9, §4].

For an R-coring C, C* is the submodule of all R-bimodule maps C—R in
D(C), namely we have

C* = centpcy(R)
the centralizer of R in D(C). For x, yeD(C) and c=C, we have
{x*y, €3 = 24x, ¢y, ) = 24x, €)<Y, €.

This means C* is a subalgebra of D(C). This gives immediately a) of the
following :

5.4. PROPOSITION. a) If C is an S|R-coring, then D(C) is an S|R-ring.

b) If A is an S|R-ring which is left R-finite projective, then there is a
unique S|R-coring structure on D(A) such that A~D(D(A)) (5.2) as S|R-rings.

c) There is a duality C— D(C) and D(A)«— A between left R-finite projective
S|R-corings C and left R-finite projective S|R-rings A.

d) Under the duality of c), the S|R-ring A is admissible if and only if gCr
1S a finite projective object in pMg.

We note if the S|R-ring A is admissible, then it is left R-finite projective
since R is k-finite projective.

PrOOF. b) The isomorphism A=~D(D(A)) (5.2) induces algebra isomorphism
cent,(R)=D(A)*. The structure algebra map S—cent,(R) makes D(A) into an
S|R-coring. c¢) follows from a) and b). d) We have D(RKR)=EndR. Hence
C@®(RQR)" in p My if and only if A®(End R)” in zMz. Q.E.D.

We note under the duality of c¢), the bimodules sCs and sAg are combined
with each other by the relation

(5.5) laxb, ¢ =<x, bca) (a, beS, x=A, c=0).
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In fact, bca=><a, c,ycslb, ¢5» by (3.4c, d), hence <{x, bca)>=>)<a, ¢, ){x, ¢Xb, ¢>>
the left-hand side.

In the following technical lemma, we use the following functors:
Dr: s gMs, g —> 5,8 Ms, &,
(5.6a)
Ds DMy —> s M3

where in the above the S-bimodule structure of Dgx(M) for Meg rMs r is
defined by [5.5) We use {,} to denote the pairing for Ds.

5.6. LEMMA. Let MesMs and NE s rMs r. Let M-N be the quotient of
MQN obtained by identifying ambQn=mQbna for a, beS, meM, neN. This
has a natural R-bimodule structure coming from gNg. There is a R-bimodule map

§ : Ds(M)XsDp(N) —> Dp(M-N)

defined by <§(X x:Qy:), m@n>=33 <y, n{xs, m}> for 2 x;Qy:€ Ds(M)X sDr(N)
and meM, neN.

PROOF. For xeDg(M) and ye Dr(N), we define &(x, y)€ Dr(MEN) (the
R-bimodule structure of MQN coming from zNz) by setting

&(x, y), m@n> =<y, n{x, m}> (meM, neN).

The functional &(x, y) takes the same value on am®n and m®na for ac<S,
and we have &(@x, y)=§&(x, ay). Hence & induces a map

(5.6b) § : s[Ds(M)]®ses o[ Dr(N)] —> Dr(aM&@aesNa),

1Qy —> &(x, ¥).
Since we have

§(xa, y), m@ny =<&(x, y), maQ@ny,  {&(x, ya), mQny = {&(x, ¥), mQan)

for a€ S, it follows that induces the required map. One sees easily the
&-map is a R-bimodule map. Q.E.D.

The map is an isomorphism if M is left S-finite projective. Hence
in this case, the map & of (5.6) is an isomorphism, too.

5.7. PROPOSITION. Let A be an S-coring, and let C be an S|R-coring. Then
Dg(A) is a S-ring and Dgx(C) an S|R-ring. We have an R-coring A-C (take
T=*Fk in (3.10)), hence a R-ring Dp(A-C). The R-bimodule map & (5.6)

§ : Ds(A)X sDr(C) —> Dg(A-C)

is a R-ring map. If A is left S-finite projective, this is an isomorphism. If A
is a T|S-coring in addition, then this is a T|R-ring map.
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ProOOF. With the assumption in the last statement, 4-C becomes a T|R-
coring, hence Dg(A-C) a T|R-ring. It is easy to see & is a T-bimodule map,
too. Hence all we have to do is show & preserves the product and unit. Take
2= xQyi, w=2 u;Qu;EDs(A)XsDx(C) and be A, ceC. We have zw=
i xu;Qyw; (4.6) and A(boc)=2 (byoc1)Q(byoc,) (3.10a), hence we have

(&(zw), becy = i2j<yivj, c{xiuy, b}
= ;;(yi, c:1{xi, bi{uy, bat}<vy, cop)  (use (3.4a))
= §i<y1,, Cl<vj) cZ>{xi) bl{ujy b2}}> == <e(2)) ? b]{uj) bZ} °C1<Uj, c2>>-

Since A(C)C[CRCI® (3.5a), we have

Zj) bl{uj; bs} 0 ¢KVj, € = ; bye {uj, bs} ci{vj, €2

= ; b1°Cl<Uj, Cz{uj, bs} > = 2 biociK&(w), beecyy.
Hence <{&§(zw), boc>=21<§(2), bioci{§(w), byocy))=<&(2)&(w), boc>. This means
&§(zw)=&(z)&(w). On the other hand, we have &(1)=1 easily. Q.E.D.

