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0. Introduction.

Consider $R^{n}$ as the subset $R^{n}\cross\{(0,0, \cdots)\}$ of the countable infinite product
$R^{\omega}$ of the real line $R$ . The set $\bigcup_{n\in N}R^{n}$ admits two different natural topologies.
One is the weak topology with respect to the tower $\{R^{n}\}_{n\in N}$ and the space
with this topology is called the direct limit of lines and denoted by dir $limR^{n}$

or simply by $R^{\infty}$ . Another is the relative topology inherited from the product
topology of $R^{\omega}$ and the space with this topology is denoted by $\sigma$ , that is, $\sigma$ is
a subspace of the linear topological space $s(=R^{\omega})$ of all real sequences. (It is
well-known that the pair $(s, \sigma)$ is homeomorphic $(\approx)$ to the pair $(1_{2}, l_{2}^{f})$ , where
$l_{2}^{f}$ is the linear span of the canonical orthonormal basis of Hilbert space $l_{2}.$ ) A
separable topological manifold modeled on these spaces is called an $R^{\infty}$-manifold
or a $\sigma$ -manifold, respectively. These are considered as two different topologi-
zations on the same underlying set. The former is the direct limit of a tower
of finite-dimensional $(f. d.)$ compact metrizable spaces (compacta), that is, its
topology is the weak topology with respect to the tower ([8, Prop. $m$ . $2]$ ). The
latter is metrizable and coarser than the former. Both of these manifolds are
triangulated, that is, each $R^{\infty}$-manifold is homeomorphic to a simplicial complex
with the weak (Whitehead) topology (cf. [18, Introduction]) and each $\sigma$ -manifold
is homeomorphic to a simplicial complex with the metric topology ([11, Theorem
15]). Let $K$ be a simplicial complex and $|K|=\cup K$ the realization of $K$. By
$|K|_{w}$ and $|K|_{m}$ , we denote the spaces $|K|$ with the weak topology and the
metric topology, respectively. We conjecture that $|K|_{w}$ is an $R^{\infty}$-manifold if
and only if $|K|_{m}$ is $a$ a-manifold. In this paper, we prove a half of this
conjecture, that is,

THEOREM. For a simpljcjal complex $K,$ $|K|_{m}$ is $a$ a-manifold if $|K|_{w}$ is an
$R^{\infty}$-manifold.

A map $f:Xarrow Y$ is a fine homotopy equivalence provided for each open cover
$\mathcal{U}$ of $Y$ there exists a map $g:Yarrow X$ such that $fg$ is $\mathcal{U}$ -homotopic to $id_{Y}$ and
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$gf$ is $f^{-1}(\mathcal{U})$ -homotopic to $id_{X}$ , where $g$ is called a $\mathcal{U}$-homotopy inverse of $f$ . It
is not difficult to see that the natural bijection from $R^{\infty}$ to $\sigma$ is a fine homotopy
equivalence (cf. [191). For any simplicial complex $K$, the identity of $|K|$ is a
fine homotopy equivalence from $|K|_{w}$ to $|K|_{m}$ . This follows from Dowker’s
Theorem [6, (15.2)1 combined with [10, Lemma V. 7] and [6, (6.1)]. Recently,
the author gave another proof in [19]. Then it is natural to conjecture more
generally as follows,

CONJECTURE. Let $h$ : dir $\lim X_{n}arrow Y$ be a bijective fine homotopy equivalence
from the direct limit of $f.d.$ comPacia to a metrizable space. Then dir $\lim X_{n}$ is
an $R^{\infty}$-manifold if and only if $Y$ is $a$ a-manifold.

In fact, we can prove the “ only if “ part if we assume that each compact
set $A$ in $Y$ is a strong Z-sef, that is, for eacb open cover $\mathcal{U}$ of $Y$ the identity
of $Y$ is $\mathcal{U}$-near to a map $f:Yarrow Y$ such that $A\cap c1f(Y)=\emptyset$ . If $dir\lim X_{n}$ is an
$R^{\infty}$-manifold then we have a map $f:Yarrow Y\backslash A$ which is $\mathcal{U}$-near to $id_{Y}$ . However
this conjecture is false. In Section 4, we construct a bijective fine homotopy
equivalence from $R^{\infty}$ to an AR which is not a a-manifold, and in Sectim 5,
one to $\sigma$ from the direct limit of a tower of $f$ . $d$ . compact AR’s which is not
an $R^{\infty}$-manifold.

We give some applications in Section 3. Especially we have a generalization
of [11, Theorem 16] and [21, Theorem 3]. In Section 6, using the example in
Section 5, we answer negatively Problem 6-4 in [17]. We should remark that
all results in this paper have the $Q^{\infty}-$ and $\Sigma$-versions which are mentioned in
Section 7.

1. Strong universality of towers.

Let $X_{1}\subset X_{2}\subset\cdots$ be a tower of closed sets in a metric space $X=(X, d)$ . We
say that $\{X_{n}\}_{n\in N}$ is strongly universal for $f.d$ . compacta[5] if, for each $f$ . $d$ .
compacta $A\supset B$ , for each map $f:Aarrow X$ such that $f|B$ is an embedding of $B$

into some $X_{m}$ , and for each $\epsilon>0$ , there exists an embedding $h:Aarrow X_{n}$ for some
$n\geqq m$ such that $h|B=f|B$ and $d(h, f)= \sup\{d(h(x), f(x))|x\in A\}<\epsilon$ . A tower
$\{X_{n}\}_{n\in N}$ has the maPping absorptiOn Property for $f.d$ . compacta, provided for
each map $f:Aarrow X$ of an $f$ . $d$ . compactum, for each $m\in N$ and for each $\epsilon>0$ ,

there exists a map $g:Aarrow X_{n}$ for some $n\geqq m$ such that $g|f^{-1}(X_{m})=f|f^{-1}(X_{m})$

and $d(g, f)<\epsilon$ (cf. [3, Def. 4.5]). A tower $\{X_{n}\}_{n\in N}$ is said to be finitely expan-
sive [3, Def. 4.7] if for each $m\in N$ there exists an embedding $h:X_{m}\cross Iarrow X_{n}$

for some $n\geqq m$ such that $h(x, 0)=x$ for all $x\in X_{m}$ .

