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0. Introduction.

Consider R™ as the subset R™x {(0, 0, ---)} of the countable infinite product
R? of the real line R. The set | J,exyR™ admits two different natural topologies.
One is the weak topology with respect to the tower {R"},.y and the space
with this topology is called the direct limit of lines and denoted by dir lim R"
or simply by R=. Another is the relative topology inherited from the product
topology of R® and the space with this topology is denoted by ¢, that is, ¢ is
a subspace of the linear topological space s (=R®) of all real sequences. (It is
well-known that the pair (s, ¢) is homeomorphic (=) to the pair ([,, [{), where
!{ is the linear span of the canonical orthonormal basis of Hilbert space /,.) A
separable topological manifold modeled on these spaces is called an R*-manifold
or a g-manifold, respectively. These are considered as two different topologi-
zations on the same underlying set. The former is the direct limit of a tower
of finite-dimensional (f.d.) compact metrizable spaces (compacta), that is, its
topology is the weak topology with respect to the tower ([8, Prop. Il. 2]). The
latter is metrizable and coarser than the former. Both of these manifolds are
triangulated, that is, each R*-manifold is homeomorphic to a simplicial complex
with the weak (Whitehead) topology (cf. [18, Introduction]) and each ¢-manifold
is homeomorphic to a simplicial complex with the metric topology ([11, Theorem
157). Let K be a simplicial complex and |K|=\_JK the realization of K. By
|K|w and |K|,, we denote the spaces |K|] with the weak topology and the
metric topology, respectively. We conjecture that |K|. is an R>-manifold if
and only if |K|m 7s a o-manifold. In this paper, we prove a half of this
conjecture, that is,

THEOREM. For a simplicial complex K, |K|m is a o-manifold if K| is an
R>-manifold.

A map f: X—>Y is a jfine homotopy equivalence provided for each open cover
U of Y there exists a map g:Y—X such that fg is U-homotopic to idy and
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gf is f~X(U)-homotopic to idy, where g is called a U-homotopy inverse of f. It
is not difficult to see that the natural bijection from R> to ¢ is a fine homotopy
equivalence (cf. [19]). For any simplicial complex K, the identity of |K| is a
fine homotopy equivalence from |K|., to |K|n. This follows from Dowker’s
[6, (15.2)] combined with [10, Lemma V.7] and [6, (6.1)]. Recently,
the author gave another proof in [19]. Then it is natural to conjecture more
generally as follows,

CONJECTURE. Let h:dirlimX,—Y be a bijective fine homotopy equivalence
from the divect limit of f.d. compacta to a metrizable space. Then dir limX, is
an R>-manifold if and only if Y is a o-manifold.

In fact, we can prove the “only if ” part if we assume that each compact
set A in Y is a strong Z-set, that is, for each open cover U of Y the identity
of V is W-near to a map f:Y—Y such that ANclf(Y)=@. If dirlimX, is an
R~-manifold then we have a map f:Y—Y\A which is U-near to idy. However
this conjecture is false. In Section 4, we construct a bijective fine homotopy
equivalence from R> to an AR which is not a ¢-manifold, and in Section 5,
one to ¢ from the direct limit of a tower of f.d. compact AR’s which is not
an R>*-manifold.

We give some applications in Section 3. Especially we have a generalization
of [11, Theorem 16] and [21, Theorem 3]. In Section 6, using the example in
Section 5, we answer negatively Problem 6-4 in [17]. We should remark that
all results in this paper have the Q- and XY-versions which are mentioned in
Section 7.