The ring map & (5.7) can be generalized to a triple, or more generally to
an n-tuple, of composable corings. To be precise, let 4 be a T|S-coring, let C
be an S|R-coring, and let /' be an R|U-coring. There is a natural T|U-ring

map
&, 1 Ds(N) X sDr(C)X gDy(I") —> Dy(AC-I")
defined by
(X x:Qy:Qz:), bocodd = 20 <z, A<y, x4, b

for bed, ceC, del’, 3 xQyRz,€Ds(A) X sDr(C)X g Dy(I"). We have a
commutative diagram ‘

§ Xl
[Ds(A)X sDr(C)IX gDy(I") ———— Dx(A-C)X g Dy(I")
a (4.8) &
Ds(A)X sDr(C) X gDy(I") Dy(A-C-T")

and a similar diagram for a’.
Take A=S®S in (5.7). Then Ds(A)=EndS. For x=3 f;Qy;=End S X s Dx(C)
and ceC, we have

C&(x), AQD)ec) = 2 <yy, cfi(1)) =< fill)ys, .
This means the composite

§
End SX sD(C) = Ds(SQS) X sDr(C) —> Dr(SRS)>C) = Dr(C)
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is the #’-map (4.7a). Similarly, we reobtain the #-map from & by taking
C=S®S and S=R in (5.7).

The S|R-coring C is called admissible if gCp is a finite projective object in
rMr. By (5.4d), we have a duality between admissible S|R-corings and admis-
sible S|R-rings.

5.8. THEOREM. Let A be a T|S-coring, let C be an S|R-coring, and let I
be an R\U-coring, all admissible.
a) There is a canonical T\U-ring isomorphism

& : Ds(A)X sDg(C) = Dg(A-C).
b) We have a commutative diagram

(Ds<A>><sDRI<C>>><RDU<F> ~ Da(A-C) X zDy(I") = Dy((A+C)eT")
) ]z
Ds(A)X s(Dx(C)X zDy(I") = D(A)X sDy(CT") = Dy(A+(C-T))

where we use a), (4.11b), and (3.11a).
c) We have a commutative diagram

Ds(S®S) X sDr(C)=Dr((SRS)>C)= Dr(C(RYR)) = Dr(C) X sk Dr(RIR)

. N 7 2

End S X s Dr(C) = Dx(C) Dg(CyXgEnd R

R

where we use a), (4.11c), (3.11b).

This follows from the previous arguments.

5.9. THEOREM. a) If (Csiz, Dris, 7, 0) is a coalgebraic ~/Morita equiva-
lence data between R and S, then we have an algebraic ~/Morita equivalence data
(DR(C): DS(D)y ?7 5); Where

- Ds(y)
7 ¢ D(C)XgDs(D) = Ds(CeD) ———> Ds(SQS) =~ End S,

Dx(9)
: Ds(D)X sDg(C) = Dg(D>C) ————> Dp(RRR) ~ End R.

Sa

b) If (Asiz, Bris, 4, ) is an algebraic ~/Morita equivalence data between R
and S, then we have a coalgebraic ~'Morita equivalence data (Dz(A), Ds(B), 7, 1)
where =2 and =7 are uniquely determined coring isomorphisms such that

7
A AXrB = D(Dr(A)) X pDs(D3s(B)) —> End S,

0
¢t BXsA = Ds(Ds(B))X sDr(Dg(A)) —> End R.
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¢) The correspondence (C, D, y, 0)(A, B, 2, u) given in a) and b) establishes
a duality between coalgebraic and algebraic ~/Morita equivalence data between R
and S. The corresponding data determine isomorphic ~Morita equivalence data,

namely we have
<¢C; ¢D} 7> a) = (AXR_, BXS_: 2) ”)-

PROOF. a), b), and the first part of c) are easy consequences of (5.8) in
view of the duality (5.4). We establish the last statement. Put (4, B, 4, p)=
(Dr(C), Ds(D), 7, 6). For M& gz Mg, the isomorphism

6AQaer oM = Homp-(C, M),  x@m+— (c—<x, com)
induces an S-bimodule isomorphism
Eu : AXpM = @ (M) (cf. (4.15)).

Take u=2 x;,Qm,€ AXgM, v=3 y,Qn;€ AXxN with M, Ne Mz We have
ww=2 x;;Qm;Q@n;) in AX g MReN) (4.4), and for ceC

Cu)(c) = Z<x:y; eomi@n; = 3 <x4, ¢KY;, C20omQn;
= ZJD Cu)(eyj, c)R®n; = ATJ Eu)e)@<y;, coon; = 22 L(u)(c )L W)(cs).
This means we have an isomorphism of monoidal functors §:AXgp—=®¢.

Similarly, we have {':BXg—=®;. For z=3 x,Qv,Rz;,€ AXpBX¢N with
Ne s Mg and ced=C-D, we have

C(R@)eNd) = 2 x4, 1, diny =2 {ys, dlxy, OO}y
= 2 {§(xs, ¥4), coddmy.
This means we have a commutative diagram
AXgBXgN = @(Dp(N))
e |
Dy(CeD)X sN = @cop(N).

It follows that 42 and 7y correspond with each other through the induced isomor-
phism AXpBXsg— =@ Pp~P,,,. Similarly, # and 3 correspond with each
other. Q.E.D.

As a direct consequence of (3.14) and (5.9) we have:

5.10. ALGEBRAIC DESCRIPTION THEOREM. Let R and S be finite projective
k-algebras. Every ~/Morita equivalence data between them is isomorphic to the
data (AXgp—, BXs—, &, ) coming from an algebraic ~/Morita equivalence data
(A, B, , p) uniquely determined within isomorphism.
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The algebraic data of (4.15-17) correspond to the coalgebraic data of (3.15-17)
under the duality (5.9¢c). As a final remark,

5.11. PROPOSITION. Assume R~.,y4S over k. If R is a finite projective
k-module, then so is S.

PrROOF. First assume R~yuS. There is a Morita data (sPg, ---). Since Pg
and R, are finite projective, P is k-finite projective. Since ¢S sP™ for some
n, S is k-finite projective, too. Now we have RQR~uSR®S. It follows that
SQ®S is k-finite projective. Hence its direct summand S is, too. Q.E.D.
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