LEMMA 1. A tower $\{X_{n}\}_{n\in N}$ of $f.d$ . compacta in a metric space $X$ is strongly
universal for $f.d$ . compacta if and only if $\{X_{n}\}_{n\in N}$ is finitely expansjve and has
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the mapping absorption property for $f.d$ . compacta.

PROOF. For each $f$ . $d$ . compacta $A\supset B$ , we have a map $k:Aarrow I^{n}$ for some
$n\in N$ such that $k(B)=0$ and $k|A\backslash B$ is injective. Then the “ if “ part is easily
seen from the definitions. For any map $f:Aarrow X$ of an $f$ . $d$ . compactum, we can
apply the strong universality of $\{X_{n}\}_{n\in N}$ to the map $f’$ : $A \bigcup_{f1f^{-1}(X_{m})}X_{m}arrow X$ of
the adjunction space induced by $f$ and the inclusion $X_{m}\subset X$, and easily construct
an approximation $g:Aarrow X_{n}$ of $f$ with $g|f^{-1}(X_{m})=f|f^{-1}(X_{m})$ . A strongly
universal tower is clearly finite expansive. Thus the proof is completed. $\square$

In [14], Mogilski gave a characterization of $\sigma$ -manifolds. The next lemma
is a version using a strongly universal tower.

LEMMA 2. An ANR $X$ is a $\sigma$ -manifold if and only if $X$ has a strongly
universal tower $\{X_{n}\}_{n\in N}$ for $f.d.$ comPacta such that $X= \bigcup_{n\in N}X_{n}$ and each $X_{n}$

is an $f.d$. compact strong Z-set.

PROOF. Since each compact set in an ANR which is a countable union of
strong Z-sets is a strong Z-set [4, Lemma 7.2], the “ if ‘’ part is an immediate
consequence of [5, Prop. 2.2 & Prop. 2.3] and Mogilski’s characterization
[14]. We will see the “ only if “ part. By [2, Theorem 9], $X\approx|K|\cross\sigma$ where
$K$ is a countable locally finite simplicial complex (hence $|K|_{m}=|K|_{w}$). Let
$\{K_{n}\}_{n\in N}$ be a tower of finite subcomplexes of $K$ with $K= \bigcup_{n\in N}K_{n}$ . Then we
can prove similarly as [19, Lemma 3] that the tower $\{|K_{n}|\}_{n\in N}$ has the
mapping absorption property for $f$ . $d$ . compacta. Similarly as [19, Lemma 4],

it is proved that the tower $\{[-n, n]^{n}\}_{n\in N}$ in $\sigma$ has the mapping absorption
property for $f$ . $d$ . compacta. Let $X_{n}=|K_{n}|\cross[-n, n]^{n}$ , $n\in N$ Since each
compact set in a a-manifold is a strong Z-set (cf. [10]), each $X_{n}$ is an $f$ . $d$ .
compact strong Z-set in $X$. The tower $\{X_{n}\}_{n\in N}$ has the mapping absorption
property for $f$ . $d$ . compacta and is obviously finitely expansive, hence it is strongly
universal for $f$ . $d$ . compacta by Lemma 1. $\square$

LEMMA 3. Let $\{X_{n}\}_{n\in N}$ be a tower of $f.d$ . $comPacta$ in a $\sigma$-manifold $N$ with
$N= \bigcup_{n\in N}X_{n}$ which is strongly universal for $f.d$ . compacta. Then for each tower
$\{Y_{i}\}_{i\in N}$ of $f.d.$ comPacta in $N$ and for each open cover $\mathcal{U}$ of $N$, there exists a
homeomorPhism $f:Narrow N$ of $N$ onto itself such that $f$ is $\mathcal{U}$-near to id and each
$f(Y_{i})$ is contained in some $X_{n}$ .

PROOF. Let $d$ be a metric for $N$ such that

$\{\{y\in N|d(x, y)<1\}|x\in N\}<\mathcal{U}$ .

Using the strong universality of $\{X_{n}\}_{n\in N}$ and the Homeomorphism Extension
Theorem ( $=the$ Unknotting Theorem for Z-sets) (see [2, Theorem 25]), we can
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easily obtain a homeomorphism $h_{1}$ : $Narrow N$ such that $h_{1}(Y_{1})\subset X_{n_{1}}$ for some $n_{1}>0$

and $d$ ( $h_{1}$ , id) $<2^{-1}$ . Define a metric $d_{1}$ for $N$ as follows:

$d_{1}(x, y)= \max\{d(x, y), d(h_{1}^{-1}(x), h_{1}^{-1}(y))\}$ .
Similarly as above, we have a homeomorphism $h_{2}$ : $Narrow N$ such that $h_{2}|X_{n_{1}}=id$ ,
$h_{2}(h_{1}(Y_{2}))\subset X_{n_{2}}$ for some $n_{2}>n_{1}$ and $d_{1}$ ( $h_{2}$ , id) ( $=d_{1}(h_{2}^{-1}$ , id)) $<2^{-2}$ . Thus, induc-
tively, we obtain homeomorphisms $h_{i}$ : $Narrow N,$ $i=1,2,$ $\cdots$ and integers $0<n_{1}<n_{2}<\ldots$

such that
(1) $h_{i}|X_{n_{i-1}}=id$ ,
(2) $h_{i}(h_{i-1}\cdots h_{1}(Y_{i}))\subset X_{n_{i}}$ ,
(3) $d$ ( $h_{i}$ , id) $=d(h_{i}h_{t-1}\cdots h_{1}, h_{i- 1}\cdots h_{1})<2^{-i}$ , and
(4) $d(h_{1}^{-1}\cdots h_{i-1}^{-1}h_{i}^{-1}, h_{1}^{-1}\cdots h_{i-1}^{-1})<2^{-i}$ .