1. Strong universality of towers.

Let X,CX,C --- be a tower of closed sets in a metric space X=(X, d). We
say that {X,}.en is strongly universal for f.d. compacta [5] if, for each f.d.
compacta ADB, for each map f:A—X such that f|B is an embedding of B
into some X,, and for each ¢>0, there exists an embedding % : A—X, for some
n=m such that A|B=f|B and d(h, f)=sup{d(h(x), f(x)) | x€ A} <e. A tower
{ X3} nen has the mapping absorption property for f.d. compacta, provided for
each map f:A—X of an f.d. compactum, for each meN and for each ¢>0,
there exists a map g: A—X, for some n=m such that g|f Y Xn)=f|f"(Xn)
and d(g, f)<e (cf.[3, Def.4.5]). A tower {X,}.=y is said to be finitely expan-
stwe [3, Def. 4.7] if for each meN there exists an embedding h: X, XI—X,
for some n=m such that h(x, 0)=x for all xe X,,.

LEMMA 1. A tower {Xn}nen of f.d. compacta in a metric space X is strongly
wumversal for f.d. compacta if and only if {X,}aen S finitely expansive and has
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the mapping absorption property for f.d. compacta.

Proor. For each f.d. compacta ADB, we have a map k: A—I" for some
ne N such that 2(B)=0 and k| A\B is injective. Then the “if ” part is easily
seen from the definitions. For any map f: A—X of an f.d. compactum, we can
apply the strong universality of {X,}.eny to the map f/: AUy s-10x,p Xn—X of
the adjunction space induced by f and the inclusion X,,C X, and easily construct
an approximation g:A—X, of f with g|f ' X)=ff""(Xn.). A strongly
universal tower is clearly finite expansive. Thus the proof is completed. [

In [147, Mogilski gave a characterization of ¢-manifolds. The next lemma
is a version using a strongly universal tower.

LEMMA 2. An ANR X is a ag-manifold if and only if X has a strongly
universal tower {Xn}aen for f.d. compacta such that X=\UnrenX. and each X,
is an f.d. compact strong Z-set.

PROOF. Since each compact set in an ANR which is a countable union of
strong Z-sets is a strong Z-set [4, Lemma 7.2], the “if ” part is an immediate
consequence of [5, Prop.2.2 & Prop.2.3] and Mogilski’s characterization
[14] We will see the “only if ” part. By [2, Theorem 9], X=|K|X¢ where
K is a countable locally finite simplicial complex (hence |K|n=|K|w). Let
{K.}nen be a tower of finite subcomplexes of K with K=\,eyK,. Then we
can prove similarly as [19, Lemma 3] that the tower {|K,|}.cy has the
mapping absorption property for f.d. compacta. Similarly as [19, Lemma 4],
it is proved that the tower {[—n, n]"}.eny in ¢ has the mapping absorption
property for f.d. compacta. Let X,=|K,|X[—n, n]®, neN. Since each
compact set in a o-manifold is a strong Z-set (cf.[10]), each X, is an f.d.
compact strong Z-set in X. The tower {X,}.cy has the mapping absorption
property for f.d. compacta and is obviously finitely expansive, hence it is strongly
universal for f.d. compacta by Lemma 1. O

LEMMA 3. Let {Xn}nen be a tower of f.d. compacta in a ¢-manifold N with
N=\UnenXn which is strongly universal for f.d. compacta. Then for each tower
{Yitien of f.d. compacta in N and for each open cover U of N, there exists a
homeomorphism f:N—N of N onto itself such that f is U-near to id and each
f(Y,) is contained in some X,.

PrROOF. Let d be a metric for N such that
{{yeNid(x, y)<1} | x&eN} < V.

Using the strong universality of {X,}.cy and the Homeomorphism Extension
(= the Unknotting [Theoreml for Z-sets) (see [2, Theorem 25]), we can
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easily obtain a homeomorphism A;: N—N such that A,(Y,)CX,, for some n,>0
and d(h,, id)<2-'. Define a metric d; for N as follows:

di(x, y) = max{d(x, y), d(h7*(x), hi* ()} .