For each $x\in N,$ $\{h_{i}\cdots h_{2}h_{1}(x)\}_{i\in N}$ and $\{h_{1}^{-1}h_{2}^{-1}\cdots h_{i}^{-1}(x)\}_{i\in N}$ converge to points
$f(x)$ and $g(x)$ in $N$ respectively in view of (1). According to (3) and (4),
$\{h_{i}\cdots h_{2}h_{1}\}_{i\in N}$ and $\{h_{1}^{-1}h_{2}^{-1}\ldots h_{i}^{-1}\}_{i\in N}$ are uniformly Cauchy, so they are uni-
formly convergent to functions (hence maps) $f:Narrow N$ and $g:Narrow N$, respectively.
It is easy to see that $fg=id$ and $gf=id$ . Then $f$ is a homeomorphism of $N$

onto itself with $f^{-1}=g$ . From (1) and (2), $f(Y_{i})\subset X_{n_{i}}$ for each $i\in N$ Observe

$d(f, id)\leqq\sum_{i\in N}d$ ( $h_{i}$ , id) $< \sum_{i\in N}2^{-i}=1$ ,

so $f$ is $\mathcal{U}$ -near to id. $\square$

The following is an easy version of the author’s characterization of $R^{\infty}-$

manifolds [16].

LEMMA 4. Let $\{X_{n}\}_{n\in N}$ be a tower of $f.d$. compacta. Then dir lim $X_{n}$ is an
$R^{\infty}$-manifold if and only if dir $\lim X_{n}$ is an ANE for $f.d$ . compacta and $\{X_{n}\}_{n\in N}$

is finitely expansive.

The following can be proved similarly as [19, Theorem 1].

LEMMA 5. Let $\{X_{n}\}_{n\in N}$ be a tower of $f$ . $d$ . compacta in an ANR $X$ which
has the mapttng absorpti0n pr0perty for $f.d$ . compacta. Then the identity of $X$

induces a fine homotopy equivalence $h$ : dir lim $X_{n}arrow X$.

2. Proof of Theorem.

First, we will prove the “ only if “ part of Conjecture under the assumption
that each compact set in $Y$ is a strong Z-set, that is,

PROPOSITION 1. Let $h:Marrow Y$ be a bijective fine homotopy equivalence from
an $R^{\infty}$-manifold $M$ to a metric space $Y=(Y, d)$ . If each compact set in $Y$ is a
strong Z-set then $Y$ is a $\sigma$ -manifold.
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PROOF. Since $M$ is an ANE for metrizable spaces, $Y$ is an ANR [13, Ch.
IV, Theorem 6.3]. Write $M=dir$ lim $X_{n}$ where $\{X_{n}\}_{n\in N}$ is a tower of $f$ . $d$ .
compacta and put $Y_{n}=h(X_{n}),$ $n\in N$ Then the tower $\{Y_{n}\}_{n\in N}$ of $f$ . $d$ . compact
strong Z-sets in $Y$ is finitely expansive by Lemma 4. We will see that $\{Y_{n}\}_{n\in N}$

has the mapping absorption property for $f$ . $d$ . compacta. Let $f:Aarrow Y$ be a map
of an $f$ . $d$ . compactum, let $m\in N$ and $\epsilon>0$ . For an open cover $\mathcal{U}$ of $Y$ with
mesh $\mathcal{U}=\sup$ {diam $U|U\in \mathcal{U}$ } $<\epsilon/2$ , we have a $\mathcal{U}$-homotopy inverse $g$ of $h$ . Note
that $h^{-1}|Y_{m}$ : $Y_{m}arrow M$ is a map which is $h^{-1}(\mathcal{U})$-homotopic to $g|Y_{m}$ . By the
Homotopy Extension Theorem (see [13, Ch. IV, Theorem 2.2] and its proof),
$h^{-1}|Y_{m}$ extends to a map $g’$ : $Yarrow M$ which is $h^{-1}(\mathcal{U})$-homotopic to $g$ . From
compactness, $g’(f(A))\subset X_{n}$ for some $n\geqq m$ . Then the map $hg’f:Aarrow Y_{n}$ satisfies
the required conditions, $hg’f|f^{-1}(X_{m})=f|f^{-1}(X_{m})$ and $d(hg’f, f)<\epsilon$ . The prop-
osition follows from Lemmas 1 and 2. $\square$

Let $K$ be a simplicial complex and $L$ a subcomplex of $K$. The simplicial
neighborhood of $L$ in $K$ is the subcomplex

$N(L, K)=\{S\in K|\exists S’\in Ks. t. S<S’ \ S’\cap|L|\neq\emptyset\}$

and the simplicial complement of $L$ in $K$ is the subcomplex

$C(L, K)=\{S\in K|S\cap|L|=\emptyset\}$ .

Note $|N(L, K)|$ is a (topologicaI) neighborhood of $|L|$ in both $|K|_{w}$ and $|K|_{m}$ . By
$Sd^{2}K$, we denote the second barycentric subdivision of $K$ . Note that $|Sd^{2}K|_{m}=|K|_{m}$

though $|K’|_{m}\neq|K|_{m}$ for some subdivision $K’$ of $K$. Then $|N(Sd^{2}L, Sd^{2}K)|$ is
also a neighborhood of $|L|$ in both $|K|_{w}$ and $|K|_{m}$ . In general, a neighborhood
of $|L|$ in $|K|_{w}$ is not a neighborhood in $|K|_{m}$ . However we have

LEMMA 6. Let $K$ be a simplicial complex and $L$ a subcomplex of K. Then
for each neighborhood $U$ of $|L|$ in $|K|_{w}$ there exists a homeomorPhism $h$ :
$|K|_{w}arrow|K|_{w}$ such that $h|(|L|\cup|C(L, K)|)=id$ , $h(S)=S$ for each $S\in K$ and
$h(U)\supset|N(Sd^{2}L, Sd^{2}K)|$ (hence $h(U)$ is a neighborhood of $|L|$ in $|K|_{m}$ ).

The desired homeomorphism can be constructed by the skeletonwise induc-
tion. This is not so difficult. Perhaps the result may be known. Then we
omit the proof.

Now we will prove Theorem.

PROOF OF THEOREM. We will apply Lemmas 1 and 2. First note $|K|_{w}$

$= dir\lim|L_{n}|$ where $\{L_{n}\}_{n\in N}$ is a tower of finite subcomplexes of $K$. From the
proof of Proposition 1, the tower $\{|L_{n}|\}_{n\in N}$ of $f$ . $d$ . compacta in $|K|_{m}$ is strongly
universal for $f$ . $d$ . compacta. It remains to see that each $|L_{n}|$ is a strong Z-set
in $|K|_{m}$ . We show that for each finite subcomplex $L$ of $K,$ $|L|$ is a strong
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Z-set in $|K|_{m}$ . Let $\mathcal{U}$ be an open cover of $|K|_{m}$ and $\mathcal{V}$ a star-refinement of
$\mathcal{U}$ . By [10, Lemma V. 7], we can assume $K<\mathcal{V}$ . Since $h=id:|K|_{w}arrow|K|_{m}$

is a fine homotopy equivalence and $|L|_{w}=|L|_{m}$ , $h$ admits a $\mathcal{V}$-homotopy
inverse $g:|K|_{m}arrow|K|_{w}$ with $g||L|=id$ (see the proof of Proposition 1). Since
any compact set in an $R^{\infty}$-manifold is contained in a collared closed submanifold
[17, Cor. 1-5&Theorem 3-1], we have a map $k:|K|_{w}arrow|K|_{w}\mathcal{V}$-near to id such
that $U\cap k(|K|)=\emptyset$ for some neighborhood $U$ of $|L|$ in $|K|_{w}$ . By Lemma 6,
we have a homeomorphism $f:|K|_{w}arrow|K|_{w}\mathcal{V}$-near to id such that $f(|L|)=|L|$

and $f(U)$ is a neighborhood of $|L|$ in $|K|_{m}$ . Then $hf(U)$ is a neighborhood of
$|L|$ in $|K|_{m}$ such that $hf(U)\cap hfkg(|K|)=\emptyset$ . Thus id is $\mathcal{U}$-near to the map
hfkg: $|K|_{m}arrow|K|_{m}$ with $|L|\cap c1hfkg(|K|)=\emptyset$ . The proof is completed. $\square$

3. Corollaries.

By $\Delta^{\infty}$ , we denote the countably infinite full complex ( $\infty$-simplex), that is,
the countably infinite simplicial complex such that each finite subset of vertices
spans a simplex of $\Delta^{\infty}$ . Then $|\Delta^{\infty}|_{w}\approx R^{\infty}$ (see [9] or [16]), hence $|\Delta^{\infty}|_{m}\approx\sigma$ .
A combinatorial $\infty$-manifold is a countable simplicial complex such that the star
of each vertex is combinatorially equivalent to $\Delta^{\infty}$ , that is, they admit simplicially
isomorphic subdivisions ([18]). For each combinatorial $\infty$-manifold $K|K|_{w}$ is
an $R^{\infty}$-manifold. Then we have

COROLLARY 1. For each combinatorial $\infty$ -manifold $K,$ $|K|_{m}$ is $a$ a-manifold.

We should remark that for any suMivision $K’$ of $K$ the topology of $|K’|_{m}$

is not necessarily the same as $|K|_{m}$ . We have the following Combinatorial
Triangulation Theorem for $\sigma$ -manifolds by [2, Theorem 9] and [18, Theorem
3.6].

COROLLARY 2. Each $\sigma$ -manifold is homeomorphic to a combinatorial $\infty$-mani-
fold with the metric topology.

Since the identity of $|K|$ is a fine homotopy equivalence from $|K|_{w}$ to $|K|_{m}$ ,

it follows

COROLLARY 3. (a) Each $R^{\infty}$-manifold $M$ has a continuous metric $d$ such that
the metric space $(M, d)$ is a $\sigma$ -manifold and the identity of $M$ is a fine homotopy
equivalence from $M$ to $(M, d)$ . (b) Each $\sigma- ma\dot{m}foldN$ can be obtained from an
$R^{\infty}$-manifold $M$ by changing top0l0gy so that the identity of $N$ is a fine homotopy
$equ\iota valence$ from $M$ to $N$.

A metric direct limit (or system) is a direct limit (or system) in the category
of metric spaces and isometries. By Lemma 4 and Corollary 3 (a), we can
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generalize [11, Theorem 16] and [21, Theorem 3] as follows,

COROLLARY 4. If $X_{1}\subset X_{2}\subset\cdots$ is a finitely expansive tower of $f.d$ . compact
ANR’s, then each $X_{n}$ can be metrized by a metric $d_{n}$ so that $(X_{1}, d_{1})\subset(X_{2}, d_{2})\subset\cdots$

is a metric direct system whose limit is $a$ a-manifold and the identity induces a
fine homotopy equivalence from dir lim $X_{n}$ (which is an $R^{\infty}$-mamfold) to the metric
direct limit.

We remark that Corollary 3 (b) can be proved in the following strong form
by using Lemmas 2, 3, 4 and 5.

PROPOSITION 2. Let $f$ : dir lim $Y_{n}arrow N$ be a continuous bijection from the direct
limit of a tower $\{Y_{n}\}_{n\in N}$ of $f.d$ . compacta to $a$ a-manifold N. Then there exists
an $R^{\infty}$-manifold $M$ and $f$ is factored by a continuous bijection $g$ : dir lim $Y_{n}arrow M$

and a bijective fine homotopy equivalence $h:Marrow N$.