Similarly as above, we have a homeomorphism #4,: N—N such that h,| X, =id,
he(hy(Y 2))C X5, for some n,>n, and d,(h,, id) (=d,(h;?, id))<2-% Thus, induc-
tively, we obtain homeomorphisms %;: N—N, i=1, 2, --- and integers 0<n, <n,< ---
such that

(1) Ayl X, =id,

2) hi(hi-y - M(Y))C Xy,

(3) d(hy, id)=d(hshsy - hy, hyy - hy)<27%, and

(4) d(hit-- hilihgt, bt RTA)<27
For each x&N, {h; - hoh(x)}ieny and {h7*hs'--- A7 (x)};en converge to points
f(x) and g(x) in N respectively in view of (1). According to (3) and (4),
{hs -+ hohi}sen and {AT'h3Y -+ hi'lien are uniformly Cauchy, so they are uni-
formly convergent to functions (hence maps) f: N—N and g: N—N, respectively.
It is easy to see that fg=id and gf=id. Then f is a homeomorphism of N
onto itself with f~'=g. From (1) and (2), f(Y;,)CX,, for each ;/&N. Observe

dif,id) > dh;,id)< X2t =1,
tEN teEN

so f is U-near to id. O

The following is an easy version of the author’s characterization of R*-

manifolds [16].

LEMMA 4. Let {X,}ren be a tower of f.d. compacta. Then dirlim X, is an
R>-manifold if and only if dirlimX, is an ANE for f.d. compacta and {X,}en
s finitely expansive.

The following can be proved similarly as [19, Theorem 1].

LEMMA 5. Let {X,}nen be a tower of f.d. compacta in an ANR X which
has the mapping absorption property for f.d. compacta. Then the identity of X
induces a fine homotopy equivalence h:dir lim X,—X.

2. Proof of Theorem.

First, we will prove the “only if ” part of Conjecture under the assumption
that each compact set in Y is a strong Z-set, that is,

PROPOSITION 1. Let h: M—Y be a bijective fine homotopy equivalence from
an R=-manifold M to a metric space Y=Y, d). If each compact set in Y is a
strong Z-set then Y is a o-manifold.
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PrOOF. Since M is an ANE for metrizable spaces, Y is an ANR [13, Ch.
IV, Theorem 6.3]. Write M=dirlimX, where {X,}.cy is a tower of f.d.
compacta and put Y ,=h(X,), neN. Then the tower {Y,}.cy of f.d. compact
strong Z-sets in Y is finitely expansive by Lemma 4 We will see that {V,} ren
has the mapping absorption property for f.d. compacta. Let f: A—Y be a map
of an f.d. compactum, let meN and ¢>0. For an open cover U of Y with
meshU=sup{diamU | U U} <e/2, we have a U-homotopy inverse g of h. Note
that A-!|Y,:Y,—M is a map which is A~'(U)-homotopic to g|Y,. By the
Homotopy Extension (see [13, Ch. IV, Theorem 2.2] and its proof),
h™*|Y, extends to a map g’:Y—M which is A~(¥U)-homotopic to g. From
compactness, g'(f(A)C X, for some n=m. Then the map hg’f: A—Y, satisfies
the required conditions, hg’f|f {Xn)=f|f"Xa) and d(hg'f, f)<e. The prop-
osition follows from Lemmas 1 and 2. O

Let K be a simplicial complex and L a subcomplex of K. The simplicial
neighborhood of L in K is the subcomplex

N(L, K)y={SeK | 38K s.t. S<S" & S'N|L|+D}
and the simplicial complement of L in K is the subcomplex
C(L, K)={SeK|SN|L|=@}.

Note | N(L, K)] is a (topological) neighborhood of | L| in both |K|, and {K|,. By
Sd?K, we denote the second barycentric subdivision of K. Note that |SA*K|n=|K|m
though |K’|m# | K| for some subdivision K’ of K. Then |N(Sd®L, Sd2K)| is
also a neighborhood of | L| in both |K|,, and |K|,. In general, a neighborhood
. of |L] in |K|, is not a neighborhood in |K|,. However we have

LEMMA 6. Let K be a simplicial complex and L a subcomplex of K. Then
for each neighborhood U of |L| in |Kl|y there exists a homeomorphism h:
|K|w— | K|« such that h{(|L1\UIC(L, K)|)=id, h(S)=S for each S=K and
A(U)D|N(Sd®L, SA2K)}| (hence h(U) is a neighborhood of |L| in |K|m).