4. Counter-example for the “only if” part of Conjecture.

Here we will construct a bijective fine homotopy equivalence from $R^{\infty}$ to an
AR which is not a a-manifold. Let

$X=(O, 1]\cross\{0\}\cup\{2^{-n}|n\in N\}\cross[0,1]$ ,

$Y=(O, 1]\cross[-1,0]\cup\{(0, -1)\}$ ,

$Z=\{(s, t)|0\leqq-t\leqq s\leqq 1\}$

and let $A=\{(0, -1)\}$ . Since any locally compact separable metric space is the
direct limit of a tower of compacta which covers the space, the product of an
$f$ . $d$ . locally compact separable ANR (resp. AR) and $R^{\infty}$ is an $R^{\infty}$-manifold (resp.

homeomorphic to $R^{\infty}$). Hence $X\cross R^{\infty}\approx R^{\infty}$ . Observe

$Y\cross R^{\infty}/A\cross R^{\infty}\approx cone((O, 1]\cross\{0\}\cup\{1\}\cross[-1, O])\cross R^{\infty}$

$\approx$ cone $R^{\infty}\approx R^{\infty}$

and moreover
$(X\cross R^{\infty})\cap(Y\cross R^{\infty}/A\cross R^{\infty})=(O, 1]\cross R^{\infty}\approx R^{\infty}$ .

Then by [16, Theorem 7-1] we have

$M=(X\cup Y)\cross R^{\infty}/A\cross R^{\infty}=(X\cross R^{\infty})\cup(Y\cross R^{\infty}/A\cross R^{\infty})\approx R^{\infty}$ .
Let $B=\{(0,0)\}$ and $N=((X\cup Z)\cross\sigma)_{B},$ $i.e.$ ,

$N=B\cup((X\cup Z\backslash B)\cross\sigma)$

equipped with the finest topology in which the projection $\pi:(X\cup Z)\cross\sigmaarrow N$ is
continuous. Then $N$ is a a-f. $d$ . compact AR which is not a a-manifold because
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the compact set $B$ is not a strong Z-set (see [1] or [20]). Let $h:Marrow N$ be a
continuous bijection defined by $h(*)=(0,0)$ (where $*=A\cross R^{\infty}/A\cross R^{\infty}$ ) and for
$(s, t, v)\in(X\cup Y\backslash A)\cross R^{\infty}$ ,

$h(s, t, v)=\{\begin{array}{ll}(s, t, i(v)) if (s, t)\in X,(s, st, i(v)) if (s, t)\in Y\backslash A.\end{array}$

where $i:R^{\infty}arrow a$ is the natural bijection. We will show that $h$ is a fine homotopy
equivalence. Let $\mathcal{U}$ be an open cover of $N$. Choose $U_{0}\in \mathcal{U}$ so that $B\subset U_{0}$ .
For each $m\in N$, let

$W_{m}=\{(s, t)\in X\cup Z|s, t<2^{-m}\}$

$=\{2^{-n}|n>m\}\cross[0,2^{-m})\cup\{(s, t)\in Z|s<2^{-m}\}$ .

Then (cl $W_{m- 1}\backslash B$ ) $\cross a\subset U_{0}$ for some $m\in N$ because $\{B\cup(W_{m}\backslash B)\cross\sigma|m\in N\}$ is
a neighborhood base of $B$ in $N$. Observe

cl $W_{m-1}\backslash W_{m}=\{2^{-n}|n>m\}\cross[2^{-m}, 2^{-m+1}]\cup\{2^{-m}\}\cross[0,2^{-m+1}]$

$\cup\{(s, t)\in Z|2^{-m}\leqq s\leqq 2^{-m+1}\}$ , and

cl $W_{m}=\{2^{-n}|n>m\}\cross[0,2^{-m}]\cup\{(s, t)\in Z|s\leqq 2^{-m}\}$ .

Since $(X\cup Z)\backslash W_{m}$ is compact, we have an open cover $\mathcal{V}$ of $a$ such that

$\{\{(s, t)\}\cross V|(s, t)\in(X\cup Z)\backslash W_{m}, V\in \mathcal{V}\}<\mathcal{U}$ .
Let $j:aarrow R^{\infty}$ be a $\mathcal{V}$-homotopy inverse of $i$ . And then define a map $g:Narrow M$

by $g(O, O)=*and$ for $(s, t, v)\in(X\cup Z\backslash B)\cross a$ ,

It is easy to verify that $g$ is a $\mathcal{U}$-homotopy inverse of $h$ .

5. Counter-example for the “ if ” part of Conjecture.

Here we will construct a tower of $f$ . $d$ . compact AR’s in $a$ such that the
identity of $a$ induces a fine homotopy equivalence from the direct limit of the
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tower to $a$ but the limit is not an $R^{\infty}$-manifold.
Modifying the example of J. P. Henderson and J. J. Walsh in [12, \S 3], we

will construct a a-f. $d$ . compact AR $X$ containing no embedded 2-cell but
$X\cross I\approx\sigma$ and moreover admitting a point $x_{0}\in X$, towers $\{X_{n}\}_{n\in N}$ and $\{Y_{n}\}_{n\in N}$

of $f$ . $d$ . compact AR’s and ANR’s, respectively, such that $X= \bigcup_{n\in N}X_{n},$ $X\backslash \{x_{0}\}$

$= \bigcup_{n\in N}Y_{n}$ and $Y_{n}\subset X_{n}$ for each $n\in N$ First we recall that each n-manifold
$M$ with $\partial M=\emptyset$ and $n\geqq 3$ admits an upper semi-continuous $(u. s. c.)$ CE-decom-
position $\mathcal{G}$ such that

(i) if $M$ is non-compact then any sequence of elements $G_{1},$ $G_{2},$ $\cdots\in \mathcal{G}$

approaching infinity ( $i$ . $e.$ , having at most finitely many members contained in
any compact subset of $M$ ) satisfies $\lim_{iarrow\infty}diamG_{i}=0$ ,

(ii) the decomposition space $M/\mathcal{G}$ contains no embedded 2-cell, and
(iii) the map $q\cross id:M\cross Rarrow(M/\mathcal{G})\cross R$ is a near homeomorphism, where

$q:Marrow M/\mathcal{G}$ is the quotient map (cf. [12, \S 3]).
For each $n\in N$, let

$C_{n}=\partial[-1,1]^{n+3}$ and $D_{n}=(-1,1)^{n+3}\backslash [-2^{-1},2^{-1}]^{n+3}$ .