The desired homeomorphism can be constructed by the skeletonwise induc-
tion. This is not so difficult. Perhaps the result may be known. Then we
omit the proof.

Now we will prove Theorem.

PROOF OF THEOREM. We will apply Lemmas 1 and 2. First note |K|
=dir lim|L,| where {L,}.cnx is a tower of finite subcomplexes of K. From the
proof of Proposition 1, the tower {|L,|}.cny 0f f.d. compacta in | K|, is strongly
universal for f.d. compacta. It remains to see that each |L,| is a strong Z-set
in |K|n. We show that for each finite subcomplex L of K, |L| is a strong
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Z-set in |K|n. Let U be an open cover of |K|, and <V a star-refinement of
J. By [10, Lemma V. 7], we can assume K<<V. Since h=id: |K|w—|K|m
is a fine homotopy equivalence and |L|w=|L|m, & admits a <V-homotopy
inverse g: |K|m— K| with g||L|=id (see the proof of Proposition 1)). Since
any compact set in an R*-manifold is contained in a collared closed submanifold
[17, Cor. 1-5 & Theorem 3-1], we have a map k: |K|w—|K|w “V-near to id such
that UNk(|K|)=¢@ for some neighborhood U of |L] in |K|,. By
we have a homeomorphism f: |K|w—|K|w SV-near to id such that f(|L|)=|L|
and f(U) is a neighborhood of [L| in |K|, Then Af(U) is a neighborhood of
|L| in |K|m such that Af(U)Nhfkg(|K|)=¢. Thus id is U-near to the map
hfkg: |K|m— | K|m with | L|Nclhfkg(|K|)=@. The proof is completed. [

3. Corollaries.

By 4=, we denote the countably infinite full complex (co-simplex), that is,
the countably infinite simplicial complex such that each finite subset of vertices
spans a simplex of 4~. Then |4*|,~R> (see or [16]), hence |4°|n=0.
A combinatorial co-manifold is a countable simplicial complex such that the star
of each vertex is combinatorially equivalent to 4=, that is, they admit simplicially
isomorphic subdivisions ([18]). For each combinatorial co-manifold K, | K|, is
an R~-manifold. Then we have

COROLLARY 1. For each combinatorial co-manifold K, | K|y is a o-manifold.

We should remark that for any subdivision K’ of K the topology of |K'|n
is not necessarily the same as |K|n,. We have the following Combinatorial
Triangulation for ¢-manifolds by [2, Theorem 9] and [18, Theorem
3.6].

COROLLARY 2. Each o-manifold is homeomorphic to a combinatorial co-mani-
fold with the metric topology.

Since the identity of | K| is a fine homotopy equivalence from |K|w to | K|m,
it follows

COROLLARY 3. (a) Each R>-manifold M has a continuous metric d such that
the metric space (M, d) is a o-manifold and the identity of M is a fine homotopy
equivalence from M to (M, d). (b) Each ¢-manifold N can be obtained from an
R>-manifold M by changing topology so that the identity of N is a fine homotopy
equivalence from M to N.

A metric direct limit (or system) is a direct limit (or system) in the category

of metric spaces and isometries. By and [Corollary 3(a), we can
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generalize [11, Theorem 161 and [21, Theorem 3] as follows,

COROLLARY 4. If X,CX,C - is a finitely expansive tower of f.d. compact
ANR’s, then each X, can be metrized by a metric d, so that (X, d,)C(X,, do)C -
is a metric divect system whose limit is a o-manifold and the identity induces a
fine homotopy equivalence from dir lim X, (which is an R*-manifold) to the metric
direct limit.

We remark that Corollary 3(b) can be proved in the following strong form
by using Lemmas 2, 3, 4 and 5.

PROPOSITION 2. Let f:dirlimY ,—N be a continuous bijection from the direct
limit of a tower {Y ,}nen of f.d. compacta to a o-manifold N. Then there exists
an R>-manifold M and f is factored by a continuous bijection g:dirlimY,—»M
and a bijective fine homotopy equivalence h: M—N.

4. Counter-example for the “only if”’ part of Conjecture.

Here we will construct a bijective fine homotopy equivalence from R> to an
AR which is not a ¢-manifold. Let
X =0, 1Jx{0}ui{z" | neN}x[0, 1],
Y =0, 17x[—1, 0JU{©, —D},
Z =A{(, 1) | 0=—t=s=1}

and let A={(0, —1)}. Since any locally compact separable metric space is the
direct limit of a tower of compacta which covers the space, the product of an
f.d. locally compact separable ANR (resp. AR) and R~ is an R*-manifold (resp.
homeomorphic to R*). Hence XX R*=R=. Observe

YXR?/AX R = cone((0, 17X {0} U{l} X[—1, 0] X R~
=~ cone R* = R~
and moreover
(XXRINTY XR2/AXR>) = (0, 1]XR* = R>.

Then by [16, Theorem 7-1] we have
M= (XUY)XR*/AXR> = (XXR*)U(Y XR/AXR>) = R*.
Let B={(0, 0)} and N=((X\UZ)Xa)s, i.e.,
N = BU(XuZ\B)Xa)

equipped with the finest topology in which the projection z:(X\UZ)Xe—N is
continuous. Then N is a ¢-f.d. compact AR which is not a ¢-manifold because
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the compact set B is not a strong Z-set (see or [20]). Let h: M—N be a
continuous bijection defined by h(x)=(0, 0) (where x=AX R*/AX R>*) and for
(s, t, v)e(XUYNA)X R>,

(s, 8, i) i (s, HeX,

h(s, t, v) = ) .
{ (s, st, i(v)) if (s, )e¥YN\A.

where 7: R*—¢ is the natural bijection. We will show that A is a fine homotopy
equivalence. Let ¥ be an open cover of N. Choose U,=U so that BCU,.
For each me N, let

W =1{(s, HeXUZ | s, t<27™}
= {27 | n>m} X [0, 2?™U{(s, )eZ | s<27™}.

Then (clW,-NB)xeCU, for some meN because {BUW, \B)Xs¢ | meN} is
a neighborhood base of B in N. Observe

AW NWo = {277 | n>m} X[27™, 27 U{27™} X [0, 2-™+1]
Ul(s, heZ |2 m<s<2 ™}, and
AW, = {27 | n>m} x[0, 2-™]U{(s, HeZ | s=£2-™}.
Since (X\UZ)\W, is compact, we have an open cover <V of ¢ such that
Hs, DI XV | (5, He(XUZN\W,, Ve < 4.

Let j:0—R> be a cV-homotopy inverse of ;. And then define a map g: N—M
by g0, 0)=+ and for (s, ¢, v)e(XUZ\B)Xo,

(s, t, J(v)) if (s, )eX Wy,
(s, s, j(v) if (s, H)eZ~\Wn-1,
(s, t, 2™ 5 (v)) if s=2-m, (0=tg2-m%

(s, 1, v) = (s, t, @™t—1)-j(v)) if s=2"" (n>m), 27"st=2™H,
(s, s7U%, 2™s—1)-7(v)) if (s,t)ez, 2"m<s<2 ™™,
(s, 2t—2-™, 0) if s=2"" (n>m), 2" 1Zt=2™,
(s, 2™ (1—=2ms)t+2ms—1, 0) if s=27" (n>m), 0=t=<2-™"1,
(s, 2™-+2™s—1, 0) if (s,eZ, 0<sg2-™,

It is easy to verify that g is a @WU-homotopy inverse of A.

5. Counter-example for the “if ” part of Conjecture.

Here we will construct a tower of f.d. compact AR’s in ¢ such that the
identity of ¢ induces a fine homotopy equivalence from the direct limit of the
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tower to ¢ but the limit is not an R*-manifold.