Then each $C_{n}\backslash C_{n-1}$ and $D_{n}\backslash D_{n-1}$ (where $C_{0}=D_{0}=\emptyset$ ) admit $u$ . $s$ . $c$ . CE-decom-
positions $\mathcal{E}_{n}$ and $\mathcal{F}_{n}$ , respectively, which satisfy the conditions (i), (ii) and (iii).

In general, for $t\in R$ and $E\subset R^{n}$ we denote $tE=\{tx|x\in E\}$ and for a collection
$\mathcal{E}$ of subsets of $R^{n},$ $t\mathcal{E}=\{tE|E\in \mathcal{E}\}$ . From the condition (i),

$\mathcal{G}_{n,i}=_{m}U_{=1}n(jtU=02^{-j}ij=1)$

is an $u$ . $s$ . $c$ . CE-decomposition of $[$ –1, $1]^{n+3}\backslash (-2^{-i}, 2^{-i})^{n+3}$ , and then

$\mathcal{G}_{n}=\bigcup_{i\in N}\mathcal{G}_{n,i}\cup\{\{0\}\}$

is also an $u$ . $s$ . $c$ . CE-decomposition of $[$ –1, $1]^{n+3}$ . Since each $C_{n- 1}$ and $D_{n-1}$

are bicollared in $C_{n}$ and $D_{n}$ , and since each $2^{-j}C_{n}$ is collared in $2^{-j}C_{n}\cup 2^{-j}D_{n}$

and $2^{-j}C_{n}\cup 2^{-j+1}D_{n}$ , we can use the pseudo-isotopies implicitly in the condition
(iii) to see that $\mathcal{G}_{n}$ and $\mathcal{G}_{n,i}$ satisfy the condition (iii) (cf., the proof in [12, \S 3]).
Of course the condition (ii) is satisfied. Note that $[$ –1, $1]_{f}^{\omega}=a\cap[-1,1]^{\omega}\approx\sigma$ . It
is easy to see that $\mathcal{G}=\bigcup_{n\in N}\mathcal{G}_{n}$ is an $u$ . $s$ . $c$ . CE-decomposition of $[$ –1, $1]_{f}^{\omega}$ .
Since each $[$ –1, $1]^{n+3}$ has a bicollar in $[$ –1, $1]^{n+4}$ , it can be seen that $\mathcal{G}$ satis-
fies the conditions (ii) and (iii) (see the proof of [12, \S 3]). Let $X=[-1,1]_{f}^{\omega}/\mathcal{G}$ ,
$x_{0}=q(0)$ , where $q:[-1,1]_{f}^{\omega}arrow X$ is the quotient map, and for each $n\in N$,

$X_{n}=[-1,1]^{n+3}/\mathcal{G}_{n}=q([-1,1]^{n+3})$ and

$Y_{n}=([-1,1]^{n+3}\backslash (-2^{-n}, 2^{-n})^{n+3})/\mathcal{G}_{n,n}=q([-1,1]^{n+3}\backslash (-2^{-n}, 2^{-n})^{n+3})$ .

Then each $X_{n}$ is an $f$ . $d$ . compact AR and each $Y_{n}$ is an $f$ . $d$ . compact ANR
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with $Y_{n}\subset X_{n}$ . And $X$ is a $\sigma- f$ . $d$ . compact AR with $X= \bigcup_{n\in N}X_{n}$ and $X\backslash \{x_{0}\}$

$= \bigcup_{n\in N}Y_{n}$ . Moreover $X$ contains no embedded 2-cell, but $X\cross R\approx a$ equivalently
$X\cross I\approx a$ by [12, Theorem 3].

Now let $N=X\cross I\backslash \{x_{0}\}\cross(0,1$ ]. Then $N\approx X\cross I$ ( $e$ . $g.$ , see [15, Cor. 2-7]),

hence $N\approx a$ . For each $n\in N$, let

$Z_{n}=X_{n}\cross\{0\}\cup Y_{n}\cross I$ .
Then each $Z_{n}$ is an $f$ . $d$ . compact AR and $N= \bigcup_{n\in N}Z_{n}$ . We will show that the
tower $\{Z_{n}\}_{n\in N}$ has the mapping absorption property for $f$ . $d$ . compacta. It
suffices to see that for each compact set $A$ in $N,$ $m\in N$ and each open cover $\mathcal{U}$

of $N$, there exists a map $r:Aarrow Z_{n}$ from $A$ to some $Z_{n},$ $n\geqq m$ , such that
$r|A\cap Z_{m}=id$ and $r$ is $st(\mathcal{U})$-near to id. Since $Z_{m}$ is an ANR, we have an open
cover $\mathcal{V}$ of $N$ with $\mathcal{V}<\mathcal{U}$ such that arbitrary two $\mathcal{V}$-near maps in $Z_{m}$ are
$\mathcal{U}$-homotopic in $Z_{m}$ . We will construct a map $r’$ : $Aarrow Z_{n}$ for some $n\geqq m$ such
that $r’$ is $\mathcal{V}$-near to id. Then the inclusion $A\cap Z_{m}\subset Z_{n}$ is $\mathcal{U}$-homotopic to
$r’|A\cap Z_{m}$ , hence extends to a map $r:Aarrow Z_{n}\mathcal{U}$-homotopic to $r’$ (hence $st(\mathcal{V})-$

near to id) by Homotopy Extension Theorem [13, Ch. IV, Theorem 2.2]. Let
$\mathcal{W}$ be a star-refinement of $\mathcal{V}$ . By [7], there is a $\mathcal{W}$-homotopy inverse