Modifying the example of J.P. Henderson and J.J. Walsh in [12, §3], we
will construct a o¢-f.d. compact AR X containing no embedded 2-cell but
XXI=¢ and moreover admitting a point x,€ X, towers {X,}nen and {Y,},cn
of f.d. compact AR’s and ANR’s, respectively, such that X=\,enxXn, XN{x,}
=\_UrenY,» and Y,C X, for each nN. First we recall that each n-manifold
M with 0M=¢@ and n>=3 admits an upper semi-continuous (u.s.c.) CE-decom-
position ¢ such that

(i) if M 1is non-compact then any sequence of elements G,, G, €8
approaching infinity (i.e., having at most finitely many members contained in
any compact subset of M) satisfies lim;..diamG;=0,

(ii) the decomposition space M/¢ contains no embedded 2-cell, and

(iii) the map ¢Xid: MXR—(M/G)x R is a near homeomorphism, where
g: M—M/g is the quotient map (cf. [12, §31).

For each ne N, let

C,=0[—1, 1]n+3 and D, = (—1, D)P*\[—271, 2-1]»+3,
Then each C,\C,., and D,~D,., (where C,=D,=@) admit u.s.c. CE-decom-
positions &, and ¥ ,, respectively, which satisfy the conditions (i), (ii) and (iii).
In general, for t€R and EC R™ we denote tE={tx| xE} and for a collection
& of subsets of R”, i€={tE| E<¢&}. From the condition (i),
n T . i~-1 X
G =\J(\U27enu | 27a,)
Jj=0 j=0

m=1
is an u.s.c. CE-decomposition of [—1, 117**\(—2-% 2-9"** and then
G =1 00U {{0}}

is also an u.s.c. CE-decomposition of [—1, 1}**%. Since each C,., and D,
are bicollared in C, and D,, and since each 2-/C, is collared in 2-7C,\U2-'D,
and 2-/C,\U277"'D,, we can use the pseudo-isotopies implicitly in the condition
(iii) to see that ¢, and &, ; satisfy the condition (iii) (cf., the proof in [12, § 3]).
Of course the condition (ii) is satisfied. Note that [—1, 1]¢=0N[—1, 1]*=g. It
is easy to see that ¢=|Jn,en9, is an u.s.c. CE-decomposition of [—1, 1]%.
Since each [—1, 1]**® has a bicollar in [—1, 1]**%, it can be seen that ¢ satis-
fies the conditions (ii) and (iii) (see the proof of [12, §3]). Let X=[—1, 1]%4/¢,
x0=¢q(0), where ¢:[—1, 1]9—X is the quotient map, and for each n=N,

X, =[—1, 11**%/¢, = q([—1, 1]**?) and
Yn — ([—l, 1]n+3\(_2<n’ 2~n)n+3>/gn'n — (]([—‘1, 1]n+3\(_2—n, 2—n)n+3>'

Then each X, is an f.d. compact AR and each Y, is an f.d. compact ANR
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with Y,CX,. And X is a ¢-f.d. compact AR with X=\J,enyX, and X\{x,}
=\nenY . Moreover X contains no embedded 2-cell, but XX R=~¢ equivalently
XxI=e by [12, Theorem 3].

Now let N=XxI\{x,}x(0, 1. Then N=XXxI (e.g., see [15, Cor. 2-7]),
hence N=¢. For each neN, let

Zy,= XnX {O}UYT,,XI.

Then each Z, is an f.d. compact AR and N=\,enyZ,. We will show that the
tower {Z,}.en has the mapping absorption property for f.d. compacta. It
suffices to see that for each compact set A in N, me N and each open cover U
of N, there exists a map r:A—Z, from A to some Z, n=m, such that
r|ANZ ,=id and r is st(VU)-near to id. Since Z, is an ANR, we have an open
cover <V of N with CV< U such that arbitrary two CV-near maps in Z, are
¢J-homotopic in Z,. We will construct a map »’: A—~Z, for some n=m such
that #’ is ¢V-near to id. Then the inclusion ANZ,CZ, is <U-homotopic to
¥’ |ANZ,, hence extends to a map r: A—Z, U-homotopic to »’ (hence st(V)-
near to id) by Homotopy Extension [13, Ch. IV, Theorem 2.2]. Let
9y be a star-refinement of <. By [7], there is a 9-homotopy inverse

g : N—>[—1, 17¢xI{0} x(0, 1]=(¢gxid)""(N)

of ¢xid|(¢gxid)-*(N). Since g(A) is compact, we can choose ¢>0 and n'=m
so that for (x, s)eg(A) and (y, H)e(gxid)"'(N) if x;=y;, *+, xpw=y, and
|s—t|=Ze then (¢(x), s), (q(»), )eW for some We9w. From compactness of
g(AN[—1, 179X [e, 1], there exists an n=n’ (=m) such that

prvs([—=27", 27" " XINE(ANT -1, 11X [e, 1) = @

where pnis:[—1, 1]9—[—1, 1]**® is the projection onto the first (n-3)-coordi-
nates. Let %.:I—I be the piecewise linear map with £(0)=%k(e)=0 and %(1)=1.
Then

(gXid)(PrssX RUGAIN[—1, 11¢X[e, 1) T YoXxI  and
(gXid)(pn+a X RUGAINL—1, 11¢X[0, 1) C Xox {0}.
Thus we have a map
r'=(gXid)(Pnss X k)GIA + A—> Zp.

Observe that if (x, s)eg(A) and (y, t)=(pn+s(x), k(s)) then x;=y;, -+, xp =y
and |s—t]|=<e. Thus it is seen that »’ is 9-near to (¢xid)g|A, hence CV-near
to id.

By the identity of N induces a fine homotopy equivalence from
dirlimZ, to N. However, dirlimZ, is not an R>*-manifold. In fact, if so,
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there is an embedding u: I*—dir limZ, with (0, 0)=(x,, 0). From compactness,
u(IH)CZ, for some neN. Since u(0, 0)&Y,xI, w0, §>)CX,x{0}CXx {0}
for some 0>0. This contradicts the fact that X contains no embedded 2-cell.

6. Answer for a problem concerning enlargement of an R>-manifold.

Let X be an ANE for compacta which is the direct limit of a tower of f.d.
compacta. In [17, Problem 6-4], the author asked whether X is an R>-manifold
or not if X contains an R*-manifold M with XN\M a D-set. (For the definition
of D-sets, refer to [17, §1].) Here using the example in Section 5, we answer
negatively this problem.

Let {Z,}.enx be the tower of f.d. compact AR’s constructed in Section 5.
Then Z=dirlimZ, is an AE for compacta which is not an R*-manifold. We
will prove that Z“\{(x, 0)} is an R=-manifold and {(x,, 0)} is a D-set in Z.
First observe

Z{(x, 0)} = dir lim(Y ,xI) = (dir limY )X I.

By the arguments in the proof of [12, §3], we can see that the tower
{Y.XR},ey is finitely expansive, hence by (dir limY,) X R=
dir lim(Y , X R) is an R>-manifold. This implies Z\{(x,, 0)} =(dir imY,)xI is
an R>-manifold by [17, Theorem 6-2]. Next we show that {(x,, 0)} is a D-set
in Z. Let CDC, be compact sets in Z and U an open cover of Z. We must
construct an embedding f:C—Z such that f is WU-near to id, f|C,=id and
FICNC)TZ{(xq, 0)}. We may assume (x,, 0)€C\C,, otherwise the inclusion
CCZ is the desired embedding. Since C, is a D-set (cf.[17, Cor. 1-5]), it
suffices by [17, Theorem 4-1] to construct a map f:C—Z\{(x,, 0)} such that f
is vU-near to id and f|C,=id. From compactness, CCZ, and C,CY,xI for
some neN. Choose m>n so that ¢([—2"™, 2-™]**)x {0}CU for some Ucs.
Note that

g([—1, 1]***x [0, 1]~ (=277, 27™)"+4)
is an AR which is a closed subset of X,.;=¢([—1, 1]**%) containing V,. Let
7o Xuw—> q([—1, 17%** %[0, 1]\ (=27™, 2-™)n+)

be the retraction. Then the map f=rxid|C: C—Z~{(x,, 0)} is the desired
embedding.