$g$ : $Narrow[-1,1]_{f}^{\omega}\cross I\backslash \{0\}\cross(0,1]=(q\cross id)^{-1}(N)$

of $q\cross id|(q\cross id)^{-1}(N)$ . Since $g(A)$ is compact, we can choose $\epsilon>0$ and $n’\geqq m$

so that for $(x, s)\in g(A)$ and $(y, t)\in(q\cross id)^{-1}(N)$ if $x_{1}=y_{1},$ $\cdots,$ $x_{n’}=y_{n’}$ and
$|s-t|\leqq\epsilon$ then $(q(x), s)$ , $(q(y), t)\in W$ for some $W\in \mathcal{W}$ . From compactness of
$g(A)\cap[-1,1]_{f}^{\omega}\cross[\epsilon, 1]$ , there exists an $n\geqq n’(\geqq m)$ such that

$p_{n+3}^{-1}([-2^{-n}, 2^{-n}]^{n+3})\cross I\cap(g(A)\cap[-1,1]_{f}^{\omega}\cross[\epsilon, 1])=\emptyset$

where $p_{n+3}$ : $[$ –1, $1]_{f}^{\omega}arrow[-1,1]^{n+3}$ is the projection onto the first $(n+3)$-coordi-
nates. Let $k:Iarrow I$ be the piecewise linear map with $k(O)=k(\epsilon)=0$ and $k(1)=1$ .
Then

$(q\cross id)(P_{n+3}\cross k)(g(A)\cap[-1,1]_{f}^{\omega}\cross[\epsilon, 1])\subset Y_{n}\cross I$ and

$(q\cross id)(p_{n+3}\cross k)(g(A)\cap[-1,1]_{f}^{\omega}\cross[0, \epsilon])\subset X_{n}\cross\{0\}$ .

Thus we have a map

$r’=(q\cross id)(P_{n+3}\cross k)g|A$ : $Aarrow Z_{n}$ .
Observe that if $(x, s)\in g(A)$ and $(y, t)=(P_{n+3}(x), k(s))$ then $x_{1}=y_{1},$ $\cdots$ , $x_{n’}=y_{n’}$

and $|s-t|\leqq\epsilon$ . Thus it is seen that $r’$ is $\mathcal{W}$-near to $(q\cross id)g|A$ , hence $\mathcal{V}$-near
to id.

By Lemma 5, the identity of $N$ induces a fine homotopy equivalence from
dir lim $Z_{n}$ to $N$. However, dir lim $Z_{n}$ is not an $R^{\infty}$-manifold. In fact, if so,
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there is an embedding $u:I^{2}arrow dir$ lim $Z_{n}$ with $u(O, 0)=(x_{0},0)$ . From compactness,
$u(I^{2})\subset Z_{n}$ for some $n\in N$ Since $u(O, 0)\not\in Y_{n}\cross I,$ $u([0, \delta]^{2})\subset X_{n}\cross\{0\}\subset X\cross\{0\}$

for some $\delta>0$ . This contradicts the fact that $X$ contains no embedded 2-cell.

6. Answer for a problem concerning enlargement of an $R^{\infty}$-manifold.

Let $X$ be an ANE for compacta which is the direct limit of a tower of $f$ . $d$ .
compacta. In [17, Problem 6-4], the author asked whether $X$ is an $R^{\infty}$-manifold
or not if $X$ contains an $R^{\infty}$-manifold $M$ with $X\backslash M$ a D-set. (For the definition
of D-sets, refer to [17, \S 1].) Here using the example in Section 5, we answer
negatively this problem.

Let $\{Z_{n}\}_{n\in N}$ be the tower of $f$ . $d$ . compact AR’s constructed in Section 5.
Then $Z= dir\lim Z_{n}$ is an AE for compacta which is not an $R^{\infty}$-manifold. We
will prove that $Z\backslash \{(x_{0},0)\}$ is an $R^{\infty}$-manifold and $\{(x_{0},0)\}$ is a D-set in $Z$ .
First observe

$Z \backslash \{(x_{0},0)\}=dir\lim(Y_{n}\cross I)=$ ($dir$ lim $Y_{n}$ ) $\cross I$ .

By the arguments in the proof of [12, \S 3], we can see that the tower
$\{Y_{n}\cross R\}_{n\in N}$ is finitely expansive, hence by Lemma 4 $( dir\lim Y_{n})\cross R=$

dir $\lim(Y_{n}\cross R)$ is an $R^{\infty}$-manifold. This implies $Z\backslash \{(x_{0}, O)\}=$ ($dir$ lim $Y_{n}$ ) $\cross I$ is
an $R^{\infty}$-manifold by [17, Theorem 6-2]. Next we show that $\{(x_{0},0)\}$ is a D-set
in $Z$ . Let $C\supset C_{0}$ be compact sets in $Z$ and $\mathcal{U}$ an open cover of $Z$ . We must
construct an embedding $f:Carrow Z$ such that $f$ is $\mathcal{U}$-near to id, $f|C_{0}=id$ and
$f(C\backslash C_{0})\subset Z\backslash \{(x_{0},0)\}$ . We may assume $(x_{0},0)\in C\backslash C_{0}$ , otherwise the inclusion
$C\subset Z$ is the desired embedding. Since $C_{0}$ is a D-set (cf. [17, Cor. 1-5]), it
suffices by [17, Theorem 4-1] to construct a map $f:Carrow Z\backslash \{(x_{0},0)\}$ such that $f$

is $\mathcal{U}$-near to id and $f|C_{0}=id$ . From compactness, $C\subset Z_{n}$ and $C_{0}\subset Y_{n}\cross I$ for
some $n\in N$ Choose $m>n$ so that $q([-2^{-m}, 2^{-m}]^{n+4})\cross\{0\}\subset U$ for some $U\in \mathcal{U}$ .
Note that

$q([-1,1]^{n+3}\cross[0,1]\backslash (-2^{-m}, 2^{-m})^{n+4})$

is an AR which is a closed subset of $X_{n+1}=q([-1,1]^{n+4})$ containing $Y_{n}$. Let

$r$ : $X_{n+1}arrow q([-1,1]^{n+\epsilon}\cross[0,1]\backslash (-2^{-m}, 2^{-m})^{n+4})$

be the retraction. Then the map $f=r\cross id|C:Carrow Z\backslash \{(x_{0},0)\}$ is the desired
embedding.