7. @=-manifolds and X-manifolds.

Let Q=[—1, 1] be the Hilbert cube. Similarly as | J,exyR", the set | J,cxQ"
(CQ*) admits two different natural topologies and then the spaces Q>=dir lim Q™
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and Y are obtained. It is well-known that the pair (Q¢, 2) is homeomorphic to
(Q, B(Q)), where B(Q)={(x;);ensQ | x;==+1 for some 7} is the pseudo-boundary
of Q@ and that Y is homeomorphic to the linear span of the Hilbert cube
IT:en[—27% 2-%] in Hilbert space /,. A separable topological manifold modeled
on these spaces is called a Q=-manifold or a X-manifold, respectively. Similarly
as manifolds modeled on R> and ¢, these manifolds are also considered as two
topologizations on the same underlying sets. In Section 1, by replacing R, ¢,
I and [—n, n]™ by Q=, 2, Q and Q7, respectively, and by deleting the phrases
“f.d.” and “finitely ”, we can obtain the corresponding definitions, lemmas and

proofs. Then we have the following version of [Proposition 1|

PROPOSITION 1. Let h:M—Y be a bijective fine homotopy equivalence from
a Q=-manifold M to a metric space Y. If each compact set in Y is a strong
Z-set then' Y is a X-manifold.

Moreover the corresponding conjecture is also false. In fact, by suitable
modifications of Sections 4 and 5, we have a bijective fine homotopy equivalence
from @~ to an AR which is not a 2-manifold and one to 2 from the direct
limit of a tower of compact AR’s which is not a Q=-manifold. And then
Problem 6-4 for Q~-manifolds in is also negatively answered.

For a simplicial complex K, if |K|XQ is a Q~-manifold then we can show
that for each finite subcomplex L of K, |L|XQ is a strong Z-set in |K|n,XQ

by the same arguments in the proof of Thus we can prove the
following proposition.

PROPOSITION 3. For a simplicial complex K, if |K|wXQ is a Q=-manifold
then |K|mXQ is a X-manifold.

Notice Q*~R>xQ and Y=~¢x Q. By the Triangulation (cf.
and [2]) and the above proposition, we have the version of

COROLLARY 3’. (a) FEach Q=-manifold M has a continuous metric d such that
the metric space (M, d) is a X-manifold and the identity of M is a fine homotopy
equivalence from M to (M, d). (b) Each X-manifold N can be obtained from a
Q>-manifold M by changing topology so that the identity of N is a fine homot-
opy equivalence from M to N.

And then the version of is also obtained.

COROLLARY 4'. If X,CX,C --- is an expansive tower of compact ANR’S, then
each X, can be metrized by metric d, so that (X,, d))C(X,, d)C - is a metric
divect limit system whose limit is a X-manifold and the identity induces a fine
homotopy equivalence from dirlimX, (which is a Q=-manifold) to the metric
direct limit.
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Similarly we have also

PROPOSITION 2’. Let f:dirlimY,—N be a continuous bijection from the
direct limit of a tower {Y,}neny of compacta to a X-manifold N. Then there
exists a Q=-manifold M and f is factored by a continuous bijection g:dirlimY,—-M
and a bijective fine homotopy equivalence h:M—N.

Addendum. Recently, the converse of has been proved. In fact,
the author has proved that a simplicial complex K is a combinatorial
oo-manifold if {K|n, is a ¢-manifold. Thereby for any simplicial complex K,
the following are equivalent:

(1) K is a combinatorial co-manifold;

(ii) |Klw s an R=-manifold;

(ili) |Kl|m s a o-manifold.
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