7. $Q^{\infty}$-manifolds and $\Sigma$-manifolds.

Let $Q=[-1,1]^{\omega}$ be the Hilbert cube. Similarly as $\bigcup_{n\in N}R^{n}$ , the set $\bigcup_{n\in N}Q^{n}$

$(\subset Q^{\omega})$ admits two different natural topologies and then the spaces $Q^{\infty}=dir$ lim $Q^{n}$
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and $\Sigma$ are obtained. It is well-known that the pair $(Q^{\omega}, \Sigma)$ is homeomorphic to
$(Q, B(Q))$ , where $B(Q)=$ { $(x_{i})_{t\in N}\in Q|x_{i}=\pm 1$ for some $i$ } is the pseudo-boundary
of $Q$ and that $\Sigma$ is homeomorphic to the linear span of the Hilbert cube
$\Pi_{i\in N}[-2^{-i}, 2^{-i}]$ in Hilbert space $l_{2}$ . A separable topological manifold modeled
on these spaces is called a $Q^{\infty}$-manifold or a $\Sigma$-manifold, respectively. Similarly
as manifolds modeled on $R^{\infty}$ and $a$ , these manifolds are also considered as two
topologizations on the same underlying sets. In Section 1, by replacing $R^{\infty},$ $a$ ,
$I$ and $[-n, n]^{n}$ by $Q^{\infty},$ $\Sigma,$ $Q$ and $Q^{n}$ , respectively, and by deleting the phrases
“ $f$ . $d$ . and “ finitely “, we can obtain the corresponding definitions, lemmas and
proofs. Then we have the following version of Proposition 1.

PROPOSITION 1’. Let $h:Marrow Y$ be a bijective fine homotopy equivalence from
a $Q^{\infty}$-manifold $M$ to a metric space Y. If each compact set in $Y$ is a strong
Z-set then $Y$ is a $\Sigma$-manifold.

Moreover the corresponding conjecture is also false. In fact, by suitable
modifications of Sections 4 and 5, we have a bijective fine homotopy equivalence
from $Q^{\infty}$ to an AR which is not a $\Sigma$-manifold and one to $\Sigma$ from the direct
limit of a tower of compact AR’s which is not a $Q^{\infty}$-manifold. And then
Problem 6-4 for $Q^{\infty}$-manifolds in [17] is also negatively answered.

For a simplicial complex $K$, if $|K|_{w}\cross Q$ is a $Q^{\infty}$-manifold then we can show
that for each finite subcomplex $L$ of $K,$ $|L|\cross Q$ is a strong Z-set in $|K|_{m}\cross Q$

by the same arguments in the proof of Theorem. Thus we can prove the
following proposition.

PROPOSITION 3. For a simPlicial comPlex $K$, if $|K|_{w}\cross Q$ is a $Q^{\infty}$-manifold
then $|K|_{m}\cross Q$ is a $\Sigma$-manifold.

Notice $Q^{\infty}\approx R^{\infty}\cross Q$ and $\Sigma\approx\sigma\cross Q$ . By the Triangulation Theorem (cf. [16]
and [2]) and the above proposition, we have the version of Corollary 3.

COROLLARY 3’. (a) Each $Q^{\infty}$-manifold $M$ has a continuous metric $d$ such that
the metric space $(M, d)$ is a $\Sigma$-manifold and the identity of $M$ is a fine homotopy
equivalence from $M$ to $(M, d)$ . (b) Each $\Sigma$-mamfold $N$ can be obtained from a
$Q^{\infty}$-manifold $M$ by changing topology so that the identity of $N$ is a fine homot-
opy equivalence from $M$ to $N$.

And then the version of Corollary 4 is also obtained.

COROLLARY 4’. If $X_{1}\subset X_{2}\subset\cdots$ is an expansive tower of compact ANR’s, then
each $X_{n}$ can be metrized by metric $d_{n}$ so that $(X_{1}, d_{1})\subset(X_{2}, d_{2})\subset\cdots$ is a metric
direct limit system whose limit is a $\Sigma$-manifold and the identity induces a fine
homotopy equivalence from dir lim $X_{n}$ (which is a $Q^{\infty}$-manifold) to the metric
direct limit.
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Similarly we have also

PROPOSITION 2’. Let $f$ : dir lim $Y_{n}arrow N$ be a continuous bijection from the
direct limit of a tower $\{Y_{n}\}_{n\in N}$ of compacta to a $\Sigma$-manifold N. Then there
exis $ts$ a $Q^{\infty}$-manifold $M$ and $f$ is factored by a continuous bijection $g$ : dir lim $Y_{n}arrow M$

and a bijective fine homotopy equivalence $h:Marrow N$.
Addendum. Recently, the converse of Theorem has been proved. In fact,

the author [22] has proved that a simplicial complex $K$ is a combinatorial
$\infty$-manifold if $|K|_{m}$ is a $\sigma$ -manifold. Thereby for any simplicial complex $K$,

the following are equivalent:
(i) $K$ is a combinatorial $\infty$-manifold;
(ii) $|K|_{w}$ is an $R^{\infty}$-manifold;
(iii) $|K|_{m}$ is $a$ a-manifold.
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